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Abstract

This report is a collection of six articles on model checking in the abstraction/refinement framework.
This framework is used by various techniques for tackling the state-space explosion problem that is
frequently encountered in model checking.



 



The articles collected in this report are (in order of appearance):

1. Counterexample-guided abstraction refinement. Clarke, Grumberg, Jha, Lu, Veith[2]

2. SAT based Abstraction-Refinement using ILP and Machine Learning Techniques. Clarke,
Gupta, Kukula, Strichman [6]

3. Automated Abstraction Refinement for Model Checking Large State Spaces using SAT
based Conflict Analysis. Chauhan, Clarke, Kukula, Sapra, Veith, Wang [1]

4. SAT based Predicate Abstraction for Hardware Verification. Clarke, Talupur, Wang [4]

5. High Level Verification of Control Intensive Systems Using Predicate Abstraction. Clarke,
Grumberg, Talupur,Wang [3]

6. Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refine-
ment. Clarke,Fehnker,Han,Krogh,Stursberg,Theobald [5]



 



1 Introduction

This report is a collection of six previously published articles on counterexample-guided
abstraction refinement in model checking:

1. Counterexample-guided abstraction refinement[2]
2. SAT based Abstraction-Refinement using ILP and Machine Learning Techniques [6]
3. Automated Abstraction Refinement for Model Checking Large State Spaces using SAT

based Conflict Analysis [1]
4. SAT based Predicate Abstraction for Hardware Verification [4]
5. High Level Verification of Control Intensive Systems Using Predicate Abstraction [3]
6. Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refine-

ment [5]

The collection is meant for summarizing and comparing the various approaches to this prob-
lem that were developed in our group in the last three years. A survey of previous work on
this subject by other research groups appears in the articles themselves. The abstraction-
refinement framework was developed by Kurshan in the early 80's under the name Localiza-
tion Reduction. A short description of this work appears in [7].

2 The Abstraction/Refinement Framework

Given a model M and a property ip, the abstraction/refinement framework encapsulates
various automatic algorithms for finding an abstracted model M with the following two
properties: first, M contains enough information for checking whether M \= ip and second,
M is as small as possible, so checking whether M (= tp can be done efficiently. This framework
is an important tool for tackling the known state-explosion problem in model checking. The
framework has four steps, as follows:

1. Generate an initial abstract model M.
2. Use model checking to check whether M \= <p. If yes, return TRUE (i.e., M |= ip).
3. Check whether the counterexample can be simulated on the concrete model. If yes,

return FALSE (i.e., M \£ </?).
4. Refine M, and go to step 2.

An algorithm in this framework model checks in step 2 a finite series of models Mo, • • •, Mk

s.t. for an arbitrary ACTL formula V, Vz E [0... k - 1]. M{ \= ip -> Mj+i f= ip, Mi ^ Afj+1

and Mk f= (p -» M (= (p. The series of models Mo, • • •, Mk is derived by defining an initial
conservative abstraction function, and repeatedly refining it (conservative abstractions, in-
formally, are abstractions that only add transitions to the model. This type of abstraction
can result in false negatives, i.e., spurious counterexamples, but not in false positives). Note
that in the worst case M* = M, which implies that this process is complete.

The techniques described in the six articles differ from each other in (i) the way they
perform each of the four steps of the framework, and (ii) what type of concrete models they
can be applied to. Fig. 1 briefly summarizes these differences. The article [5] is the only one
that assumes a hybrid automaton, which includes discrete and continuous dynamics and



hence describes an infinite-state system. The other five assume that the concrete model has
a finite-state description.

The table mentions the terms 'Dead-end' and 'Bad' sets of states, which are important
elements in the refinement technique applied by both [2] and [6]. While these terms are
formally defined in the articles themselves, we explain them here informally. When model-
checking M{ over ip results in a counterexample that can not be simulated on the concrete
model M, we want the refinement process to eliminate this counterexample, i.e., we want to
generate a refined model M*+i such that this counterexample can not be reproduced. The
reason that the counterexample can not be simulated on M is that it represents a trace that
includes two consecutive abstract states Sf, s/+i that have a transition between them in Mj,
but not in M. The 'Dead-end' states DE are the set of concrete states that are united under
Sf and are reachable via paths that satisfy the counterexample. No single transition from
DE can reach a concrete state in s/+i, hence the name 'Dead-end'. The 'bad' states B are
the set of states in Sf that can lead to concrete states in s/+i. By definition, DE D B = 0.
The reason that the counterexample satisfies M{ is that DE and B are united under the
same abstract state s/. The refinement procedure in both [2] and [6] try to separate these
two sets into different abstract states, thus eliminating the counterexample.

The technique in [5] splits each abstract state along the counterexample into two abstract
states, one that corresponds to the continuous states that can be reached and the other one
to the continuous states that cannot be reached along the counterexample path.

The refinement techniques in [1], [4] and [3] are all based on an analysis of conflict graphs
that are built by the SAT solver when the formula is unsatisfiable. The unsatisfiable instance
corresponds to a formula that conjoins the abstract counterexample with the concrete model.
When the counterexample cannot be simulated on the concrete machine, this formula is
unsatisfiable. By analyzing the conflict graph corresponding to the derivation of the empty
clause, they identify the clauses and variables that contributed to the contradiction, and use
this information to refine the model.
The articles include some experimental results comparing the methods. A good measure
for the success of each algorithm (other than the total running time) is the size of the last
abstracted model Mk and the number k of required iterations to reach this model. Clearly
the size of M* heavily depends on M and (p.
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abstraction / refinement framework
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Abstract We present an automatic iterative abstraction-refinement methodol-
ogy in which the initial abstract model is generated by an automatic analysis of
the control structures in the program to be verified. Abstract models may admit
erroneous (or "spurious'*) counterexamples. We devise new symbolic techniques
which analyze such counterexamples and refine the abstract model correspond-
ingly. The refinement algorithm keeps the size of the abstract state space small
due to the use of abstraction functions which distinguish many degrees of abstrac-
tion for each program variable. We describe an implementation of our method-
ology in NuSMV. Practical experiments including a large Fujitsu IP core design
with about 500 latches and 10000 lines of SMV code confirm the effectiveness of
our approach.

1 Introduction

The state explosion problem remains a major hurdle in applying model checking to
large industrial designs. Abstraction is certainly the most important technique for han-
dling this problem. In fact, it is essential for verifying designs of industrial complex-
ity. Currently, abstraction is typically a manual process, often requiring considerable
creativity. In order for model checking to be used more widely in industry, automatic
techniques are needed for generating abstractions. In this paper, we describe an auto-
matic abstraction technique for ACTL* specifi cations which is based on an analysis of
the structure of formulas appearing in the program (ACTL* is a fragment of CTL*
which only allows universal quantifi cation over paths). In general, our technique com-
putes an upper approximation of the original program. Thus, when a specifi cation is
true in the abstract model, it will also be true in the concrete design. However, if the
specifi cation is false in the abstract model, the counterexample may be the result of
some behavior in the approximation which is not present in the original model. When
this happens, it is necessary to refi ne the abstraction so that the behavior which caused
the erroneous counterexample is eliminated. The main contribution of this paper is an
effi cient automatic refi nement technique which uses information obtained from erro-
neous counterexamples. The refi nement algorithm keeps the size of the abstract state

r This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294, the National Science Foundation (NSF) under Grant No. CCR-9505472, and
the Max Kade Foundation. One of the authors is also supported by Austrian Science Fund
Project N Z29-INF. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of SRC, NSF, or
the United States Government.



space small due to the use of abstraction functions which distinguish many degrees of
abstraction for each program variable. Practical experiments including a large Fujitsu
IP core design with about 500 latches and 10000 lines of SMV code confi rm the com-
petitiveness of our implementation. Although our current implementation is based on
NuSMV, it is in principle not limited to the input language of SMV and can be applied
to other languages.

Our paper follows the general framework established by Clarke, Grumberg, and
Long [10]. We assume that the reader has some familiarity with that framework. In
our methodology, atomic formulas are automatically extracted from the program that
describes the model. The atomic formulas are similar to the predicates used for abstrac-
tion by Graf and Saidi [13] and later in [11,20]. However, instead of using the atomic
formulas to generate an abstract global transition system, we use them to construct an
explicit abstraction function. The abstraction function preserves logical relationships
among the atomic formulas instead of treating them as independent propositions. The
initial abstract model is constructed by adapting the existential abstraction techniques
proposed in [8,10] to our framework. Then, a traditional model checker is used to de-
termine whether ACTL* properties hold in the abstract model. If the answer is yes,
then the concrete model also satisfi es the property. If the answer is no, then the model
checker generates a counterexample. Since the abstract model has more behaviors than
the concrete one, the abstract counterexample might not be valid. We say that such a
counterexample is spurious. Such abstraction techniques are also known as false nega-
tive techniques.

In our methodology, we provide a new symbolic algorithm to determine whether
an abstract counterexample is spurious. If the counterexample is not spurious, we re-
port it to the user and stop. If the counterexample is spurious, the abstraction function
must be refi ned to eliminate it. In our methodology, we identify the shortest prefi x of
the abstract counterexample that does not correspond to an actual trace in the concrete
model. The last abstract state in this prefi x is split into less abstract states so that the
spurious counterexample is eliminated. Thus, a more refi ned abstraction function is ob-
tained. Note that there may be many ways of splitting the abstract state; each determines
a different refi nement of the abstraction function. It is desirable to obtain the coarsest
refi nement which eliminates the counterexample because this corresponds to the small-
est abstract model that is suitable for verifi cation. We prove, however, that fi nding the
coarsest refi nement is NP-hard. Because of this, we use a polynomial-time algorithm
which gives a suboptimal but suffi ciently good refi nement of the abstraction function.
The applicability of our heuristic algorithm is confi rmed by our experiments. Using the
refi ned abstraction function obtained in this manner, a new abstract model is built and
the entire process is repeated. Our methodology is complete for the fragment of ACTL*
which has counterexamples that are either paths or loops, i.e., we are guaranteed to ei-
ther fi nd a valid counterexample or prove that the system satisfi es the desired property.
In principle, our methodology can be extended to all of ACTL*.

Using counterexamples to refi ne abstract models has been investigated by a num-
ber of other researchers beginning with the localization reduction of Kurshan [14]. He
models a concurrent system as a composition of L-processes L\,... , Ln (L-processes
are described in detail in [14]). The localization reduction is an iterative technique that



starts with a small subset of relevant L-processes that are topologically close to the
specifi cation in the variable dependency graph. All other program variables are ab-
stracted away with nondeterministic assignments. If the counterexample is found to be
spurious, additional variables are added to eliminate the counterexample. The heuris-
tic for selecting these variables also uses information from the variable dependency
graph. Note that the localization reduction either leaves a variable unchanged or re-
places it by a nondeterministic assignment. A similar approach has been described by
Balarin in [2,15]. In our approach, the abstraction functions exploit logical relation-
ships among variables appearing in atomic formulas that occur in the control structure
of the program. Moreover, the way we use abstraction functions makes it possible to
distinguish many degrees of abstraction for each variable. Therefore, in the refi nement
step only very small and local changes to the abstraction functions are necessary and
the abstract model remains comparatively small.

Another refi nement technique has recently been proposed by Lind-Nielson and An-
dersen [17]. Their model checker uses upper and lower approximations in order to han-
dle all of CTL. Their approximation techniques enable them to avoid rechecking the
entire model after each refi nement step while guaranteeing completeness. As in [2,14]
the variable dependency graph is used both to obtain the initial abstraction and in the
refi nement process. Variable abstraction is also performed in a similar manner. There-
fore, our abstraction-refi nement methodology relates to their technique in essentially
the same way as it relates to the classical localization reduction.

A number of other papers [16,18,19] have proposed abstraction-refi nement tech-
niques for CTL model checking. However, these papers do not use counterexamples
to refi ne the abstraction. We believe that the methods described in these papers are or-
thogonal to our technique and may even be combined with ours in order to achieve
better performance. A recent technique proposed by Govindaraju and Dill [12] may be
a starting point in this direction, since it also tries to identify the fi rst spurious state in
an abstract counterexample. It randomly chooses a concrete state corresponding to the
fi rst spurious state and tries to construct a real counterexample starting with the image
of this state under the transition relation. The paper only talks about safety properties
and path counterexamples. It does not describe how to check liveness properties with
cyclic counterexamples. Furthermore, our method does not use random choice to ex-
tend the counterexample; instead it analyzes the cause of the spurious counterexample
and uses this information to guide the refi nement process. A more detailed comparison
with related work will be given in the full version

Summarizing, our technique has a number of advantages over previous work:

(i) The technique is complete for an important fragment of ACTL*.
(ii) The initial abstraction and the refi nement steps are effi cient and entirely auto-

matic. All algorithms are symbolic.
(Hi) In comparison to methods like the localization reduction, we distinguish more

degrees of abstraction for each variable. Thus, the changes in the refi nement are
potentially fi ner in our approach.

(iv) The refi nement procedure is guaranteed to eliminate spurious counterexamples
while keeping the state space of the abstract model small.



We have implemented our new methodology in NuSMV [6] and applied it to a number
of benchmark designs [6]. In addition we have used it to debug a large IP core being de-
veloped at Fujitsu [1], The design has about 350 symbolic variables which correspond
to about 500 latches. Before using our methodology, we implemented the cone of influ-
ence reduction [8] in NuSMV to enhance its ability to check large models. Neither our
enhanced version of NuSMV nor the recent version of SMV developed by Yang [23]
were able to verify the Fujitsu IP core design. However, by using our new technique, we
were able to fi nd a subtle error in the design. Our program automatically abstracted 144
symbolic variables and performed three refi nement steps. Currently, we are evaluating
the methodology on other complex industrial designs.

The paper is organized as follows: Section 2 gives the basic defi nitions and termi-
nology used throughout the paper. A general overview of our methodology is given in
Section 3. Detailed descriptions of our abstraction-refi nement algorithms are provided
in Section 4. Performance improvements for the implementation are described in Sec-
tion 5. Experimental results are presented in Section 6. Future research is discussed in
Section 7.

2 Preliminaries

A program P has a finite set of variables V = {t*j • • • > v n }, where each variable
V{ has an associated fi nite domain LI.. The set of all possible states for program P
is DVl x • • • DVn which we denote by D. Expressions are built from variables in V,
constants in DVt, and function symbols in the usual way, e.g. vi + 3. Atomic formulas
are constructed from expressions and relation symbols, e.g. v\ -f 3 < 5. Similarly,
predicates are composed of atomic formulas using negation (-i), conjunction (A), and
disjunction (V). Given a predicate p, Atoms(p) is the set of atomic formulas occurring
in it. Let p be a predicate containing variables from V, and d — [d\,..., dn) be an
element from D. Then we write d \= p when the predicate obtained by replacing each
occurrence of the variable Vi in p by the constant di evaluates to true.

Each variable Vi in the program has an associated transition block, which defi nes
both the initial value and the transition relation for the variable V{. An example of a
transition block for the variable V{ is shown in Figure 1, where U C DVi is the initial

esac;

= U\
:= case

Cl:Ah
Cf :Af;
... • ... •
Cf-.Ah

init(:r) := 0;
nextOr) := case

reset = TRUE : 0;
x < y :x + 1;
x = y : Q ;
else: x;

esac;

init(y) :=
next(y) :=

reset
(x =
(x =
else:

esac;

1;
: case
= TRUE : 0;
y) A -.(y = 2]
y ) : 0 ;
y;

Fig. 1. A generic transition block and a typical example

expression for the variable Vi, each condition Cf is a predicate, and A\ is an expression.



The semantics of the transition block is similar to the semantics of the case statement
in the modeling language of SMV, i.e., fi nd the least j such that in the current state
condition C\ is true and assign the value of the expression A\ to the variable v\ in the
next state.

We assume that the specif! cations are written in a fragment of CTL* called ACTL*
(see [10]). Assume that we are given an ACTL* specifi cation <p, and a program P. For
each transition block B{ let Atoms(5 t) be the set of atomic formulas that appear in the
conditions. Let Atoms(<p) be the set of atomic formulas appearing in the specifi cation
(p. Atoms(P) is the set of atomic formulas that appear in the specifi cation or in the
conditions of the transition blocks.

Each program P naturally corresponds to a labeled Kripke structure M =
(S,I,R,L), where 5 = D is the set of states, / C 5 is a set of initial states,
R C S x S is a transition relation, and L : S -> 2Atoms(p) is a labelling given by
L(d) = {/ G Atoms(P) | d \= / } . Translating a program into a Kripke structure is
straightforward and will not be described here. ^

An abstraction h for a program P is given by a surjection h : D -> D. Notice that
the surjection h induces an equivalence relation = on the domain D in the following
manner: let d, e be states in D, then

d=e iff h{d) = h(e).

Since an abstraction can be represented either by a surjection h or by an equivalence
relation =, we sometimes switch between these representations to avoid notational over-
head.

Assume that we are given a program P and an abstraction function h for P. The
abstract Kripke structure M = (S, I, R, L) corresponding to the abstraction function
h is defi ned as follows:

1. S is the abstract domain D.
2. ?{d) iff 3d{h{d) = dM{d)).
3. R(dl9d2) iff3d13d2{h{d1) = £ A h{d2) = d2 A R{dud2)).
4. L(d) = U/i(d)=^^(^)* (This defi nition will be justifi ed in Theorem 1.)

This abstraction technique is called existential abstraction [8]. An atomic formula
/ respects an abstraction function h if for all d and dl in the domain D, (d = d') =>
[d |= / <£> df \= / ) . Let d be an abstract state. L(d) is consistent, if all concrete
states corresponding to d satisfy all labels in L(d), i.e., for all d G h~l{d) it holds that

Theorem 1. Let h be an abstraction and <p be an ACTL* specification where the
atomic subformulas respect h. Then the following holds: (i) L(d) is consistent for all
abstract states d in M; (ii) M \= <p => M (= <p.

In other words, correctness of the abstract model implies correctness of the concrete
model. On the other hand, if the abstract model invalidates an ACTL* specifi cation,
i.e., M J£ <p, the actual model may still satisfy the specification.



Example 1. Assume that for a traffi c light controller (see Figure 2), we want to prove
ip = AG A¥(state = red) using the abstraction function h(red) = red and
h(green) = h(yellow) = go. It is easy to see that M (= i> while M ^ V7- There
exists an infi nite trace (red, go, go,...) that invalidates the specifi cation.

Q
,*a —> g0; ^

Fig. 2. Abstraction of a Traffic Light.

If an abstract counterexample does not correspond to some concrete counterexample,
we call it spurious. For example, (red, go, go,...) in the above example is a spurious
counterexample.

When the set of possible states is given as the product Di x • • • Dn of smaller
domains, an abstraction h can be described by surjections hi : D{ —>• Di, such that
h(di,.. .,dn) is equal to (hi(di),.. .,hn(dn)), and D is equal to D\ x • • Dn. In
this case, we write h — (h\,... ,hn). The equivalence relations =j corresponding to
the individual surjections hi induce an equivalence relation = over the entire domain
D — D\ x • • • x Dn in the obvious manner:

(cfi,--- ,dn) = (ei,--- ,en) iflF di = i ei A ••• Acfn =„ en

In previous work on existential abstraction [10], abstractions were defi ned for each
variable domain, i.e., £>,• in the above paragraph was chosen to be DVi, where Dv% is
the set of possible values for variable v*. Unfortunately, many abstraction functions h
can not be described in this simple manner. For example, let D = {0,1,2} x {0,1,2},
and D = {0,1} x {0,1}. Then there are 49 = 262144 functions h from D to D. Next,
consider h = (hi, h2). Since there are 23 = 8 functions from {0,1, 2} to {0,1}, there
are only 64 functions of this form from D to D.

In this paper, we defi ne abstraction functions in a different way. We partition the set
V of variables into sets of related variables called variable clusters VCi,..., VCm,
where each variable cluster VCi has an associated domain Dyd '-— X\v^vci &v-
Consequently, D — Dycx x • • • £Vc m • We defi ne abstraction functions as surjections
on the domains Dye,, i.e., A in the above paragraph is equal to By a- Thus, the
notion of abstraction used in this paper is more general than the one used in [10].

3 Overview

For a program P and an ACTL* formula <p, our goal is to check whether the Kripke
structure M corresponding to P satisfi es <p. Our methodology consists of the following
steps.
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1. Generate the initial abstraction: We generate an initial abstraction h by examining
the transition blocks corresponding to the variables of the program. We consider
the conditions used in the case statements and construct variable clusters for vari-
ables which interfere with each other via these conditions. Details can be found in
Section 4.1. _

2. Model-check the abstract structure: Let M be the abstract Kripke structure corre-
sponding to the abstraction h. We check whether M (= (p. If the check is affi r-
mative, then we can conclude that M \= <P ( s e e Theorem 1). Suppose the check
reveals that there is a counterexample T. We ascertain whether T is an actual coun-
terexample, i.e., a counterexample in the unabstracted structure M.lf T turns out
to be an actual counterexample, we report it to the user, otherwise T is a spurious
counterexample, and we proceed to step 3.

3. Refine the abstraction: We refi ne the abstraction function h by partitioning a single
equivalence class of = so that after the refi nement the abstract structure M corre-
sponding to the refi ned abstraction function does not admit the spurious counterex-
ample T. We will discuss partitioning algorithms for this purpose in Section 4.3.
After refi ning the abstraction function, we return to step 2.

4 The Abstraction-Refinement Framework

4.1 Generating the Initial Abstraction

Assume that we are given a program P with n variables {i>i, • • • , vn}. Given an atomic
formula / , let var(f) be the set of variables appearing in / , e.g., var(x = y) is {x, y}.
Given a set of atomic formulas f/, var(U) equals U/et/ var{f)- I*1 general, for any
syntactic entity X, var(X) will be the set of variables appearing in X. We say that two
atomic formulas / i and f2 interfere iff var(fi) C\ var(f2) ^ 0. Let = / be the equiv-
alence relation on Atoms(P) that is the reflexive, transitive closure of the interference
relation. The equivalence class of an atomic formula / £ Atoms(P) is called the/or-
mula cluster of / and is denoted by [/]. Let /1 and f2 be two atomic formulas. Then
var(fi) n var(f2) ^ 0 implies that [/1] = [/2]. In other words, a variable vi cannot
appear in formulas that belong to two different formula clusters. Moreover, the formula
clusters induce an equivalence relation =y on the set of variables V in the following
way:

Vi =y Vj if and only if Vi and Vj appear in atomic formulas that belong to the
same formula cluster.

