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Abstract

Linear subspace has many important applications in computer vision, such as structure from
motion, motion estimation, layer extraction, object recognition, and object tracking. Singular
Value Decomposition (SVD) algorithm is a standard technique to compute the subspace from
the input data. The SVD algorithm, however, is sensitive to outliers as it uses L2 norm metric,
and it can not handle missing data either. In this paper, we propose using LI norm metric to
compute the subspace. We show that it is robust to outliers and can handle missing data. We
present two algorithms to optimize the LI norm metric: the weighted median algorithm and
the quadratic programming algorithm.



 



1 Introduction
The measurements or observation data often lie only in a lower dimensional subspace in the
original high dimensional data space. Such subspace, especially the linear subspace, has
many important applications in computer vision, such as Structure from Motion (SFM) [17],
motion estimation [8], layer extraction [9, 10], object recognition [19], and object track-
ing [1].

To compute the subspace, a measurement matrix W is first constructed, which is then
factorized to compute the subspace. To construct W , each data item is first reshaped into a
column vector m*. All of the reshaped column vectors are then stacked together to form the
measurement matrix W = [mi, m2 , • • • , mK}. To compute the subspace, we need to factorize
this measurement matrix W into U and V :

(1)

Here D is the dimension of the input data space; K is the number of input data items; and d
is the dimension of the linear subspace. The d columns of the matrix U are the bases of the
linear subspace that we want to compute.

The input data will contain noises in real cases. Depending on the distribution of the
noises, the maximum likelihood estimation (MLE) of the subspace (U and V ) is equivalent
to minimize some reconstruction error function. For example, if the noise distribution can
be modelled by Gaussian distribution, then the MLE is equivalent to minimize the following
cost function:

E(U,V) = ||W-UVT||2 (2)

where || • ||2 is the matrix Frobenious norm (L2 norm).
It is well known that the Ul norm is sensitive to the outliers in the input data. In this

paper, we will first formulate the subspace computation problem as a probabilistic estimation
problem. Then we will present several cost functions according to different assumptions on
noise model. We will show that the cost function using LI norm metric is not only robust to
outliers, but also computationally attractable.

2 Probabilistic view of subspace computation

It was shown in [15, 16] that principal subspace can be computed by maximum likelihood
estimation, which in turn can be computed by EM algorith [4]. In a similar way, we formulate
the subspace computation as a maximum likelihood estimation problem under different noise
model. We will show that maximizing the likelihood is equivalent to minimization some cost
function. The format of the cost function is determined by the distribution of the noise in the
data.

In general, the observed datum (local measurement) m^ is a D-dimensional column vec-
tor contaminated by additive noise:

m* = fji. + ei i = 1 , . . . ,K (3)



where fii is the unobservable (fixed but unknown) true value corresponding to the observed
(measured) m^, and ei is the additive noise. We know that iii resides in a d dimensional
linear subspace (d < PD) such that:

M< = Uv* (4)

where v$ is the projection of m^ on the subspace defined by the columns of U.
Assuming that local measurements are independent, the log likelihood of the total K

measurements is:

K

Z(/x; m) = logp(mi,..., mK | fiv ..., pK) = J ^ log^m* | jx<) (5)

Therefore, the goal of subspace computation from measurement data is to find the true
values fa's that maximize the likelihood of the measurements Z(/z; m), subject to the condi-
tion that these /x/s reside in a low dimensional subspace defined by U in Eq. (4)).

2.1 Gaussian noise

If the noise Si follows zero-mean normal distribution with common standard deviation of a9

then m^ ^ N(l^i-> S). By further assuming that the elements of each vector (m^ or /JL^ are
independent, the probabilistic distribution of m^ conditioned on ^ii is:

^ 1 1 } (6)

where ||x||2 is the L2 norm of vector x:

The data log likelihood can be written as:

K

/(/x; m) = -c^2 \\mi ~ Mzlll (8)

where c is some positive constant. Maximizing the data log likelihood is therefore equivalent
to minimizing the term in the r.h.s. of Eq. (8), which is called the cost function or energy
function:

K

2 = 1

Substituting Eq. (4) into Eq. (9) and rewriting Eq. (9) in matrix format, we have:

(10)



Here W is the measurement matrix whose z-th column is m*. VT is the projection matrix, with
its z-th column being the projection value of the z-th data item in the subspace defined by U .

