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Abstract

We study a dynamic, stochastic economy with several agents, who may differ in their

endowments (of a single commodity) and in their utilities. An equilibrium financial market is

constructed, under the condition that all agents have infinite marginal utility at zero. If, in

addition, the Arrow—Pratt indices of relative risk aversion for all agents are less than or equal

to one, then uniqueness of equilibrium is also proved. When agents consume and invest in this

equilibrium market so as to maximize their expected utility of consumption, their aggregate

endowment is consumed as it enters the economy and all financial instruments are held in zero

net supply. Explicit examples are provided.



1. INTRODUCTION

A fairly complete theory has been developed recently for the optimal

consumption/investment problem of a small investor with a general utility function [2,3,11].

Using tools from stochastic calculus, explicit expressions for the optimal consumption policy

and terminal wealth can be provided when stock prices are modelled by Ito processes. The

present paper draws on the methodology of [11] to construct equilibrium in a multi-agent

economy, and to establish uniqueness.

We suppose there is a finite number, N, of agents (small investors), each of whom

receives an endowment stream denominated in units of a single, infinitely divisible commodity.

The agents may have different endowment streams and utility functions. Each agent attempts

to maximize his expected total utility from consumption of this commodity, over a finite

horizon [0,T]. We shall construct a financial market, consisting of a bond and a finite number

of stocks, which provides a vehicle for trading among the agents and thereby allows them to

hedge the risk and smooth the nonuniformity associated with their respective endowments.

The equilibrium problem is to construct this market in such a way that, when the stock and

bond prices are accepted by the individual agents in the determination of their optimal policies,

all the commodity is entirely consumed as it enters the economy and all the financial assets are

held in zero net supply.

This work generalizes the results of Cox, Ingersoll & Ross [4] in two important

directions. First, it allows for heterogeneous agents, whereas in [4] all agents have the same

endowments and the same utility functions. Secondly, we permit the endowment processes to

be adapted in a general way to an underlying d—dimensional Brownian motion, whereas in [4]

this dependence on the underlying Brownian motion must be via a state process so that Markov

methods could be employed. We derive a formula for the endogenously determined equilibrium

interest rate which agrees with that of [4] when specialized to their model. We also derive

formulas for the coefficients of the stock processes and the optimal consumption processes of the

individual agents.



The Cox, Ingersoll & Ross interest rate formula is given in terms of an indirect utility

function, J, derived from the single direct utility function, U, in their model. In our model,

each agent has a utility function, U , and we construct a "representative agent" whose utility

function will play the role of the Cox, Ingersoll & Ross function U. Roughly speaking, this

representative agent acts as a proxy for the individual agents by receiving their aggregate

endowment, solving his own optimization problem with utility function

(1.1) U(t ,c;A)i max
c ^ O , . . . , cN>0
cx+. . .+cN=c

and then apportioning his optimal commodity consumption process to the agents, instead of

actually consuming it. The search for equilibrium is reduced to a search for an appropriate
Nvector A € (O,GD) in (1.1); cf. Sections 9 and 12. This allows for equilibrium to be constructed

Nin R , rather than in some infinite—dimensional functional space (as, for instance, in [7]). One

advantage of posing the equilibrium problem in a finite—dimensional space is that in this

context, one can develop arguments resolving the question of uniqueness, an issue largely

ignored in the finance literature.

We use the Knaster—Kuratowski—Mazurkiewicz lemma [1, p. 26] to give a very simple

proof of the existence of equilibrium. Under the assumption that the agents' measure of

relative risk aversion is less than or equal to one, a separate simple argument shows that the

agents' equilibrium optimal consumption processes, as well as the equilibrium interest rate, are

unique. Furthermore, the coefficients of the equilibrium stock price processes are unique up to

the formation of mutual funds.

Some generalizations of this model are possible. First, one could easily include capital

assets which are owned by the N agents, pay dividends, and can be traded among the agents.

