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ABSTRACT

The problem of maximizing the expected utility from terminal wealth is well understood

in the context of a complete financial market. This paper studies the same problem in an

incomplete market containing a bond and a finite number of stocks, whose prices are driven by

a multidimensional Brownian motion process W. The coefficients of the bond and stock

processes are adapted to the filtration (history) of W, and incompleteness arises when the

number of stocks is strictly smaller than the dimension of W. It is shown that there is a way

to complete the market by introducing additional, "fictitious" stocks, so that the optimal

portfolio for the thus completed market coincides with the optimal portfolio for the original

incomplete market. The notion of a "least favorable" completion is introduced and is shown to

be closely related to the existence question for an optimal portfolio in the incomplete market.

This notion is expounded upon using martingale techniques; several equivalent

characterizations are provided for it, examples are studied in detail, and a fairly general

existence result for an optimal portfolio is established based on convex duality theory.



1. INTRODUCTION

This paper studies the problem of an agent who receives a deterministic initial capital,

which he must then invest in an incomplete market so as to maximize the expected utility of

his wealth at a prespecified final time. The market consists of a bond and m stocks, the latter

being driven by a d—dimensional Brownian motion. In such a model, incompleteness arises

when m is strictly smaller than d. The market coefficients, i.e., the interest rate, the rates of

stock appreciation, and the stock volatility coefficients, are random processes adapted to the

full d-dimensional Brownian motion. When m < d, it is typically not possible to construct a

portfolio consisting of the bond and the m available stocks, so as to completely hedge the risk

associated with these coefficient processes.

In Sections 2 through 5, we define the utility maximization problem faced by the agent.

In Section 6 we present the solution when the market is complete (m = d), and complete

hedging is possible. This solution proceeds in three steps. First, on the underlying probability

space one determines a new measure which discounts the growth inherent in the market; under

this measure, the expected value of the final wealth attained by any reasonable portfolio is

equal to the initial endowment. Secondly, among all random variables whose expectation under

the new measure is equal to the initial endowment, a most desirable one is determined.

Thirdly, it is shown that a portfolio can be constructed which attains this most desirable

random variable as its terminal wealth; this portfolio is optimal. A complete market is one in

which the agent can construct a portfolio which attains as final wealth any random variable

with expectation under the new measure equal to the initial endowment. Because such a

construction is possible, it is said that the agent can hedge against the risk associated with this

market. Mathematically, the construction of a portfolio uses the fact that any martingale with

respect to a Brownian filtration can be represented as a stochastic integral with respect to the

Brownian motion; the integrand in this representation leads to the portfolio we are seeking.

However, if there are fewer than d stocks, this line of argument fails.



In Section 7 we introduce a convenient way of thinking about an incomplete market:

fictitious completion. When there are fewer than d stocks, then one augments the stocks with

certain fictitious ones so as to create a complete market. If the fictitious stocks have a high

appreciation rate, then under an optimal portfolio the agent will hold a long position in them,

but if they have a low (even negative) appreciation rate, then he will hold a short position.

Thus one would expect to be able to adjust the appreciation rates of the fictitious stocks so that

the agent, by optimal choice, does not invest in them at all. These judiciously chosen fictitious

stocks allow us to write down the complete market solution for the utility maximization

problem but are superfluous in the actual implementation of the optimal portfolio, which must

then also be optimal for the original incomplete market. The fictitious completion with the

above property is the least advantageous to the agent, because the portfolio which is optimal

under this completion is available to him under every other fictitious completion. We thus

have the notion of a least favorable fictitious completion: for every fictitious completion we

compute the portfolio which maximizes the expected utility of final wealth, and then we choose

the completion which makes this maximum expected utility as small as possible.

As explained in Section 7, a convenient way to parametrize fictitious completions of an

incomplete market is by a certain space of continuous local martingales, each local martingale

being the Radon—Nikodym derivative process of the new measure alluded to in the earlier

discussion of complete markets. This kind of parametrization is studied in Section 8, and

several pertinent results are established. One would also like to be able to characterize the

local martingale corresponding to the least favorable fictitious completion, and to show that it

gives rise to an optimal portfolio in the original incomplete problem; this program is carried out

in Section 9, in which various such equivalent characterizations are provided. Section 10

studies two examples in which the least favorable fictitious completion can be computed fairly

explicitly. In the first example the utility function is logarithmic, and it is discovered that the

fictitious stocks in the least favorable completion should have rates of appreciation equal to the



interest rate of the bond. This is a very general result, insensitive toTlhe nature of the

dependence of market coefficients on the driving firownian motion,* h* the second example it is

assumed that the utility function is of the power form, and that the driving Brownian motion

splits into two independent parts; the first part drives the st€Kdt processes, whose coefficients

are adapted solely to the second part. The least fevorablelooal martingale is exhibited as the

solution to a martingale representation problem, and the optimaLportfoBo is found to be given

by the formula already known to be correct for deterministic model coefficients.

In Section 11 weintroduce an auxiliary optimization problem^ involving the family of

local martingales whickcharacterize fictitious completions; this problem is "dual11 to the

"primal" utility maximization question of Section 5, in the sense of convex duality. We study

the relation between the primal and dual problems, and explain how a solution to the latter

induces one for the former. The question of existence in the dual problem is tantamount to the

existence of a least favorable fictitious completion; it is dealt with in section 12, by the use of

methods from convex analysis. ? a
• * « • • •

Our model for the financial market can be traced back to Merton [1546} and Samuelson

[19]. The modern mathematical approach to portfolio management in complete markets, built

around the ideas of equivalent martingale measures and the creation of portfolios from

martingale representation theorems, began with Harrison & Kreps [5] and was further

developed by Harrison & Pliska [6,7], in the context of option pricing. Pliska [18], Cox &

Huang [2,3] and Karatzas, Lehoczky & Shreve [12] adapted the martingale ideas to problems of

utility maximization. Much of this development appears ia Section 5/8 of Karatzas & Shreve

[13], from which Section 6 of the present paper is drawn; see also the review article of Karatzas

[11] for a survey of financial economics problems in complete markets. An extension of the

above papers to infinite horizon problems is reported by Huang and Pages [10].

A first step toward a martingale analysis of incomplete markets was taken by Pages [17],

who considered a Brownian model in which the number of stocks was strictly less than the



dimension of the driving Brownian motion. However, the coefficients of the bond and stock

prices in this model were allowed to depend on the underlying Brownian model only through

the bond and stock prices themselves. Thus, the vector of bond and stock prices formed a

Markov process. This specialization created an essentially complete market-, and thus it avoided

the more interesting case of a market with genuinely unhedgeable risk* However, Pages did

characterize the class of equivalent martingale measures which could arise in an incomplete

model, and this laid the groundwork for further developments (e.g., Lemma 8.2 in this paper).

A more substantive step was taken by He k Pearson [8] in a discrete-time, finite probability

space model, where the authors proposed finding the optimal intermediate consumption and

terminal wealth corresponding to each of the equivalent martingale measures, and then

searching over those policies to find a pair yielding the minimum expected total utility. Using

separating hyperplane arguments, they were able to show that the total utility obtained by this

two-step "minimax" process is the optimal total value for the incomplete problem.

He k Pearson have also studied the incomplete problem in a continuous—time, Brownian

model. In an early version of He & Pearson [9], the authors consider Pages' characterization of

the family of equivalent martingale measures and search over this family for a "minimax"

equivalent martingale measure, which would lead them to the optimal consumption and

portfolio processes just as in a complete market. The martingale associated with this measure

would create the "Arrow—Debreu11 state prices in the incomplete model. Howeyer, the

continuous—time model is more subtle than one might expect, and although i t is now dear that

Arrow—Debreu state prices exist for the incomplete model under some assumptions, it is not

dear that they are associated with a martingale.

The present paper uses local martingales rather than martingales to address the issue of

market incompleteness in continuous-time modds. This work was motivated by the

aforementioned previous version of He k Pearson [9], and by the use of local martingale

methods introduced by Xu [20] in the study of incompleteness induced by a prohibition on the



short-celling of stocks. Using the stochastic duality thoery of Bismut [1], Xu formulated a dual

problem whose solution could be shown to exist and could then be used to obtain existence and

characterization of the solution of the original problem. As this paper shows, such duality

methods can also be used in the traditional incomplete Brownian market model. While we still

do not know if the minimax equivalent martingale measure sought by He k Pearson exists in

any generality, we show here that the solution to Bismut's dual problem is a "least favorable

local martingale" which can be used to generate a sequence of equivalent measures. The

existence of this least favorable local martingale is sufficient for the study of many models. A

notable exception is the incomplete markets model in which the agent's endowment is a

stochastic process; we do not know how to obtain the existence and a characterization of the

optimal policy for such a model in terms of a least favorable local martingale, unless it is

actually a martingale.