The assumption of identical and independent distributed (i.i.d.) Gaussian noise model
transfers the maximum likelihood problem of max^ /(//; m) into a minimization problem of
a L2-norm cost function which is convex in U and V . The SVD algorithm is a closed form
solution to compute its global minimum.

2.2 Laplacian noise

If we assume the noise e follows Laplacian distribution instead of normal distribution, we
have:

Y ^ K II ||
* = 1 1 1 1

where ||x||i is the LI norm of vector x:

" Vi\ (12)

The maximum likelihood of the observed data is given by minimizing the following LI
norm cost function:

K

1 = 1

Written in matrix form, we have:

(14)

where W is the measurement matrix with m* its i-th column. Unlike the L2 norm cost func-
tion, the LI norm cost function is in general non-convex in U and V .

2.3 General case

In general, when the noise follows the same distribution model but with different model
parameters for different data points, the data likelihood is:

K D h( \

• • , mK | /xl5..., 11K) - exp{- V V —^—^} (15)

where h(-) is some distance function, and a^ is related to the parameter of the noise distri-
bution.

The maximum likelihood of the observed data is given by minimizing the following
weighted cost function:

i 3



Notice that each data item is weighed by different component 1/a^. If we use the Eu-
clidean distance d{x) = ex2, the above cost function is simplified as a weighted sum:

i 3

Here 5^ = -£-. Written in matrix format, we have:

£(U,V) = ||S®(W-UV)||2 (18)

where ® denotes the component wise multiplication. In the low rank approximation context,
the above cost function has been studied in robust PC A in [5], and recently in [13]. Unlike
the L2 norm cost function, the above weighted cost function is in general non-convex in U
and V , due to the weight matrix S .

In summary, the maximum likelihood (ML) solution to the matrix factorization (subspace
computation) depends on the noise distribution assumed. When the noise follows indepen-
dent and identical Gaussian distribution, the ML solution is obtained by minimizing a L2
norm cost function. When the noise follows independent and identical Laplacian distribu-
tion, the ML solution is achieved by minimizing a LI norm cost function. In general when
the noise distributions are no longer identical, the ML solution comes from minimizing a
non-convex weighted cost function [5, 13], with the weights set according to some problem
dependent distance function. Both the cases of LI norm and weighted cost function can deal
with outliers, as will be shown in the following sections.

For other noise distributions, such as the generalized exponential family, corresponding
cost functions can also be derived [2].

3 L2-norm based subspace computation

Gaussian distribution is the most often assumed noise model. Under Gaussian noise model,
the problem of estimating the subspace is equivalent to minimize the following L2-norm cost
function:

£(U,V) = \\UDxK -VDxdvJxK\\2
2 (19)

where d is the dimension of the subspace defined by U , and d < D.
Singular Value Decomposition (SVD) is a popular approach to minimize E(\J, V). The

following theory of SVD explains how SVD can be used to minimize E(\J, V) [6]:

Theorem 1. [6] Let the SVD of matrix W be

= ^DxD^DxD^DxK

where E = diag(\\, • • • , XD) > Ai > • • • > XD > 0, and A and B orthonormal matrix. Then
for 1 < d < D, we have:

D

min£(U,V)=



The above theorem states that the first d columns of A in Eq. (20) defines the subspace
that minimizes the L2-norm cost function defined in Eq. (19), i.e.,

U = A(:, 1 : d)

Similarly we have
V = B(:, 1 : d)

SVD gives the closed form solution to the L2 norm cost function in Eq. (19). The prob-
lem with using the L2 norm cost function is that it is sensitive to outliers. With even a single
influential outliers, the resulted subspace could be completely different from the desired so-
lution. Detecting such outliers is therefore necessary.