The additional condition of equilibrium, i.e., that all such assets are exactly owned by the



agents, can be easily met. A formula for the arbitrage-free price of such assets is given in

Section 13. Secondly, throughout this paper we consider only individual agent utility functions

satisfying the condition U/
k(t,0) = 00. Generalization to the case in which U£(t,0) < 00 for at

least one of the agents is possible, but care is required. To accomodate this case within our

framework, one needs a more general model of the financial markets than we define in Section

2. For equilibrium to hold in general, both the stock and bond price processes must have

singularly continuous components. One can describe the bond price process, but due to the

singularly continuous component, there will be no interest rate process. There is an alternative

model presented in [12], following the formulation of Duffie [5] and Duffie and Huang [6],

which avoids requiring the financial assets to have singularly continuous components. We refer

to this as the moneyed model; in it, prices are denominated in some currency, rather than in

units of the commodity. There is also a commodity spot price process which gives the value of

the commodity in that currency. In [12], the agents' commodity endowments and the prices of

the financial assets are given exogenously, and the commodity spot price is determined

endogenously by the equilibrium conditions. The existence and essential uniqueness of

equilibrium are proved in [12] without any condition on U^(t,0), 1 < k < N. None of the

financial assets will have singularly continuous parts in their price processes, but when those

prices are divided by the commodity spot price to value them in commodity units, singularly

continuous components can arise.

The present work is a self-contained companion to the more detailed and comprehensive

article [12]. It is designed to be more accessible than [12] in that it deals exclusively with the

moneyless model when all agents have infinite marginal utility at zero. These conditions

obviate a number of complex technicalities; in particular, they permit a different proof of

uniqueness for equilibrium, which is simpler than that appearing in [12].



2. THE AGENTS AND THEIR ENDOWMENTS

We consider an economy consisting of N agents. Each agent, n, receives a nonnegative

exogenous endowment process of a single commodity e = {e (t); 0 < t < T}, where T is the

fixed, positive planning horizon. These endowment processes are uncertain, and we model them

as Ito processes taking values in [0,a>). More precisely, let W = (Wp.-.jW^) be a

d-dimensional Brownian motion on a complete probability space (f i ,^ , IP), and let { ^ }

denote the augmentation by null sets of the filtration generated by W. Assume that for

n = 1,...,N, there are bounded, {^x}—progressively measurable processes \i and p taking

values in R and K , respectively, such that

(2.1) e (t) = en(0) + f /*n(s)ds + [ p*(s)dW(s), 0 < t < T,

where e (0) is a deterministic, nonnegative constant.e
We define the aggregate endowment

A
 N

(2.2) « ( t )£ E en(t), 0 < t < T ,

A N A N

and define also /*(t) = S a (t), p(X) = S p (t), 0 < t < T. Then
n = l n n = l n

(2.3) c(t) = 6(0) + [ ji(s)ds + [ p*(s)dW(s), 0 < t < T
Jn Jn

We assume that for each n, en is not identically zero, and that there exist positive constants

k and K for which



(2.4) k < e(t) < K, 0 < t < T, a.s.

3. THE AGENTS' UTILITY FUNCTIONS

We suppose that each agent, n, has a utility function Un : [0,T] x (0,©) -» R which is

continuous and enjoys the following properties:

(i) for every t G [0,T], U (t,«) is strictly increasing and strictly concave;

(ii) the derivatives | - Un> £ Un, -fa Un, ^ Ufl and £ j Ufl exist and are

continuous on [0,T] x (0,a>);

(iii) for every t G [0,T], U^ = ^ Ufl satisfies

(3.1) Un(t,a,) 4 lim U;(t,c) = 0,
C->00

(3.2) u;(t lo)iiimu;(t>c) = ».

We define U (t,0) = l imU (t,c), which may be -GO.
n c|0 n

In order to prove the uniqueness of equilibrium, we shall impose in Section 12 the

additional condition

(iv) for every t € [0,T], the function c H C U^tjC) is nondecreasing.

Condition (iv) is equivalent to assuming that the Arrow—Pratt measure of relative risk

aversion, —cÛ 7 (t,c)/U^(t,c), is less than or equal to one [14, p. 69].

Examples of functions which satisfy conditions (i) — (iv) are e~~ log c and - e c ' ,

where a e K and 0 < 7 < 1. When 7 < 0, the function ^ e ^ ^ c 7 violates condition (iv), but

if all agents have this utility function, the uniqueness of equilibrium can be established by

explicit computations; see Example 11.1.