He k Pearson [9] have incorporated Xu's local martingale techniques into their original

work. He k Pearson [9] report the existence of an optimal portfolio for the terminal wealth

utility maximization problem when the index of relative risk aversion is everywhere greater

than or equal to one, and they report similar results for the problem with intermediate

consumption and consumption at the terminal time when the index of relative risk aversion is

everywhere less than or equal to one. Our paper deals only with the case of terminal wealth

utility maximization when the index of relative risk aversion is everywhere less than or equal to

one; the generalization to also allow for intermediate consumption is straight-forward.

Whereas He k Pearson [9] assume that some augmentation of the market model will result in

Markov prices, we allow general Ito price processes. He k Pearson [9] do not address the

difficulties which necessitated our assumption (4.8) and the introduction of the set Ki(a) in

Section 9, and consequently there is still some doubt whether their conditions are sufficient to

justify the results they claim.
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2. THE MARKET MODEL

We adopt a model for the financial market consisting of one bond with price P0(t) given

by

(21) dPo(t) = r(t)P0(t)dt, P0(0) = l,

and m stocks with prices per share Pi(t), i = l,...,m, satisfying the equations

d
(2.2) dPi(t) = Pi(t)[bi(t)dt

Here W = (Wi,...,Wd) is a d-dimensional Brownian motion on a probability space (ft,?,?),

and we denote by {^ t} the P-augmentation of the filtration generated by W. It is assumed

throughout that d > m, i.e., the number of sources of uncertainty in the model is at least as

large as the number of stocks available for investment.

The interest rate r(t), the vector b(t) = (bi(t),...,bB(t)) of stock appreciation rates,

and the volatility matrix a{t) = {o"y(t )}••<•< are the coefficients of the model. They are

taken to be progressively measurable with respect to {&t}\ it is also assumed that

T T
(2.3) f ||b(t)||dt < . , f |r(t)|dt<L

J0 J0

hold almost surely, for some given real constant L > 0. The positive constant T is the

terminal time for the problem. All processes are defined on [0,T].

We assume that the matrix o(t) has full rank for every t, so the matrix (o(t)cr (t))"1

and the relative risk process



(24) 0(t) = c*(t){c{t)<T*{i))'l\

are defined. Throughout this paper, we denote by 1 a vector whose every component is 1

and whose dimension is appropriate for the context. It will be assumed that

rT

(2.5) ||0(t)||2dt<«D, a.s. P.
J n

We shall have occasion to use the so—called discount process

(2.6) flt) = p^t) = «p{ - f r(s)ds},

as well as the process

(2.7) W0(t) 4 W(t) + f 0(s)ds
JO

and the exponential local martingale

(2-8) Z0(t) 4 «p {- f* #*(i)dW(i) - \ f

2.1 Definition: A financial market as above will be called complete if m = d, and incomplete if

m < d.



3. PORTFOLIO AND WEALTH PROCESSES

A portfolio process *(t) = (*i(t),...,xB(t)) is an RB-valued, {^J-adapted process

satisfying

T
(3.1) f ||a*(tMt)||2dt < . , a.s. P.

We regard *i(t) as the proportion of an agent's wealth invested in stock i at time t; the

* m
remaining proportion 1 — T (t)l = 1—2) Xi(t) is invested in the bond. We do not constrain

these proportions to take values in the interval [0,1]; in other words, we allow both

short-selling of stocks, and borrowing at the interest rate of the bond. For a given,

nonrandom, initial wealth x > 0, let Xx>ir denote the wealth process corresponding to a

portfolio * defined by Xx'*(0) = x and

(3.2) dXx'*(t) = r(t)Xx'*(t)dt + Xx 'T(t)/(t)[(b(t) - r(t)l)dt + a(t)dW(t)]

= r(t)Xx>ir(t)dt + Xx'*(t)ir*(t)*(t)dWo(t).

In other words,

(3.3) 0(t)Xx>*(t) = xexp{f /(s)o(s)dWo(s)-if ||<r*(B)ir(s)||2ds}
JO Z J 0

« x + f ^(s)Xx'1r(8)T*(s)a(8)dWo(s), 0 < t < T.
J 0

3.1 Remark: An application of Ito'8 rule to the product of the processes Zo and /3X ' of
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(2.8), (3.3) leads to

(3.4) #t)Z0(t)X
x>T(t) = x + f fl6)Z0(s)Xx>T(6X<r*(6Ms) - <*s))*dW(s).

JO

This shows, in particular, that the process 0ZoXx>ir is a nonnegative local martingale, hence a

supermartingale, under the original measure P.

4. UTILITY FUNCTIONS

We introduce a utility function U : (0,a>) -»R which is strictly increasing, strictly

concave, continuous and continuously differentiable, and satisfies

(4.1) U'(0) 4 l im U'(x) = m , U'(») = Urn U'(x) = 0.
XJO X-»a>

The (continuous, strictly decreasing) inverse of the function U' will be denoted by

I : (0,a>) -» (0,a>); by analogy with (4.1), it satisfies

(4.2) 1(0)4 l i
y | 0

We introduce also the function

(4.3) U(y) 4 max[U(x) - x y ] = U(I(y)) -y l (y ) , 0 < y < .
x>0

which is the Legendre transform of —U(—x), with U extended to be - « on the negative real

axis. The function U is strictly decreasing, strictly convex, and satisfies
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(44) U ' ( y ) = - I ( y ) , 0< y

(4.5) U(x) = mi n[U(y) + xy] = U(U'(x)) + xU'(x), 0 < x < «,.
y>0

The useful inequalities

(46) U(I(y)) > U(x) + y{I(y) - x ] ; V x > 0 , y > 0

(4.7) U(U'(x))<U(y)-x[U'(x)-y]; V x > 0 , y > 0

follow then directly from (4.3), (4.5).

The monotonicity of U and U guarantees that the limits

U(0)4 limU(x) , U(a>) = limU(x)
xj 0 x-»a»

U(0)4 limU(y) , U(o)4 limU(y)
| 0

exist in the extended real number system.

4.1 LEMMI: U(0) = U(a>), U(0) = U(a>).

r: It follows from (4.3) that U(CD) g l i m U(I(y)) = U(0), as well as

U(o) ^ lim (U(|)— e] = U(0) - c , V e > 0,
tr*m
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whence U(a>) = U(0). Similarly, it follows from (4.5) that U(a>) £ l im U(U'(x)) = U(0), as

well as

U ( » ) g l i m [ U ( | ) + e] = U(O)+e, V e > 0,

whence U(a>) = U(0). o

We shall have occasion to impose the following condition on the utility function U:

(4.8) oU'MfcU'dx); V xe(0,»)

for some a 6 (0.1). 7 € (I.®)- Quite obviously, such a condition is satisfied by utility functions

like U(x) = log x or U(x) = ^ x*, with 6 < 1, 6 # 0.

Upon replacing x by I(y) in (4.8), and then applying I to both sides of the resulting

inequality, we see that (4.8) is equivalent to the condition:

(4.8)' I ( a y ) < 7 l ( y ) ; V y€(0,«,) ,

for some a £ (0,1), 7 € (l,a>). By iterating (4.8)', one obtains the apparently stronger

statement

(4.9) V a € (0,1), 3 7 € (1,»), such that: I(ay) < 71(y) ; V y € (0,a,).



12

5. THE UTILITY MAXIMIZATION PROBLEM

For a given utility function U and a given initial capital x > 0, the stochastic control

problem considered in this paper is the following: tn maximize the expected utility from

terminal wealth EU(XX>T(T)) < w , over the class *4(x) of portfolio processes it that satisfy

(5.1) E(U(Xx'r(T)))~ < ».

The value function of this problem is denoted by

(5.2) V ( x ) i s u p EU(XX'T(T)),

and we shall assume throughout that it is finite:

(5.3) V(x) < OD , V x € (0,«).