Parametric approaches are often used to deal with outliers. The parametric approaches
define a global parametric model that inliers should follow. Outliers are those items that do
not follow such parametric model. Specifically, in parametric approaches, a parametric model
is first fit to the data, and then outliers are identified as the data that violate the fit model. A
more general scheme is to give each data item a weight in the range of [0,1] according to the
degree that such data item violates the global parametric model. A zero weight indicates an
outlier. Robust estimator is often used to weight each data item, where the objective function
in Eq. (19) is rewritten as:

min ^ P(miJ ~ nJv'j) (22>

where m^ is the ij-th element of W, U and V are the global parametric model (subspace
model), u .̂ is the z-th row of U, and v.j is the j-th column of VT. The contribution to the
cost function of each data element is controlled by the robust M-estimator p(-) based on the
distance between the data element and the current subspace model, i.e., the residual m^ —
Ui.v.j. For example the Geman-McClure robust function p(x,a) = x2

x+a2 is used in [18],
where a is the parameter that controls convexity of the robust estimator.

The use of robust M-estimator to solve Eq. (22) changes the convexity of the cost func-
tion. In general, there are many minimums in Eq. (22), and iterative procedures are often used
to derive a good local minimum. In each iteration, each data item is first weighted based on
its distance to the current parametric model, and then a new model is recomputed using the
weighted data. When the dimension of the data is too high to afford computing the subspace
model multiple times, gradient decent can be used to compute a local minima [18].

The convergence of the above iterative process depends on the model initialization. When
a reasonably good initialization is available, the parametric method is highly effective since
it takes the global data into account in detecting the outliers. Parametric approaches are
effective for detecting structure outliers, since such outliers are not influential and a good
initial model is possible if there are not extreme outliers. On the other hand, in the presence
of influential extreme outliers, it would be hard, before the removal of the extreme outliers,
to obtain a good initial model as the starting point for the iterative procedure.



4 LI-norm based subspace computation

In this section, we discuss the potential advantages of using LI norm metric for subspace
computation. Minimizing the LI norm metric corresponds to the maximum likelihood esti-
mation under Laplacian noise model. We first show that LI norm metric is more robust than
L2-norm through a simple illustrative line-fitting example. We then present two algorithms
to compute the subspace using LI norm metric: Alternating Weighted-Median algorithm and
Alternating Convex Quadratic Programming. These two algorithms are efficient: weighted
median has fast algorithm [14], and convex quadratic programming (see [11]) is well studied
and has very efficient software package available. More extensive experiments of these above
two approaches to subspace computation is part of the future work.

4.1 Robust LI norm metric: example

One important advantage of using LI norm is that it is more robust to outliers than L2 norm
in statistical estimation. This can be seen from the following simple example where we try
to find a ID subspace from given 2D data items. In other words, the example is to fit a line
to the given 2D data points.

Suppose we are given 10 two-dimensional points {{x^yi)\i = 1,..., 10} where the re-
sponse variable y is corrupted by Gaussian noise. We want to fit a line y = kx to these 10
points, where k is the parameter (slope) that we need to estimate. In other words, we want
to compute the one dimensional subspace from the given two dimensional data. Specifically,
we use the following linear model:

y = kx + e (23)

where k is the parameter to estimate and e is the noise that corrupts the response variable y.

4.1.1 L2 norm formulation

If e is assumed to be Gaussian noise, then the ML estimation of the parameter k is given by
minimizing the following L2-norm cost function (sum of squared difference):

10

E(k) = Y,(Vi ~ kxi)2 (24)

The least squared solution to minimize the above cost function is:

io 2
i = l Xi

4.1.2 LI norm formulation

If e is assumed to have Laplacian distribution, then the ML estimation of the parameter k is
given by minimizing the follow LI-norm cost function:

10 10
I 11 7 I / O ̂ \̂
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Figure 1: Fit a line to 10 given data points. All data points are inliers. The result of using L2
norm cost function is similar to that of using LI norm.