4. THE FINANCIAL MARKET

The agents in our model receive utility from consumption of the single commodity with

which they are endowed. Because an individual agent's endowment process is typically random

and non—uniform, he would find it advantageous to participate in a market which allows him

both to hedge risk and to smooth his consumption. We shall create such a market

endogenously by equilibrium considerations.

We introduce the financial market in this section; its coefficients will be specified in

section 10, in terms of the endowment processes and utility functions of the individual agents.

The market has d + 1 assets. One of them is a pure discount bond, with price

(4.1) P0(t) = P0(0)exp{[ r(s)ds}

at time t. The remaining d assets are risky stocks, and the price per share P.(t) of the i

stock is modelled by the linear stochastic differential equation

d
(4.2) dP.(t) = P.(t)[b.(t)dt + S (7..(t)dW.(t)]; i = l,...,d.

1 1 1 j=l 1J J

All these prices are denominated in units of the commodity with which the agents are endowed.

The interest rate r(•) of the bond, the mean rate of return vector b(-) = (b-.(-),...,b J-)) of

the stocks, and the volatility matrix a{•) = {a..(• )} 1 < i ^ ,, will all be bounded,

l^.}—progressively measurable processes. In addition, we shall impose the uniform

nondegeneracy condition

(4.3) £*tf(tWtK > $ ||f||2, 0 < t < T, a.s.,



for some 6>Q. Under (4.3), the inverses of both tr(-)and a (•) exist and are bounded. In

particular, the relative risk process

(4.4) W ^ W r t b C O - r t o l ] , 0< t<T,

is bounded and progressively measurable, where 1 denotes the d—dimensional vector with

every component equal to 1.

It follows then from the Girsanov theorem (e.g. [13, section 3.5]) that the exponential

supermartingale

t t
(4.5) Z(t)4exp{~J 0*(s)dW(s)-4j ||0(s)||2ds}, ^ 0 < t < T,

is actually a martingale, and that

(4.6) W(t) 4 W(t) + [ 0(s)ds; 0 < t < T,

is Brownian motion under the probability measure P(A) = E(Z(T)1 *); A e 9*^- Under this

measure, the discounted stock price processes /?(t)P.(t), with

1 1 P

(4.7) /?(t) 4 (Pn(t)) - 1 = — — exp{- r(s)ds}

are martingales, a fact of great importance in the modern theory of continuous trading (cf.

[8,9,15] for its connections with the notions of "absence of arbitrage opportunities" and

"completeness" in the market model). We shall see in Remark 7.1 that the process



(4.8) <(t) 4 /?(t)Z(t) ; 0 < t < T,

acts as a "deflator", in the sense that multiplication by ((t) converts wealth held at time t to

the equivalent amount of wealth at time zero.

We impose on ( the condition

(4.9) 0 < k < C(t) < K , 0 < t < T, a.s.,

for some constants k and K.

5. THE INDIVIDUAL AGENTS' OPTIMIZATION PROBLEMS

Once a financial market is specified, as it will be in Section 10, each agent, n, acts as a

price—taker. He has at his disposal the choice of an R —valued portfolio process ^n(t) =

and a nonnegative consumption rate process cn(t), 0 < t < T. He must

^

choose both these processes to be {&+}—progressively measurable and to satisfy
T

(c
n(t) + lkn(t)ll )dt < oo, almost surely. The interpretation here is that ^ ( t ) represents

0
the amount of commodity invested at time t by the n investor in the i stock.

If we denote by X (t) the wealth of the n investor at time t, then
d

X (t) — S 7T .(t) is the amount invested in the bond. Neither this quantity nor the individualn . = 1 m

7T .(t)7s are constrained to be nonnegative, i.e., borrowing at the interest rate r(t) and

short-selling of stocks are permitted.

The wealth X corresponding to a given portfolio/consumption pair (TT ,C ) satisfies

the equation



(5.1) dX (t) = [e (t) - c (t)]dt + E % -(t)[b.(t) + S <r..(t)dW.(t)]
•**• •«•*• J L 1 • -| ILL 1 • t x \ I

1—-1 l^^x

[ X n ( t ) ~ i 2 i 7 r n i ( t ) ] r ( t ) d t

= r(t)Xn(t)dt + [en(t) - cn(t)]dt + 7rn(tMt)dW(t)

(cf. (4.6)), whose solution is

(5.2) ^ t )X n ( t ) = J ^(s)[en(s) - cn(s)]ds + J (3(s)ir*n(s)a(s)dW(s), 0 < t < T.