The equivalence classes of =y are called variable clusters. For instance, consider
a formula cluster FCj — {v\ > 3,t;i = v2}. The corresponding variable clus-
ter is VCi - {vu v2}. Let {FCi,..., FCm} be the set of formula clusters and
{VCi,..., VCm) the set of corresponding variable clusters. We construct the initial
abstraction h = (hi,..., hm) as follows. For each hi, we set Dycx — FL/evc, AM i.e.,
Dyct is the domain corresponding to the variable cluster VC{. Since the variable clus-
ters form a partition of the set of variables V, it follows that D — DyCl x • • • DVCrn.
For each variable cluster VCi = {^21, • • •, Vik], the corresponding abstraction hi is
defi ned on D^d as follows.
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hi(dii - " , dk) — h{(t\, • • • , tu) iff for all atomic formulas / G
(di,:--,dk)\=f<*(ei,---,ek)\=f.

In other words two values are in the same equivalence class if they cannot be "dis-
tinguished" by atomic formulas appearing in the formula cluster FCi. The following
example illustrates how we construct the initial abstraction h.

Example 2. Consider the program P with three variables x, y E {0,1,2}, and reset G
{TRUE, FALSE} shown in Figure 1. The set of atomic formulas is Atoms(P) =
{(reset = TRUE),(z = y),(x < y),(y = 2)}. There are two formula clusters,
FCi = {(x = y),(x < y), (y = 2)} and FC2 = {(reset = TRUE)}. The corre-
sponding variable clusters are {x, y} and {reset}, respectively. Consider the formula
cluster FC\. Values (0, 0) and (1,1) are in the same equivalence class because for all
the atomic formulas / in the formula cluster FCi it holds that (0,0) f= / iff (1,1) |= / .
It can be shown that the domain {0,1,2} x {0,1, 2} is partitioned into a total of fi ve
equivalence classes by this criterion. We denote these classes by the natural numbers
0,1, 2,3,4, and list them below:

0 = {(0,0), (1,1)},
1 = {(0,l)},
2 = {(0,2), (1,2)},
3 -{(1 ,0) , (2 ,0 ) , (2 ,1 )} ,
4 ={(2 , 2)}

The domain {TRUE, FALSE} has two equivalence classes - one containing FALSE
and the other TRUE. Therefore, we defi ne two abstraction functions / ^ : { 0 , l , 2 } 2 - >
{0,1,2,3,4} and h2 : {TRUE,FALSE} -> {TRUE,FALSE}. The first function
fci is given by hx(0,0) = / n ( l , l ) = 0, Ai(0,l) = 1, Ai(0,2) = Ai(l,2) = 2,
fti(l,0) = fti(2,0) = Ai(2,l) = 3, Ai(2,2) = 4. The second function h2 is just the
identity function, i.e., h2(reset) = reset. Given the abstraction functions, we use the
standard existential abstraction techniques to compute the abstract model.

4.2 Model Checking the Abstract Model

Given an ACTL* specifi cation <py an abstraction function h (assume that <p respects
/i), and a program P with a fi nite set of variables V — {ii, • • • , vn}, let M be the
abstract Kripke structure corresponding to the abstraction function h. We use standard
symbolic model checking procedures to determine whether M satisfi es the specifi cation
(p. If it does, then by Theorem 1 we can conclude that the original Kripke structure also
satisfi es (p. Otherwise, assume that the model checker produces a counterexample T
corresponding to the abstract model M. In the rest of this section, we will focus on
counterexamples which are either (finite) paths or loops.

Identification of Spurious Path Counterexamples First, we will tackle the case when
the counterexample T is a path («!,••• , s^). Given an abstract state ?, the set of con-
crete states s such that h(s) = ? i s denoted by /i~1(s), i.e., /i~1(^) = {s|Ms) — ^}-
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We extend h~l to sequences in the following way: h 1 (T) is the set of concrete paths
given by the following expression

n n — 1

{(sir-- ,«n)| f\Hsi) = si A/(si) A / \ ii(Sf,«.-+i)}.
i=i *=i

We will occasionally write / i " ^ to emphasize the fact that h~1 is applied to a sequence.

Next, we give a symbolic algorithm to compute h~x (T). Let Si = / i" 1 (si) n / and i?
be the transition relation corresponding to the unabstracted Kripke structure M. For
1 < i < n, we defi ne 5 in the following manner: Si := Img{Si-\, R) H A"1 («5).
In the defi nition of 5 , Img(Si-i, R) is the forward image of S»_i with respect to the
transition relation /?. The sequence of sets S, is computed symbolically using OBDDs
and the standard image computation algorithm. The following lemma establishes the
correctness of this procedure.

Lemma 1. The following are equivalent:

(i) The path T corresponds to a concrete counterexample.
(ii) The set of concrete paths h~l (T) is non-empty.
(Hi) For all I < i < n, S; ^ 0 .

Algorithm SplitPATH

• I I I
while (S ^ 0 and j < n) {

J := j + 1
S •= S
S:=Img(S,R)nh-1(fJ)

if S ^ 0 then output counterexample
else output j , Sprev

Fig. 3. An abstract counterexample Fig. 4. SplitPATH checks spurious path.

Example 3. Consider a program with only one variable with domain D = {I, • - ,12}.
Assume that the abstraction function h maps x G D io [{x — 1)/3J + 1. There
are four abstract states corresponding to the equivalence classes {1,2, 3}, {4, 5,6},
{7,8,9}, and {10,11,12}. We call these abstract states T, 2, 3, and 4. The transitions
between states in the concrete model are indicated by the arrows in Figure 3; small
dots denote^ non-reachable states. Suppose that we obtain an abstract counterexample
T — (1,2,3,4). It is easy to see that T is spurious. Using the terminology of Lemma 1,
we have Si = {1,2,3}, S2 = {4, 5,6}, S3 = {9}, and S4 = 0. Notice that S4 and
therefore Img(S3, R) are both empty.

It follows from Lemma 1 that if h~x(T) is empty (i.e., if the counterexample T
is spurious), then there exists a minimal i (2 < i < n) such that Si = 0. The sym-
bolic Algorithm SplitPATH in Figure 4 computes this number and the set of states in
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Si-\. In this case, we proceed to the refi nement step (see Section 4.3). On the other
hand, if the conditions stated in Lemma 1 are true, then SplitPATH will report a "real"
counterexample and we can stop.

Identification of Spurious Loop Counterexamples Now we consider the case when
the counterexample T includes a loop, which we write as (si, • • • , si)(si+i, • • • , ŝ T)̂ .
The loop starts at the abstract state $7+1 and ends at s^. Since this case is more compli-
cated than the path counterexamples, we fi rst present an example in which some of the
typical situations occur.

Example 4. We consider a loop (si )(s2, $3)^ as shown in Figure 5. In order to fi nd out
if the abstract loop corresponds to concrete loops, we unwind the counterexample as
demonstrated in the fi gure. There are two situations where cycles occur. In the fi gure,

in

Nfe;—•

Fig. 5. A loop counterexample, and its unwinding.

for each of these situations, an example cycle (the fi rst one occurring) is indicated by
a fat dashed arrow. We make the following important observations: (i) A given abstract
loop may correspond to several concrete loops of different size, (ii) Each of these loops
may start at different stages of the unwinding, (iii) The unwinding eventually becomes
periodic (in our case S3 = S3), but only after several stages of the unwinding. The size
of the period is the least common multiple of the size of the individual loops, and thus,
in general exponential.

We conclude from the example that a naive algorithm may have exponential time
complexity due to an exponential number of loop unwindings. The following sur-
prising result shows that for f - («! , • • • , s})(sj+i, • • • , SJT)W, the number of un-
windings can be bounded by min = min \h~1(sj)\, i.e., the number of un-

i+l<j<n
windings is at most the number of concrete states for any abstract state in the loop.
Let jrunwind denote this unwinded loop counterexample, i.e., the fi nite abstract path
(«!,•••> sJ)(«i+i >-', ^)mln - Then the following theorem holds.

Theorem 2. The following are equivalent: (i) T corresponds to a concrete counterex-
ample, (ii) /ipatJTunwind) is not empty.

It can be seen from Example 4 that loop counterexamples are combinatorially more
complicated than path counterexamples. Therefore, the proof of Theorem 2 is not im-
mediate; for details, we refer to [7]. We conclude from Theorem 2 that the Algorithm
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SplitPATH can be used to analyze abstract loop counterexamples with minor modifi -
cations. For easy reference we shall refer to this algorithm as SplitLOOP.

4.3 Refining the Abstraction

First, we will consider the case when the counterexample T — ($[,•" > ^n) is a Patn-
Since T does not correspond to a real counterexample, by Lemma 1 (iii) there exists a
set Si C fc"1^-) with 1 < i < n such that Img(Si,R) n fe"1(«JJi) = 0 and S* is
reachable from initial state set A~1(si) fl / . Since there is a transition from Si to s^+i
in the abstract model, there is at least one transition from a state in ft"1 (si) to a state
in /i"1(s7+i) even though there is no transition from S» to /i~1(s7+i)« We partition
ft"1 (si) into three subsets S»,o» S,-fi, and SiiX as follows (compare Figure 6):

o». c.

^ 1

Intuitively, S»to denotes the set of states in ft"l (si) that are reachable from initial states.
Siti denotes the set of states in ft"1 (si) that are not reachable from initial states, but
have at least one transition to some state in h~1(si^[). The set S,-,i cannot be empty
since we know that there is a transition from ft"1^) to ft'^sT+I). SitX denotes the
set of states that are not reachable from initial states, and do not have a transition to a
state in ft~1(s7+i). For illustration, consider again the example in Figure 3. Note that
Si = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and S4 = 0. Using the notation introduced
above, we have £3,0 = {9}, S31 = {7}, and S3,x = {8}. Since S»,i is not empty, there
is a spurious transition si —> s7+i • This causes the spurious counterexample T. Hence
in order to refi ne the abstraction h so that the new model does not allow T, we need a
refi ned abstraction function which separates the two sets S,o and Sj,i, i.e., we need an
abstraction function, in which no abstract state simultaneously contains states from S*,o
and from S»,i.

It is natural to describe the needed refi nement in terms of equivalence relations:
Recall that /i""1(s) is an equivalence class of = which has the form E\ x • • • x Em,
where each E{ is an equivalence class of=,•. Thus, the refi nement = of = is obtained by
partitioning the equivalence classes Ej into subclasses, which amounts to refi ning the
equivalence relations =j. The size of the refinement is the number of new equivalence
classes. Ideally, we would like to fi nd the coarsest refi nement that separates the two sets,
i.e., the separating refi nement with the smallest size. We can show however that this is
computationally intractable.

Theorem 3. (i) The problem of finding the coarsest refinement is NP-hard; (ii) when
SiyX = 0, the problem can be solved in polynomial time.

We fi nd that the previously known poblem PARTITION INTO CLIQUES can
be reduced to the coarsest refinement problem. The proof is omitted due to
space restrictions. On the other hand, we describe a polynomial time algorithm
Poly Refine corresponding to case (ii) of Theorem 3 in Figure 7. Let P^,P~ be
two projection functions, such that for s — (d\,..., dm)9 P?{s) = dj and
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Pj {s) = (cfi,..., dj-i, d J + i , . . . , dm). Then proj(Si>0J, a) denotes the projec-
tion set {P~(s)\Pt(s) = a,s G S»,o}. Intuitively, the condition proj(S^o,j> a) /
proj(Sii0, i , 6) in the algorithm means that there exists ( d i , . . . , d3;_i, dj+i,..., dm) G
proj(SitQij,a) and (d i , . . . , dj-i, dj+1,..., dm) £ proj(Sii0J,b). According to
the definition of proj^Si^J, a), si = ( d i , . . . ,dj_i, a, d J + i , . . . , dm) G 5 i | 0 and
s2 = (di, • • . , d ;_ i ,6 ,d j + i , . . . ,dm ) 0 5,-fo, i.e., s2 G S»,i. Note that s1 and s2 are
only different at j-th component. Hence, the only way to separate si and s2 into differ-
ent equivalence classes is that a and 6 have to be in different equivalence classes o f = ' ,
i.e., a ^ b.

Lemma 2. When Si,x = 0, the relation =j computed by Poly Refine is an equivalence
relation which refines =j and separates Sito and 5,-ti. Furthermore, the equivalence
relation =j is the coarsest refinement of=j.

Note that in symbolic presentation, the projection operation proj(Siyo,j,a)
amounts to computing a generalized cofactor, which can be easily done by stan-
dard BDD methods. Given a function / : D —>- {0,1}, a generalized co-
factor of / with respect to g — {f\q

k=pXk = <4) is the function fg =
/ ( # ! , . . . , xp-i, dp,..., dg, xq+i,..., xn). In other words, fg is the projection of /
with respect to g. Symbolically, the set S2?o is represented by a function fsiy0 : D ->
{0,1}, and therefore, the projection proj{Si7o,j, a) of S^o to value a of the jth com-
ponent corresponds to a cofactor of fsi>0.

11
1 i
pitl j ••

— ^ 1•k
M Algorithm Poly Refi ne

forj := 1 torn {
/

=j •— =j

for every a, b G E3 {
ifproj(Si}0, j , a) ^ proj(Sito, j , b)

then=; :==; \{(a ,6)} }

Fig. 6. Three sets Si)0, SifU and SiyX

Fig. 7. The algorithm Poly Refi ne

In our implementation, we use the following heuristics: We merge the states in SiiX

into 5 j i , and use the algorithm Polyrefine to fi nd the coarsest refi nement that separates
the sets 5z?o and 5»,i U SiiX. The equivalence relation computed by PolyRefine in this
manner is not optimal, but it is a correct refi nement which separates S\o and £»,i, and
eliminates the spurious counterexample. This heuristic has given good results in our
practical experiments.

Since according to Theorem 2, the algorithm SplitLOOP for loop counterexamples
works analogously as SplitPATH, the refi nement procedure for spurious loop coun-
terexamples works analogously, too. Details are omitted due to space restrictions. Our
refi nement procedure continues to refi ne the abstraction function by partitioning equiv-
alence classes until a real counterexample is found, or the ACTL* property is verifi ed.
The partitioning procedure is guaranteed to terminate since each equivalence class must
contain at least one element. Thus, our method is complete.
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Theorem 4. Given a model M and an ACTL* specification <p whose counterexample
is either path or loop, our algorithm will find a model M such that M \= <p <& M \= (p.

5 Performance Improvements

The symbolic methods described in Section 4 can be directly implemented using BDDs.
Our implementation uses additional heuristics which are outlined in this section. For
details, we refer to our technical report [7].

Fig. 8. A spurious loop counterexample (1,2)u

Two-phase Refinement Algorithms. Consider the spurious loop counterexample T —
(1, 2)^ of Figure 8. Although T is spurious, the concrete states involved in the example
contain an infi nite path (1 ,1 , . . . ) which is a potential counterexample. Since we know
that our method is complete, such cases could be ignored. Due to practical performance
considerations, however, we came to the conclusion that the relatively small effort to
detect additional counterexamples is justifi ed as a valuable heuristic. For a general loop
counterexample T = (S i , . . . , Si)(St+i,... , ?n)w , we therefore proceed in two phases:
(i) We restrict the model to the state space 5iOCai '•= (Ui<i<n ^~1(*i)) of the coun-
terexample and use the standard fixpoint computation for temporal formulas (see
e.g. [8]) to check the property on the Kripke structure restricted to Siocai- If a con-
crete counterexample is found, then the algorithm terminates.
(ii) If no counterexample is found, we use SplitLOOP and PolyRefine to compute a
refi nement as described above.
This two-phase algorithm is slightly slower than the original one if we do not fi nd a con-
crete counterexample; in many cases however, it can speed up the search for a concrete
counterexample. An analogous two phase approach is used for fi nite path counterexam-
ples.

Approximation. Despite the use of partitioned transition relations it is often infeasi-
ble to compute the total transition relation of the model M [8]. Therefore, the abstract
model M cannot be computed from M directly. In previous work [2,10], a method
which we call early approximation has been introduced: fi rst, abstraction is applied to
the BDD representation of each transition block and then the BDDs for the partitioned
transition relation are built from the already abstracted BDDs for the transition blocks.
The disadvantage of early approximation is that it over-approximates the abstract model
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M [9]. In our approach, a heuristic individually determines for each variable cluster
VC{, if early approximation should be applied or if the abstraction function should
be applied in an exact manner. Our method has the advantage that it balances overap-
proximation and memory usage. Moreover, the overall method presented in our paper
remains complete with this approximation.

Abstractions For Distant Variables. In addition to the methods of Section 4.1, we
completely abstract variables whose distance from the specif] cation in the variable de-
pendency graph is greater than a user-defi ned constant. Note that the variable depen-
dency graph is also used for this purpose in the localization reduction [2,14,17] in a
similar way. However, the refi nement process of the localization reduction [14] can only
turn a completely abstracted variable into a completely unabstracted variable, while our
method uses intermediate abstraction functions.

6 Experimental Results

We have implemented our methodology in NuSMV [6] which uses the CUDD pack-
age [21] for symbolic representation. We performed two sets of experiments. One set is
on fi ve benchmark designs. The other was performed on an industrial design of a mul-
timedia processor from Fujitsu [1]. All the experiments were carried out on a 200MHz
PentiumPro PC with 1GB RAM memory using Linux.

The fi rst benchmark designs are publicly available. The PCI example is extracted
from [5]. The results for these designs are listed in the table.

Design

gigamax
guidance
p-queue
waterpress
PCI bus

#Var

10(16)
40(55)
12(37)
6(21)

50(89)

#Prop

1
8
1
4

10

NuSMV+COI
#COI

0
30
4

0-1
4

Time
0.3
35
0.5
273

2343

\TR\
8346

140409
51651
34838

121803

\MC\
1822

30467
1155

129595
926443

NuSMV+ABS
#ABS

9
34-39

5
4

12-13

Time
0.2
30

0.4
170
546

\TR\
13151

147823
52472
38715

160129

\MC\
816

10670
1114
3335

350226

In the table, the performance for an enhanced version of NuSMV with cone of influence
reduction (NuSMV + COI) and our implementation (NuSMV + ABS) are compared.
#Var and #Prop are properties of the designs: #Var = x(y) means that x is the number
of symbolic variables, and y the number of Boolean variables in the design. #Prop is
the number of verifi ed properties. The columns #COI and #ABS contain the number of
symbolic variables which have been abstracted using the cone of influence reduction
(#COI), and our initial abstraction (#ABS). The column "Time" denotes the accumu-
lated running time to verify all #Prop properties of the design. \TR\ denotes the maxi-
mum number of BDD nodes used for building the transition relation. \MC\ denotes the
maximum number of additional BDD nodes used during the verifi cation of the proper-
ties. Thus, \TR\ + \MC\ is the maximum BDD size during the total model checking
process. For the larger examples, we use partitioned transition relations by setting the
BDD size limit to 10000.

Although our approach in one case uses 50% more memory than the traditional cone
of influence reduction to build the abstract transition relation, it requires one magnitude
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less memory during model checking. This is an important achievement since the model
checking process is the most diffi cult task in verifying large designs. More signifi cant
improvement is further demonstrated by the Fujitsu IP core design.

The Fujitsu IP core design is a multimedia assist (MMA-ASIC) processor [1]. The
design is a sy stem-on-a-chip that consists of a co-processor for multimedia instructions,
a graphic display controller, peripheral I/O units, and fi ve bus bridges. The RTL imple-
mentation of MM-ASIC is described in about 61,500 lines of Verilog-HDL code. After
manual abstraction by engineers from Fujitsu in [22], there still remain about 10,600
lines of code with roughly 500 registers. We translated this abstracted Verilog code into
9,500 lines of SMV code. In [22], the authors verifi ed this design using a "navigated"
model checking algorithm in which state traversal is restricted by navigation conditions
provided by the user. Therefore, their methodology is not complete, i.e., it may fail to
prove the correctness even if the property is true. Moreover, the navigation conditions
are usually not automatically generated.

In order to compare our model checker to others, we tried to verify this design
using two state-of-the-art model checkers - Yang's SMV [23] and NuSMV [6]. We
implemented the cone of influence reduction for NuSMV, but not for Yang's SMV.
Both NuSMV+COI and Yang's SMV failed to verify the design. On the other hand, our
system abstracted 144 symbolic variables and with three refi nement steps, successfully
verifi ed the design, and found a bug which has not been discovered before.

7 Conclusion and Future Work

We have presented a novel abstraction refi nement methodology for symbolic model
checking. The advantages of our methodology have been demonstrated by experimen-
tal results. We believe that our technique is general enough to be adapted for other forms
of abstraction. There are many interesting avenues for future research. First, we want
to fi nd effi cient approximation algorithms for the NP-complete separation problem en-
countered during the refi nement step. Moreover, in a recent paper [4], the fragment
of ACTL* that admits "trace"-like counterexamples (of a potentially more complicated
structure than paths and loops) has been characterized; we plan to extend our refi nement
algorithm to this language. Since the symbolic methods described in this paper are not
tied to representation by BDDs, we will also investigate how they can be applied to
recent work on symbolic model checking without BDDs [3]. We are currently applying
our technique to verify other large examples.
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Abstract. We describe new techniques for model checking in the coun-
terexample guided abstraction/refinement framework. The abstraction
phase 'hides' the logic of various variables, hence considering them as
inputs. This type of abstraction may lead to 'spurious' counterexam-
ples, i.e. traces that can not be simulated on the original (concrete)
machine. We check whether a counterexample is real or spurious with
a SAT checker. We then use a combination of Integer Linear Program-
ming (ILP) and machine learning techniques for refining the abstraction
based on the counterexample. The process is repeated until either a real
counterexample is found or the property is verified. We have implemented
these techniques on top of the model checker NuSMV and the SAT solver
Chaff. Experimental results prove the viability of these new techniques.