A portfolio process x € o4(x) which attains the supremum in (5.2) is called optimal. In

sections 9,11 and 12 we provide conditions that ensure the existence of optimal portfolios, as

well as various characterizations of optimality. Some examples, in which optimal portfolios can

be computed explicitly, appear in section 10.

5.1 Remark: In the case of a market model for which the relative risk process 6{ •) of (2.4)

satisfies the condition

(5.4) f ||0(t)i|2dt<C, a.s.
J0

for some given real constant C > 0, a sufficient condition for (5.3) is
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(5.5) U ( x ) ^ k , + k2x6,V x€(0,«)

for some ki > 0, k2 > 0, 6 e (0,1).

Indeed, then the process Zo of (2.8) is a martingale, and Wo(*)isaBrowni an motion

under the probability measure P0(A) = E[Zo(T)lJ on ^ T (the Girsanov theorem; c.f.

Karatzas & Shreve (1988), §3.5). For any p € (1, ̂  and suitable constants Ci > 0, c2 > 0, we

have

(5.6) TJP(x) < Cl + c2 x6P , V x 6 (0,o.)

from (5.5), where U4(x) = max{U(x),0}. Also, we have

T T
r() M^M [ ||*(

T
(s)ds -M^M [ ||a*(s))r(s)fds]z Jo

rr\ rrx

(5.7) • exp[5p f r*(s)cr(s)dWo(s) - ^ [ |k*(
Jo

T r * i r * •>
< (e x)6P • exp[6p * (s)cr(s)dWo(6) - i $ V \\cr (s)7r(s)||2ds]

J 0 z J 0

from (3.3), and

(5.8) E0Z-9(t) = E0[exp{q $ (s)dW0(s) -
^0
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for (2.8) with - + - = 1. Now (5.6)-{5.8), in conjunction with the Holder inequality, give

E U(XX>T(T)) = Eo[ZoJ(T) U(XX>T(T))]

g (EoZ6<KT))1/q(EoUP(Xx''r(T)))1/p

^ exp{kj l ) C} (c, + c2(eLx)6P)1/p < *

for every ir € v^(x), justifying (5.3).

6. THE COMPLETE MARKET SOLUTION

The utility maximization problem of Section 5 admits a simple solution in the case m

d of a complete market; this solution was derived by Karatzas, Lehoczky & Shreve [12] and

independently by Cox & Huang [2,3]. We review briefly in this section the pertinent results,

both for easy reference and for later usage in the treatment of the incomplete market case.

For every portfolio process r e ^f(x)t the supermartingale /?ZoXx>* of (3.4) satisfies

(6.1) ElflTjZoCTJX^T)] < x.

Let us assume now that

(6.2) E[/?(T)Zo(T)I(yflT)Zo(T))] < . , V y € (0,»)

holds, so we may define a function So- (0,a>) -» (0,a>) by

(6.3) JTo(y) ^ E[/?(T)Zo(T)I(y/?(T)Zo(T))].
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The function J3*0 inherits from I the property of being a continuous, strictly decreasing

mapping of (0,a>) onto itself, and so 5 o has a (continuous, strictly decreasing) inverse ^

from (O,tx>) onto itself. We define

(6.4) ft 4 I(^o(x)/?(T)Zo(T)).

6.1 LEMMA. The random variable (I satisfies

(6.5) E[/?(T)Z0(T)£3] = x ,

(6-6) E(UUi))" < » ,

and for every portfolio r € ^"(x), we have

(6.7) EU(XX>*(T)) <

PIOOF: Equation (6.5) follows directly from the definitions of t$ and ^o- From (4.6) we

have

But P is nonnegative and bounded a.s.y and Zo is a nonnegative local martingale, thus a

Bupermartingale. Therefore E[/?(T)Z0(T)] < ©, and (6.6) follows. Now let % be a portfolio

satisfying (5.1). From (4.6), (6.1) and (6.5) we have



16

> E{U(XX'X(T)) + /o(x)/?(T)Zo(T)[ft - XX>*(T)]}

> E U(Xx>ir(T)).

From Lemma 6.1 it develops that if there exists a portfolio x such that {$ = Xx>7r(T),

then ic is optimal. We have so far not used the assumption of market completeness; this

assumption is used only in the construction of the portfolio fr which finances f *, a question

that we now broach.

We begin with the martingale

(6-8)

Being adapted to the Brovmian filtration { ^ A M admits the stochastic integral

representation

(6.9)
r1 *

M(t) = x + V (s)dW(s)
Jn

rT
for some {^.j—adapted process ^ satisfying ||^(s)||2ds < a> a.s. According to Ito's lemma

1 J n

; Z0(t)

and thus:

Z0(T)

T
= x + J - i - (V<t) + M(t)<J(t))*dWo(t).

JOZo(t)
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We define

(6.10) X(t) 4 J _ [x + f* - 1 - (#s) + M(s)5(s))*dWo(s)],
0(0 J0Z0(s)

(6.11) *(t) 4 * (At)
/?(t)Z0(t)X(t)

*(and verify that X(0) =* x, X(T) = ft as well as d(0(t)X(t)) = 0(t)X(t)5r (t)a(t)dWo(t) hold.

A comparison with (3.3) shows that )£(•) is the wealth process corresponding to the portfolio

We have proved the following result:

6.2 TIEOLEM. Let an initial wealth x > 0 be given. In a complete market (d = m) under the

assumption (6.2), the portfolio ir given by (6.11) is optimal. The resulting optimal terminal

wealth is given by (6.4).

6.3 Example. (Logarithmic utility Junction).

Suppose U(x) = log x. Then ^0(x) = | and

rT i rT *
(6.12) ft = x exp{ (r(t) + i ||*(t)||2)dt + 0 (t)dW(t)}.

Jo * h

Let x be given by

(613) *(t)4(o(t)a*(t))-Hb(t)-r(t)l].
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From (3.4) we have: XX>*(T) = - = ft , so 5r is optimal and
flT)Z(T)

T
(6.14) V(x) = E[log XX>*(T)] = log x + E f (r(t) + i ||*(t)||2)dt,

J0

provided that this last expectation is finite (cf. Karatzas [11], §9.3 and §9.6).

6.4 Example. (Power utility function and deterministic model coefficients).

Suppose that U(x) = -r x6, where 6 < 1, S t 0, and suppose that the processes r and 0

are deterministic. Then exp{j^j f $ (s)dW(s) — | ||0(s)||2ds} is a martingale with

expectation equal to one (Karatzas & Shreve [13], p. 199, Corollary 5.13), and from (6.3):

T T
f (rW + JnWO'Jds-Eexp^f t
'0 * L OJ0

T
m(s)ds},

0

where

(6.15)

A-i rT

It follows that ^o(x) = x°~l exp{tf m(s)ds}, and
J n

T T
(6.16) ft = x exp{[ (r(t) + $%? ^ Lf\ \ • UJ X 1/ J r\
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Taking

(6.17) r{t) 4 ^ Kt)/(t)Ab(t) -r(t) 1]

in (3.4), we obtain

~ r ^ f 0 ll^s)ll2ds + I=JJ*

X>*from which follows XX>*(T) = d and thereby the optimality of TC.

7. FICTITIOUS COMPLETIONS OF AN INCOMPLETE MARKET

The utility maximization problem of section 5 for an incomplete market (d > m) will be

studied by the method of "fictitious completion". We shall perform, in other words, the

thought-experiment of introducing d—m additional stocks driven by the d-dimensional

Brownian motion W, thus creating a fictitious complete market in which the utility

maximization problem can be solved as in section 6. We will then try to determine

appreciation rates for these additional stocks, so that the optimal portfolio in the resulting

complete market does not invest in the additional stocks at all.

We expect that appreciation rates with this, rather special, property will exist, based on

the following heuristic grounds. If the additional stocks in the fictitious completion have

appreciation rates that are too high, then the resulting optimal portfolio will hold a long

position in them; if they have appreciation rates that are too low, the optimal portfolio will

hold a short position in them. Somewhere in between these two extremes, one expects that

there should be a choice of appreciation rates for which the optimal portfolio does not invest in

the additional stocks at all. In the remainder of the paper we shall try to place this intuition
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on firm mathematical ground.