5.1 Definition. A portfolio/consumption pair (7rn,c ) is called admissible for agent n if the

corresponding wealth process, Xn, is bounded from below and satisfies Xn(T) > 0, almost

surely.

The n agent's optimization problem is to maximize the expected total utility from
T

consumption E Un(t,cn(t))dt over all admissible pairs (\^n) that satisfy

T
(5.3) E j max{0,-Un(t,cn(t))}dt < a,.

Condition (5.3) is imposed to ensure that E Un(t,cn(t))dt is defined. We shall let (^
J 0

denote an optimal pair for this problem, and let Xn denote the associated wealth process.

The existence of (TT , c ) is established in Section 7.
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6. THE DEFINITION OF EQUILIBRIUM

We are now in a position to define the notion of equilibrium.

6.1 Definition. We say that the financial market (more specifically, the processes r(-), b(-)

and a{ •)) introduced in Section 4 results in equilibrium if, in the notation of Section 5, we

have almost surely

N .
(6.1) E c (t) = e(t), 0 < t < T,

n = l n

N .
(6.2) S 7rni(t) = 0, 0 < t < T and 1 < i < d,

n = l

N .
(6.3) E X j t ) = 0 , 0 < t < T.

The above conditions enforce the clearing of the spot market in the commmodity, and

the clearing of the stock and bond markets, respectively.

7. SOLUTION OF THE n t h AGENT'S PROBLEM

In order to characterize an equilibrium financial market, we let a financial market be

given and study individual agent behavior in its presence. Let us therefore consider an

admissible pair (^n^IL) and evaluate the corresponding wealth process X n at the stopping

time

t
= T A inf{t G [0,T]; [ /32(s)||7r*(s)cr(s)||2ds > m}
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for an arbitrary positive integer m. Taking expectation under P in (5.2) evaluated at t =

r , we obtain

r m r
r mr 111 r III

J C(s)cn(s)ds = E J C(s)6n(s)ds - E[C(rm)Xn(rm)].

Now we let m -* oo. Admissibility and Fatou's lemma give 1 i m m j 1 m

m-»oo

E[C(T)Xn(T)] > 0. This, coupled with the Monotone Convergence Theorem, yields in (7.1):

(7.2) E j C(s)cn(s)ds < E J C(s)ea(s)ds.

7.1 Remark. Inequality (7.2) can be regarded as a budget constraint, and it justifies the

terminology "deflator" for the process ( of (4.8). It mandates that the expected total value of

consumption, deflated back to the original time, does not exceed the expected total deflated

value of endowment.

7.2 Proposition. Let a financial market be given. If (TT ,C ) is an admissible pair for agent n,

then (7.2) holds. Conversely, for any consumption process c satisfying (7.2), there exists a

portfolio process 7rn such that the pair (7rn>cn) is admissible.

Proof: It remains to justify the second claim; for any consumption process cn satisfying (7.2),

introduce the random variable

A

(7.3) Dn 4 f /?(s)[en(sHn(s)]ds
J 0
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and observe that (7.2) amounts to EDn > 0. Now the IP-martingale

(7.4) M n ( t ) 4 E D n - E ( D n | ^ t ) ; 0 < t < T,

can be written as a stochastic integral

t
(7.5) Mn(t) = | /?(s)7rn(sMs)dW(s)

for a suitable portfolio process TT , by virtue of the martingale representation theorem (cf. [13,
n

Problem 3.4.16 and proof of Proposition 5.8.6]). Finally, the process

t
(7-6) Xn(t) = jL {f ^(s)[6n(s)-cn(s)]ds + Mn(t)}

is obviously, from (7.5) and (5.2), the wealth associated with the pair (\,cR) and satisfies

T
<(t)Xn(t) = Z(t)EDn - E{ [ C(s)[en(s)-cn(s)]ds | ̂ t } ; 0 < t < T,

X
a.s.