1 Introduction

While state of the art model checkers can verify circuits with several hundred
latches, many industrial circuits are at least an order of magnitude larger. Var-
ious conservative abstraction techniques can be used to bridge this gap. Such
abstraction techniques must preserve all the behaviors of the concrete system,
but may introduce behaviors that are not present originally. Thus, if a universal
property (i.e. an ACTL* property) is true in the abstract system, it will also
be true in the concrete system. On the other hand, if a universal property is
false in the abstract system, it may still be true in the concrete system. In this
case, none of the behaviors that violate the property in the abstract system
can be reproduced in the concrete system. Counterexamples corresponding to
these behaviors are said to be spurious. When such a counterexample is found,
the abstraction can be refined in order to eliminate the spurious behavior. This

* This research was sponsored by the Semiconductor Research Corporation (SRC)
under contract no. 99-TJ-684, the National Science Foundation (NSF) under grant
no. CCR-9803774, the Office of Naval Research (ONR), and the Naval Research
Laboratory (NRL) under contract no. N00014-01-1-0796. The views and conclusions
contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of SRC, NSF, ONR,
NRL, the U.S. government or any other entity.
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process is repeated until either a real counterexample is found, or the abstract
system satisfies the property. In the latter case, we know that the concrete system
satisfies the property as well, since the abstraction is conservative.

There are many known techniques, some automatic and some manual, for
generating the initial abstraction and for abstraction/refinement. The automatic
techniques are more relevant to this paper, not only because our method is fully
automatic, but also because of the clear practical advantage of automation. Our
methodology is based on an iterative abstraction/refinement process. Abstrac-
tion is performed by selecting a set of latches or variables and making them
invisible, i.e., they are treated as inputs. In each iteration, we check whether the
abstract system satisfies the specification with a standard OBDD-based sym-
bolic model checker. If a counterexample is reported by the model checker, we
try to simulate it on the concrete system with a fast SAT solver. In other words,
we generate and solve a SAT instance that is satisfiable if and only if the coun-
terexample is real. If the instance is not satisfiable, we look for the failure state,
which is the last state in the longest prefix of the counterexample that is still
satisfiable. Note that this process can not be easily performed with a standard
circuit simulator, because the abstract counter example does not include values
for all inputs.

We use the failure state in order to refine the abstraction. The abstract system
has transitions from the failure state that do not exist in the concrete system.
We eliminate these transitions by refining the abstraction, i.e., by making some
variables visible that were previously invisible. The problem of selecting a small
set of variables to make visible is one of the main issues that we address in
this paper. It is important to find a small set in order to keep the size of the
abstract state space manageable. This problem can be reduced to a problem of
separating two sets of states (abstraction unites concrete states, and therefore
refining an abstraction is the opposite operation, i.e., separation of states). For
realistic systems, generating these sets is not feasible, both explicitly and sym-
bolically. Moreover, the minimum separation problem is known to be NP-hard
[5]. We combine sampling with Integer Linear Programming (ILP) and machine
learning to handle this problem. Machine learning algorithms are successfully
used in a wide range of problem domains like data mining and other problems
where it is necessary to extract implicit information from a large database of
samples[10]. These algorithms exploit ideas from a diverse set of disciplines,
including information theory, statistics and complexity theory.

The closest work to the current one that we are aware of was described
in [5]. Like the current work, they also use an automatic, iterative abstrac-
tion/refinement procedure that is guided by the counterexample, and they also
try to eliminate the counterexample by solving the state-separation problem. But
there are three main differences between the two methods. First, their abstrac-
tion is based on replacing predicates of the program with new input variables,
while our abstraction is performed by making some of the variables invisible
(thus, we hide the entire logic that defines these variables). As we will later
show, the advantage of this approach is that computing a minimal abstraction
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function becomes easy. Secondly, checking whether the counterexample is real
or spurious was performed in their work symbolically, using OBDDs. We do this
stage with a SAT solver, which for this particular task is extremely efficient
(due to the large number of solutions to the SAT instance). Thirdly, they derive
the refinement symbolically. Since finding the coarsest refinement is NP-hard,
they present a polynomial procedure that in general computes a sub-optimal
solution. For some well defined cases the same procedure computes the optimal
refinement. We, on the other hand, avoid the complexity by considering only
samples of the states sets, which we compute explicitly. By doing so we also pay
the price of optimality: this procedure yields a refinement step which is not nec-
essarily optimal (i.e., we do not necessarily find the smallest number of invisible
variables that should become visible in order to eliminate the counterexample).
Yet we suggest a method for efficient sampling, which in most cases allows us to
efficiently compute an optimal refinement.

The work of [7] should also be mentioned in this context, since it is very
similar to [5], the main difference being the refinement algorithm: rather than
computing the refinement by analyzing the abstract failure state, they combine
a theorem prover with a greedy algorithm that finds a small set of previously
abstracted predicates that eliminate the counterexample. They add this set of
predicates as a new constraint to the abstract model.

Previous work on abstraction by making variables invisible (this technique
was used under different names in the past) include the localization reduction of
Kurshan [8] and many others (see, for example [1,9]). The localization reduction
follows the typical abstraction/refinement iterative process. It starts by making
all but the property variables invisible. When a spurious counterexample is iden-
tified, it refines the system by making more variables visible. The variables made
visible are selected according to the variable dependency graph and information
that is derived from the counterexample. The candidates in the next refinement
step are those invisible variables that are adjacent on the variable dependency
graph to currently visible variables. Choosing among these variables is done by
extracting information from the counterexample. Another relevant work is de-
scribed in [15]. They use 3-valued simulation to simulate the counterexample
on the concrete model and identify the invisible variables whose values in the
concrete model conflict with the counterexample. Variables are chosen from this
set of invisible variables by various ranking heuristics. For example, like local-
ization, they prefer variables that are close on the variable dependency graph to
the currently visible variables.

The rest of the paper is organized as follows. In the next section we briefly
give the technical background of abstraction and refinement in model check-
ing. In section 3 we describe our counterexample guided abstraction/refinement
framework. We elaborate in this section on how the counterexample is being
checked and how we refine the abstraction. We also describe refinement as a
learning problem. In sections 4 and 5 we elaborate on our separation techniques.
These techniques are combined with the efficient sampling technique, which is
described in section 6. We give experimental results in section 7, which proves the
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viability of our methods comparing to a state of the art model checker (Cadence
SMV ). We discuss conclusions and future work in section 8.

2 Abstraction in Model Checking

We start with a brief description of the use of abstraction in model checking
(for more details refer to [1]). Consider a program with a set of variables V =
{x\ , . . . , #„} , where each variable X{ ranges over a non-empty domain Dx.. Each
state s of the program assigns values to the variables in V. The set of all possible
states for the program is 5 = DXl x • • • x DXn. The program is modeled by a
transition system M = (5, / , R) where

1. 5 is the set of states.
2. I C S is the set of initial states.
3. R C S x 5 is the set of transitions.

We use the notation I(s) to denote the fact that a state s is in J, and we write
R(s\,82) if the transition between the states s\ and S2 is in R.

An abstraction function h for the system is given by a surjection h : S —» 5,
which maps a concrete state in 5 to an abstract state in 5. Given a concrete
state Si e 5, we denote by h(si) the abstract state to which it is mapped by h.
Accordingly, we denote by fo-1(s) the set of states s such that h(s) = s.

Definition 1. The minimal abstract transition system M = (S,I,R) corre-
sponding to a transition system M = (5, / , R) and an abstraction function h is
defined as follows:

1. S = {s | 3s. s e S Ah(s) = s}.
2. 1= {s | 3s. I(s)Ah(s) =s}
3. R= {(«i,S2) | 3s\. 3«2. R(s\,S2) A h(si) = §i A h(s2) = S2}

Intuitively, minimality means that M can start in state h(s) if and only if M
can start in state s , and M can transition from h(s) to h(s') if and only if M
can transition from s to s'.

For simplicity, we restrict our discussion to model checking of AGp formulas,
where p is a non-temporal propositional formula. The theory can be extended
to handle any safety property, because such formulas have counterexamples that
are finite paths.

Definition 2. A propositional formula p respects an abstraction function h if
for all s e S, h(s) f= p => s \= p.

The essence of conservative abstraction is the following preservation theorem [6],
which is stated without proof.

Theorem 1. Let M be an abstraction of M corresponding to the abstraction
function h, andp be a propositional formula that respects h. Then M \= AGp =>
M |= AGp
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The converse of the above theorem is not true, however. Even if the abstract
model invalidates the specification, the concrete model may still satisfy the
specification. In this case, the abstract counterexample generated by the model
checker is spurious, i.e. it does not correspond to a concrete path. The abstrac-
tion function is too coarse to validate the specification, and we need to refine
it.

Definition 3. Given a transition system M = (5, /, R) and an abstraction func-
tion h, h! is a refinement of h if

1. For all Si,S2 £ S, h'(si) = h'fa) implies h(si) = hfa).
2. There exists si,s2 € S such that h(s\) = h(s2) and hf(s\) ^ h'fa)-

3 Abstraction-Refinement

Based on the above definitions, we now describe our counterexample guided ab-
straction refinement procedure. Given a transition system M and a safety prop-
erty tp:

1. Generate an initial abstraction function h.
2. Model check M. If M |= (p, then M \= ip. Return TRUE.
3. If M \£ ip, check the counterexample on the concrete model. If the coun-

terexample is real, M \£ (p. Return FALSE.
4. Refine /i, and go to step 2.

The above procedure is complete for finite state systems. Since each refine-
ment step partitions at least one abstract state, the number of loop iterations is
bounded by the number of concrete states. In the next subsections, we explain
in more detail how we perform each step.

3.1 Defining an abstraction function

We partition the set of variables V into two sets: the set of visible variables
which we denote by V and the set of invisible variables which we denote by X.
Intuitively, V corresponds to the part of the system that is currently believed
to be important for verifying the property. The abstraction function h abstracts
out the irrelevant details, namely the invisible variables. The initial abstraction
in step 1 and the refinement in step 4 correspond to different partitions of the set
of variables. As an initial abstraction, V includes the variables in the property
(p. In each refinement step, we move variables from X to V, as we will explain in
sub-section 3.3.

More formally, let s(x), x € V denote the value of variable x in a state s.
Given a set of variables U = {wi,... ,up}, U C V, su denotes the portion of
s that corresponds to the variables in U, i.e. su — (s(ui)...s(up)). Let V =
{vi,.. . , V*}. The partitioning defines our abstraction function h : S -> S : The
set of abstract states is 5 = DVl x • • • x DVk and the abstraction function is
simply h(s) = sv.
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Given h, we need to compute the minimal abstraction. For an arbitrary
system M and abstraction function h, it is often too expensive or impossible
to construct the minimal abstraction M[6]. However, our abstraction function
allows us to compute M efficiently for systems where the transition relation R
is in a functional form, e.g. sequential circuits. For these systems, M can be
computed directly from the program text, by removing the logic that defines
the invisible variables and treating them as inputs.

3.2 Checking the Counterexample

For safety properties, the counterexample generated by the model checker is a
path ($1,82,-"Sm). The set of concrete paths that corresponds to this coun-
terexample is given by

m—1 m

^m = {<«l...«m) I I(*l)A f\ R(Si,Si+1)A /\h(Si) = Si} (1)
i= l i= l

According to section 3.1, h(s{) is simply a projection of Si to the visible variables.
The right-most conjunct is therefore a restriction of the visible variables in step
i to their values in the counterexample.

The counterexample is spurious if and only if the set ipm is empty. We check
for that by solving ̂ m with a SAT solver. This formula is very similar in structure
to the formulas that arise in Bounded Model Checking (BMC) [3]. However, i/;m

is easier to solve because the path is restricted to the counterexample. Most
model checkers treat inputs as latches, and therefore the counterexample includes
assignments to inputs. While simulating the counterexample, we also restrict the
values of the (original) inputs that are part of the definition (lie on the RHS) of
the visible variables, which further simplifies the formula.

If a satisfying assignment is found, we know that the counterexample corre-
sponds to a concrete path, which means that we found a real bug. Otherwise, we
try to look for the 'failure' index / , i.e. the maximal index / , / < m, such that
ipf is satisfiable. Given / , (si,... Sf) is the longest prefix of the counterexample
that corresponds to a concrete path. Our implementation sequentially searches
in the range l..ra for the highest value / such that iftf is satisfiable. For long
counterexample traces, we also have an option of performing a binary search
over this range, in which case the number of SAT instances we solve is bounded
by logm.

3.3 Refining the abstraction

As before, let / denote the failure index. Let D denote the set of all states df
such that there exists some (d\...df) in ipf. We call D the set of deadend states.
By definition, there is no concrete transition from D to h~1(sf^i).

Since there is an abstract transition from Sf to £/+i, there is a non-empty set
of transitions 0/ from fr"1^/) to h~l(sf+\) that agree with the counterexample.
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The set of transitions 0/ is defined as follows:

=sf (2)

Given the definition of ft, 0/ represents all concrete paths from step / to step
/ + 1, where the visible variables in these steps are restricted to their values in
the counterexample. Let B denote the set of all states bf such that there exists
some (6/,6/+i) in (j>f. We call B the set of bad states (see figure 1).

The counterexample exists because there is an abstract transition from Sf to
Sf+i that does not correspond to any concrete transition. The transition exists
because the deadend and bad states lie in the same abstract state. This suggests
a mechanism to refine the abstraction. The abstraction ft is refined to a new
abstraction ft' such that Vd € D,Vb e B (ft'(d) ^ ft'(6)). The new abstraction
puts the deadend and bad states into separate abstract states and therefore
eliminates the spurious transition from the abstract system.

Abstract
Trace

Concrete
Trace

Bad{

^Dead
Send

Fig. 1. A spurious counterexample corresponds to a concrete path that 'breaks' in the
failing state. The failing state unites concrete 'deadend' and 'bad' states

3.4 Refinement by Separation and Learning

Let 5 = {si...sm} ^nd T = {t\...tn} be two sets of states (binary vectors) of size
Z, representing assignments to a set of variables W.

Definition 4. (The state separation problem) Find a minimal set of variables
U = {u\...Uk}, U C W, such that for each pair of states (si,tj), 1 < i < m,
1 £ j < fi> there exists a variable ur e U such that S{(ur) ^ tj(ur).

Let Dj and Bj denote the restriction of D and B, respectively, to their invisible
parts, i.e., Bi = {s^s € D) and Bi = {sJ\s e B}. Let H e T be a set of
variables that separates L>/ from Bj. The refinement is obtained by adding H
to V. Minimality of H is not crucial, rather it is a matter of efficiency. Smaller
sets of visible variables make it easier to model check the abstract system, but
can also be harder to find. In fact, it can be shown that computing the minimal
separating set is NP-hard[5].
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Lemma 1. The new abstraction function h1 separated D from B in the abstract
system.

Proof. Let d 6 D and b € B. The refined abstraction function h! corresponds
to the visible set V = V U H. Since H separates Dj and f?j, there exists a
u e H s.t. d(u) ^ b(u). Thus, for some u e V, d(u) ^ b(u). By definition,
h'{d) = (d(tii)...d(tifc)) and ft'(6) = (6(tii)...&(ti*)), u(- € V. Thus, h'(d) ^ h'(b).

n

The naive way of separating the set of deadend states D from the set of bad states
B would be to generate and separate D and B, either explicitly or symbolically.
Unfortunately, for systems of realistic size, this is usually not possible. For all
but the simplest examples, the number of states in D and B is too large to
enumerate explicitly. For systems with moderate complexity, these sets can be
computed symbolically with BDDs. However, even this is not possible for larger
systems. Moreover, even if it were possible to generate D and B, it would still
be computationally expensive to identify the separating variables.

Instead, we select samples from D and B and try to infer the separating
variables for the entire sets from these samples. Of course, there is a tradeoff
between the computational complexity of generating the samples, and the quality
of the separating variables. Without a complete separation of D and B it can
not be guaranteed that the counterexample will be eliminated. However, our
algorithm is complete, because the counterexample will eventually be eliminated
in subsequent refinement iterations. Our experience shows that state of the art
SAT solvers like Chaff[ll] can generate many samples in a short amount of time.
The fact that D and B are large makes it relatively easy for SAT solvers to find
satisfying assignments to equations 1 and 2 compared to typical SAT instances
of similar size.

The idea of learning from samples has been studied extensively in the ma-
chine learning literature. A number of learning models and algorithms have been
proposed. In the next two sections, we describe the techniques that we used to
separate sets of samples of deadend and bad states, denoted by 5D7 and SBJ
respectively.

4 Separation as an Integer Linear Programming problem

A formulation of the problem of separating S^, from 5jg7 as an Integer Linear
Programming (ILP) problem is depicted in Figure 2.

subject to: (Vs € SDl) (V* G SB^ ^ vt > 1

Fig. 2. State Separation with Integer Linear Programming
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The value of each integer variable1 v\...v\i\ in the ILP problem is interpreted as:
Vi = 1 if and only if vi is in the separating set. Every constraint corresponds to
a pair of states ($i, tj), stating that at least one of the variables that separates
(distinguishes) between the two states should be selected. Thus, there are \SDI Ix

| 5 B 7 | constraints.

Example 1. Consider the following two pairs of states: si = (0,1,0,1), 52 =
(1,1,1,0) and h = ( l , l , l , l ) , t 2 = (0,0,0,1). The corresponding ILP problem
will be

Min £ * = 1 Vi

subject to:

v\ + v3 > 1 /* Separating s\ from t\ * /
v2 > 1 /* Separating si from t2 * /
V4 > 1 /* Separating s2 from t\ * /
v\ + v2 + v$ + VA > 1 /* Separating s2 from t2 * /

The optimal value of the objective function in this case is 3, corresponding to
one of the two optimal solutions (i>i, ^2,^4) and (t>3,^2,^4)-

5 Separation using Decision Tree Learning

The ILP-based separation algorithm outputs the minimal separating set. How-
ever, the algorithm has a high complexity and cannot handle a large number of
variables or samples. In this section, we formulate the separation problem as a
Decision Tree Learning(DTL) problem, which is polynomial both in the number
of variables and the number of samples.

Learning with decision trees is one of the most widely used and practical
methods for approximating discrete-valued functions. A DTL algorithm inputs
a set of examples and generates a decision tree that classifies them. An example
is described by a set of attributes and the corresponding classification. Each
internal node in the tree specifies a test on some attribute, and each branch
descending from that node corresponds to one of the possible values for that
attribute. Each leaf in the tree corresponds to a classification.

Data is classified by starting at the root node of the decision tree, testing
the attribute specified by this node, and then moving down the tree branch
corresponding to the value of the attribute. The process is repeated for the
subtree rooted at the branch until one of the leafs is reached, which is labeled with
the classification. The problem of separating SDJ from S#7 can be formulated
as a DTL problem as follows:

— The attributes correspond to the invisible variables.
1 Although the ILP problem is stated for integer variables, the constraints and ob-

jective function guarantees that their value will be either 0 or 1. Thus, they can be
thought of as Boolean variables.
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- The classifications are +1 and —1, corresponding to #£>, and £# , .
- The examples are SD 7 labeled +1 , and 5j57 labeled — 1.

We generate a decision tree for this problem. The separating set that we output
contains all the variables present at an internal nodes of the decision tree.

Lemma 2. The above algorithm outputs a separating set for 5 ^ and SBJ-

Proof. Let d G 5JD / and b £ S^,. The decision tree will classify d as -hi and b
as —1. So, there exists a node n in the decision tree, labeled with a variable v,
such that d(v) ^ b(v). By construction, v lies in the output set. •

Example 2. Going back to example 1, the corresponding DTL problem has 4 at-
tributes (i>i, ̂ 2,^3,^4) and as always, two classifications (+1, —1). The set of ex-
amples i s E = {((0,1,0,1), +1) , ((1,1,1,0), +1 ) , ((1,1,1,1), - 1 ) , ( (0 ,0 ,0 ,1) , -1)}.
The following tree corresponds to the separating set (t>i, t>27^4)-

-1 +1 +1 -1

A number of algorithms have been developed for learning decision trees, e.g.
ID3[12], C4.5[13]. All these algorithms essentially perform a simple top-down
greedy search through the space of possible decision trees. We implemented a
simplified version of the ID3 algorithm, which is described in Figure 3[10]. At

DecTree(Examples, Attributes)

1. Create a Root node for the tree.
2. If all examples are classified the same, return Root with this classification.
3. Let A = BestAttribute(Examples, Attributes). Label Root with attribute A.
4. For i € {0,1}, let Examplesi be the subset of Examples having value i for A.
5. For i £ {0,1}, add an i branch to the Root pointing to subtree generated by

Dectree(Examplesi, Attributes — {A}).
6. return Root.

Fig. 3. Decision Tree Learning Algorithm

each recursion, the algorithm has to pick an attribute to test at the root. We
need a measure of the quality of an attribute. We start with defining a quantity
called entropy, which is a commonly used notion in information theory. Given a
set 5 containing n® positive examples and UQ negative examples, the entropy
of S is given by:

Entropy(S) = -
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where p® = (ne)/(n® + n e ) and pe = (ne)/{n® +ne). Intuitively, entropy
characterizes the variety in a set of examples. The maximum value for entropy
is 1, which corresponds to a collection that has an equal number of positive and
negative examples. The minimum value of entropy is 0, which corresponds to a
collection with only positive or only negative examples. We can now define the
quality of an attribute A by the reduction in entropy on partitioning the examples
using A. This measure, called the information gain is defined as follows:

Gain(E,A) = Entropy(E)-(\E0\/\E\)'Entropy{E0)-(\El\/\E\)'Entropy(E1)

where Eo and E\ are the subsets of examples having the value 0 and 1, re-
spectively, for attribute A. The BestAttribute(Examples, Attributes) procedure
returns the attribute A £ Attributes that has the highest Gain(Examples, A).

Example 3. We illustrate the working of our algorithm with an example. Con-
tinuing with our previous example, we calculate the gains for the attributes at
the top node of the decision tree.

Entropy(E) = -(2/4)log2(2/4) - (2/4)log2(2/4) = 1.00
Gain(E,vi) = l-(2/4)'Entropy(EVl=0)-(2/4)-Entropy(Vl=1) =0.00
Gain(E,v2) = 1 - (1/4)-Entropy (EV2=0)-(3/4)-EntropyiV2=i) =0.31
Gain(E,v3) = l-(2/4).Entropy(EV3=0)-(2/4)-Entropy(V3=l) =0.00
Gain(E,v4) = l-{l/4)'Entropy(EV4=0)-(3/4)'Entropy(V4=1) =0.31

The DecTree algorithm will pick v2 or v\ to label the Root.