Following the above program, we introduce an {&A—progressively measurable,

unifonnly bounded, (d—m) * d maxtrix—valued process p(t) whose rows, thought of as vectors

in R , are orthonormal and in the kernel of o(t), i.e., o(i)p (t) = 0. We also introduce an

{^J-progressively measurable, (d-m)-dimensional vector process a satisfying

(7.1) f ||a(t)||dt < «, a.s.

We create fictitious stocks with prices Si(t) governed by

d
(7.2) dSi(t) = Si(t)[ai(t)dt + 2 Pij(t)dWj(t)], i = l,...,d-m.

The matrix—valued process p will be held fixed throughout the remainder of the paper, but

the process a will be considered as a parameter.

For the augmented stock appreciation rate vector b = H and the augmented volatility

matrix a = [a\ we can define an augmented relative risk process

(7.3) *(t) 4 a*(t)(<Kt)&*(t))-'[b(t) - r(t) 1] =

by analogy with (2.4), where

(7.4) '^ ~

Notice that 0 (t)Kt) = 0, and thus ||0(t)||2 = \\6{t)\\2 + |K*)II2- It wiU be assumed that
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(7.5) f |Mt)||2dt < .

holds almost surely, so that (by analogy with (2.8) and (6.3)) we may define the exponential

local martingale

(7.6) Z^t) 4 exp{- [
Jo

- 1 - f *

and the function

(7.7) jrv(y) 4 E[/?(T)Zv(T)I(y/?(T)Zl,(T))], 0 < y < . .

If the condition

(7.8) Sv(y) < CD, V y 6 (0,»)

prevails, we may define Jfv to be the inverse of Sv and set

(7.9) H 4 I(^(x)/?(T)ZV(T))

by analogy with (6.4).

7.1 Remark: If the fictitious stocks introduced in this section were really available, then
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££) would be the maximal expected utility of final wealth (Theorem 6.2). Since these

stocks are w& available, we have

(7.10) V ( x ) 4 s u p EU(XX'*(T)) <
^()

and equality holds if there exists a portfolio process x such that

(7-H) XX>*(T)=£, a.s.,

i.e., if the terminal wealth ££ can be financed without investment in the fictitious stocks. In

light of (7.10), such a r would be optimal for the problem of utility maximization in the

incomplete market. In Section 9 we shall discuss properties which r and v must have in

order to be related by (7.11).

8. A FAMILY OF EXPONENTIAL LOCAL MARTINGALES

Let us denote by L2[0,T] the class of {^.J—adapted, Rd—valued processes $ satisfying

(8.1) f ||V<t)||2dt < .

almost surely, and decompose L3[0,T] into the orthogonal subspaces

(8.2) K(a) 4 {„ e L'[0,T]; o<t)i<t) = 0 , V t € [0,T], a.s.},

(8.3) K V ) = {<P 6 L2[0,T]; rft) € Range(a*(t)), V t € [0,T], a.s.}.
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8.1 Remark: The process 0 of (2.4) belongs to KA(a), whereas the process v of (7.4) belongs

to K(<r). On the other hand, if v € K{a) is given, then (7.4) can be solved for the appreciation

rate vector a of the fictitious stocks, by taking this vector equal to

(8.4) aw(t) 4 , ( tMt) + r(t) 1.

Thus, the class K(a) provides a parameter space for fictitious completions of the incomplete

market.

We shall denote by fflv the fictitious completion of the financial market by the

additional stocks of (7.2), with /?(•) fixed and a(-) = av(-), v e K(a).

D

The associated family of exponential local martingales K^viy^YXaV 6*ven ^y (7-6), will

play a fundamental role in what follows.

8.2 LEMMA: Consider the discounted stock price processes

Qi(t) ^ /?(t)Pi(t); i = l,...,m.

Then for every v € K(a), the processes ZvQi are local martingales under P.

PiOOF: It is seen from (2.2), (2.6) that

dQi(t) = Qi(t)[(bi(t) -r(t))dt + (Ti(t)dW(t)]

where ai(t) is the i th row vector of the matrix o(t). It follows from this, (7.6), Ito's rule, and

a{i)u{t) = 0, that
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d(ZI/(t)Qi(t)) =

8.3 PUPOSITIOI: For any given x € **(x), pLJX?'1* is a local martingale under P for every

v 6 K(a); in particular,

(8.5) E[«T)Z^T)X*T(T)] £ x, V v € K(a).

PIOOF: From (3.3), (2.7) and (7.6) follows the analogue

(8.6) /?(t)Zv(t)X(t) = * + f V)Z>)X(s)[a*(s)*(s) - («(B) + i<8))]*dW(s)

of (3.4) for the process X = Xx>7r. This representation shows that pZyX?'* is a positive local

martingale, hence a supermartingale, and (8.5) follows.

8.4 Remark: Suppose that * is a portfolio process, and that X is a continuous,

{«?t}-adapted process which satisfies (8.6) almost surely, for some v eK(o). Then X is the

wealth process corresponding to the initial endowment x and the portfolio process TC} i.e., X =

Xx>*. Indeed, apply Ito's rule to the product of the processes ffLyX. and Ay, where A^ = Zj1

is easily seen from (7.6) to satisfy

2 + IKt)II2)dt],

and obtain (3.3).

The following result provides a kind of "converse11 to Proposition 8.3.
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8.5 Pioposrnoi: Consider a positive, .^-measurable random variable B, for which there

exists a process A 6 K(a) with

(8.7) E[/?(T)ZV(T)B] < x = E[/?(T)ZX(T)B]; V v € K(<r).

Then there exists a portfolio r e ^ ( x ) , such that XX>*(T) = B, a.s.

PIOOF: Define a positive, {^t}-adapted process X via

(8.8) 0(t)Zx(t)X(t) = M(t) 4 E[0(T)Zx(T)B | y j ; 0 < t < T.

Certainly X(0) = x, X(T) = B a.s., and the positive martingale M in (8.8) has M(0) = x.

From the martingale representation theorem (Karatzas & Shreve [13], Problem 3.4.16, p. 184),

rt rT
M(t) = x + v<s)dW(s) for some {^(t^-adapted process <p satisfying ||^p(t)||2dt < »

JO J0

almost surely. Since M is continuous and M(t) > 0 for all t € [0,T], we may define

1&eL2[0,T] by # t ) = - $ f t } . Then

(8.9) M(t) = xexp{-f /(s)dW(s)-if Ms)||2ds}
JO * J O

rt *
- I M(s) 1> (s)dW(s) ; 0 < t < T.

Decomposing i> as i>= i>i+ i>2 with ^i C Kx(a), fa € K(a) and comparing (8.8),

(8.9) with (8.6), it transpires that proving the Proposition amounts to finding a portfolio r

such that
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(8.10) .

This will certainly be possible, provided that

= A(t)

holds dt • dP - a.e. on [0,T] * ft, because we can take then * to satisfy

a ic= O-faeK (o). Consequently, we have to show that (8.7) implies (8.11).

To this end, consider an arbitrary but fixed v € K(a) and introduce the sequence of

stopping times {Tn}°° given by
n=l

(8.12) rn £ T A inf{t e [0,T]; M(t) > n, or (||Vi(s)||2 + ||V2(s)||2 + ||A(s)||2)ds > n,
J0

rt rt •
or |Ks)H2ds>n,or | v (s)dW(s) | > n}

Jn Jn

for every n > 1. Obviously, l i m rn = T almost surely, and we denote vn(t) = K^Hrn rj(*)#

i

Clearly A + eua € K(o) and

(8.13) Zx^ (t) = Zx(t) exp{-c I v (6)(dW(s) + A(s)ds) - f j ||K8)ll2ds)

for every e € (-1,1), n > 1. On the other hand, the definition of rn in (8.12) gives

(8.14)
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It follows then quite easily (from (8.12) - (8.14) and the Dominated Convergence

Theorem) that (8.7) implies:

(8.15) 0 = £ E[/3(T)ZWn(T)B] | ̂  = E[/?(T) . £ Zx+u,n(T) | ̂  . B]

= - E[0(T)Zx(T)B v (s)(dW(s) + A(s)ds)]
J 0

or equivalently, in the notation of (8.8):

(8.16) E[M(rn) f i/*(s)(dW(s) + A(s)ds)] = 0 , V n >
Jn

Now Ito's rule, in conjunction with (8.9), gives

n r n

M(rn) f As)(dW(s) + A(s)ds) = f * M(t>*(t)(A(t) - ^(t))dt + f M(t)i/*(t)dW(t)
Jo Jo Jo

(8.17) - fTnM(t){f i/*(s)(dW(s) + A(s)ds)}(Vi(t)
J 0 J 0

From the definition of rn in (8.12) we see that the expectation of the two stochastic integrals

in (8.17) are equal to zero. Substituting back into (8.16), we obtain

(8.18) E f U M(t)i/*(t)(A(t) - fc(t))dt = 0, V n > 1.
Jn
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The arbitrariness of v € K(a) in (8.18) leads to (8.11).