Both requirements of Definition 5.1 for admissibility follow easily from this representation,

(2.4) and (4.9). •

We conclude from Proposition 7.2 that the n agent's optimization problem can be cast

T
thus: i£> maximize the expected utility from consumption E U (t,c (t))dt over

J o
 n n

consumption processes c which satisfy (7.2) and (5.3).

In order to solve this problem, we introduce I (t, •), the inverse of the strictly
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decreasing mapping tP(t,-) from (O,co) onto itself. It is a straightforward verification that

(7.7) Un(t,In(t,y)) - yln(t,y) = max[Un(t,c)-yc]; V (t,y) G [0,T] * (0,*).
c>0

Because In is jointly continuous (in fact, jointly C because of condition (ii) of Section 3)

and ( satisfies (4.9), the function

(7-8) ^n(y) = Ej C(t)yt,y<(t))dt

maps (0,a>) onto itself and is continuous and strictly decreasing. Define y to be the unique

positive number for which

(7-9) ^ n ( y n ) = E f C(t)en(t)dt,

and set

(7-10) cn(t) i In(t,ynC(t)), 0 < t < T .

Then c satisfies (7.2) with equality, and is bounded away from zero because £ is bounded,

so (5.3) holds. Let c be another consumption process satisfying (5.3) and (7.2). From (7.7)

we have
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T T
U(t,cn(t))dt - E j U(t,cn(t))dt

E | [U(t,I(t,ynC(t))) - ynC(t)I(t,ynC(t))]dt

T

o[U(t,cn(t))-ynC(t)cn(t)]dt>O.

Therefore, c is optimal. Proposition 7.2 guarantees the existence of % .

8. CHARACTERIZATION OF EQUILIBRIUM

The issue now is how to choose the market coefficients r( •), b( •) and a(•) so that

when, for each n, c is given by (7.10) and TT is the corresponding portfolio process whose

existence is guaranteed by Proposition 7.2, relations (6.1) — (6.3) are satisfied. It turns out

that the only relevant aspect of r(-), b(-) and cr( •) is the process ( they lead to, as shown by

the following proposition.

8.1 Proposition. Let r(•), b( •) and a( •), as described in Section 4, be given, and suppose that

the equilibrium conditions (6.1) — (6.3) are satisfied. Then

N
(8.1) e ( t )= E In(t,ynC(t)), 0 < t < T,

where y n is defined by (7.8), (7.9), and £ is given by (4.8). Conversely, suppose there exist

r(-), b(-) and a(-) whose corresponding process ( satisfies (8.1); then the equilibrium

conditions (6.1) — (6.3) are also satisfied.
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Proof: For the first assertion, recall that for n = 1,...,N, the optimal consumption processes

are given by (7.10). The spot market clearing condition (6.1) leads to (8.1).

For the converse assertion, note that for the ( in question, the optimal consumption

processes cn, 1 < n < N, are again given by (7.10). Denote by Dn, Mn, 7rn and XQ the

corresponding processes in (7.3) - (7.6), which now satisfy EE>n = 0 and Xn(T) = 0 a.s.,
N -

because of (7.8), (7.9). From (7.3) and (8.1) we have S D = 0, a.s. It follows then from
n=l n

N * N .
(7.4), (7.6) that E Mn(t) = S X (t) = 0, 0 < t < T, a.s. Thus (6.1) and (6.3) are satisfied.

n=l n=l
N .

Furthermore, the quadratic variation of E M on [0,T], according to (7.5), is equal to
n=l

T
r o * N n *

{r(s)\\cr (s) S T_(S)|| ds, so this quantity is zero. Because a is nonsingular, (6.2) must
J 0 n=l n

hold.

9. THE REPRESENTATIVE AGENT

For every A = (Ap...,Ajy) G (0,a>) , let us introduce the function

N
(9.1) U(t,c;A)= max E A U (t,c ); (t,c) 6 [0,T] x (O,oo),

Cj^O,. . . , cN>0n=l n n n

which inherits the basic properties of the individual utility functions U , as set out below. It

is easily checked that the maximization in (9.1) is achieved by

(9.2) cn = IJt, ^ H(t,c; A)),n IJ ^
n

where H(t,-; A) is the inverse of the strictly decreasing function I(t,-; A) from (0,©) onto
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itself, defined by

(9.3) I(t,h; A) 4 E In(t, *-)

In order to examine the differentiability of U(-,•; A), we first note that for each n, In

is jointly C because of condition (ii) of Section 3.1 and the Implicit Function Theorem.