6 Efficient sampling of states

Sampling Dj and £?/ does not have to be arbitrary. As we now show, it is possible
to direct the search for samples that contain more information than others. Let
5(DJ,BJ) denote the minimal separating set for Dj and Bj. Finding 5(DJ,BJ)

by explicitly computing Dj and Bj and separating them is too computationally
expensive, because both the size of these sets and the optimal separation tech-
niques are worst-case exponential. We therefore look for samples S^, and 5B7

that are small enough to compute and separate, and, on the other hand, main-
tain S(SDI',SBI) — S(DJ,BJ). Finding these sets is what we refer to as efficient
sampling.

We suggest an iterative algorithm for efficient sampling. Let SepSet denote
the current separating set. Initially, SepSet = 0. In each step i > 0 the algo-
rithm finds samples that are not separable by SepSet that was computed in the
previous iteration. Computing a new pair of dead-end and bad states that are
not separable by SepSet, can be done by solving $(SepSet), as defined below:

$(SepSet) = tyf A 4>'f A f\ v{ = v[ (3)
Vi SzSepSet

where ipf and (j)f are the formulas representing the deadend and bad states as
defined in equations 1 and 2. The prime symbol over 0/ denotes the fact that
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we replace each variable v 6 0/ with a new variable vf (note that otherwise, by
definition, the conjunction of ipf with 0/ is unsatisfiable). The right-most clause
in the above formula guarantees that the new samples of deadend and bad states
are not separable by the current separating set.

Algorithm Sample-and-Separate, described in Figure 6, uses formula 3 to
compute the minimal separating set of Bj and Bj without explicitly computing
or separating them. In each step i, it finds samples d{ 6 Bj and hi e Bj that
are not separable by the current separating set SepSet. It then re-computes
SepSet for the union of sets that were computed up to the current iteration.
By repeating this process until no such samples exist, it guarantees that the
resulting separating set separates Bj from Bj. Note that the size of SepSet can
either increase or stay unchanged in each iteration.

SepSet = 0;
t = 0;
repeat forever {

If $(SepSet) is sat., derive di and bi from solution; else exit;

SepSet = i ?

Fig. 4. Algorithm Sample-and-Separate implements efficient sampling by iteratively
searching for states that are not separable by the current separating set.

The algorithm in Figure 6 finds a single solution to $(SepSet) and hence a
single pair of states d{ and b{. However, the size of each sample can be larger.
Larger samples may reduce the number of iterations, but also require more time
to derive and separate. The optimal number of new samples in each iteration
depends on various factors, like the efficiency of the SAT solver, the separation
technique and the examined model. Our implementation lets the user control
this process by adjusting two parameters: the number of samples generated in
each iteration, and the maximum number of iterations.

7 Experimental Results

We implemented our framework inside NuSMV[4]. We use NuSMV as a front-
end, for parsing SMV files and for generating abstractions. However, for actual
model checking, we use Cadence SMV, which implements techniques like cone-
of-influence reduction, cut-points, etc. We implemented a variant of the ID3[12]
algorithm to generate decision trees. We use a public domain LP solver[2] to
solve our integer linear programs. We use Chaff[ll] as our SAT solver. Some
modifications were made to Chaff to efficiently generate multiple state samples
in a single run. Our experiments were performed on the "IU" family of circuits,
which are various abstractions of an interface control circuit from Synopsys. All
experiments were performed on a 1.5GHz Dual Athlon machine with 3Gb RAM
and running Linux. No pre-computed variable ordering files were used in the
experiments.
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Circuit

IU30
Jt/35
Jt/40
IU4b
IUbO
7(755
Jt/60
7(765
7(770
7(775
7(780
7(785
7(790

SMV
Time
0.7
0.6
1.2
37.5
23.3
-
-
-
-
102.9
603.7
2832
-

BDD
116909
149496
225544
2554520
2094723
-
-
-
-
7068752
39989682
76232788
-

Sampling - ILP
Time
0.1
0.1
6.3
6.1
19.7
-
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7.9
8.1
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31.7
33.1
33.0

BDD
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2357
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-
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142546
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0
0
3
3
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-
4
4
4
9
9
9
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1
1
4
4
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-
7
7
7
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10
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Time
0.1
0.1
0.9
1.1
9.8
2072
7.8
7.9
8.2
24.5
44.0
44.6
44.6

BDD
1731
2357
18830
18847
90691
51703825
183811
192806
192806
397620
341018
443785
443785

S
0
0
5
5
13
6
4
4
4
13
13
13
13

L
1
1
6
6
14
9
7
7
7
14
14
14
14

Eff. Samp. - D T L
Time
0.1
0.1
0.6
0.7
24.0
3.0
4.5
3.8
3.8
24.1
24.1
25.2
25.4

BDD
1731
2357
11028
10634
1274240
64386
109393
47546
47546
550872
186662
198359
198359

S
0
0
2
2
4
1
1
1
1
2
2
2
2

L
1
1
3
3
17
6
6
5
5
7
7
7
7

Fig. 5. Model checking results for property 1.

The results are presented in Figure 5 and Figure 6. The two tables correspond to
two different properties. We compared the following techniques: 1) 'SMV': Ca-
dence SMV, 2) 'Sampling-ILP': Sampling, separation using Integer Linear Pro-
gramming, 50 samples per refinement iteration, 3) 'Sampling-DTL': Sampling,
separation using Decision Tree Learning, 50 samples per refinement iteration,
4) 'Eff. Samp.-DTL': Efficient sampling, separation using Decision Tree Learn-
ing. For each run, we measured the total running time ('Time'), the maximum
number of BDD nodes allocated ('BDD'), the number of refinement steps ('S'),
and the number of latches in the final abstraction ('L'). The original number of
latches in each circuit in indicated in its name. A ' - ' symbol indicates that we
ran out of memory. We could not solve Property 2 for circuits JC/55... Jt/70 with
any of the methods.

The experiments indicate that our technique expedites standard model check-
ing, both in terms of execution time and required memory. As predicted, the
number of iterations is generally reduced when either ILP or efficient sampling
is applied. In most cases, this translates to a reduction in the total execution
time. There were cases, however, when smaller sets of separating variables re-
sulted in larger BDDs. Such 'noise' in the experimental results is typical of BDD
based techniques.

8 Conclusions and Future Work

We have presented an automatic counterexample guided abstraction-refinement
algorithm that uses SAT, ILP and techniques from machine learning. Our al-
gorithm outperforms standard model checking, both in terms of execution time
and memory requirements. Our refinement technique is very general and can be
extended to a large variety of systems. For example, in conjunction with predi-
cate abstraction, we can apply our techniques to software model checking. There
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Circuit

7*730
7C/35
IU40
IU45
7*750
7*775
7*780
7*785
7*790

SMV
Time
7.3
19.1
53.6
226.1
1754
-
-
-
-

BDD
324268
679224
1100956
6060256
25102082
-
-
-
-

Sampling - ILP
Time
8.0
11.8
25.9
28.3
160.4
1080
1136
1162
965

BDD
113189
186097
260299
411952
2046981
3716255
3378860
3493143
3712477

S
3
4
6
5
13
21
21
21
20

L
20
21
23
22
32
38
38
38
37

Sampling - DTL
Time
7.5
12.7
19.0
25.3
85.1
586.7
552.5
581.2
583.3

BDD
113189
186097
207199
411952
605501
1178039
1158076
1272915
1271915

S
3
4
5
5
10
16
16
16
16

L
20
21
22
22
27
33
33
33
33

Eff. Samp. - DTL
Time
6.5
11.0
16.1
22.1
15120
130.5
153.4
167.7
167.1

BDD
113189
186097
207199
411952
3791826
1050007
1009030
1079043
1079043

S
3
4
5
5
7
5
5
5
5

L
20
21
22
22
31
26
26
26
26

Fig. 6. Model checking results for property 2.

are several future research directions to our work. We are currently exploring
criteria other than the size of the separating set for characterizing a good refine-
ment. We also want to explore other machine learning techniques to solve the
state separation problem.
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Abstract. We introduce a SAT based automatic abstraction refinement frame-
work for model checking systems with several thousand state variables in the
cone of influence of the specification. The abstract model is constructed by des-
ignating a large number of state variables as invisible. In contrast to previous
work where invisible variables were treated as free inputs we describe a compu-
tationally more advantageous approach in which the abstract transition relation
is approximated by pre-quantifying invisible variables during image computa-
tion. The abstract counterexamples obtained from model-checking the abstract
model are symbolically simulated on the concrete system using a state-of-the-art
SAT checker. If no concrete counterexample is found, a subset of the invisible
variables is reintroduced into the system and the process is repeated. The main
contribution of this paper are two new algorithms for identifying the relevant
variables to be reintroduced. These algorithms monitor the SAT checking phase
in order to analyze the impact of individual variables. Our method is complete
for safety properties in the sense that - performance permitting - a property is
either verified or disproved by a concrete counterexample. Experimental results
are given to demonstrate the power of our method on real-world designs.

1 Introduction

Symbolic model checking has been successful at automatically verifying temporal spec-
ifications on small to medium sized designs. However, the inability of BDD based model
checking to handle large state spaces of "real world" designs hinders the wide scale ac-
ceptance of these techniques. There have been advances on various fronts to push the
limits of automatic verification. On the one hand, improving BDD based algorithms
improves the ability to handle large state machines, while on the other hand, various
abstraction algorithms reduce the size of the design by focusing only on relevant por-
tions of the design. It is important to make improvements on both fronts for successful
verification.

* This research is sponsored by the Semiconductor Research Corporation (SRC) under con-
tract no. 99-TJ-684, the Gigascale Silicon Research Center (GSRC), the National Science
Foundation (NSF) under Grant No. CCR-9803774, and the Max Kade Foundation. One of
the authors is also supported by Austrian Science Fund Project N Z29-INF. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of SRC, GSRC, NSF, or the United States
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A conservative abstraction is one which preserves all behaviors of a concrete sys-
tem. Conservative abstractions benefit from a preservation theorem which states that
the correctness of any universal (e.g. ACTL*) formulae on an abstract system auto-
matically implies the correctness of the formula on the concrete system. However, a
counterexample on an abstract system may not correspond to any real path, in which
case it is called a spurious counterexample. To get rid of a spurious counterexample,
the abstraction needs to be made more precise via refinement. It is obviously desirable
to automate this procedure.

This paper focuses on automating the abstraction process for handling large designs
containing up to a few thousand latches. This means that using any computation on
concrete systems based on BDDs will be too expensive. Abstraction refinement [1, 6,
8, 11, 13, 17] is a general strategy for automatic abstraction. Abstraction refinement
usually involves the following process.

1. Generation of Initial Abstraction. It is desirable to derive the initial abstrac-
tion automatically.

2. Model checking of abstract system. If this results in a conclusive answer for
the abstract system, then the process is terminated. For example, in case of exis-
tential abstraction, a "yes" answer for an ACTL* property in this step means that
the concrete system also satisfies the property, and we can stop. However, if the
property is false on the abstract system, an abstract counterexample is generated.

3. Checking whether the counterexample holds on the concrete system.
If the counterexample is valid, then we have actually found a bug. Otherwise,
the counterexample is spurious and the abstraction needs to be refined. Usually,
refinement of abstraction is based on the analysis of counterexample(s) generated.

Our abstraction function is based on hiding irrelevant parts of the circuit by make
a set of variables invisible. This simple abstraction function yields an efficient way
to generate minimal abstractions, a source of difficulty in previous approaches. We
describe two techniques to produce abstract systems by removing invisible variables.
The first is simply to make the invisible variables into input variables. This is shown to
be a minimal abstraction. However, this leaves a large number of input variables in the
abstract system and, consequently, BDD based model checking even on this abstract
system becomes very difficult [19]. We propose an efficient method to pre-quantify
these variables on the fly during image computation. The resulting abstract systems
are usually small enough to be handled by standard BDD based model checkers. We
use an enhanced version [3, 4] of NuSMV [5] for this. If a counterexample is produced
for the abstract system, we try to simulate it on the concrete system symbolically using
a fast SAT checker (Chaff [16, 21] in our case).

The refinement is done by identifying a small set of invisible variables to be made
visible. We call these variables the refinement variables. Identification of refinement
variables is the main focus of this paper. Our techniques for identifying important
variables are based on analysis of effective boolean constraint propagation (BCP) and
conflicts [16] during the SAT checking run of the counterexample simulation. Recently,
propositional SAT checkers have demonstrated tremendous success on various classes
of SAT formulas. The key to the effectiveness of SAT checkers like Chaff [16], GRASP
[18] and SATO [20] is non-chronological backtracking, efficient conflict driven learning
of conflict clauses, and improved decision heuristics.
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SAT checkers have been successfully used for Bounded Model Checking (BMC)
[2], where the design under consideration is unrolled and the property is symbolically
verified using SAT procedures. BMC is effective for showing the presence of errors.
However, BMC is not at all effective for showing that a specification is true unless
the diameter of the state space is known. Moreover, BMC performance degrades when
searching for deep counterexamples. Our technique can be used to show that a specifi-
cation is true and is able to search for deeper concrete counterexamples because of the
guidance derived from abstract counterexamples.

The efficiency of SAT procedures has made it possible to handle circuits with a
few thousand of variables, much larger than any BDD based model checker is able
to do at present. Our approach is similar to BMC, except that the propositional for-
mula for simulation is constrained by assignments to visible variables. This formula
is unsatisfiable for a spurious counterexample. We propose heuristic scores based on
backtracking and conflict clause information, similar to VSIDS heuristics in Chaff, and
conflict dependency analysis algorithm to extract the reason for unsatisfiability. Our
techniques are able to identify those variables that are critical for unsatisfiability of
the formula and are, therefore, prime candidates for refinement. The main strength of
our approach is that we use the SAT procedure itself for refinement. We do not need
to invoke multiple SAT instances or solve separation problems as in [8].

Thus the main contributions of our work are, (a) use of SAT for counterexample
validation, (b) refinement procedures based on SAT conflict analysis, and, (c) a method
to remove invisible variables from the abstract system for computational efficiency.

Outline of the Paper

The rest of the paper is organized as follows. In the next section, we describe related
work. Section 3 briefly reviews how abstraction is used in model checking and intro-
duces notation that is used in the following sections. In Section 4, we describe in detail,
our abstraction technique and how we check an abstract counterexample on the con-
crete model. The most important part of the paper is Section 5, where we discuss our
refinement algorithms based on scoring heuristics for variables and conflict dependency
analysis. In section 6, we present experimental evidence to show the ability of our ap-
proach to handle large state systems. Finally, we conclude in Section 7 with directions
for future research.

2 Related Work

Our work compares most closely to that presented in [6] and more recently [8]. There
are three major differences between our work and [6]. First, their initial abstraction
is based on predicate abstraction, where new set of program variables are generated
representing various predicates. They symbolically generate and manipulate these ab-
stractions with BDDs. Our abstraction is based on hiding certain parts of the circuit.
This yields an easier way to generate abstractions. Secondly, the biggest bottleneck
in their method is the use of BDD based image computations on concrete systems for
validating counterexamples. We use symbolic simulation based on SAT accomplish this
task, as in [8]. Finally, their refinement is based on splitting the variable domains. The
problem of finding the coarsest refinement is shown to be NP-hard in [6]. Because our
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abstraction functions are simpler, we can identify refinement variables during the SAT
checking phase. We do not need to solve any other problem for refinement.

We differ from [8] in three aspects. First, we propose to remove invisible variables
from abstract systems on the fly by quantification. This reduces the complexity of
BDD based model checking of abstract systems. Leaving a large number of input vari-
ables in the system makes it very difficult to model check even an abstract system
[19]. Secondly, computation overhead for our separation heuristics is minimal. In their
approach, refinement is done by separating dead-end and bad states (sets of concrete
states contained in the failure state) with ILP solvers or machine learning. This requires
enumerating all dead-end and bad states or producing samples of these states and sep-
arating them. The sampling scheme they propose requires calling multiple instances of
the SAT checker. Experiments on large circuits have shown that efficiently generating
these samples is a major bottleneck in their method. We avoid this step altogether and
cheaply identify refinement variables from the analysis of a single SAT check that is
already done. We do not claim any optimality on the number of variables, however,
this is a small price to pay for efficiency. We have been able to handle a circuit with
about 5000 variables in cone of influence of the specification, for which their method
gets stuck in the sampling phase. Finally, we believe our method can identify a better
set of invisible registers for refinement. Although [8] uses optimization algorithms to
minimize the number of registers to refine, their algorithm relies on sampling to provide
the candidate separation sets. When the size of the problem becomes large, there could
be many possible separation sets. The quality of the separating set can not be judged
by its size, instead a better selection criteria is required. Our method is based on SAT
conflict analysis. The Boolean constraint propagation (BCP) algorithm in a SAT solver
naturally limits the number of candidates that we will need to consider. We use conflict
dependency analysis to reduce further the number of candidates for refinement.

The work of [10] focuses on algorithms to refine an approximate abstract transition
relation. Given a spurious abstract transition, they combine a theorem prover with a
greedy strategy to enumerate the part of the abstract transition that does not have
corresponding concrete transitions. The identified bad transition is removed from the
current abstract model for refinement. Their enumeration technique is potentially ex-
pensive. More importantly, they do not address the problem of how to refine abstract
predicates.

Previous work on abstraction by making variables invisible includes the localization
reduction of Kurshan [13] and other techniques (e.g. [1, 14]). Localization reduction
begins with the set of variables in the property as visible variables. The set of variables
adjacent to the present set of visible variables in the variable dependency graph are
chosen as the candidates for refinement. Counterexamples are analyzed in order to
choose variables among these candidates.

The work presented in [19] combines three different engines (BDD, ATPG and sim-
ulation) to handle large circuits using abstraction and refinement. The main difference
between our method and that in [19] is the strategy for refinement. In [19], candidates
for refinement are based on those invisible registers that get assigned in the abstract
counterexample. In our approach, we intentionally throw away invisible registers in the
abstract counterexample, and rely on our SAT conflict analysis to select the candidates.
We believe there are two advantages to disallowing invisible registers in the abstract
counterexample. First of all, generating an abstract counterexample is computationally
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expensive, when the number of invisible registers is large. In fact, for efficiency reasons,
a BDD/ATPG hybrid engine is used in [19] to model check the abstract model. By
quantifying the invisible variables early, we avoid this bottleneck. More importantly,
in [19], invisible registers are free inputs in the abstract model, their values are totally
unconstrained. When checking such an abstract counterexample on the concrete ma-
chine, it is more likely to be spurious. In our case, the abstract counterexample only
includes assignments to the visible registers and hence a real counterexample can be
found more cheaply.

3 Abstraction in Model Checking

We give a brief summary of the use of abstraction in model checking and introduce
notation that we will use in the remainder of the paper (refer to [7] for a full treatment).
A transition system is modeled by a tuple M = (5, /, R, £, L) where S is the set of
states, / C 5 is the set of initial states, R is the set of transitions, C is the set of
atomic propositions that label each state in 5 with the labeling function L : S —• 2L.
The set / is also used as a predicate /($), meaning the state s is in I. Similarly,
the transition relation R is also used as a predicate #(51,52), meaning there exists a
transition between states si and 52- Each program variable V{ ranges over its non-empty
domain DVi. The state space of a program with a set of variables V = {v\, v2,... ,vn}
is defined by the Cartesian product DVl x DV2 x ... x DVn.

In existential abstraction [7] a surjection h : 5 —» S maps a concrete state S{ G S
to an abstract state S{ = h(si) G 5. We denote the set of concrete states that map to
an abstract state §i by /i~1(^).

Definition 1. The minimal existential abstraction M = (S,I,R,C,L) corre-
sponding to a transition system M = (5, /, R, C, L) and an abstraction function h
is defined by:

1. S = {s\3s.seSAh(s) = s}.
2. {={s\3s.I(s)Ah(s) = s}.
3. R = {(si, S2)\3si3s2.R(si, S2) A h(si) = i?i A h(s2) = -§2}-
4. c = c.

Condition 3 can be stated equivalently as

3si, s2(R(si, s2) A h(si) = Si A h(s2) = §2) & R(si,s2) (1)

An atomic formula / respects h if for all 5 6 5, ^(5) |= / => 5 (= / . Labeling L(s)
is consistent, if for all 5 G h'1^) it holds that 5 |= A/eL(s) /• ^ n e following theorem
from [6, 15] is stated without proof.

Theorem 1. Let h be an abstraction function and <j> an ACTL* specification where
the atomic sub-formulae respect h. Then the following holds: (i) For all s G S, L{s) is
consistent, and (ii) M (= <f> => M f= <f>.

This theorem is the core of all abstraction refinement frameworks. However, the con-
verse may not hold, i.e., even if M \£ <\>, the concrete model M may still satisfy 0. In
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this case, the counterexample on M is said to be spurious, and we need to refine the
abstraction function. Note that the theorem holds even if only the right implication
holds in Equation 1. In other words, even if we add more transitions to the minimal
transition relation R, the validity of an ACTL* formula on M implies its validity on
M.

Definition 2. An abstraction function ft' is a refinement for the abstraction function
ft and the transition system M = (5,7, R, £, L) if for all si ,s2 € S,hf(si) = hf(s2)
implies ft(si) = h{s2)- Moreover, h1 is a proper refinement of h if there exist Si, S2 £
5 such that h(si) = h(s2) and h'(si) ^

In general, ACTL* formulae can have tree-like counterexamples [9]. In this paper, we
focus only on safety properties, which have finite path counterexamples. It is possible to
generalize our approach to full ACTL* as done in [9]. The following iterative abstraction
refinement procedure for a system M and a safety formula <\> follows immediately.

1. Generate an initial abstraction function ft.
2. Model check M.TiM \=<f>, return TRUE.
3. If M y=- <j), check the generated counterexample T on M. If the counterexample is

real, return FALSE.
4. Refine ft, and goto step 2.

Since each refinement step partitions at least one abstract state, the above proce-
dure is complete for finite state systems for ACTL* formulae that have path counterex-
amples. Thus the number of iterations is bounded by the number of concrete states.
However, as we will show in the next two sections, the number of refinement steps can
be at most equal to the number of program variables.

We would like to emphasize that we model check abstract system in step 2 using
BDD based symbolic model checking, while steps 3 and 4 are carried out with the help
of SAT checkers.