9. EQUIVALENT OPTIMALITY CONDITIONS IN AN INCOMPLETE MARKET

The conclusions of section 7 were predicated on the assumption (7.8), but this condition

will often not hold for all v € K(or); cf. section 13 (Appendix). Accordingly, we restrict

ourselves to the class

(9.1) K^c) 4 {u 6 K(a); V satisfies (7.8)}

in what follows.

9.1 Remark: If (4.8) holds, and v e K(a) satisfies &v{y) < » for seme y e (0,a>), then

v € Ki(a). This can be verified easily, using (4.9).

For a fixed initial capital x > 0, let 5r € *^(x) be given, and consider the statement

that x is optimal for the incomplete market maximization problem of section 5:

(A) OPTIMALITY OF *: EU(XX'*(T)) < EU(XX'*(T)), V * €

We shall characterize condition (A) with the help of the following conditions (B)-{E).

For a given A € Ki(a) recall the notation of (4.3), (7.9) and consider the following statements.

(B) FINANCIBILrrY OF g[: There exists a portfolio r € ^ ( x ) such that

x x , x ( T ) g ^ ^
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(C) LEAST-FAVORABILITY OF A: EU(^) < EU(£), V v e Kx{o).

(D) DUAL OPHMALITY OF A: For all v € Ki(a),

(E) PARSIMONY OF A: E[^(T)Zi;(T)^] < x, V v 6 K^cr).

Our principal result of this section, Theorem 9.4, states that conditions (A)-{E) are

equivalent, provided that (4.8) and U(0) > -© hold. This latter restriction is rather severe,

for it excludes the important special case of the logarithmic utility function U(x) = log x. For

this reason we develop also a somewhat more modest result, Theorem 9.3, which suffices for a

complete treatment of the logarithmic case (Example 10.1).

But first, let us try to motivate the developments that follow by discussing the

significance of conditions (B)—(E). While we do not present any proofs for the claimed

equivalences in the discussion that follows, we offer some plausible arguments to the effect that

conditions (A)—(E) are connected to one another.

9.2 Discussion: For any given A € Ki(<r), fx is the optimal level of terminal wealth in the

fictitiously completed market 9ftx. When will it also be optimal in the original, incomplete

market? Presumably, only when there exists a portfolio ir 6 ^ ( x ) which invests in the original

m stocks only, such that X x > x = ££. In other words, condition (B) has then to hold, and

condition (E) follows directly from (8.5). In particular, (E) says that the value of the

contingent claim f £ is at least as large in the fictitiously completed market 2ttx as in any

other market 33 ,̂, v e Ki(a). Note in this connection that, according to the definitions,

E[/3(T)ZX(T)£) = x, V A £ K,(a).



30

Furthermore, the terminal wealth ft can be financed by investing in the stocks of any

other market ST^ (since, in fact, it can be financed by investing in the original m stocks).

Thus we obtain the condition (C), which captures the "least favorable" character of A.

Let us derive finally the condition (D), at least in the case U(0) > -w (in which U is

bounded from below, thanks to Lemma 4.1, and thus the expectations in (D) are well-defined).

Indeed, by writing (4.7) with x replaced by ft and y replaced by ^x(x)0(T)Zv(T) and

taking expectations, we obtain

> EU(^x(x)/?(T)Zx(T))

> EU(^x(x)/?(T)Zx(T))

from condition (E).

9.3 TIEOIXM: Conditions (B) and (E) are equivalent, and imply both (C) and (A) with the

same r as in (B).

PEOOF: (B) =* (E): Follows from Proposition 8.3.

(E) =* (B): Follows by letting B = ft in Proposition 8.5. Notice that this Proposition

remains valid if in it K(a) is replaced by Ki(<r). In order to see this, it suffices to observe that

the processes A + ei/n (appearing in (8.13)) belongs to Ki(a) for every c € (—1,1), a > 1>

because from (8.14) and the fact that A € Ki(a):
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(7) < e 3 n l c | ^ ( 7 e - 3 n | e | ) < . , V y 6

(B) =* (A): Has already been shown in Remark 7.1.

(B) =* (C): From the previous implication and (7.10)

9.4 TIEOIXM: Assume that U(0) > -*> holds. Then

(i) the conditions (B)-{E) are equivalent, and imply (A) with the same portfolio x as in

condition (B); and

(ii) conversely, if r € o€(x) satisfies (A), then there exists a A 6 Ki(a) for which (B)-(E)

hold, provided that the condition (4.8) is also in force.

P*OOF: In view of Theorem 9.2, we need discuss only the implications (C) =» (D) =* (B) and

(A) =^ (B), under the appropriate conditions.

(C) =* (D): For any given y > 0 and v 6 Ki(a), the convexity of U yields

(9.2) - i - | U((y+e)/?(T)Zl,(T)) - U(yflT)Zy(T)) | £

in conjunction with (4.4), for c > — y/2, e # 0. From the assumption v e Ki(a), the random

variable on the right-hand side of (9.2) has expectation equal to «2*n(y/2) < is, and the

Dominated Convergence Theorem shows that

(9.3) J[L EtJ(yi9(T)Zv(T)) = -
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Therefore, for any given x > 0, v € Kj(a), the convex function

(9-4) C(7) 4 EU(y/?(T)Z,/T)) + xy ; 0 < y < . ,

attains its minimum at Jtv(x), since f£(y) = x - J>v{j). But thanks to (C) and (4.3), we now

have for any y > 0 that

(9.5) Uy) > ijjfjx)) = E[U(/l,(x)/?(T)Zl,(T)) + <?l/x)/?(T)Zl/(T). l(jfv(x)0(T)Zv{T)))

= EV(l(?v(x)P(T)Zv(T))) = EU(£) >

and thus,

^ WxW) "

(D) =» fS,/: Eepeat the proof of Proposition 8.5 up to (8.14), with K(a) replaced by

Ki(<r), (8.7) by (D), and B by ££. Everything then boils down to showing that the analogue

(9.6) E[^(T)Zx(T)ej I J **(O(dW(i) + A(s)ds)] = 0

of (8.15) can be obtained from the consequence of D
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(9.7) £ E[U(^x(x)/3(T)Zx^n(T))] | ̂  = 0,

since A + eun e Kx(a) for every e € (—1,1), n > 1 (recall argument in the proof of implication

(E) =* (B) in Theorem 9.3). Indeed, (9.6) follows formally from (9.7) by differentiating inside

the expectation sign, and using (4.4), (7.9), (8.13).

For a rigorous justification, recall (8.12) and use the convexity of U to obtain, for any

given y > 0:

(9.8) | U(y/?(T)ZX4eVn(T)) - U(yflT)Zx(T)) |

£ y/?(T) I(y/?(T) min{Zx(T),Zx+eVn(T)})|Zx+£l/n(T) - ZX(T)|

< y/?(T)(e3nl 6> -1) ZX(T) I(y/3(T)e-
3nZx(T))

^ K n | c | -y^(T)Zx(T)

3ne _ ,
where Kn = sup -— =•. The expectation of the right-hand side of (9.8) is equal to

0<c<l c

yKn| c| times E[0(T)Zx(T)I(ye~3n/9(T)Zx(T)] = ^(ye" 3 1 1 ) , a finite quantity by the

assumption A € Ki(a).

On the other hand, the Mean-Value Theorem implies that for each c € (—l,l)\{0} there

is a random variable % with values in [0,1], such that

, Z x ^ (T) - ZJT)
i{U(y/3(T)Zx (T)) -U(^(T)Z(T))] ftT) ± 2 ^ ^ ^
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y/?(T)Zx(T)

bexp{- e \ V(s)(dW(s) + A(s)ds) -C f' " |Ks)||2ds} - 1 ]

From this and (9.7), the conclusion (9.6) follows, thanks to the Dominated Convergence

Theorem, by letting e | 0.