Global minimum of Eq. (25) can be obtained using the following well known result
(see [14]):

Result 1. The global minimum of the Ll-norm cost function E{k) = Yli=i \\Vi ~~ ^xi\\i is
given by the weighted median of{^\ i = 1,..., K}, where \xi\ is the weight for the i-th item

If Xi = 0, then its corresponding i-th data point is removed from the accumulation in
Eq. (25), since the weight is equal to zero too.

4.1.3 Results

Fig. 1 shows the results when there is NOT any outlier in the given data. As we can see, the
LI norm and Ul norm cost functions give similar estimation of k.

When there are outliers in the data, the results are different. In Fig.2 there are two outliers,
A and B. The LI norm cost function still gives good results, while the Ul norm cost function
gives erroneous estimation.

4.2 Alternative minimization

We have shown that by assuming Laplacian noise distribution, the maximum likelihood esti-
mation of matrix factorization corresponds to minimizing a Ll-norm cost function, and that
Ll-norm metric is more robust to outliers than L2-norm metric. In this section, we present
algorithms on how to maximize the likelihood, i.e., minimize the Ll-norm based cost func-
tion:

) = ||W-UVT||1 (26)
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Figure 2: Fit a line to 10 given data points. Two data points A and B are outliers. Using
L2 norm cost function gives erroneous result shown in dash line, while using LI norm cost
function still gives correct result shown in solid line.

is the measurement matrix with Column i the observed (measured) data Xi. The
columns of Uoxd are the d bases of the subspace to be estimated, with d < min(D, K).

While Eq.(25) has a global minimum that can be computed via the weighted median, the
cost function for matrix factorization in Eq.(26) is in general non-convex, since both U and V
are unknown. It requires some iterative scheme to achieve a good local minimum.

If U or V is known, then we can use weighted median to compute the global minimum
of Eq.(26). This fact suggests a scheme that minimizes the cost function alternatively over U
or V, each time optimizing one argument while keeping the other one fixed. Such alternative
minimization scheme [3] has be widely used in subspace computation using L2 norm [12] or
other distance metric such as Bregman Divergences [2]. The alternative optimization can be
written as:

= argmin

arg mm |
v

-UV ( t - 1 ) T | | i

- U(t)VT||i

(27a)

(27b)

4.2.1 Alternative minimization by weighted-median

Alternative minimization via weighted-median has been applied to robust SVD (unpublished
document [7]). However, the algorithm presented in [7] contains mistakes and can not cor-
rectly handle the case where the rank of the measurement matrix is more than one, i.e.
rank(W) > 1. We present the correct algorithm that can handle the case where rank(W) is
more than one.



11 Initialization
Set U = 0 and V = 0
I I Cycle through d columns of X) for N times
For n = 1, • • • , N, c = 1, • • • , d:

//Optimize u.c, the c-th column of\J with other columns fixed
If n = 1, initialize v:,? randomly
Op* y — y _ V^ 7 / 7, .
o c i w — w / jfc-j-r ̂ xk vkj

For t = 1, • • • , convergence

For i = 1 • • • D, wf} = argmin ||mi. - uv.(*~1)T||i

For j = 1 • • • K, Vj — arg min || m.j — vu^ || i
V

Figure 3: Algorithm of using iterative weighted median to minimize the LI norm cost func-
tion, and therefore to compute the subspace.

To simplify the presentation, we first consider the case where the dimension of the sub-
space is one. The alternating minimization problems are:

For i = 1 • • • D, uf> = arg min ||m;. - uV{t~1)T ||i (28a)
u

= ! • • • # , vf = arg min \\m.j - v\J{t) \\i (28b)
V

where uf* is the i-th element of the column vector U (similar definition of vf'), t is the index
of the iteration steps. The solutions (global minimums) to Eq. (28) can be obtained through
the well known weighted median algorithm according to Result 1.

When the subspace dimension d is more than one, U and V contain more than one column.
Our algorithm cycles through the d columns of U and V, optimizing each column while fixing
the others. The problem is therefore broken into d subproblems of Eq. (28). The overall
algorithm is shown in Fig 3.