4 Generating Abstract State Machine

We consider a special type of abstraction for our methodology, wherein, we hide a set
of variables that we call invisible variables, denoted by X. The set of variables that we
retain in our abstract machine are called visible variables, denoted by V. The visible
variables are considered to be important for the property and hence are retained in
the abstraction, while the invisible variables are considered irrelevant for the property.
The initial abstraction and the refinement in steps 1 and 4 respectively correspond
to different partitions of V. Typically, we would want |V| <C \I\. Formally, the value
of a variable v £ V in state s e S is denoted by s(v). Given a set of variables U =
{ui,U2, •. • , Up}, U C V, let su denote the portion of 5 that corresponds to the variables
in U, i.e., su = (s(ui)s(v,2)... s(up)). Let V = {fi,^2,--- , ^ } . This partitioning of
variables defines our abstraction function ft : 5 —> S. The set of abstract states is
5 = DVl x DV2 . . . x DVk and h(s) = sv.

In our approach, the initial abstraction is to take the set of variables mentioned in
the property as visible variables. Another option is to make the variables in the cone
of influence (COI) of the property visible. However, the COI of a property may be too
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large and we may end with a large number of visible variables. The idea is to begin
with a small set of visible variables and then let the refinement procedure come up
with a small set of invisible variables to make visible.

We also assume that the transition relation is described not as a single predicate,
but as a conjunction of bit relations Rj of each individual variable Vj. More formally,
we consider a sequential circuit with registers V = {^1,^2,... ,vm} and inputs / =
{ z i , z 2 , . . . , i q } . L e t s = ( v i , V 2 , . . . , v m ) , i = ( n , « 2 , . . . , i q ) a n d sf = ( v i , v f

2 , . . . , v ' m ) .
The primed variables denote the next state versions of unprimed variables as usual.
Thus the bit relation for Vj becomes Rj(s,i,v'j) = (vfj <-> fVj(s,i))-

R(898
f) =31^^(8,^) (2)

4.1 Abstraction by Making Invisible Variables as Input Variables

As shown in [8], the minimal transition relation R corresponding to R and h described
above is obtained by removing the logic defining invisible variables and treating them
as free input variables of the circuit. Hence, R looks like:

R(s,a') = 3sx3i / \ Rj^y,^) (3)
Vjev

The quantifications in Equation 3 are performed during each image computation in
symbolic model checking of the abstract system. This is done so as not to build a
monolithic BDD for R and enjoy the benefits of early quantification.

We call this type of abstraction an input abstraction. We write s as s v , 5 J to stress
the fact that we are leaving invisible variables as input variables in R. When dealing
with systems with a large number of registers, quantifying so many variables for each
image computation is expensive (e.g. [19]). An invisible variable can in the support of
multiple partitions of the transition relation. In input abstraction, each occurence of
an invisible variable has the same value in different partitions of the abstract transition
relation. Thus, we say input abstraction preserves correlations between different occur-
rences of an invisible variable. In the next type of abstraction, we pre-quantify most of
the invisible variables, to reduce the number of variables during image computation.
This means that different occurrences of an invisible variable get de-coupled when we
push the quantifications inside Equation 3, making the abstraction more approximate.

4.2 Abstraction by Pre-quantify ing Invisible Variables

Input abstraction leaves a large number of variables to quantify during the image
computation process. We can however, quantify these variables a priori, leaving only
visible variables in R. The transition relation that we get by quantifying invisible
variables from R in the beginning is denoted by R. We can even quantify some of
the input variables a priori in this fashion to control the total number of variables
appearing in R. Let Q C I U / denote the set of variables to be pre-quantified and let
W = (X U I) \ Q, the set of variable that are not pre-quantified.
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Quantification of a large number of invisible variables in Equation 3 is computa-
tionally expensive [15]. To alleviate this difficulty, it is customary to approximate this
abstraction by pushing the quantification inside conjunctions as follows.

JJ(M') = 3sw /\ Bs^R^^s1^) (4)
VjEV

Since the BDDs for state sets do not contain input variables in the support, this is a
safe step to do. This does not violate the soundness of the approximation, i.e., for each
concrete transition in R, there will be a corresponding transition in R, as stated below.

Theorem 2. 3s1? s2(R(s1, s2) A h(si) = si A h(s2) = s2) => R(§i, s2).

The other direction of this implication does not hold because of the approximations
introduced.

Preserving Correlations We can see in Equation 4 that by existentially quantifying
each invisible variable separately for each conjunct of the transition relation, we lose
the correlation between different occurrences of a variable. For example, consider the
trivial bit relations x[ = xs,x2 = ->#3 and xs = x\ 0 x2. Suppose Xs is made an
invisible variable. Then quantifying £3 from the bit relations of x\ and x2 will result in
the transition relation being always evaluated 1, meaning the state graph is a clique.
However, we can see that in any reachable state, x\ and x2 are always opposite of
each other. To solve this problem partially without having to resort to equation 4, we
propose to cluster those bit relations that share many common variables. Since this
problem is very similar to the quantification scheduling problem (which occurs during
image computations), we propose to use a modification of VarScore algorithms [3] for
evaluating this quantification. This algorithm can be viewed as producing clusters of bit
relations. We use it to produce clusters with controlled approximations. The idea is to
delay variable quantifications as much as possible, without letting the conjoined BDDs
grow too large. When a BDD grows larger than some threshold, we quantify away a
variable. We can of course quantify a variable that no longer appears in the support
of other BDDs. Effective quantification scheduling algorithms put closely related oc-
currences of a variable in the same cluster. Figure 1 shows the VarScore algorithm for
approximating existential abstraction.

A static circuit minimum cut based structural method to reduce the number of in-
visible variables was proposed in [12] and used in [19]. Our method introduces approx-
imations as needed based on actual image computation, while there method removes
the variables statically. Our algorithms achieves a balance between performance and
accuracy. This means that the approximations introduced by our algorithm are more
accurate as the parts of the circuits statically removed in [12] could be important.

4.3 Checking the Validity of an Abstract Counterexamples

Given an abstract model M and a safety formula </>, we run the usual BDD based
symbolic model checking algorithm to determine if M \= </>. Suppose that the model
checker produces an abstract path counterexample sm = (so, Si,. • • , sm). To check
whether this counterexample holds on the concrete model M or not, we symbolically
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Given a set of conjuncts Ry and variables s® to pre-quantify
Repeat until all s® variables are quantified

1. Quantify away SQ variables appearing in only one BDD
2. Score the variables by summing up the sizes of BDDs in which a variable occurs
3. Pick two smallest BDDs for the variable with the smallest score
4. If any BDD is larger then the size threshold, quantify the variable from BDD(s) and

go back to step 2.
5. If the BDDs are smaller than threshold, do BDDAnd or BDDAndExists depending

upon the case

Fig. 1. VarScore algorithm for approximating existential abstraction

simulate M beginning with the initial state I(SQ) using a fast SAT checker. At each stage
of the symbolic simulation, we constrain the values of visible variables only according
to the counterexample produced. The equation for symbolic simulation is:

(/(s0) A (h(s0) = 50)) A (R(sQ, SI) A (ft(si) = Si)) A . . .

A(#(sm_i , sm) A (h(sm) = Sm)) (5)

Each ft(Si) is just a projection of the state Si onto visible variables. If this propositional
formula is satisfiable, then we can successfully simulate the counterexample on the
concrete machine to conclude that M =̂ <t>. The satisfiable assignments to invisible
variables along with assignments to visible variables produced by model checking give
a valid counterexample on the concrete machine.

If this formula is not satisfiable, the counterexample is spurious and the abstraction
needs refinement. Assume that the counterexample can be simulated up to the abstract
state S/, but not up to S/+i ([6, 8]). Thus formula 6 is satisfiable while formula 7 is
not satisfiable, as shown in Figure 2.

(/(so) A (ft(s0) = So)) A (fl(so,si) A (ft(si) = Si)) A . . .

-1,Sf)A(h(sf) = sf)) (6)

(/(s0) A (ft(s0) = So)) A (/?(s0, si) A (ft(si) = Si)) A . . .

A(R(sf, s / + i ) A (

Using the terminology introduced in [6], we call the abstract state S/ & failure state.
The abstract state Sf contains many concrete states given by all possible combinations
of invisible variables, keeping the same values for visible variables as given by §f. The
concrete states in Sf reachable from the initial states following the spurious counterex-
ample are called the dead-end states. The concrete states in S/ that have a reachable
set in S/+i are called bad states. Because the dead-end states and the bad states are
part of the same abstract state, we get the spurious counterexample. The refinement
step then is to separate dead-end states and bad states by making a small subset of
invisible variables visible. It is easy to see that the set of dead-end states are given by
the values of state variables in the fth step for all satisfying solutions to Equation 6.

43



10

dead-end

Abstract
Trace

Concrete
Trace

A A

/I
A A

\

states

B

failure
state

-

h(s0) *Y*;> bad states

Fig. 2. A spurious counterexample showing failure state [8]. No concrete path can be extended
beyond failure state.

Note that in symbolic simulation formulas, we have a copy of each state variable for
each time frame.

We do this symbolic simulation using the SAT checker Chaff [16]. We assume that
there are concrete transitions which correspond to each abstract transition from s^
to 3i+i, where 0 < i < / . It is fairly straightforward to extend our algorithm to
handle spurious abstract transitions. In this case, the set of bad states is not empty.
Since Sf is the shortest prefix that is unsatisfiable, there must be information passed
through the invisible registers at time frame / in order for the SAT solver to prove the
counterexample is spurious. Specifically, the SAT solver implicitly generates constraints
on the invisible registers at time frame / based on either the last abstract transition
or the prefix s/. Obviously the intersection of these two constraints on those invisible
registers is empty. Thus the set of invisible registers that are constrained in time frame
/ during the SAT process is sufficient to separate deadend states and bad states after
refinement. Therefore, our algorithm limits the refinement candidates to the registers
that are constrained in time frame / .

Equation 5 is exactly like symbolic simulation with Bounded Model Checking. The
only difference is that the values of visible state variables at each step are constrained
to the counterexample values. Since the original input variables to the system are
unconstrained, we also constrain their values according to the abstract counterexample.
This puts many constraints on the SAT formula. Hence, the SAT checker is able to
prune the search space significantly. We rely on the ability of Chaff to identify important
variables in this SAT check to separate dead-end and bad states, as described in the
next section.

5 SAT Based Refinement Heuristics

The basic framework for these SAT procedures is Davis-Putnam-Logeman-Loveland
backtracking search, shown in Figure 3. The function decide_next_branch() chooses
the branching variable at current decision level The function deduce () does Boolean
constraint propagation to deduce further assignments. While doing so, it might infer
that the present set of assignments to variables do not lead to any satisfying solution,
leading to a conflict. In case of a conflict, new clauses are learned by analyse_conf l i c t ()
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while(1) {

if (decide_next_branch()) { ,

while (deduce() == conflict) { ,

blevel = analyse_conflict(); t
if (blevel — 0)

return UNSAT;

else

backtrack(blevel); ,

else

return SAT;

// Branching

// Propagate implications

U Learning

// Non-chronological

// backtrack

// no branch means all vars

// have been assigned

Fig. 3. Basic DPLL backtracking search (used from [16] for illustration purpose)

that hopefully prevent the same unsuccessful search in the future. The conflict analy-
sis also returns a variable for which another value should be tried. This variable may
not be the most recent variable decided, leading to a non-chronological backtrack. If
all variables have been decided, then we have found a satisfying assignment and the
procedure returns. The strength of various SAT checkers lies in their implementation
of constraint propagation, decision heuristics, and learning.

Modern SAT checkers work by introducing conflict clauses in the learning phase and
by non-chronological backtracking. Implication graphs are used for Boolean constraint
propagation. The vertices of this graph are literals, and each edge is labeled with the
clause that forces the assignment. When a clause becomes unsatisfiable as a result of
the current set of assignments (decision assignments or implied assignments), a conflict
clause is introduced to record the cause of the conflict, so that the same futile search
is never repeated. The conflict clause is learned from the structure of the implication
graph. When the search backtracks, it backtracks to the most recent variable in the
conflict clause just added, not to the variable that was assigned last. For our purposes,
note that Equation 7 is unsatisfiable, and hence there will be much backtracking.
Hence, many conflict clauses will be introduced before the SAT checker concludes that
the formula is unsatisfiable. A conflict clause records a reason for the formula being
unsatisfiable. The variables in a conflict clause are thus important for distinguishing
between dead-end and bad states. The decision variable to which the search backtracks
is responsible for the current conflict and hence is an important variable. We call the
implication graph associated with each conflict a conflict graph.The source nodes of this
graph are the variable decisions, the sink node of this graph is the conflicting assignment
to one of the variables. At least one conflict clause is generated from a conflict graph.
We propose the following two algorithms to identify important variables from conflict
analysis and backtracking.
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5.1 Refinement Based on Scoring Invisible Variables

We score invisible variables based on two factors, first, the number of times a variable
gets backtracked to and, second, the number of times a variable appears in a conflict
clause. Note that we have adjust the first score by an exponential factor based on the
decision level a variable is at, as the variable at the root node can potentially get just
two back tracks, while a variable at the decision level dl can get 2dl backtracks globally.
Every time the SAT procedure backtracks to an invisible variable at decision level dl,
we add the following number to the backtracks core.

We use c as a normalizing constant. For computing the second score, we just keep
a global counter conflicts core for each variable and increment the counter for each
variable appearing in any conflict clause. The method used for identifying conflict
clauses from conflict graphs greatly affects SAT performance. As shown in [21], we use
the most effective method called the first unique implication point (1UIP) for identifying
conflict clauses. We then use weighted average of these two scores to derive the final
score as follows.

w\ - backtracks core + u>2 • conflict-score (8)

Note that the second factor is very similar to the decision heuristic VSIDS used
in Chaff. The difference is that Chaff uses these per variable global scores to arrive
at local decisions (of the next branching variable), while we use them to derive global
information about important variables. Therefore, we do not periodically divide the
variable scores as Chaff does.

We also have to be careful to guide Chaff not to decide on the intermediate variables
introduced while converting various formulae to CNF form, which is the required input
format for SAT checkers. This is done automatically in our method.

5.2 Refinement Based on Conflict Dependency Graph

The choice of which invisible registers to make visible is the key to the success of
the refinement algorithm. Ideally, we want this set of registers to be small and still
be able to prevent the spurious trace. Obviously, the set of registers appearing in the
conflict graphs during the checking of the counterexample could prevent the spurious
trace. However, this set can be very large. We will show here that it is unnecessary to
consider all conflict graphs.

Dependencies Between Conflict Graphs We call the implication graph associated
with a conflict a conflict graph. At least one conflict clause is generated from a conflict
graph.
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Definition 3. Given two conflict graphs A and B, if at least one of the conflict clauses
generated from A labels one of the edges in B, then we say that conflict B directly
depends on conflict A.

For example, consider the conflicts depicted in the conflict graphs of Figure 4.
Suppose that at a certain stage of the SAT checking, conflict graph A is generated.
This produces the conflict clause v9 = (->x9 + xn + -1X15). We are using the first UIP
(1UIP) learning strategy [21] to identify the conflict clause here. This conflict clause
can be rewritten as xg A ->#ii —> ~^xis. In the other conflict graph B, clause LJQ labels
one of the edges, and forces variable xi& to be 0. Hence, we say that conflict graph B
directly depends on conflict graph A.

-xu(2)

-x12(3)

conflict

1UIP cut

Conflict graph A

Using conflict clause

Conflict graph B

Fig. 4. Two dependent conflict graphs. Conflict B depends on conflict A, as the conflict clause
u>9 derived from the conflict graph A produces conflict B.

Given the set of conflict graphs generated during satisfiability checking, we construct
the unpruned conflict dependency graph as follows:

— Vertices of the unpruned dependency graph are all conflict graphs created by the
SAT algorithm.

— Edges of the unpruned dependency graph are direct dependencies.

Figure 5 shows an unpruned conflict dependency graph with five conflict graphs.
A conflict graph B depends on another conflict graph A, if vertex A is reachable from
vertex B in the unpruned dependency graph. In Figure 5, conflict graph E depends
on conflict graph A. When the SAT algorithm detects unsatisfiability, it terminates
with the last conflict graph corresponding to the last conflict. The subgraph of the
unpruned conflict dependency graph on which the last conflict graph depends is called
the conflict dependency graph. Formally,

Definition 4. The conflict dependency graph is a subgraph of the unpruned de-
pendency graph. It includes the last conflict graph and all the conflict graphs on which
the last one depends.
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Fig. 5. The unpruned dependency graph and the dependency graph (within dotted lines)

In Figure 5, conflict graph E is the last conflict graph, hence the conflict dependency
graph includes conflict graphs A, C, D, E. Thus, the conflict dependency graph can be
constructed from the unpruned dependency graph by any directed graph traversal
algorithm for reachability. Typically, many conflict graphs can be pruned away in this
traversal, so that the dependency graph becomes much smaller than the unpruned
dependency graph. Intuitively, all SAT decision strategies are based on heuristics. For
a given SAT problem, the initial set of decisions/conflicts a SAT solver comes up with
may not be related to the final unsatisfiability result. Our dependency analysis helps
to remove that irrelevant reasoning.

Generating Conflict Dependency Graph Based on Zchaff We have implemented
the conflict dependency analysis algorithm on top of zchaff [21], which has a powerful
learning strategy called first UIP (lUIP). Experimental results from [21] show that
lUIP is the best known learning strategy. In lUIP, only one conflict clause is generated
from each conflict graph, and it only includes those implications that are closer to the
conflict. Refer to [21] for the details. We have built our algorithms on top of lUIP,
and we restrict the following discussions to the case that only one conflict clause is
generated from a conflict graph. Note here that the algorithms can be easily adapted
to other learning strategies.

After SAT terminates with unsatisfiability, our pruning algorithm starts from the
last conflict graph. Based on the clauses contained in this conflict graph, the algorithm
traverses other conflict graphs that this one depends on. The result of this traversal is
the pruned dependency graph.

Identifying Important Variables The dependency graph records the reasons for
unsatisfiability. Therefore, only the variables appearing in the dependency graph are
important. Instead of collecting all the variables appearing in any conflict graph, those
in the dependency graph are sufficient to disable the spurious counterexample.

Suppose s/+i = (£o, s i , . . . , 5/+i) is the shortest prefix of a spurious counterexam-
ple that can not be simulated on the concrete machine. Recall that Sf is the failure
state. During the satisfiability checking of s/+i, we generate an unpruned conflict de-
pendency graph. When Chaff terminates with unsatisfiability, we collect the clauses
from the pruned conflict dependency graph. Some of the literals in these clauses cor-
respond to invisible registers at time frame /. Only those portions of the circuit that
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correspond to the clauses contained in the pruned conflict dependency graph are nec-
essary for the unsatisfiability. Therefore, the candidates for refinement are the invisible
registers that appear at time frame / in the conflict dependency graph.

Refinement Minimization The set of refinement candidates identified from conflict
analysis is usually not minimal, i.e., not all registers in this set are required to invalidate
the current spurious abstract counterexample. To remove those that are unnecessary,
we have adapted the greedy refinement minimization algorithm in [19]. The algorithm
in [19] has two phases. The first phase is the addition phase, where a set of invisible
registers that it suffices to disable the spurious abstract counterexample is identified.
In the second phase, a minimal subset of registers that is necessary to disable the coun-
terexample is identifed. Their algorithm tries to see whether removing a newly added
register from the abstract model still disables the abstract counterexample. If that is
the case, this register is unnecessary and is no longer considered for refinement. In our
case, we only need the second phase of the algorithm. The set of refinement candidates
provided by our conflict dependency analysis algorithm already suffices to disable the
current spurious abstract counterexample. Since the first phase of their algorithm takes
at least as long as the second phase, this should speed up our minimization algorithm
considerably.

6 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV model
checker [5]. We modified the SAT checker Chaff to compute heuristic scores, to produce
conflict dependency graphs and to do incremental SAT. The IU-pl benchmark was
verified by conflict analysis based refinement on a SunFire 280R machine with two
750Mhz UltraSparc III CPUs and 8GB of RAM running Solaris. All other experiments
were performed on a dual 1.5GHz Athlon machine with 3GB of RAM running Linux.

The experiments were performed on two sets of benchmarks. The first set of bench-
marks in Table 1 are industrial benchmarks obtained from various sources. The bench-
marks IU-pl and IU-p2 refer to the same circuit, IU, but different properties are checked
in each case. This circuit is an integer unit of a picoJava microprocessor from Sun. The
D series benchmarks are from a processor design. The properties verified were sim-
ple AG properties. The property for IU-p2 has 7 registers, while IU-pl and D series
circuits have only one register in the property. The circuits in Table 2 are various
abstractions of the IU circuit. The property being verified has 17 registers. They are
smaller circuits that are easily handled by our methods but they have been shown to be
difficult to handle by Cadence SMV [8]. We include these results here to compare our
methods with the results reported in [8] for property 2. We do not report the results
for property 1 in [8] because it is too trivial (all counterexamples can be found in 1
iteration). It is interesting to note that all benchmarks but IU-pl and IU-p2 have a
valid counterexample.

In Table 1, we compare our methods against the BDD based model checker Ca-
dence SMV. We enabled cone of influence reduction and dynamic variable reordering
in Cadence SMV. We report total running time, number of iterations and the number
of registers in the final abstraction. The columns labeled with "Heuristic Score" report
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the results with our heuristic variable scoring method. We introduce 5 latches at a
time in this method. The columns labeled with "Dependency" report the results of
our dependency analysis based refinement. This method employs pruning of candidate
refinement sets. A "-" in a cell indicates that the model checker ran out of memory.

circuit

D2
D5
D6
D18
D20
D24
IU-pl
IU-p2

#regs

105
350
177
745
562
270

4855
4855

ctrex
length

15
32
20
28
14
10

true
true

CSMV
time

152

1,192
45,596
>4 hrs
>7 hrs

7,850
-
-

Heuristic
time

105
29

784
12,086
1,493

14
9,138
2,820

Score
iters|# regs

10
3

24
69
56

1
22

7

51
16

121
346
281

6
107
36

Dependency
time|iters|# regs

79
38.2
833

9,995
1,947

8
3,350*

712

11
8

48
142
74

1
13
6

39
10
90

253
265

4
19
13

Table 1. Comparison between Candence SMV (CSMV), heuristic score based refinement and
dependency analysis based refinement for larger circuits. The experiment marked with a *
was performed on the SunFire machine with more memory because of a length 72 abstract
counterexample encountered.