(A) => (B). Step (i): Let X be the wealth process corresponding to the optimal

portfolio r. We have from (3.3):

(9.9) flt)X(t) = x + f* /?(s)X(s)(<r*(s)*(s))*dWo(s)

= x exp{[V(s)a(s) dWo(s) - \ J* ||a*(s)Jr(s)||2ds}.

Now take a bounded, {<yt}-progressively measurable portfolio process r\ with values in Rn

and perform a small random perturbation of r according to

where —1< e < 1, e # 0, and

1* ft *
rD = T A inf{t € (O.T]; | »j(0^8)dWo(s)| > n, or \\a (s)5r(s)||2ds > n, or

Jn Jn
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(9.11) f ||a*(sMs)||2ds > n> or [ ||0(s)||2ds > n, or N(t) > n, or
J 0 J 0

| A ( t ) | > n , or f* ||V<s)||2ds > n}

(see (9.19), (9.20) below for the definitions of the processes N, A and $ • We define also the

process X£(-) via

/?(t)X€(t) 4 p{f
Jo

(9.12) = x + [ 0(s)Xt(sK<r(s)dWo(s),
J 0

and notice that X€(-) = Xx>Tt(*). Consequently, (A) gives

(9.13) ^ E U ( X € ( T ) ) | ^ = 0 .

A comparison of (9.9), (9.12) yields

f tATn 4c Jl rXhTn

(9.14) X€(t) = X(t) exp{c I 17 (s)o(8)dW(s) -%• \\
Jn * Jn

where

(9.15) W(t) 4 W0(t) - f a*(s)*(s)ds = W(t) + f (0(6) - ff*(s)*(6))ds.
JQ

 J 0
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Then, at least formally, (9.13) and (9.14) lead to

(9.16) E[U'(X(T))X(T) fTn i;*(s)a(s)dW(s)] = 0 , V n > 1.
Jo

Step (ii): In order to justify (9.16) rigorously, observe from (9.14) and (9.11) that
X f T}

!
X f T}

e"311! £l < _ ! < e
3 n l cl , a.s., and from the concavity of U:

X(T)

X£(T) - X(T)
, e , • • - < U'(min{Xt(T),X(T)})

M

(9.17) < [V{e~*nlc' X(T)) -U(0)]eSnKr

^eSnKn.[U(X(T))-U(0)],

with Kn as in (9.8). The right-hand side of (9.17) has finite expectation, namely

e Kn(V(x) — U(0)). On the other hand, the Mean-Value Theorem implies the existent

random variable % with values in [0,1], such that

I[U(X c (T))-U(X(T))] = i (X e (T) -X(T) ) • U'(X(T) + 7 e {X c (T) -X(T)} )

U'(X(T) + 7e{X€(T)-X(T)»X(T)i[exp{e [%*(
c JO
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It is dear now that (9.16) follows from this expansion, (9.13), and the Dominated Convergence

Theorem, by letting e [ 0.

Step (iii): Now proving (B) amounts to finding A 6 Ki(a) such that

X(T) = I(^x(x)/?(T)ZX(T)), or equivalent^

(9.18)

We shall show that (9.16) leads to a "natural" candidate process A € K(a) (Step (iv)), which is

actually in Kj(a) and for which (9.18) is then shown to hold (Step (v)).

Step (iv): Consider the process

(9.19) A ( t ) 4 f 7?*(s)o(s)dW(s) = f *7*(s)cr(s)dW(s) + f v*{$)a
Jo JO ^o

as well as the positive martingale

(9.20) N(t) 4 E[U'(X(T))X(T)|^ ] = y0 + f N(s)/(s)dW(s),
* J0

where y0 = EN(T) and ^ is some process in L*[O,TJ, constructed by the argument preceding

(8.9). Obviously (9.16) amounts to E[N(rn)A(rn)] = 0; on the other hand, we have from

(9.19) and (9.20):
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N(rn)A(rn) = f " N(t)i;*(t)(j(t)Wt) + 6{t) - <r*(i)i(t))
J0

A(t)V<t)]*dW(t).

From the definition of rn in (9.11), the stochastic integral has zero expectation, and thus

E[N(Tn)A(rn)] = 0 leads to

(9.21) E f TnN(t)>?*(t)o(t)[V<0 + *(0 ~ A * W)]dt = 0, V n > 1
Jn

for arbitrary 77 as described above. Because rn / * T almost surely as n -» OD, we obtain that

(9.22) A = a % - ( V + ^ )

belongs to K(a). For this choice of A, the exponential local martingale Zx of (7.6) becomes:

Zx(t) = exp{- f ^ s ) + A(s))*dW(s) - J f* JKs) + A(s)||2ds}
J0 J0

(9.23)

Step (v): Finally, we justify A € Ki(tr) and (9.18). From (9.20) and (9.9) and aX = 0, it

follows that
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(9.24)

«<

(TV _
T)X(T)

(a*(s)x(s))*dWo(s) - \

thanks to (9.23) and (9.22). It rei

see this, apply !(•) to both sides <

Bains to show that A € Ki(a) and y0 = x^x(x). ^ order 1

of (9.24), take expectations, and mse (9.24) again to obtain

From Remark 9.1 we have A € K

J> (X(T))X(T)] = i EN(T) = x < «,.

i(a), and y0 = x/^x(x) Mows.

10. EXAMPLES IN AN INCOM

In the examples of this se<

and the process A € Ki(cr) satisf]

satisfies (D).

10.1 Example. (Logarithmic vtil

Suppose XJ(x) = log x. 1

-. The process )

[PLETE MARKET

:tion, we assume m < d and produce the optimal portfolio

ring conditions (B), (C) and (E). In Example 10.2, A also

iiy function).

Then JTv(y) = I , j?v{x) = 1 V

{ E 0 satisfies (E), because

K(<r), and
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T T
E[/?(T)Z,(T)£*] = x E[exp{- f /(s)dW(s) - i f |Ks)||2ds}] < x, V*/€K(cr).

0 Jo J0

rt * i ft
The last inequality follows from the fact that exp{- v (s)dW(s) - £ IKs)ll2ds}> being a

Jo Jo
nonnegative local martingale, must be a supermartingale. According to Theorem 9.3, the

optimal portfolio process ir must satisfy XX|*(T) = (I, and this * was determined in (6.13)

of Example 6.3. The value function V(x) is given by the expression (6.14) and it is finite for

fT

every x € (0,a>) if E ||0(t)||2dt < a> (recall condition (5.3)). From (7.4) we see that A = 0
J0

corresponds to completion of the market by stocks whose appreciation rates are equal to the

interest rate. With a logarithm!r jitj)ity function, the agent will not use such stocks even for

hedging purposes.

10.2 Example (Power utility Junction and totally unhedgeable market coefficients).

Suppose U(x) = ^ x6, where 6 < 1, 6 i 0. Suppose that the volatility matrix a{X) has

the form a(t) = [<Kt),O], where o(t) is an m « m, nonsingular matrix for all t € [0,T], almost

surely. Decompose W into W(t) = (W!(t),...,W.(t))* and W(t) = (VWO^./WdW)*, and

o
let {&A and {&,} be the augmentations under P of the (independent) filtrations generated

0 0

by W and W, respectively. Assume that the processes r, b and o are adapted to { ^ J , a

situation we refer to as totaJly U'nfrf rigeable market coefficients because the stock prices are

driven solely by W:

dPt(t) = Pi(t)[bi(t)dt + ? ^(t)dWj(t)], i = l,...,m.

We show that under these conditions, the portfolio process given by (6.17) is optimal. In the
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present context, this process is random and {^.}-adapted, rather than deterministic as in

Example 6.4.

To verify the above assertion, we note first that $ (t) = [& (t),0], where

We note also that the processes A € K(a) are of the form A (t) = [0,A (t)], where A(t) is

(d--m)-dimensional. With m(-) given by (6.15), we define

T
m(t)dt}.

0

o A rT o
The differential of the positive {^.}-martingale N(t) = E[exp{£ m(s)ds} | ^ t } has a

* Jo
o* o roi

representation as dN(t) = - N(t) A (t)dW(t), where A = J € K(a) (see the argument

leading to (8.9) for a justification). Therefore
rp np rn

(10.1) exp{4 m(t)dt} = N(T) = A exp{- f A*(t)dW(t) - i f ||A(t)||2dt}.