4.2.2 Alternative minimization by convex quadratic programming

We have presented the approach that cycles through the principal vectors (subspace bases)
by optimizing over one principal vector while fixing the others. In this subsection, we con-
vert the subspace computation problem to alternative convex optimization problem, which
updates all principal vectors at a time in each iteration. The alternative convex optimization
is potentially faster and achieve better local minimum than the alternative weighted median
approach presented above.

In the following we show how to solve Eq. (27b). Eq. (27a) can be solved similarly. The



cost function of Eq. (27b) can be written as:

= ||W-U(t)VT||1

. 7 = 1

where m.j is the j-th column of W , v.j is the j-th column of VT. The problem of Eq. (27b) is
therefore decomposed into K sub-problems, each one optimizing v.j. Each sub-problem has
the following general formula:

x = argmin ||b - Ax||i (29)
X

This problem can be reduced to a simple convex quadratic programming problem whose
global minimum can be computed efficiently [11]:

mm - z o + 7 e t
x,z,t 2
s.t. -t<Ax-b-z<t (30)

where e is a column vector of ones. 7 is a small positive constant.

4.2.3 Convergence

The cost function i?(U, V) is decrease at each alternative minimization step. Since the cost
function i?(U, V) is lower bound (> 0), the alternative minimization procedure will converge.
By carefully design the algorithm, it will converge to a local minimum. We are investigating
if it will converge to a local minimum in theory.

The convergence is achieved when the difference of the parameters between adjacent
iterations is small enough. More specifically, the algorithm will stop if for each subspace
base, the following holds:

d(u* ,u*- 1 )<e (31)

Here 0(111,112) is the angle between the two vectors Ui and u2; uc is the c-th subspace base;
and £ is a small positive number.

4.3 Handling missing data

Missing data can be handled in both weighted-median algorithm and convex programming
algorithm, by discarding the constraints corresponding to the missing data.

To see the reason, we rewrite Eq. (26) as:

D K

V) = J2 J2 K- " ̂ v-il (32)

2=1 j = l

10



where w^ is the element located at i-th row and j-th column of W, u*. is the i-th row of U, and
v.j is the j-th column of VT. If Wij is missing, then we discard the corresponding cumulative
item of \wij — u^.v.j|.

For the weighted-median algorithm, discarding such item does not affect the result of the
weighted median in Eq (28).

For the quadratic programming algorithm, discarding one such item removes one corre-
sponding equation in the equation set in Eq (29). As long as the total number of missing
elements in b (one column in the measurement matrix W ) is no more than D — d, the equa-
tion set is still over-constrained and the quadratic programming is still solvable. In general,
the original dimensions D is much larger than the subspace dimension d, which allows large
number of missing data in each column of W .

4.4 Summary

In summary, the LI norm formulation of subspace computation that requires minimization of
||W — UVT||i can be decomposed into two alternative minimization problem. Each alternating
problem is further divided into D and K independent sub-problems. Each sub-problem can
be in turn reduced to a simple convex quadratic problem whose global minimum can be
computed efficiently. Notice that while the global minimum of each sub-problem can be
derived by convex quadratic programming, the original problem minuv 11W — UVT||i is in
general non-convex.

5 Example

Let us consider an 8 x 6 measurement matrix, which consists of eight data points in the six
dimensional column space (or 6 data points in the eight dimensional row space), as shown
in Eq (33). The rank of this matrix is two, which means these eight data points actually lie
in a 2D subspace. Now suppose we observe these eight data points but with outlier mea-
surements. As shown by the red italic elements in Eq (34), every data point contains outlier
measurement!