Table 2 compares our methods against those reported in [8] on IU series benchmarks
for verifying property 2.

circuit

IU30
IU35
IU40
IU45
IU50
IU55
IU60
IU65
IU70
IU75
IU80
IU85
IU90

# regs

30
35
40
45
50
55
60
65
70
75
80
85
90

ctrex
length

11
20
20
20
20
11
11
11
11
11
11
11
11

[8]
time

6.5
11

16.1
22.1
85.1

-
-
-
-

130.5
153.4
167.7
167.1

Heuristic Score
time|iters|# regs

2.3
8.9

28.4
32.9

36
43

52.8
50.3
55.6
38.5
47.1
44.7
49.9

2
2
3
3
3
2
2
2
2
4
4
4
4

27
27
32
32
32
27
27
27
27
37
37
37
37

Dependency
time

1.9
10.4
13.3

25
32.8
61.9
65.5
67.5
71.4
15.7
21.1
24.6
24.3

iters|# regs
4
5
6
6
6
4
4
4
4
5
5
5
5

20
21
22
22
22
20
20
20
20
21
21
21
21

Table 2. Comparison between [8], heuristic score based refinement and dependency analysis
based refinement for smaller circuits.

We can see that our conflict dependency analysis based method outperforms a
standard BDD based model checker, the method reported in [8] and the heuristic score
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based method. We also conclude that the computational overhead of our dependency
analysis based method is well justified by the smaller abstractions that it produces.
The variable scoring based method does not enjoy the benefits of reduced candidate
refinement sets obtained through dependency analysis. Therefore, it results in a coarser
abstraction in general. The heuristic based refinement method adds 5 registers at a
time, resulting in some uniformity in the final number of registers, especially evident
in Table 2. Due to the smaller number of refinement steps it performs, the total time
it has to spend in model checking abstract machines may be smaller (as for D5, D6,
D20, IU60, IU65, IU70).

7 Conclusions

We have presented an effective and practical automatic abstraction refinement frame-
work based on our novel SAT based conflict analysis. We have described a simple vari-
able scoring heuristic as well as an elaborate conflict dependency analysis for identifying
important variables. Our schemes are able to handle large industrial scale designs. Our
work highlights the importance of using SAT based methods for handling large circuits.
We believe these techniques complement bounded model checking in that they enable
us to handle true specifications effeciently.

An obvious extension of our framework is to handle all ACTL* formulae. We believe
this can be done as in [9]. Further experimental evaluation will help us fine tune our
procedures. We can also use circuit structure information to accelerate the SAT based
simulation of counterexamples, for example, by identifying replicated clauses. We are
investigating the use of the techniques described in this paper for software verification.
We already have a tool for extracting a Boolean program from an ANSI C program by
using predicate abstraction.
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SAT based Predicate Abstraction for Hardware Verifi cation

Edmund Clarke Muralidhar Talupur Dong Wang

Carnegie Mellon University

Abstract. Predicate abstraction has emerged as one of the most promising abstraction techniques. It has
been used to extract compact fi nite state models, which are amenable to the current model checking al-
gorithms, from infi nite state systems like software. However, there is little work on applying predicate
abstraction for verifying large scale fi nite state (e.g., hardware) systems. One of the major obstacles is the
ineffi ciency of the existing refi nement algorithms. In this paper, we present two SAT based algorithms
to refi ne the abstract model. During the abstraction refi nement process, constraints are added to remove
spurious transitions (the transitions in the abstract model that do not have any corresponding concrete
transitions). Our fi rst algorithm makes use of the conflict graphs generated by SAT solvers to make the
added constraints as general as possible, thus making the abstract model more accurate. One nice feature
of this algorithm is that it does not need to make any additional calls to SAT solvers once an abstract
transition is determined to be spurious. Even after all the spurious transitions are eliminated, a counterex-
ample might still be spurious. In this case a new predicate needs to be added to the abstract model. Our
second algorithm generates a compact predicate that will eliminate the spurious counterexample. This
algorithm too makes use of the conflct graphs to determine the important concrete variables that render
the counterexample spurious. And then it creates a predicate over these concrete variables, which is added
to the abstract model. Experiments over hardware designs with up to thousands of registers demonstrate
the effectiveness of our methods.

1 Introduction

Abstraction refi nement. Model checking [6] is a widely used automatic formal verifi cation technique.
Despite the recent advancements in model checking technology, its application is still limited by the state
explosion problem. For model checking large real world systems abstraction is essential. For the abstraction
to be conservative the abstract model should include all the behaviors of the given system. If the abstraction
is conservative then the correctness of any universal temporal logic formula (e.g., ACTL*) on the abstract
model implies the correctness of the formula on the concrete model (This is refereed to as the preservation
theorem). We consider only safety properties in this paper. However, a counterexample on the abstract model
may not correspond to any real path, in which case it is called a spurious counterexample. To get rid of
a spurious counterexample, the abstraction needs to be made more precise via refi nement. Counterexample
guided abstraction refi nement (CEGAR) automates this procedure. It uses the spurious abstract counterexam-
ple to guide the refi nement of the current abstraction, so that the counterexample is excluded from the refi ned
abstract model. The above procedure repeats until the property is confi rmed or refuted.

Predicate Abstraction. Predicate abstraction [1,8,7,11-13], is a special case of conservative abstraction.
In predicate abstraction a set of predicates { P i , . . . , P m } , is identifi ed from the concrete system and the
property to be verifi ed,. These predicates are defi ned on the variables of the concrete system. They also serve
as the atomic propositions that label the states in the concrete and abstract transition systems, that is, the
set of atomic propositions is A — {P1? P2 , . . , Pm}- A state in the concrete system will be labeled with all
the predicates it satisfi es. The abstract state space has a boolean variable Bj corresponding to each predicate
Pj. So each abstract state is a valuation of these m boolean variables. An abstract state will be labeled with
predicate Pj if the corresponding bit Bj is 1 in that state. The predicates are also used to defi ne a total
function p between the concrete and the abstract state spaces. A concrete state 5 will be related to an abstract
state s through p if and only if the truth value of each predicate on s equals the value of the corresponding
boolean variable in the abstract state s. Formally, p(s, s) = / \ K . < m Pj(s) <=$ Bj(s). We now defi ne the
concretization function 7, which maps a set of abstract states to the corresponding set of concrete states.
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Formally, let / be a propositional formula over the abstract state variables, 7 ( / ) = f[Bj <— Pj]. In predicate
abstraction [13], the abstract initial states So and the abstract transition relation R are defi ned as

(1)

R = f\{Y-,Y'\(RA 7(F)) - 7(^)} (2)

where Y (Yi) is an arbitrary conjunction (disjunction) of the literals over the current abstract state variables
{ # 1 , . . . , Bm} and Y' is an arbitrary disjunction of literals over the next state variables {B\,..., Bf

m}.
The abstract model built according to equations (1) and (2) is called the most accurate abstract model. Note
that, in this abstract model, every abstract initial state has at least one corresponding concrete initial state,
and every abstract transition has at least one corresponding concrete transition. However, to build the most
accurate abstract model, there are exponential number (in the number of predicates) of implications that need
to be checked in worst case. To reduce the abstraction time, in practice an approximate abstract model is
constructed by intentionally excluding certain implications from consideration. Therefore, there are more
behaviors in the approximate model than in the most accurate abstract model. We call the abstract transitions
that do not have any corresponding concrete transitions spurious transitions (Precise defi nitions are given in
Section 3.1). Since an approximate abstract model contains all the behaviors of the original concrete system,
the preservation theorem still holds.

Motivation. For software model checking, the use of predicate abstraction (or similar abstraction techniques)
is essential because, most software systems are infi nite state and the existing model checking algorithms
cannot handle infi nite state systems. Predicate abstraction can extract fi nite state abstract models, which are
amenable to model checking [6], from infi nite state systems. Since hardware systems are fi nite state, model
checking (or simpler forms of abstraction, e.g., localization reduction [9]) has been traditionally used to verify
them. Existing predicate abstraction techniques for verifying software are not effi cient when applied to the
verifi cation of large scale hardware systems.

There are many proof obligations involved in predicate abstraction that require the use of decision proce-
dures. Proof obligations can arise from equations (1) and (2) and also from determining whether an abstract
counterexample is spurious or not. For software verifi cation, these proof obligations are solved using gen-
eral theorem provers. For the verifi cation of hardware systems, which usually have compact representation
in conjunctive normal form (CNF), we can use SAT solvers instead of general theorem provers. With the
advancements in SAT technology, discharging the proof obligations using SAT solvers becomes much faster
than using general theorem provers.

There are two cases for an abstract counterexample to be spurious: One is that there is a spurious tran-
sition, that is, an abstract transition which does not have any corresponding concrete transitions; the other is
that the counterexample has a spurious prefi x, that is, there are no concrete paths that correspond to the prefi x.

Our fi rst SAT based algorithm deals with the fi rst case. Recall that, it is time consuming to build the
most accurate abstract model when the number of predicates is large. So, we use a heuristic similar to the
one given in [1] to build an approximate abstract model. Instead of considering all possible implications of
the form Y —» Y' we impose restriction on the lengths of Y and Y' in equation (2) (The approximation to
the set of abstract initial states can be similarly done for equation (1)). If the resulting abstract model is too
coarse, an abstract counterexample with a spurious transition might be generated. This spurious transition can
be removed by adding an appropriate constraint to the abstract model (details are given in Section 3.1). The
constraint should be made as general as possible so that many related spurious transitions are also removed.
An algorithm for this has been proposed in [7] which in the worst case requires 2ra number of calls to a
theorem prover, where m is the number of predicates. We propose a new algorithm, based on SAT conflct
dependency analysis (presented in Section 2), to generate a general constraint without any additional calls to
the SAT solver. Our algorithm works by analyzing the conflct graphs generated when detecting the spurious
transition. Thus our algorithm can be much more effi cient than the algorithm in [7].

Even after removing spurious transitions there could be a spurious prefi x of the given abstract counterex-
ample. This happens because the set of predicates is not enough to capture the relevant behaviors of the
concrete system. In such a case, a new predicate is identifi ed and added to the current abstract model to in-
validate the counterexample. To make the abstraction refi nement process effi cient, it is desirable to compute
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a predicate that can be compactly represented. Large predicates are diffi cult to compute and discharging any
proof obligation involving them will be slow. We propose an algorithm, again based on SAT conflct depen-
dency analysis, to reduce the number of concrete state variables that the new predicate depends on. Then
the predicate is calculated by a projection-based SAT enumeration algorithm. Experiments show that this
algorithm can effi ciently compute the required predicates for design with thousands of registers.

Related work. SAT based localization reduction has been investigated in [2]. To identify important registers
for refi nement, SAT conflict dependency analysis is used. Their method is similar to our algorithm for reduc-
ing the support of the predicates. However, the two differ in the following ways. First, we have generalized
SAT conflct dependency analysis to fi nd the set of predicates which disables a spurious transition; while
the algorithm in [2] only fi nds important registers. Second, in this paper, we present a projection-based SAT
enumeration algorithm to determine a new predicate that can be used to refi ne the abstract model. Third, we
approximate the most accurate abstract model by intentionally excluding certain implications; while in [2],
approximation is achieved through pre-quantifying invisible variables during image computation. Finally,
Our experimental results show signifi cant improvement over the method in [2].

An algorithm to make the abstract model more accurate given a fi xed set of predicates is presented in [7].
Given a spurious transition, their algorithm requires 2ra number of calls to a theorem prover, where m is the
number of predicates. Our algorithm is more effi cient in that no additional calls to a SAT solver are required.
Note that, in general, their algorithm can come up with a more general constraint than ours. However, we
can get the same constraints, probably using much less time, by combining the two algorithms together.
Furthermore, the work in [7] does not consider the problem of introducing new predicates to refi ne the abstract
model.

Existing refi nement algorithms to compute new predicates use techniques such as syntactical transforma-
tions [11] or pre-image calculation [5,13], etc. While our algorithm is based on SAT. They also neglect the
problem of making the representation of the predicates compact. This could result in large predicates, which
affects the effi ciency of abstraction and refi nement.

Outline of the paper. The rest of the paper is organized as follows. In Section 2 we describe conflct de-
pendency analysis. We present our method for refi ning abstract transition relation in Section 3. In the same
section a new method for identifying predicates is described. Section 4 has the experimental results. Section 5
concludes the paper.

2 SAT Conflict Dependency Analysis

In this section, we give a brief review of SAT conflict dependency analysis [2]. Modern SAT solvers rely
on conflct driven learning to prune the search space. As presented in [14], a conflct clause corresponds to
a vertex cut of a conflct graph (an implication graph with the conflct vertex as the sink), that separates the
decision vertices from the conflct vertex. Let G be a conflct graph, K be the conflct vertex in G, CUT
be a vertex cut which corresponds to the conflct clause cl(CUT). Let G CUT be the subgraph of G where
vertices in CUT are the sources and n is the sink. For a subgraph Gf of a conflct graph G, let Q(G') be
the set of clauses that label the edges in Gf. Since GQUT includes the conflct vertex K, it is easy to see that
^cl(CUT) A Q{GCUT) => false. Therefore

f2(GcuT)=> cl(CUT) (3)

Given a CNF formula /, a SAT solver concludes that / is unsatisfi able if and only if the SAT solver derives
a conflct graph without decision vertices. We associate the empty conflct clause, denoted by 0, with this last
conflct graph. Note that since 0 is an empty clause, it is logically equivalent to false.

A conflct clause cl(CUT) directly depends on a clause b iff b is one of the clauses in i?( G CUT)- We say
the conflct clause a depends on clause b iff there exist a = c 1, c 2 , . . . , b = cn, such that for 1 < i < n, Q
directly depends on Q + I . Given a CNF formula /, the set of clauses in / that a given set of conflct clauses
els depend on is called the dependent set and the set is denoted by dep(cls). Based on equation (3), it is easy
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to see that dep(cls) => els. If / is an unsatisfi able CNF formula, let SUB(f) = dep{6). Since dep(0) => 0,
SUB(f) C / is unsatisfi able, i.e.,

/ = false =» SUB(f) = false (4)

During SAT search, our conflict dependency analysis algorithm keeps track of the set of clauses on which a
confict clause directly depends. After the SAT solver concludes that / is unsatisfi able, our algorithm iden-
tifi es the unsatisfi able subset SUB(f) based on these dependencies. Note that the dependencies and the un-
satisfi able subset that our algorithm computes are determined by the confict graphs and the confict clauses
generated by a SAT solver during SAT search. In general, for an unsatisfi able CNF formula / , SUB(f) may
not be the minimal unsatisfi able subset of / , but it can be substantially smaller than / .

3 Refi nement for Predicate Abstraction

We fi rst introduce some notation to represent the unrolling of a transition system from initial states. Let
V be a set of variables, let the corresponding set of next state variables be V. We call V and V untimed
variables. For every variable in V we maintain a version of that variable at each time i > 0. If V is a set of state
variables, then V \ is the set of timed versions of variables in V at time i > 0. We call V1 timed variables
at time i. Using timed abstract state variables Bx corresponding to a set of abstract state variables B, an
abstract counterexample ce(B0,... ,Bn) is a sequence of abstract states (ceo(-B°), cei(J51), . . . , cen(B

n)),
where ce^B1) is a cube over the abstract variables at time i. When it is clear from context, we sometimes
represent a counterexample without explicitly mentioning timed variables. Let f(V) be a boolean function,
which maps the set of states over variables V to {0,1}. The timed version of / at time i, denoted by /^(V*),
is the same function as / except that it is over the timed variables V1. We define an operator, called utf
(for untimed function), which for a given timed function /*(V l), returns the untimed function / (V) , i.e,
f(V) = utf(fl(V1)). Given a relation r(V, V'), which maps the set of states over current state variables
V to the set of states over the next state variables V , r^V*, Vi+l) is the timed version of r at time i. We
defi ne an operator, called utr (for untimed relation), which for a given timed relation 7*(F% Vt+1), returns
the untimed relation r(V,V'),i.e., utr{rl(V\ V^1)) = r(V, V).

Let B = { S i , . . . , Bm} and V be the set of abstract and concrete state variables, respectively. Given a
timed abstract expression / in terms of B% at time i, its concretization is a timed concrete expression 7 ( / )
in terms of V1 obtained by replacing each Bj in / with the timed version of the corresponding predicate P j .
Let ce = (ceo, ce i , . . . , cen) be an abstract counterexample. Let i be a natural number, such that 0 < i < n.
The set of pairs of concrete states corresponding to the abstract transition from ce^-i to ct{ is

trans{% - 1, i) = 7(cei_i) A iZ*"1 A 7(ce») (5)

The set of concrete paths which corresponds to the prefi x of the abstract counterexample up to time i, is a set
of lists of concrete states {(so(V°),..., Si(V*))} that satisfy the following equation:

prf(i) = S0A 7(ce0) A R° A • • • A 7 ( ^ - 1 ) A R*"1 A 7(ce»). (6)

Let BV be a set of boolean variables and let BV\ C BV. If c is a conjunction of literals over BV,
the projection of c to BV\, denoted by proj[SVri](c), is a conjunction of literals over BV\ that agrees
with c over the literals in BV1. If / is a CNF formula over BV, the satisfi able set of / over BV\, denoted
by SA[BVi](f), is the set of all satisfying assignments of / projected on to BVx. Thus, SA\BVx\(j) =
proj[SVi](5i4[SVr](f)). For a SAT solver with confict based learning, there is a well known algorithm
to compute SA[BVi](f) without first computing SA[BV](f) [10]. Once a satisfi able solution is found, a
blocking clause over BV\ is created to avoid generating the same projected solution. After this blocking
clause is added, the SAT search continues. This process repeats until the SAT solver concludes that the set of
clauses is unsatisfi able, i.e., there are no further solutions. The set of all satisfying assignments over BV\ is
the required result, which can be represented as a DNF formula.

56



Given a set of variables SV that are not necessarily boolean, let BSV be the set of boolean variables in
the boolean encoding of variables in SV. Let / be a CNF formula over BSV.The scalar support of the CNF
formula / , denoted by ssuppt[SV]{f), is a subset of SV that includes a variable v e SV iff at least one of
v's corresponding boolean variables is in / .

An abstract counterexample ce = (ceo, ce i , . . . , cen) is a real counterexample if and only if the set
prf(n) is not empty. If the abstract counterexample is a real counterexample, then the property is false on the
concrete machine. Otherwise the counterexample is spurious and we need to refi ne the current abstract model.
There are two possible reasons for the existence of a spurious counterexample: One is that the computed
abstract model is an over-approximation of the most accurate abstract model. The other is that the set of
predicates is insufficient to model the relevant behaviors of the system. In Section 3.1, we describe how
our algorithm deals with the fi rst case (we only show how to remove spurious transitions from the abstract
transition relation. The refi nement for an approximate set of abstract initial states is similar.). In Section 3.2
we deal with the case where the the set of predicates is not suffi cient.

3.1 Refi nement to Exclude Spurious Transitions

Given an abstract counterexample ce = (ceo, ce i , . . . , cen), if there exists i, 0 < i < n, such that the set
trans(i — 1, i) = R1"1 A j{cei-i) A 'y(cei) is empty, then we call the transition from ce^-i to cei a spurious
transition. That is, there are no concrete transitions corresponding to the abstract transition from ce^-i to cei.
Clearly, the counterexample is not a real counterexample. To determine whether trans (i — 1, i) is empty or
not, we convert it into a SAT unsatisfi ability problem. Since, in the most accurate abstract model, there is
at least one concrete transition corresponding to every abstract transition, spurious transitions exist only for
approximate abstract transition relations.

Since spurious transitions are not due to the lack of predicates but due to an approximate abstract tran-
sition relation, our algorithm removes spurious transitions by adding appropriate constraints to R. For the
spurious transition from ce;_i to cei, we have R1"1 A 7(ce;_i) A 7(ce;) <t> false. Therefore, Rl~l =>
('y(cei-i) —> 7(-«cei)). Note that ce^-i is a conjunction over the abstract state variables at time i — 1, and
-ice* is a disjunction over the abstract state variables at time i. Since the concrete transition relation does not
allow any transition from 7(cef_i) to 7(ce^) we should add the constraint utr(cei-i —» -ice*) to R. The
resulting transition relation is correct and disallows the spurious transition. The constraint ce^-i —> -ice* can
potentially involve most of the abstract state variables, thus making it very specifi c and not useful in general.
It is advantageous to make the constraint as general as possible (thus making the abstract transition relation
more accurate), provided that the cost of achieving this is not too large. In the rest of this subsection, we
describe an efficient algorithm which removes some of the literals from cet-i and cei in ce;_i —» -ice*,
making the constraint more general.

Computing A General Constraint. Let m be the number of predicates. The problem of fi nding a general
constraint to eliminate a spurious transition can be formalized as follows: Given propositional formulas / and
fj where 1 < j < 2m, which make / A /\1<j<2m h unsatisfi able, fi nd a small subset care C { 1 , . . . , 2m},
such that / A f\jecare fj is unsatisfi able. It is easy to see that if we let / = R~l and let each fj correspond
to the concretization of a literal in ce^-i or ce^ then we can drop those literals that are not in care from
ce^ i -+ ~^cei. The resulting constraint will be made more general. The set care can be effi ciently calculated
using the confict dependency analysis algorithm described in Section 2.

Before we run the SAT solver we need to convert / A / i A fa A • • • A f^m to CNF, and in this process
some of the / / s might be split into smaller formulas. Hence it may not be possible to keep track of all / / s .
To overcome this diffi culty, we introduce a new boolean variable tj for each fj in the formula and convert the
formula into

F = 3t!,*2 . . . Mm- / A f\ {tj A {tj = fj)). (7)
l 2m}

It is easy to see that this formula is unsatisfi able iff the original formula is unsatisfi able. Once (7) is translated
to a CNF formula, for each tj there is a clause Tj containing only one literal, tj. So, instead of keeping track
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of / / s directly we keep track of T/s . Since the CNF formula F corresponding to (7) is unsatisfi able, we
know that SUB(F) C F is unsatisfi able, where SUB(F) is defi ned as in Section 2. It can be shown that
care = {j \ Tj e SUB(F)} represents the desired set of / / s . Using the set care, we can add a more general
constraint to R.