We may assume without loss of generality that W is the coordinate mapping process

W(t,o;) = o<t) defined on ft 4 C([0,T], R"), the space of continuous functions from [0,T] to Rm,'

and W is the coordinate mapping process on ft 4 C([0,T], Rd"*). Then (I = ft * fl, and P

is the product of m—dimensional Wiener measure P on ft and (d-m)—dimensional Wiener

0 0 0

measure P on fi. Abusing notation slightly, we regard the {^.j—adapted process $ as a
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0 ° o ° f^ -*
process en ft. For P - almost every u e ft, we have ||0 (s,2>)||2ds < a>, and thus the

J0
process

w *J(i,&)dW(i,&) - — £ - f* ||&Cs )̂||2<is}
0 2(l-Q2 J0

is an {^t}-martingale on 6 under P, with expectation equal to one (Karatzas & Shreve [13],

p. 199, Corollary 5.13). Consequently,

T
(10.2) Etexpijijf &*(s)dW(s)}|£T](o;,20

u

= f e x p i A f &*(s,uOdW(s,u>)}P(da;)
Jft Jo

From (10.2) and (10.1) we have

\ H W + J||A(8)||a)ds + £ f A*(s)dW(s)}
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rp rp

(m(8)ds + \ ||A(s)||2)ds + ^s\Q A*(s)dW(s)}]

1 T

** E[exp{* f m(s)ds}] =
•in

It follows that A e K^ff), ^ x (x ) = Ax*-*, and using (10.1) we obtain

rp rp

= xexp{J (r(t) + j^fj,P(t)||2)dt + ^ J A

Just as in Example 6.4, we conclude from (3.4) that XXjT(T) = & where r is given by

(6.17).

10.3 Remark. An important unresolved question is whether there are simple, widely applicable

conditions which guarantee that for the process A satisfying conditions (B)-(E) of Section 9,

the nonnegative local martingale Zx is actually a martingale. In Example 10.1 we have

Zx(t) = Z0(t) = exp{-J* #*(i)dW(i) - J J *

so we must assume at least that Zo is a martingale in order to conclude that Zx is. In

Example 10.2 a computation similar to (10.2) reveals that
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E ZX(T) = E[exp{- f A*dW(t) - \\ (|| 0(t)||2 + || A(t)||2)dt}

T
E[exp{-f &*(t)dW(t)}

J n

Taking expectations in (10.1) and recalling the definition of A, we see that E ZX(T) = 1. This

is enough to ensure that Zx is a martingale (Karatzas & Shreve [13], p. 198). We have so far

been unable to produce an example in which Zo is a martingale but Zx is not.

11. DUALITY

Let us assume from now on that

(11.1) U ( 0 ) > - » .

In addition to the original, or "primal", optimization problem

(11.2) V(x) = i up J(x,*); J(X,T) 4 EU(XX'*(T))

of section 5, we shall consider in what follows the dual ftptimigatinn problem for y € (0,a>),

namely

(11.3) V(y) = i nf % % , * ) ; %,«/) 4 EU(y/?(T)Z,,(T)).
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This problem will have a convex value function V : (0,a>) -»R under the assumption which we

now make, that

(11.4) V y G (0,a>), 3 v € K(a) such that J(y,i/) < w.

See Remark 11.7 in connection with (11.4).

For arbitrary x > 0, y > 0, * 6 ^ ( x ) and v e K(a) it follows from (4.3):

(11.5) U(XX'*(T)) < V{yp{T)Zv{T)) + y/?(T)Zy(T)Xx>*(T),

with equality if and only if

(11.6) XXj7r(T) =

By taking expectations in (11.5) and recalling Proposition 8.3, we obtain

(11.7) J(X,T) < J(y,i/) + xy ,

with equality prevailing if and only if (11.6) and x = &Jj) hold. In particular, it follows

from (11.7) that

(11.8) V(x) < V(y) + xy ; V x > 0, y > 0.

11.1 Remark: Suppose that for some given x > 0 and y > 0, there exist rx € **(x) and Ay €

K(a) such that
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Then irx achieves the supremum in (11.2), and Ay achieves the infimum in (11.3).

11,2 PIOPOSITIOI: Assume (11.1), (114) hold and suppose that, for a given y > 0, there is an

optimal process Ay 6 Ki(cr) for the dual problem of (11.3). Then there exists an optimal

portfolio 7rx 6 «^(x) for the primal problem of (11.2) with x = *3\ (y)> and we have

(11.10)

PEOOF: The optimality of Ay gives

, Vi /eK(a)

for this particular x = J>x (y). Then the implications (D) =* (B) =* (A) in Theorem 9.4(i)

show the existence of a portfolio xz £ ^ ( x ) , which is optimal for the primal problem and

satisfies

We conclude that (11.9) prevails (i.e., (11.7) holds as an equality with T = jrx> v = Ay), and

thus

% ) = %;Ay) = J(x;xx) -xy = V(x) - xy < sup [V(0 - yfl.
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The inequality in the opposite direction follows directly from (11.8), and the duality

relationship (11.10) is established.

D

11.3 Assumption: Suppose that the dual problem of (11.3) admits an optimal process

Ay€Ki(a), for every y > 0.

A sufficient condition (Theorem 12.1) for (11.3) will be given in the next section. Under

the Assumption 11.3, (11.10) holds for all y > 0, and the following question arises: Under

what conditions can we guarantee that, for every given x > 0, there exists an optimal portfolio

TX for (11.2)?

According to Proposition 11.2, this will happen if for every x > 0 we can find a real

number y(x) > 0 such that

(11.11) x = Sx (y(x)).

11.4 Proposition: Suppose that the conditions of Proposition 11.2 hold, as well as Assumption

11.3, (4.8) and U(OD) = ®. Then for every x > 0, there exists a real number y(x) > 0 that

achieves i nf [V(y) + xy]; this number satisfies (11.11) as well.
y>0

PIOOF: From (11.3), Jensen's inequality, the supermartingale property of Z ,̂ and the decrease

of U, we have

(11.12) J(y;i/) > U(y EftTjZ^T)]) > U(yeLEZv(T)) > U(yeL), V v 6 K(a)

for the constant L > 0 of (2.3). Therefore, V(y) > U(yeL) holds for every y € (0,*), and V(0)
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£ l im V(y) > U(0) = U(a,) = o> (Lemma 4.1).
yiO

Consequently, for any given x > 0, the convex function fx(y) = V(y) + xy, 0 < y < a>

satisfies fx(0+) = fx(a>) = w, and thus attains its infimnTn on (0,m) at some point y(x) > 0.

Now by the Assumption 11.3, there exists a process A / % € Ki(a) such that

V(y(x)) = J(y(x); Ay^xp, and we have

i n f [rjy(x)x + J ( ^ y ( x ) ; X ())] = i n f [xy + J ( y ; A _ f x ) ) ]
o * w y>o yw

> i n f [xy + V(y)] = xy(x) + V(y(x)).
y>0

In other words, with the notation

(11.13) Gy(u) 4 J(Uy;Ay) = EU(uy^(T)ZXy(T)), 0 < u < »,

the function

(11.14) Dx(u) 4 uxy(x) + Gy(x)(u) , 0 < u <

achieves its iTifimuni at u = 1.

From these considerations and Lemma 11.5 below, it transpires that

D x ( l ) = xy(x) + G y ( x ) ( l ) - xy(x) - y(x)JTA

is equal to zero, and thus (11.11) holds.
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11.5 LEMMA: Under the conditions of Proposition 11.4, the function Gy(-) of (11.13) is

well-defined and finite on (0,©) for any given 0 < y < ©, and satisfies

(11.15) G^(l) = y

PIOOF: Since U(u>) = U(0) > - m by assumption and by Lemma 4.1, we have from (4.4):

U(y) -U(OD) = - V'{£)&( = I(f)d£> 0 < y < «.
Jy Jy

Thus, for any given a e (0,1), it follows with the help of (4.9):

U(ay)-U(a,) = |a>
= a

Jy

ay I(?7)dT7 = 07 [U(y) — U(a>)], 0 < y
Jy

for a suitable constant 7 6 (1,©). Consequently, for any given y e (0,©),

EU(ay/?(T)ZXy(T)) g a 7 E%0(T)ZXy(T)) + (1 - ory)tJ(.)