Differentiating the equation U^(t, In(t,y)) = y twice with respect to y, one sees that —^ \

exists and is continuous. Consequently, for each A e (O,oo) , - ^ I(•, •; A), -^-1( •, •; A) and

-,-; A) exist and are continuous. Because I(t,H(t,c;A);A) = c we can similarly conclude
y

that -^ H, -^ H and —^ H e x i s t an(* a r e continuous. Finally

N ,
U(t,c;A)= E A^tJ^f -

n=l n

and differentiation with respect to c yields

U'(t,c; A) 4 ^U( t , c ; A) = H(t,c; A) ^I(t ,H(t,c; A); A) = H(t,c,A).

Therefore, UJ(t,c; A) 4 ^ - U(t,c; A), U7/ (t,c; A) = ^ U(t,c; A) and
5c

A I?
U"' (t,c; A) = ^ U(t,c; A) exist and are continuous on [0,T] x (O,OD).

We have shown that I(t,«; A) defined by (9.3) is the inverse of U^t,-; A), and so

U( •, •; A) satisfies conditions (i) — (iii) of Section 3. We call U( •, •; A) the utility function of a

representative agent who assigns weights Alr..,AN to the individual agents in the economy.

Making the identification A = (A. , . . . ^ ) = (—,...,—), equations (7.8) - (7.10), (8.1)
1 1N y l yN
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may be rewritten as

(9-4) <(t) = U ' ( t , e ( t ) ;A) , 0 < t < T ,

T T
(9.5) E j U^(t,6(t);A)In(t,^U'(t,6(t);A))dt = E j U'(t,e(t); A)en(t)dt,

1 < n < N,

and the search for equilibrium is equivalent to the search for a vector A £ (0,QD) which

satisfies (9.5). Once such a vector is found, the corresponding equilibrium ( is given by (9.4),

and the optimal consumption processes of the individual agents by

(9.6) cn(t;A) = I J t , j - U'(t,€(t); A)), 0 < t < T, 1 < n < N.
n

Note that ( given by (9.4) satisfies (4.9) because of (2.4) and the continuity of U ' ( - , • ; A).

10. THE EQUILIBRIUM FINANCIAL MARKET

In this section, we assume the existence of A € (0,©) satisfying (9.5), and we draw

conclusions about the equilibrium financial market. The existence of such a A is established

by explicit computation for certain special cases in Section 11 and in full generality by a fixed

Npoint argument in Section 12. It is apparent from (9.1) that for any A G (O,OD) and 77 > 0,

(10.1) U(t,c; 7/A) = n U(t,c; A), V (t,c) G [0,T] x (o,co),

so a multiplicative constant on A cancels out of (9.5) and (9.6). Therefore, the existence of

any solution A to (9.5) guarantees the existence of a one—parameter family of solutions. In

Section 11 and under the additional assumption (iv) in Section 12, the solution to (9.5) is
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shown to be unique up to a positive multiplicative constant. It follows then from (9.6) and

(10.1) that the equilibrium optimal consumption processes for the individual agents are

uniquely determined.

10.1 Proposition. Assume that there exists A E (O,oo) satisfying (9.5), and that this A is

unique up to a positive multiplicative constant. Then an interest rate process r( •), a mean

rate of return vector process b( •), and a volatility matrix process a( •) lead to equilibrium if

and only if

(10.2) r(t) = - U ^ t >
1

e ( t ) ; A ) [U((t,6(t); A) + Kt) U" (t,e(t); A)

+ \ IIPWII2 U"' (t,6(t); A)],

^ t ) -r(t) i] = - U ^ ( | ; $ j : i ] p{t). ° * * <- T>

where A is determined by PQ(0) • U'(0,e(0); A) = 1.

Proof: From (4.5), (4.8), we have

(10.4) C(t) = p - ^ - / r(s)C(s)ds - / C(s) /(s)dW(s), 0 < t < T.