It is easy to see that our algorithm only analyzes the search process of the SAT problem during which
the spurious transition was identifi ed. In [7], a potentially more general constraint than the one computed by
the above algorithm can be found. It works by testing whether each fj can be removed to keep the resulting
formula unsatisfi able. Their algorithm requires 2ra calls to a theorem prover, which is time consuming when
the number of predicates, m, is large. As presented in Section 2, the unsatisfi able subset SUB(F) may not
be a minimal unsatisfi able subset of F. Consequently, in general, the set care our algorithm computes is not
minimal. However, in practice, its size is comparable to a minimal set. It is easy to modify our algorithm to
make care minimal. After the set care is computed, we can try to eliminate the remaining literals one by one
as in [7], which requires \care\ additional calls to the SAT solver. Since the size of care is already small, this
is not very expensive.

3.2 Refi nement by adding a New Predicate

Even after we have ensured that there are no spurious transitions (and 7 (ceo) A So 7̂  0) in the coun-
terexample ce, the counterexample itself can still be spurious. Let n be the length of the given abstract
counterexample. We are interested in k such that 1 < k < n and the prefi xpk-i = (ceo, c e i , . . . , ce^-i) of
the counterexample corresponds to a valid path but pk = (ceo, c e i , . . . , ce^) does not. Formally, we call pk
a spurious prefi x if and only if prf(k — 1) 7̂  0 A prf(k) = 0. If there is no such k then the counterexample
is real. Otherwise, the set of states SA[Vk~1](prf(k — 1)) is called the set of deadend states, denoted by
deadend [5]. Deadend states are those states in 7(ce^-i) that can be reached but do not have any transition
to 7(ce/c). The set of states SA[Vk~1](trans(k — 1, k)) is called the set of bad states, denoted by bad [5].
The states in bad are those states in ^(cek-i) that have a transition to some state in j(cek). For a spurious
abstract counterexample ce without spurious transitions, let k be the length of the spurious prefi x of ce. Then
deadend ^ 0, bad ^ 0 and (deadend fl bad) = 0. As is pointed out in [5], it is impossible to distin-
guish between deadend and bad states using the existing set of predicates, because the abstraction of the
two is the same abstract state ce^-i. Therefore, our refinement algorithm aims to find a separating predi-
cate, sep, such that deadend C sep and sep C\ bad = 0 (the alternative defi nition for sep, which satisfi es
bad C sep A deadend D sep = 0, also works). After introducing sep as a new predicate, the abstract model
will be able to distinguish between the deadend and bad states. We call the set of concrete state variables
over which a predicate is defi ned the support of the predicate. Our algorithm fi rst identifi es a minimal set of
concrete state variables. Then a predicate over these variables that can separate the deadend and bad states is
computed.

Minimizing the Support of the Separating Predicate. An important goal of our refi nement algorithm is
to compute a predicate that can be represented compactly (called compact predicates for short). For large
scale hardware designs, existing refi nement algorithms, such as weakest precondition calculation, preimage
computation, syntactical transformation etc., may fail because the predicates they are trying to compute are
too big to be represented. Our algorithm avoids this problem by fi rst computing a minimal set of concrete
state variables that are responsible for the failure of the spurious prefi x. Our algorithm guarantees that there
is a separating predicate over this minimal set that can separate the deadend and bad states. It is usually the
case that the size of any representation of a predicate can be bound by the size of its support.

Our algorithm to compute the desired support is similar to the one used in fi nding the important reg-
isters in localization reduction in [2]. Since the CNF formula for prf(k) is unsatisfi able, we can use con-
fict dependency analysis from Section 2 to identify SUB(prf(k)) that is unsatisfi able. Let all the con-
crete state variables at time k - 1 whose CNF variables are in SUB(prf(k)) be fi(ce,k - 1). That is
/j,(ce,k - 1) = ssuppt[Vk"1](SUB(prf(k))). For the sake of brevity we will refer to fu,(ce,k - 1) as /x.
Let deadend ̂  = proj [fj](deadend) be the projection of the deadend states on JJL. Let bad^ = proj [jj](bad)
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be the projection of the deadend states on \x. It can be shown that

\x ± 0 A deadend^ n bad^ ^ 0. (8)

Thus any concrete set of states S\ that satisfies (S[ 2 deadend^) A (Si D 6adM = 0) is a candidate sepa-
rating predicate. To further reduce the size of ji and to make it minimal we use the refi nement minimization
algorithm in [2], which eliminates any unnecessary variables in fj, while ensuring that equation (8) still holds.
In most of our experiments, the size of fi was less than 20, which is several orders of magnitude less than the
total number of concrete state variables.

Computing Separating Predicates using SAT. Note that, any set of concrete states that separates deadend^
and bad^ is a desired separating predicate. We propose a new projection based SAT enumeration algorithm
to compute such a separating set, which can be represented effi ciently as a CNF formula or a conjunction
of DNF formulas. Our algorithm has three steps. First, we try to compute bad^ using a SAT enumeration
algorithm, which avoids computing bad fi rst. Since the size of \x is pretty small, this procedure can often
terminate quickly. If that is the case, our algorithm terminates and -^bad^ is the required separating predicate,
which is represented as a CNF formula. Otherwise, we try to compute deadendM using a similar method. If
this procedure fi nishes in a reasonably short amount of time, our algorithm terminates and deadend^ is the
desired separating predicate, which is represented as a DNF formula.

In the third case when both deadendM and bad^ can not be computed within a given time limit, we
compute an over-approximation of deadend^, denoted by ODE. It is possible that the set ODE overlaps
with bad^. Let SODE = proj [fj](ODE A bad) be the intersection of the two. Then the desired separating
predicate is ODE A -*S0DE, which is represented as a conjunction of DNF formulas. In most cases, SODE
is much smaller than bad^, so it can often be enumerated using SAT. If in a rare case, even SODE can not be
effi ciently enumerated using SAT (we do not encounter this problem for all our experiments.), we use other
methods to compute a new predicate. For example, an important register computed using algorithms in [2] can
be added as a new predicate to make sure the abstract model is refi ned. We now present a projection based
method to compute an over-approximation of deadend M. We partition the variables in \x into smaller sets
Hi,..., fii based on the closeness of the variables (the criterion for closeness is based on circuit structure [3]).
Because each set is small, we can compute each deadend^ easily. The over-approximation is ODE =
A deadend tli.

After the calculated separating predicate sep is added as a new predicate, suppose we introduce Bm+i as
the corresponding abstract boolean variable. Then we add the constraint i?m+i —• utr(cek-i —• ~~|ce/c) to
the abstract transition relation. It can be shown that the concrete transition relation implies the concretization
of this constraint. Therefore, the spurious counterexample is invalidated in the refi ned abstract model.

4 Experimental Results

We have implemented our predicate abstraction refi nement framework on top of NuSMV model checker [4].
We modifi ed the SAT checker zChaff [14] to support conflct dependency analysis. We also developed a Ver-
ilog parser to extract useful predicates from the Verilog design directly. We do not go into the details of the
parser due to lack of space. All experiments were performed on a dual 1.5GHz Athlon machine with 3GB
of RAM running Linux. We have two verifi cation benchmarks: one is the integer unit (IU) of the picoJava
microprocessor from Sun Microsystems; the other is a programmable FIR fi her (PFIR) which is a component
of a system-on-chip design. All properties verifi ed were simple AG properties. For all the properties shown
in the fi rst column of Table 1, we have performed cone-of-inflience reduction before the verifi cation. The
resulting number of registers and gates are shown in the second and third columns. We compare three ab-
straction refi nement systems, including the BDD based aSMV [5], the SAT based localization reduction [2]
(SLOCAL), and the SAT based predicate abstraction (SPRED) described in this paper. The detailed results
obtained using aSMV are not listed in Table 1 because aSMV can not solve any of the properties within the
24hr time limit. This is not surprising because aSMV uses BDD based image computation and it can handle
only circuits with hundreds of state variables, provided that good initial variable orderings are given. Since
the time to generate good BDD variable orderings can be substantial, we did not pre-generate them for any of
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circuit

IUscr2
IUscr3
IUscr7
IUprop4
PHRprop8
PFIRprop9
PFIRproplO
PFlRpropl2

#regs

4855
4855
4855
4855

244
244
244
247

# gates

149143
149143
149143
149143

2304
2304
2304
2317

ctrex
length

20
true

12
8

true
true
true
true

Localization
time

29115.0
4794.1
7332.1
5603.7

> 24 hours
>24 hours
> 24 hours
>24 hours

iters|#regs|
69
9

17
36

>37
>33
>46
>46

115
31
73
61

>91
>85
>94
>91

Predicate Abstraction
time

13515.0
2003.0
3869.8
3495.9
288.5

2448.7
6229.3
707.0

iters
22
10
10
13
68

146
161
111

# predicates
14
6
8
9

35
46
55
45

Table 1. Comparison between localization reduction [2] and predicate abstraction.

the properties. For the fi rst four properties from IU, SLOCAL takes about twice the time taken by SPRED.
Furthermore, the numbers of registers in the fi nal abstract models from SLOCAL are much larger than the
corresponding numbers of predicates in the fi nal abstract models from SPRED. For the rest of the four prop-
erties from PFIR, SLOCAL can not solve any of them in 24 hours because all the abstract models had around
100 registers. SPRED could solve each of them easily using about 50 predicates.

5 Conclusion

We have presented two SAT based counterexample guided refi nement algorithms to enable effi cient predicate
abstraction of hardware designs with up to thousands of registers. To reduce the abstraction time, an approx-
imate abstract model is built initially, which could result in spurious transitions. Once a spurious transition
is identifi ed from a given abstract counterexample using SAT, our fi rst SAT based refi nement algorithm elim-
inates this transition (and possibly many other related spurious transitions) without any additional calls to a
SAT solver. An abstract model may also fail to determine the result of verifi cation when the generated abstract
counterexample has a spurious prefi x. To eliminate a spurious prefi x, our second SAT based refi nement algo-
rithm can compute a new predicate with the minimal number of supporting concrete state variables. Usually,
the predicates our algorithm computes can be represented compactly as a CNF formula or a conjunction of
DNF formulas. Experimental results show signifi cant improvement of our predicate abstraction algorithms
over popular abstraction algorithms for hardware verifi cation.
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Abstract

Predicate abstraction has been widely used for model
checking hardware/software systems. However, for control
intensive systems, existing predicate abstraction techniques
can potentially result in a blowup of the size of the abstract
model We deal with this problem by retaining important
control variables in the abstract model. By this method we
avoid having to introduce an unreasonable number of pred-
icates to simulate the behavior of the control variables. We
also show how to improve predicate abstraction by extract-
ing useful information from a high level representation of
hardware/software systems. This technique works by fi rst
extracting relevant branch conditions. These branch condi-
tions are used to invalidate spurious abstract counterexam-
ples through a new counterexample-based lazy refi nement
algorithm. Experimental results are included to demon-
strate the effectiveness of our methods.

1 Introduction

Background. Abstraction based model checking has
been widely accepted as a valuable method for the verifi -
cation of large hardware/software systems. Predicate ab-
straction [1, 2, 3, 10, 11, 13, 16, 18, 19], in particular, is
one of the most successful abstraction techniques. In pred-
icate abstraction, the concrete system is approximated by
only keeping track of certain predicates over the concrete
state variables. Each predicate corresponds to an abstract
boolean variable. Any concrete transition corresponds to
a change of values for the set of predicates and is subse-

*This research is sponsored by the Semiconductor Research Corpora-
tion (SRC) under contract no. 99-TJ-684, the Gigascale Silicon Research
Center (GSRC), the National Science Foundation (NSF) under Grant No.
CCR-9803774. Any opinions, fi ndings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not neces-
sarily reffect the views of SRC, GSRC, NSF, or the United States Govern-
ment.

quently translated into an abstract transition. Using predi-
cate abstraction, it is possible to not only reduce the com-
plexity of the system under verifi cation, but also, for soft-
ware systems, to extract fi nite models that are amenable to
model checking algorithms.

Predicate abstraction is a special case of existential ab-
straction [6, 9, 15], which is a conservative approach for
model checking universal temporal logic [9] properties (we
only consider safety properties in this paper). That is, the
correctness of any universal formula on an abstract system
automatically implies the correctness of the formula on the
concrete system. However, a counterexample on an abstract
system may not correspond to any real path, in which case
it is called a spurious counterexample [7]. To get rid of a
spurious counterexample, the abstraction needs to be made
more precise via refi nement. Counterexample guided ab-
straction refinement [7, 13, 20] (CEGAR) automates this
procedure. It works as follows: For a given system, an ab-
stract model that is guaranteed to include all behaviors of
the original system is built. Model checking is then applied
to the abstract model. If the property holds, it is true of
the concrete model and verifi cation terminates. In case the
property is violated on the abstract model a counterexam-
ple is generated. This abstract counterexample is checked
against the concrete model. If the abstract counterexample
corresponds to a concrete execution path, the property is
proved to be false and verifi cation terminates. Otherwise,
the abstract counterexample is spurious and it is used to
guide the refi nement of the abstract model. The above pro-
cedure repeats until the property is confi rmed or refuted.

Motivation. It is usually the case that verifi cation effort is
focused more on the control logic than the data computation
because most bugs exist in designing the control logic. Tra-
ditional predicate abstraction techniques can perform badly
when verifying hardware/software systems which contain
extensive control structure {control intensive systems). The
control logic usually consists of concurrent state machines.
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Each of these state machines may depend on several control
variables, that encode the change of state. Since the behav-
ior of a control intensive system is determined to a large ex-
tent by the control variables, the number of predicates over
the control variables that are needed can be much larger than
the number of control variables. In such a case, it is better
to use the control variables as predicates, (called variable
predicates), instead of the original predicates (called origi-
nal or formula predicates). We propose a clustering based
heuristic to identify important control variables and retain
these control variables in the abstract model. By doing this
we also circumvent to a certain extent the problem of build-
ing the abstract model. This method works extremely well
in practice.

It is usually the case that different predicates are not in-
dependent. We describe effi cient methods to compute con-
straints between predicates, which are added as invariants
to the abstract model to make it more accurate.

Another issue that we address in this paper is the fol-
lowing: Current predicate abstraction methods do not make
use of information available in the high level descriptions
of the system under verifi cation. Most hardware/software
codesign tools use high level design languages, such as ES-
TEREL, graphical FSMs, RTL Verilog/VHDL, C/C++ etc.
But most model checking engines and existing verifi cation
tools use the bit level representation of the design under ver-
ifi cation. There is much useful information that is relevant
to verifi cation in the high level representation, which is lost
once it is translated to bit level representation. To retain this
information, we extract the branch conditions in RTL Ver-
ilog (the language considered in this paper) and use them
as predicates. This technique can be easily adapted to other
design languages.

For a given design, there are usually many branch condi-
tions that we can extract. Not all of them are relevant to the
verifi cation of a given property. We propose a lazy coun-
terexample based refi nement algorithm to effi ciently iden-
tify the branch conditions that are relevant.

Performance. Experiments we performed demonstrate
the effi cacy of our methods. In one series of experiments,
the current predicate abstraction methods could not verify
the given properties even after 24 hrs, whereas, our method
could verify the same properties in less than 15 mins.

Outline of the paper. In the next section we introduce
predicate abstraction and other relevant theory. In Section 3,
we give a clustering based heuristic to identify control vari-
ables and present a modifi ed localization reduction algo-
rithm to bound the size of the abstract model. Algorithms
to compute accurate abstract models are also discussed in
the same section. Section 4 gives the predicate extraction
and refi nement algorithm. Some related work is discussed

in Section 5. In Section 6, we describe our experiments.
Section 7 concludes the paper.

2 Preliminary

In this section, we review the theory of existential ab-
straction. We then present predicate abstraction and the
localization reduction as special cases of this concept.

2.1 Existential Abstraction

We model circuits and programs as transition sys-
tems. Given a set of atomic propositions, A, let M =
(S, So, R, L) be a transition system (refer to [9] for details).

Defi nition 2.1 Given two transition systems M =
(S, So, R, L) and M = (S, So, R, L), with atomic propo-
sitions A and A respectively, a relation p C S x S, which
is total on S, is a simulation relation between M and M if
and only if for all (s, s) G p the following conditions hold:

. L(s)f]A =L(s)f)A

• For each state Si such that (s, Si) G R, there exists a
state si G 5 with the property that (s, si) G R and
(si,s\) ep.

We say that M simulates M through the simulation relation
p, denoted by M -<p M, if for every initial state s0 in M
there is an initial state ŝo in M such that (so, sb) € P- We
say that p is a bisimulation relation between M and M if
M <p M and M ^ p - i M. If there is a bisimulation re-
lation between M and M then we say that M and M are
bisimilar, and we denote this by M =biS M.

Theorem 2.1 (Preservation ofACTL* [9])
LetM = (S, So, R, L) andM = (S, So, R, L) be two tran-
sition systems, with A and A as the respective sets of atomic
propositions and let p C S x S be a relation such that
M -<p M. Then, for any ACTL* formula, $ with atomic
propositions in An A

M f= $ implies M f= $.

In the above theorem, if p is a bisimulation relation, then
for any CTL* formula $ with atomic propositions in A D A,
M |= $ & M |= $.

Let M = (S, So, R, L) be a concrete transition system
over a set of atomic propositions A. Let S be a set of abstract
states and p C S x S be a total function on S. Further, let
p and L be such that for any s € S, all states s G S that
satisfy p(s, s) have the same labeling over a subset A of A.
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Then an abstract transition system M = (S,So, R, L) over
A which simulates M can be constructed as follows:

So =3s.S0(s)Ap(s,s) (1)
R(s, §') = 3s s'. p{s, s) A p(s', s') A R(s, s') (2)

for each s G S, L(s) = f] (L{s) D A) (3)
p(s,s)

This kind of abstraction is called existential abstraction [6,
15].

2.2 Predicate Abstraction

Predicate abstraction can be viewed as a special case
of existential abstraction. In predicate abstraction a set
of predicates { P i , . . . , P/J, including those in the prop-
erty to be verified, are identified from the concrete pro-
gram. These predicates are defi ned on the variables of the
concrete system. They also serve as the atomic proposi-
tions that label the states in the concrete and abstract tran-
sition systems, that is, the set of atomic propositions is
A = {Pi, P2, ••, Pk}- A state in the concrete system will
be labeled with all the predicates it satisfi es. The abstract
state space has a boolean variable Bj corresponding to each
predicate Pj. So each abstract state is a valuation of these
k boolean variables. An abstract state will be labeled with
predicate Pj if the corresponding bit Bj is 1 in that state.
The predicates are also used to defi ne a total function p be-
tween the concrete and abstract state spaces. A concrete
state s will be related to an abstract state s through p if and
only if the truth value of each predicate on 5 equals the value
of the corresponding boolean variable in the abstract state s.
Formally,

p(s,s)= /\ (4)

Note that p is a total function because each Pj can have
one and only one value on a given concrete state and so the
abstract state corresponding to the concrete state is unique.
Using this p and the construction given in the previous sub-
section, we can build an abstract model which simulates the
concrete model. We now defi ne the concretization function
7, which maps a set of abstract states to the corresponding
set of concrete states. Formally, let / be a propositional
formula over abstract state variables,

(5)

In predicate abstraction [19], the abstract initial states
and the abstract transition relation R are defi ned as

where Y (Yi) is an arbitrary conjunction (disjunction) of
the literals of the current state variables {Si, B2,..., Bk)
and Y' is an arbitrary disjunction of literals of the next state
variables {B'i, £'2, • • •, B'k}. It can be shown that (6) is
equivalent to (1) and (7) is equivalent to (2).

Equations (6) and (7) can be used to compute abstract
models for both hardware and software verifi cation. To de-
termine the validity of the proof obligations involved, a gen-
eral theorem prover, such as Simplify [17], is used. For
hardware verifi cation, a SAT solver, such as zChaff, can be
more effi cient. In practice, heuristics are used to reduce the
number of calls to the theorem prover [1,19]. In this paper,
to reduce the abstraction time, we restrict Y\ and Y' to be at
most one literal, and restrict Y to include at most two liter-
als. The model so obtained will be an over-approximation
of the abstract model. We rely on refi nement to compute a
precise enough abstract model when necessary.

2.3 Localization Reduction

Localization reduction [14] is also a special case of ex-
istential abstraction. In localization reduction, a set of im-
portant state variables, called visible variables, are retained
in the abstract model; while the rest, called invisible vari-
ables, are dropped (Their values are assigned nondetermin-
istically). The abstract transition is obtained by conjunct-
ing the transition relations for the visible variables. For-
mally, let V be the set of concrete state variables, and S be
the concrete state space. The value of a variable v 6 V
in state s e S is denoted by s(v). Given a set of vari-
ables U = {ui,v,2,. ••, v>k}, U C V, let su denote the
portion of s that corresponds to the variables in U, i.e.,
su = (s(ui)s(u2) - • • s(v,k)). Let U be the set of visible
variables. The set of abstract states for localization reduc-
tion is 5 = DUl x DU2... x DUk. The simulation relation
is p(s,s) — (su = s).

We also assume that neither the concrete transition re-
lation nor the set of initial states is described as a single
formula. Instead, for each individual variable v e V, the
transition relation of v is represented as a propositional for-
mula Rv and the set of initial states of v is represented as a
propositional formula Iv. Thus the abstract initial states So
and the abstract transition relation R are defi ned as

£0 = AveUIv

R = AvejjRv

(8)

(9)

So

R = /\{Y -+Y'\(R

(6)

(7)

It is usually the case that R depends not only on current and
next state variables on U, but also some invisible variables
(precisely those invisible variables that occur in some Rv

or Iv). In the abstract model, these invisible variables are
treated as primary inputs. In general, the abstract model for
localization reduction can be computed very easily, but the
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size of the abstract transition relation may be large since it
is directly copied from the concrete model.

3 Clustering Based Predicate Abstraction

In this section, we show how to use clustering based
heuristics to identify control variables. We present an al-
gorithm to build an abstract model by combining localiza-
tion reduction with predicate abstraction. This procedure
ensures that the size of the abstract model is bound by the
size of the concrete model. We also show how to use cor-
relations between predicates and control variables to make
the abstract model more accurate.