Since a € (0,1) is arbitrary,

(11.16) EU(uy0(T)Zx (T))
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holds for every u € (0,1]. But the function U(-) is decreasing, so (11.16) holds also for every

u > 1.

Now use the convexity of U, the Dominated Convergence Theorem, (4.4) and the fact

that Ay € Ki(a), to justify the computations

= - y E^TjZ^TJ^y^TjZ^T))] = - y

which leads to (11.15). o

It just remains now to put Propositions 11.2 and 11.4 together, in order to obtain the

following existence result for the primal problem (11.2).

11.6 TIEOLEM: Suppose that the Assumption 11.3 holds, as well as (11.1), (11.4), (4.8) and

U(a>) = OD. Then for any given level x > 0 of initial capital, there exists an optimal portfolio

xz € c^(x) for the utility maximization problem of section 5.

o

In other words, under appropriate conditions, in order to obtain the existence of an

optimal portfolio it is sufficient to deal with the existence of a solution Xy 6 Ki(a) for the dual

problem (11.3). We shall do that in the next section.

11.7 Remark: The condition (11.4) ** satisfied ij (5.4) and (5.5) hold. Indeed, it is not hard to

check that condition (5.4) and definition (4.3) lead to

(11.17) U(y)^k1 + k8y~u, V 0 < y < »
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1

with a = T^T , ks = (1—S)(ki6 ) , and thus

(11.18) Ifo") ^ ki + ks r V * 1 E Z;°(T)

where L is the constant of (2.3). But now

lKt)l!2)dt}

|Ks)||2)ds],

and if we take v € K(a) to satisfy

[ |Ks)||2ds < C , M.

(by analogy with (5.4)) we obtain E z;a(T) < e
a ( 1 + Q ! ) C . Back into (11.18), this estimate

shows that (11.4) is satisfied.

12. EXISTENCE IN THE DUAL PROBLEM

We shall establish here the following existence result for the dual optimization problem

of (11.3).

12.1 TIEOIEM: Suppose that the conditions (4.8), (11.1), (114),
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T
(12-1) . Ef

Jo
and

(12-2) x H xU'(x) is nondecreasing on (0,»)

hold. Then for every y € (0,10), there exists a process Ay € Kt(a) which achieves the infimum

in (11.3).

D

12.2 REMIU: The condition (12.2) is equivalent to

(12.2)' y H yl(y) is nonincreasing on (O,OD).

If U is of class C2(0,OD), (12.2) amounts to the statement that the Arrow-Pratt measure of

relative risk aversion does not exceed one:

(12.2)" ^ , e ((,„)

On the other hand, it follows from (12.2) that U'(x) £ U ' M , V x > 1, whence U(x) >

U(l) + U'( l ) log x. Consequently,

(12.3) U(o) = ».

From this Remark and Theorems 12.1,11.6 we deduce then the fundamental result of

sections 11 & 12:

12.3 TIEOUEM: Under the assumptions of Theorem 12.1, corresponding to every x > 0, there
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exists an optimal portfolio jrx € ^ ( x ) for the utility maximization problem of section 5.

We carry out the proof of Theorem 12.1 in a series of Lemmas, that take up much of the

remainder of the section. Let us start with a rather simple observation.

12.4 LEMMA: Under (11.1) and (12.2), we have U(0) = ©, U(a>) > - w and

(12.4) z H U(ez) is convex on R.

PIOOF: The first two claims follow directly from Lemma 4.1 and (12.3). As for (12.4), observe

from (4.4) and (12.2)' that ^ U(e*) = - e*I(ez) is a nondecreasing function of z. D

Introduce now the Hilbert space

T
(12.5) K2(<r) = {u 6 K(cr); E f Ms)\\2ds < »}

with inner product <faV> = E fi (s)j/(s)ds and norm li/l = \<v,v>. For a fixed y > 0,
J 0

we consider the functional Jy : K^a) -• R U {+ »} given by (11.3), namely

(12.6)

with the notation

(12-7) CM 4 f ( W + K0)*dW(8) + \ J(||^s)||2 + IKOIÎ ds ; v €
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12.5 LEMMA: Under (11.1), (12.1) and (12.2), Jy( .) is a convex functional on K2{a), which

satisfies

(12.8) l im

for every y € (0,»).

PIOOF: From the convexity of the Euclidean norm in i d , the decrease of U and (12.4), we

have

rT

(12.9) Jy(Alt/, + \2v2) < EU(exp[log y - r(s)ds - A,CV(T) -
J 0 l

T T
y - f r(s)ds - CV(T)] + A2[log y - f r(s)ds -

JQ * JO

A2Jy(l>2)

for any vhv2 in K2(a) and Ai ^ 0, A2 ̂  0 with Ai + A2 = 1. On the other hand, with L as

in (2.3), we obtain from (12.4) and Jensen's inequality

(12.10) JyM £ EU(exp[log y + L - C.(T)])

U(exp[log y + L - \m2 - \ \)
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12.6 LEMMA: Under (11.1), (12.1) and (12.2) we have Jy(v) = *, for every u e K(cr)\K2(a) and

y € (0,o.).

PLOOF: Fix y € (0,a»), v € K(tr)\K2(a) and define stopping times

rn i T A inf{t 6 [0,T]; f |K<OI|2ds = n}

and processes vn € K2{o) with l imE^l = OD by

i Kt)i{t<Tn}; o < t < T,

for n = 1,2,.... With L as in (2.3) it follows from Jensen's inequality, the supermartingale

property of Zy, and the decrease of U, that

= E[E{U(y^(T)Z,(T)) |

Z E[U(yeLE{Zv(T)|^Tn})] £ EU(yeL

with yo = yeL, for every n > 1. The conclusion follows from (12.8) by letting n -»®.

D

PIOOF OF TIEOIEM 12.1: Fix y € (0,OD). The convex functional Jy(*) of (12.6) is

lower-semicontinuous in the strong topology of K^a), by Fatou's Lemma. Therefore, it is

also lower-semicontinuous in the weak topology (Ekeland & Temam [4], Chapter 1, Corollary

2.2). Thanks to the coercivity property (12.8) of Lemma 12.5, Jy{*) attains its infimum over
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) at some Ay € K2(a) (ibid., Chapter 2, Proposition 1.2). In light of Lemma 12.6 and

condition (114),

(12.11) inf JJu) = Jv(Ay) < »•
e K ( )

It remains to 6how that Ay € Ki(a). From the decrease of IJ and I, (4.4) and (4.8)'

we obtain

(12.12) 0(0 - f>(«) £ Utf) - V(£) = fa I(u)du £ £(± -

Replacing £ by y^(T)Zx (T) in (12.12) and taking expectations, we obtain

JTX (y) = E[/?(T)ZX (TWy/TOZ. (T))] ^ _23L
y y 7 y(l-o)

thanks to (12.11), and thus Xy € Kt(a) by Remark 9.1.

13. APPENDIX

We provide in this section a counterexample, which shows that we rAnnnt. have

^v(7) < •, V 7 € (0,o>), V v € K(<r), even for a well-behaved utility function U. This fact

necessitates the introduction of the set Ki(<r) in section 9.

In the setting of section 2, take m = 1, d = 2, o(t) = (0,1), r(t) = 0, b(t) = 0, T = 1,

B = Wi, and define the stopping time r 4 inf{t € [0,1]; t + B2(t) = 1} and the process
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(13.1)

; t = 1

v(t) = (y<t),O) . For the utility function U(x) = 2{x we have I(y) = y"2, and (7.6), (7.7)

give

(13.2)

(13.3)

« exp{- f
J0

= r 2 E[exp{[\<s)dB(s) + \ f
Jo Jo

It is shown in Liptser & Shiryaev [14], p. 224 (or Karatzas & Shreve [13]), p. 201) that the

process Zy of (13.2) is ncl a martingale; in fact, the construction (13.1) is made with this

property in mind. This implies, in particular, that

(13.4)

for otherwise Zv would be a martingale, by Novikov's theorem (Karatzas & Shreve [13]), p.

199). According to Liptser k Shiryaev [14]), p. 225:

flrts)dB(s) - \ \V(B)ds = - 1 - 2 fT[(l-4) - (l-t)-»]B2(t)dt,

whence
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"4 + (l-t)-8]B2(t)dt}].

If this last expectation were finite, then so would be

f
Jo

contradicting (13.4).
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