^6x8 =

9.47 8.42 -12.49 1.03 1.69 3.83 1.84 8.08

-7.30
-2.43
8.13
7.87
7.56

-0.13
-2.03
6.99
5.83
1.50

-5.71
2.88

-10.15
-7.55
2.62

-4.56
-0.34
1.02
1.55
3.92

11.26
-0.17
0.99

-0.90
-8.97

9.48
-0.72
2.83
0.89

-7.16

5.83
-0.32
1.31
0.19

-4.48

8.97
-1.75
6.37
3.91

-6.03

(33)
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W6x8 =

9.47
-7.30
-2.43
8.13
7.87

400.0

5.42 -12.49 1.03 1.69 3.83
-0.13 200.0 -4.56 11.26 9.48

-100.0 2.88 -0.34 -0.17 300.0
6.99 -10.15 1.02 -300.0 2.83
5.83 -7.55 200.0 -0.90 0.89
1.50 2.62 3.92 -8.97 -7.16

1.84
5.83

-300.0
1.31
0.19

-4.48

8.08
8.97

-1.75
700.0
3.91

-6.03
(34)

9.47 8.42 -12.39 1.03 1.69 3.83 1.84 8.08
-7.30
-2.43
8.13
7.87
7.56

-0.13
-2.03
6.99
5.83
1.50

-3.41
2.91

-10.15
-7.91
0.75

-4.56
-0.34
1.02
1.55
3.92

11.26
-0.17
0.99

-0.90
-8.97

9.48
-0.72
2.83
0.89

-7.16

5.83
-0.32
1.31
0.19

-4.48

8.97
-1.75
6.37
3.91

-6.03

(35)

0.17
-0.34
-28.70

9.81
0.20
1.92

0.37
-1.24

-99.70
7.08
0.55
6.56

-0.11
0.05
5.28

-10.01
-0.09
-0.38

0.02
-0.01
-1.67
2.30
0.02
0.11

-2.81
-0.44
0.46

-299.96
-1.89
-1.20

-0.88
3.77

299.22
2.94

-1.51
-19.62

0.92
-3.75

-298.29
1.23
1.53

19.57

6.56
1.03

-1.08
699.98
4.42
2.80

(36)
We apply the algorithm of alternative minimization by weighted-median to compute the

2D subspace. Eq (35) shows the reconstructed matrix in the 2D subspace, and Fig. 4(a) shows
the reconstruction error. As we can see, the errors are small, and the outlier measurements
have been successfully recovered.

We also apply the SVD algorithm (L2 norm) to compute the two dimensional subspace.
Eq (36) shows the reconstructed matrix in the 2D subspace, and Fig. 4(b) shows the recon-
struction error. The SVD algorithm is sensitive to the outlier measurements, as we can see
from the erroneous reconstructed matrix.

For comparison purpose, we plot the reconstruction errors in same coordinate frame, as
shown in Fig 5. The weighted median algorithm (LI norm) achieves much better results than
the SVD algorithm (L2 norm).

6 Conclusion
In this paper we study the problem of robust subspace computation. From the probabilis-
tic view point, subspace computation can be formulated as maximum likelihood estimation
problem, which in turn leads to the low rank matrix approximation. Under different noise
models, subspace computation is formulated as minimizing the matrix reconstruction error
using, respectively, L2 norm, LI norm, or general weighted reconstruction error function.

12
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(a) LI norm (b) L2 norm

Figure 4: Reconstruction error for each element in the measurement matrix W . (a) Black "*":
weighted median using LI norm metric; (b) Red "CD": SVD algorithm using L2 norm metric.

The un-weighted Ul norm error function is convex and its global minimum can be computed
using SVD algorithm. But it is sensitive to outliers. L\ norm error function and general
weighted error function are robust to outliers, but they are non-convex. Alternative minimiza-
tion algorithms can be used to minimize such non-convex function. We study two alternative
minimization algorithms to minimize the LI norm error metric, namely the weighted median
and quadratic programming. The weighted median algorithm is robust and simple, but it can
only compute the subspace bases one by one, and therefore potentially easier to be trapped
into a bad local minima. The quadratic programming can compute the subspace bases all at
once in each iteration step, and is potentially more efficient since quadratic programming is
a well-studied and well-tuned algorithm. Alternative minimization requires a good initializa-
tion for the algorithm to converge to a good solution. Currently we use random initialization.
In the future, we will study how to initialize the alternative algorithm. Testing the algorithms
on real data is also part of future work.
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