Equilibrium occurs if and only if (9.4) holds, and recalling (2.3), we see that (9.4) is equivalent

to
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(10.5) C(t) = U'(0,e(0); A ) + / V ( B ) U " (S)e(s); A) + \ ||p(s)||2U"' (s,6(s); A)]ds
o

+ / U" (s,e(s); A) p (s)dW(s), 0 < t < T.
o

Identifying coefficients in (10.4) and (10.5), we obtain U'(0,e(0); A) = TTTTTT, (10.2) and

(10.3).

11. EXAMPLES

We cite a few special cases in which the equilibrium can be computed explicitly.

11.1 E x a m p l e . U n ( t , c ) = i e " V 7 , V ( t , c ) e [0 ,T] x (O,OD), n e { 1 , . . . , N } , where a e R a n d 7

< l , 7 # 0 .
NIn this case, the vector A = (A1,...,Aj^) G (O,oo) with

N
is the unique solution to (9.5) subject to the normalizing condition S A J = 1. The optimal

n=l
1

consumption processes are c (t) = An""̂  £(t), and the equilibrium financial market satisfies
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The normalization of A we have adopted corresponds to PQ(0) = e= e ^

11.2 Example. Un(t,c) = e ^ l o g c V (t,c) G [0,T] x (O,OD), n G {1,...,N},

where a G R.

In this case, we obtain the formulas of Example 11.1 but with 7 = 0. In particular,

*— E f V ^ d t , a #0,-aT J ° W
1-e

n ' , fT e ( t )
— E (. v dt , a = 0,
X Jo €^ ^

N
provides the unique solution to (9.5) subject to the normalizing condition E A = 1 . The

n = l

optimal consumption processes are c (t) = A e(t), and the equilibrium financial market

satisfies

If agents have different utility functions, it is not in general possible to compute the

solution of the equilibrium problem in closed form. A special case in which such computations

can be carried out arises when N = 2, VJc) = log c and U2(c) = ^c. Another special case is

the following.
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11.3 Example. Constant aggregate endowment e(t) = e > 0 and time-independent utility

functions.

T
A 1 f

In this case, the optimal consumption rates are constant: c (t) = c = — E e (t)dt,

and every solution of (9.5) is a multiple of A = (—^—,..., *—). Constant aggregate

endowment implies that \i = 0, p = 0, so the equilibrium market must satisfy r = 0 and b = 0.

The displayed A is normalized to correspond to PQ(t) = PQ(0) == 1# Note> however, that in

this model the individual agent endowments can be random and time—varying, in which case

agents must trade with one another to finance their constant rates of consumption.

12. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

In this section we establish the major results of the paper: existence of an equilibrium

financial market and its uniqueness in the sense of Proposition 10.1. The proof of existence is

based on the Knaster—Kuratowski-Mazurkiewicz (KKM) Theorem [1, pg. 26] and requires only

assumptions (i)—(iii) of Section 3, while our uniqueness proof requires the additional condition

(iv). Example 11.1 shows, however, that condition (iv) is not necessary for uniqueness.

We begin with some notation adapted from [1]. Let x ,..., x^ ' denote the elementary

vectors of R , and let Jf = {1, ..., N}. Suppose A c / , then G/^ denotes the convex hull

of the elementary vectors {x^; i 6 A}, i.e., <$f K = {S A-x^1'; \ > 0 V i and E A-=l}> and
A ieA ieA

we define <*f A + = {S A.x'1'; A. > 0, V i and S \^ =1}. To set the stage for the next
ieA ieA

theorem, we define for A e <^^r

E U'( t ,e ( t ) ; A)[In(t , ^ U ' ( t , e ( t ) ; A)) - €n(t)]dtf if An >0 ,
J 0 n

T
- E J U'(t,e(t); A)en(t)dt, if An = 0,

and let F n = {A e G ^ ; Rn(A) > 0}.
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12.1 Theorem. Under conditions (i) — (iii) of Section 3, there exists a vector A G <^

satisfying (9.5).

Proof: With A = (Ap...,AN), we have from the dominated convergence theorem that

rT
1 im Rn(A) = - E U /(t,e(t);A)en(t)dt < 0. This, coupled with the smoothness conditions

on Un , proves that Rn(A) is continuous on <^ and Fn is closed. From (9.3) we have

N *
S R (A) = 0 for every A G tifjf . Suppose there were a A in dfjr which was not in

n= l
N *

U F . This would imply E R (A )< 0, a contradiction. Consequently,^^ C U F .
T&JT n n = l n ^ JAJT n

More generally, i f we let A c / and consider A G G/ A , a similar argument shows t ha t
* • *

A G U F n . Indeed, if A g U F , then Rn(A ) < 0 for all n G A, again contradicting
nGA nGA

N *
S Rn(A ) = 0. By the KKM Theorem [1, page 26], fl Fn is nonempty. Choose

n= l w£.Jf
N

A G fl F n . Then Rn(A) = 0, 1 < n < N, for otherwise we would have E Rn(A) > 0, a

contradiction. Thus (9.5) is satisfied by A. Finally, A > 0 or else Rn(A) would be strictly

negative. D

As observed following (10.1), once a vector in df't satisfying (9.5) is obtained, any

positive multiple of this vector also satisfies (9.5). We next turn our attention to the question

of uniqueness. Condition (iv) of Section 3 is equivalent to the assumption

(12.1) ^n(t*y) = y IjiO^y) *s nonincreasing in y.

This leads to the following uniqueness result.
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12.2 Theorem. Assume conditions (i)-(iv) of Section 3. Then the solution A G (0, oo)n of (9.5)

is unique up to multiplication by a positive constant.

Proof: We introduce the usual partial order in (O,oo) : A < M if and only if

^n - ^n' ^ n e t^j -.fN}. We write A < M if A < M and A ^ M. In particular, notice in

(9.3) the implications

(12.2) A < M => I(t,h; A) < I(t,h; M) V(t,h) e [0,T] x (O,OD).

For A < M we have from (12.2) that U'(t,e(t); A) < U'(t,e(t); M). Let A and A be two

A
solutions of (9.5) and define i\ = max — and M = (/*.., ...,/* ) = i\ A, so M is a solution

l < n < N l n
 l n

of (9.5) and A < M. If A = M, then A is indeed a positive multiple of A. Therefore, it

suffices to rule out the case A < M.

Suppose that A < M. From (12.2) we obtain U /(t,e(t); A) < U'(t,e(t); M),

V (t,u) e [0,T] x fi. Choose an integer n € {1,...,N} satisfying A = 77A (and hence also

An = /xn). We have

X JL

E J ^-U'(t,c(t); A)£n(t)dt < E I ^U'(t,e(t); M)«n(t)dt

T T
E f *»n(t,x-U'(t,e(t);A))dt>Ef ^ (t, ̂ U'(t,e(t); M))dt,

J 0 n J 0 p n

where (p is given by (12.1). Taking the difference of these two relations, we obtain

1 R (A) > i - R (M). But A and M both solve (9.5), so R (A) = R J M ) = 0, and a
^n n ^n n

contradiction is obtained.
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13. VARIATIONS OF THE MODEL

In addition to the financial assets of Section 4, one can allow the agents to trade in

capital assets, and one can associate to each one of these assets a dividend process ^m(')> 1 ̂

m < M, denominated in units of the commodity. In contrast to financial assets, which are

essentially contracts between the agents, capital assets have to maintain a positive net supply.

One can show that the prices S (•) of these new assets have to be given as

T
(13.1) C(t)Sm(t) = E [[ C(s)*m(s)ds | * t ] ; 0 < t < T,

J t

in order to prevent "arbitrage opportunities". Once the deflator ( has been determined by

equilibrium considerations, relation (13.1) allows the endogenous computation of the capital

asset prices Sm(-), 1 < m < M. The details appear in [12].

Consider now an economy with deterministic endowments and n<2 financial market

except for a bond with deterministic interest rate. Agents can consume but cannot borrow or

invest, are bound simply by the budget constraints

JL J .

[ /?(s)c (s)ds < [ /?(s)e (s)ds; 1 < n < N,
J n u Jo l l

T T

P(s)c (s)ds <
0 n J 0

(the deterministic analogue of (7.2)), and try to maximize their total utilities
T

Un(t,cn(t))dt from consumption. Equilibrium amounts to the requirements (6.1), (6.3)

alone. In this simple model the results of sections 7-12 are valid, provided that one sets ((t)

/3(t), omits reference to $, and drops the expectation signs in the formulas.
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