3.1 Identifying Control Variables

Predicate abstraction is suitable for handling variables
with large domains. Such variables are usually called data
variables. By replacing important formulas over concrete
data variables with abstract predicates, it is possible to re-
duce the complexity of verifi cation signifi cantly. Besides
data variables, there are other variables with small domains
(e.g., boolean variables) that control the behavior of the sys-
tem to be verifi ed. These variables are called control vari-
ables. Abstracting control variables does not give much
advantage. Because control variables typically have small
domains, the amount of reduction obtained by replacing
a predicate over several control variables with an abstract
boolean variable is not very signifi cant.

We propose a clustering-based heuristic to identify the
important control variables for the verifi cation of the given
property. Let { P i , . . . , P/J be the set of predicates. Each
predicate Pj is a boolean formula over a set of concrete state
variables, called the supporting variables of Pj. We parti-
tion predicates into small clusters. Initially, each predicate
is a cluster. We merge two clusters if the intersection of
their supports crosses a certain threshold (the support of
a cluster is the union of the supporting variables for each
predicate in the cluster). We continue this process until no
more clusters can be merged. Thus, the clusters we create
partition the predicates into disjoint sets (but the supporting
variables of different clusters may still overlap). Let c be
a cluster, the set of indexes of predicates in c be /(c), the
supporting variables of c be v(c). If all the variables in v(c)
are fi nite state, each variable can be represented by several
equivalent boolean variables which encode the domain of
this variable. The set of boolean variables for variables in
v(c) is called the set of supporting boolean variables. For
a cluster c, if the number of predicates is comparable to the
number of supporting boolean variables, then this cluster is
called a control cluster and the supporting variables of c are
regarded as control variables.

3.2 Combining with Localization Reduction

It is well known that, given n boolean variables, the
number of distinct propositional formulas over them is 22™.
Since control variables determine the control fbw of the
system under verifi cation, in order to approximate the be-
havior of the concrete system, many predicates over the
control variables may be necessary. Each of these propo-
sitional formulas may become a predicate during predicate
abstraction. Therefore, for the verifi cation of control inten-
sive systems, a blowup of the abstract model is likely when
using existing predicate abstraction methods. Furthermore,
building the abstract model using equations (6) and (7) is
time consuming. Both these problems can be avoided by
using our technique of combining the localization reduction
with predicate abstraction. Using our method, it is possible
to bound the size of the abstract model by that of the con-
crete model. We retain most the control variables in the
abstract model (the criteria for retaining a control variable
is discussed later in this section). The concrete transition
relations for these control variables also serve as abstract
transition relations after some minor modifi cations. So we
can circumvent the problem of building abstract transition
relations for all these control variables.

The modifi cation to the concrete transition relation is as
follows: for a supporting variable v G v{c), let Rv be the
concrete transition relation for v. Let R'v = Rv[Pj <—
Bj, for all j such that Pj is a formula predicate]. That is,
we replace all occurrences of every formula predicate Pj
in Rv by the corresponding abstract boolean variable Bj. If
R'v is fi nite state, that is, if there are no unbounded variables
or unbounded control (e.g., recursion) in it, then we use v
as an abstract state variable. In such a case we use R'v as
the abstract transition relation for variable v. In the termi-
nology of localization reduction, variable v is visible and
unabstracted. There is one major difference between local-
ization reduction and our method: In localization reduction,
the transition relation for a visible variable is copied from
the concrete model to the abstract model, whereas in our
method, we replace a subformula of the concrete transition
relation if that subformula corresponds to a formula predi-
cate. Doing this has two advantages: Firstly, even if Rv had
unbounded variables, Rf

v could be fi nite state because of
the substitutions. Secondly, the transition relations for the
control variables are modifi ed so that the abstract variables
corresponding to formula predicates constrain the possible
next states of the control variables. This leads to a more
accurate model.

Note that the abstract model built using the localization
reduction has more primary inputs (invisible variables) than
the abstract model built using predicate abstraction. This
can increase the size of the abstract model. Therefore, we
retain unabstracted only those variables whose next state
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logic has a small number of inputs.

3.3 Correlations between Control Variables and
Predicates

Our abstract model includes real predicates and control
variables. In this subsection, a method to correlate predi-
cates and control variables will be discussed. Recall from
Section 3.1 that the clusters we build partition the predicates
into disjoint sets (although the supporting variables of the
clusters may overlap). Our method replaces the predicates
in the control clusters by the supporting variables. There
might be other predicates which have these control variables
in their support. As an example, suppose we decide to drop
a predicate cluster {Pi = xV y,P2 = x Ay} and replace
the two predicates with the variables {x, y}. Suppose also
there are two additional predicates, P3 = x V y V z and
P4 = x A y A w whose corresponding abstract state vari-
ables are B3 and £?4, respectively. Thus, the abstract state
variables include x,y,B$,B±. Further assume that the next
state value for variable x is defi ned as -*z in the concrete
model. Note that the values of variables x, y and values of
£3, £4 are not independent. The following are three possi-
ble scenarios

• If we know that B% is false in an abstract state, then
x = false and y = false in that state.

• If we know x = false in an abstract state, then B4 must
be false in that state.

• If we know B3 is false in an abstract state, then in the
corresponding concrete states, z is false. Therefore, in
the abstract successor states, x will be true.

It is desirable to incorporate the correlations/constraints be-
tween control variables and real predicates into the abstract
model. This will make the abstraction more accurate. Our
method does not directly compute these constraints. In-
stead, we selectively introduce the concrete defi nitions of
some predicates into the abstract model as invariants. The
model checking procedure will enforce any implied con-
straints through these invariants. Note that, only formula
predicates whose supporting variables are all fi nite state
are considered in this method. For the above example, we
add z, w as two additional abstract input variables and add
the defi nitions of the two predicates as abstract invariants:
£3 = (x Vy Vz), and B± = (xAyA w). This will force the
abstract model to observe any constraints between variables
x, y and £3, B4. Note that by doing this we have added two
new variables z, w to the abstract model. This could make
the abstract model larger. To overcome this problem, we
add the defi nition of a predicate to the abstract model only
if most of the variables in the support of this predicate are
either control variables themselves (e.g. x, y for B3) or in

the support of control variables (e.g. z for x). In this way,
the added invariants will restrict the possible values of the
control variables and predicates. This will ensure we only
add a small number of additional variables, e.g., z and w.

3.4 Correlations Between Formula Predicates

It is also possible that the predicates in a non-control
cluster may not be independent, in the sense that not all
possible combinations of assignments to their abstract state
variables are possible. For the example in the previous para-
graph, when Bs = false, B4 must also be false. For a given
cluster c, let v(c) be the concrete supporting variables in c,
let I(c) be the indexes of the predicates in c. We defi ne
g(c), called the consistent abstract states over cluster c, as
follows

g(c) = {s I 3s e 5. / \ (Pj(s) = (10)

It is easy to see that any s 0 g(c) does not have any corre-
sponding concrete state and therefore it should be excluded
from the abstract model checking. We represent the com-
puted consistent abstract states for each non-control cluster
as invariant in the abstract model. It is possible to compute
a single set of consistent abstract states by conjuncting all
predicates instead of conjuncting predicates of each clus-
ter separately. Although this will result in a more accurate
constraint, it may be computationally expensive when the
number of predicates is large.

We now show how to compute g(c). We have two al-
gorithms depending on whether or not there are any un-
bounded variables in v(c). The first algorithm is based on
BDDs. It only works if all variables in v(c) have fi nite do-
mains. We can build BDDs for each Pj and Bj, then g(c)
can be calculated by conjuncting Pj(s) = Bj(s),j £ I(c)
and quantifying v(c). This is not expensive because the
number of predicates in a cluster is usually small. The sec-
ond algorithm is based on the abstraction function [19]. Let
Y(c) be a disjunction of literals over variables Bj, where
j e I(c). It can be shown that g(c) is the same as

/\{Y(c) true =» 7(Y(c))} (11)

Essentially, this equation says that a formula over the ab-
stract variables, Y(c), includes the set of consistent abstract
states if the corresponding concrete formula, 7(Y(c)), is
true. The second algorithm works for variables with both
fi nite and infi nite domains. For the fi nite case, a SAT solver
can be used; while for the other case, a general theorem
prover has to be used. Since the second algorithms may re-
quire solving true => 7(Y(c)) for all possible disjunctions
over variables in cluster c, it is usually slower than the fi rst
algorithm when variables have fi nite domains.
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4 Exploiting High Level Representation

In this section, we discuss how to improve predicate ab-
straction by using information from the high level represen-
tation of the design under verifi cation. We fi rst describe our
method for extracting branch conditions from RTL Verilog
and then we present our lazy-refi nement algorithm to refi ne
the abstract model.

4.1 Extracting Branch Conditions

High level design languages usually contain branch
statements, such as if, case statements. The if statement
has two branches, while the case statement may have mul-
tiple branches. Usually, a case statement can be converted
to multiple if-then-else statements that are equivalent to it.
We call the boolean predicates that determine which branch
to be executed, branch conditions. We intend to extract the
branch conditions and use them as predicates in predicate
abstraction.

For the purpose of model checking, the high level repre-
sentation of the system under verifi cation is translated into
a formula over the current and next state variables (referred
to as the transition relation). Each extracted branch con-
dition is translated into a subformula of the transition rela-
tion. For a branch condition, the corresponding subformula
of the transition relation is called the flattened branch con-
dition. The transition relation is further converted into dif-
ferent representations that are suitable for different model
checking engines. For example, it is converted to BDDs for
BDD-based model checkers, or CNF for SAT-based model
checkers. For a fattened branch condition, it is straightfor-
ward to identify the corresponding representation inside the
model checking engines.

We will describe a simple method to extract a set of fht-
tened branch conditions for RTL Verilog designs. We be-
lieve it is easy to generalize this method to other design
languages. One possible method is to develop a transla-
tor from RTL Verilog to gate level circuits, which can then
be easily converted into a transition relation. The main dis-
advantage of this method is the amount of work involved
in handling the semantics of Verilog, which is not formally
defi ned [12]. In practice Verilog is interpreted by a set of
standard commercial tools, such as Synopsys Design Com-
piler. Our method relies on the fact that commercial syn-
thesis tools already exist for Verilog. We fi rst convert the
RTL design into another equivalent design, where the rele-
vant branch conditions are renamed to signals with unique
names. An example is shown in Figure 1. We use the
continuous assignment statement in Verilog to rename the
branch conditions using unique signals, such that the mod-
ifi ed design is equivalent to the original one. After this,

ORIGINAL DESIGN

always @(posedge elk) begin
if (mode != NO_CONF) begin

end else if (a == b) begin

end
end

MODIFIED DESIGN

assign predl = mode != NO.CONF;
assign pred2 = a == b;
always @(posedge elk) begin

if (predl) begin

end else if (pred2) begin

end
end

Figure 1. Replace branch conditions using
unique signals

a gate level circuit is generated from the modifi ed design
using Synopsys Design Compiler. We further translate the
gate level circuit into a transition relation and the rattened
branch conditions can be identifi ed using the unique signal
names. Our method can be easily applied to other design
languages as long as there are language constructs to re-
name boolean predicates using new variables. Our method
can take advantage of existing translators, therefore the im-
plementation time is much shorter than building a translator
from scratch.

It is usually the case that there are many branch condi-
tions that we can extracted from a high level representation
of designs. Not all of them can be used as predicates to
build the initial abstraction, otherwise the abstract model
will become too large. We use the refi nement algorithm
in Section 4.2 to identify a subset of the branch conditions
which are necessary to invalidate the given spurious abstract
counterexample.

4.2 Counterexample-based Lazy Refi nement

In counterexample guided abstraction refinement, a
given spurious abstract counterexample is invalidated dur-
ing refi nement through the introduction of a set of pred-
icates, called invalidating predicates, into the abstract
model. Once an abstract counterexample is determined to
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be spurious, our algorithm identifi es a subset of the fattened
branch conditions as invalidating predicates.

We fi rst introduce some notation. Let / be a boolean for-
mula, we use ±f to denote / or / . Let v eVbea concrete
state variable, we use vf € V to denote the corresponding
next state variable. If / is a boolean function over F , then
/ ' is the same function over V.

The fattened branch conditions, which have not yet been
added as predicates, are called the candidate predicates. A
naive algorithm to compute the required set of invalidat-
ing predicates is the following: First, the set of candidate
predicates is ordered according to some importance crite-
ria. Using this order, candidate predicates can be added to
the abstract model one at a time and the given counterex-
ample can be checked on the refi ned abstract model. If the
counterexample is invalidated, the already added candidate
predicates will be the required set of invalidating predicates.
This naive algorithm has two disadvantages. One is that
the order of the predicates affects the size of the result. A
bad order may prevent the discovery of a smaller number
of invalidating predicates. Most importantly, the compu-
tation time is too high, because once a predicate is added,
the abstract model has to be updated as described in Sec-
tion 2.2. Instead, we have developed a new lazy refi nement
algorithm, which avoids computing the full refi ned abstract
model at each stage. Intuitively, in this algorithm, the given
abstract counterexample is extended by assigning 0, 1 or x
values to the abstract variables corresponding to the candi-
date predicates. A candidate abstract variable is given a 0
or a 1 value at time i if it can be determined from the coun-
terexample at time i — \ and i\ otherwise an unknown value
x is given. The counterexample is invalidated if it can not
be extended to the next time step. If that is the case, we per-
form a backward analysis from the time of failure until time
0 to identify those candidate predicates that are responsible
for this failure. The predicates identifi ed in this manner will
invalidate the spurious counterexample.

Suppose there are already m predicates in the abstract
model. Let ce = (ceo, c e i , . . . , cen) be a spurious abstract
counterexample. Note that, each ce j is a conjunction of lit-
erals over the set of abstract state variables Bi,..., Bm. Let
cp = {cpm + 1 , c p m + 2 , . . . , cpm+k] be the set of candidate
predicates, which are temporarily represented by abstract
state variables {J3m+i, B m + 2 , . . . , Bm+k} (These candi-
date predicates have not been added to the abstract model
yet). The example in Figure 2 illustrates how our algo-
rithm works. Suppose there are 2 predicates, 3 candidate
predicates and a spurious abstract counterexample of length
3. The counterexample contains values for predicates Pi
and P2 at each time from 0 to 2. Our algorithm fi rst deter-
mines the values for the candidate predicates at time 0. If
(50A7(ce0)) —> cpjis a tautology, then any valid extension
of ce0 must have the abstract variable corresponding to cp4

Bl
B2

B3
B4
B5

timeO

1
0

1
0
0

time 1

0
1

1
X
1

time 2

1
1

Figure 2. A refinement example

set to 0. The values of other candidate predicates at time 0
can be determined similarly. The resulting extended coun-
terexample at time 0 is denoted by eceQ. We then extend the
counterexample at time 1 to obtain ece\. For example, if we
can prove that

(R A 7(ce0) A cp3 A ~cpl A ~ A cpf
3 (12)

is a tautology (where cp'3 is the same as cp3 except that it
is over the next state variables), the value of this candidate
predicate must be 1. Note that we can not determine the
value of cp4 at time 1, therefore its value is unknown in the
extended counterexample. After ece\ is determined, if

(R A 7(cei) A cp3 A cp5) -> 7(ce2) (13)

is a tautology, then the counterexample can not be extended
to time 2, thus it has been invalidated. Finally, we iden-
tify the set of invalidating predicates. It is possible that
not all candidate predicates in the left hand side of equa-
tions (12) and (13) are necessary in showing that they are
tautologies. Only those in the proof of the tautologies are
necessary. Proofs can be obtained from proof generating
theorem provers (e.g., Simplify) and proof generating SAT
solvers [4]. Suppose, we can determine that cp3, cp5 in
equation (12) and cph in equation (13) are not in the respec-
tive proofs for those two implications. Then we can deduce
that, of all candidate predicates, cp3 alone is responsible for
disabling the transition from time step 1 to time step 2 (since
cp5 is not needed in the proof of equation (13)). Moreover,
of all candidate predicates, only cp4 at time 0 determines
the value of cp3 at time step 1 (since cp3, cp5 do not appear
in the proof of equation (12)). Thus the set of invalidating
predicates is {cp3, cp4}. Note, we have worked backwards
along the counterexample. We fi rst found some invalidating
predicates at time step 1 and then used that to fi nd more in-
validating predicates at time step 0. This is the basic idea of
our algorithm to fi nd the set of invalidating predicates.

We now present the lazy refi nement algorithm in detail.
Our algorithm is separated into three parts, the fi rst one,
which computes eceo, is shown in Figure 3. The second
one, which computes ece^i making use of ecei9 is shown
in Figure 4. The last one, shown in Figure 5, computes the
invalidating predicates as a subset of the candidate predi-
cates once the counterexample is invalidated.
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COMPUTEJNITIAL

let eceo = ceo

for each candidate predicate cpm+<?-
if (So A 7(ce0)) -» cpm+j is a tautology

llet eceo = eceo A J5m+J-
elseif (So A 7(ceo)) —• cpm+j is a tautology

let ece0 = ece0 A Bm+j
endif

endfor

Figure 3. Algorithm to compute ece0

The algorithm to compute eceo is similar to the algo-
rithm for computing the set of abstract initial states in Sec-
tion 2.2, except that we use So A 7(ceo) instead of So alone.
This makes sense because our goal is to extend the current
counterexample. The idea is to determine if the set of con-
crete initial states So and the concrete states corresponding
to ceo can imply either the truth or falsity of each candidate
predicate; otherwise the value of the candidate predicate is
unknown.

Given the extended counterexample at time i, the algo-
rithm in Figure 4 extends the counterexample to time i + 1.
It fi rst checks whether there are any concrete transitions be-
tween 7(ecei) and 7(cei+i). The code for this is given in
lines (1) to (4). If it is not the case, the counterexample has
been invalidated by the candidate predicates, the set of in-
validating predicates is calculated and returned in line (3).
If it is possible to make a concrete transition from 7(ece^)
to 7(cei+i), the algorithm will check whether a candidate
predicate is guaranteed to be true/false for such concrete
transitions. This is computed in line (7) and line (9) and
ecei+i is updated. If the counterexample can be extended
from time 0 until time n, the set of fattened branch condi-
tions are not enough to invalidate the counterexample. We
will resort to the traditional refi nement methods to compute
a new predicate [7] using SAT. Details can be found in [8].

If the counterexample is invalidated at line (1) in Fig-
ure 4, the algorithm in Figure 5 is called with the time t
and / = (R A 7(ece*)) —> 7(ce*+i). We use the set np
to hold all candidate predicates that are given a 0 or 1 value
in the time steps preceding t and result in the failure of the
counterexample. In line (1), np is initialized to all candidate
predicates that are directly responsible for the failure. This
is done by analyzing the proof for the failure of the coun-
terexample. In the loop between line (2) and line (6), we
go backward in time to fi nd the set of candidate predicates
that are indirectly responsible for the failure. Finally in line
(7), the set of invalidating predicates is returned. Note that,
in line (3), taut(i) is a subset of the tautologies we com-
puted from the algorithm in Figure 4. For each implication

Hi: time to extend counterexample
COMPUTEJNEXT(2)

1 if(RA 7(ecei)) —• 7(cef+i) is a tautology

2 let / = (R A y(ecei)) -> 7 ( ^ 1 )
3 return DETERMINE_PREDICATES(i, / )
4 endif
5 let ece^+i = ce;+i
6 for each candidate predicate cpm+j

(7
8
9

10
11
12

if (R A j(ecei)

let ece i+i =
elseif (R A7(e

tautology
let ecei+i =

endif
endfor

1 A 7(ce i + i ) ) - • cpf
m+j is a tautology

ece i+i A B m + i

xei) A 7(ce i + 1)) -+ cpf
mJtj is a

ece i+i A Bm+j

Figure 4. Algorithm to compute ecei+1

llt\ the time when extending counterexample fails

DETERMINE_PREDICATES(£, / )

1 let np = {(±Bm+j,t) I ± cpm+j is in the proof of / }
2 for i — t - 1 to 0
3 let taut(i) = {(R A j(ece{) A 7(ce i + i ) ) -> ±cp'm+q

{±B7n+q,i^rl) e np}

4 let prf = { proofs for the implications in taut(i)}

5 let np = npU {(±Bm+w,i) \

±cprnjtw is in any proof in prf}

6 endfor
7 return {cpm+J- | 30 < i < t. (±Bm+J9i) G np}

Figure 5. Algorithm to compute invalidating
predicates
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(R A 7(ecei) A 7(ce i +i)) -> ±cp'm+q in fcm*(i), we re-
fi ne the abstract transition relation/*! by conjuncting it with
ece; —> (ce»+i V ±B'm+q). Therefore, our algorithm not
only computes the subset of the fattened branch conditions
which can invalidate the given spurious abstract counterex-
ample but also computes the refi ned abstract model. Our al-
gorithm does not build the whole refi ned abstract model and
then test whether it invalidates the counterexample. Instead,
it gradually refi nes the abstract model until the counterex-
ample is invalidated. Therefore, our lazy algorithm can be
more effi cient than the naive algorithm.

5 Related Work

Some researchers have considered combining unab-
stracted control variables with predicate abstraction [16],
but their methods are not automatic. As far as we know,
no one else has considered the correlation between unab-
stracted control variables and predicates. Using the correla-
tions between all predicates to constrain the abstract model
has been investigated in [1]. The correlations are computed
using a general theorem proven We fi rst partition the set of
predicates into clusters based on the sharing of support sets,
then correlations are computed for each cluster separately.
Although our result is more approximate, the complexity of
our algorithm is much less sensitive to the total number of
predicates. We also give a BDD-based algorithm for the
verifi cation of fi nite state systems.

Exploiting high level language features for abstraction
has been investigated in [7]. They extract conditions of case
statements in the SMV language in order to build the initial
abstraction. The extraction method in [7] requires modify-
ing the source code of an existing translator from SMV lan-
guage to transition relations, therefore it can not be applied
to commercial tools. The extracted conditions are used only
for the initial abstraction; while we use a new refi nement al-
gorithm to check whether branch conditions can invalidate
the spurious abstract counterexample. The branch condi-
tions become predicates only when they invalidate a spuri-
ous counterexample.

Our counterexample-based lazy refinement algorithm
tries to identify the branch conditions that can invalidate
the spurious abstract counterexample, before using the tra-
ditional refinement methods to compute a new predicate.
Therefore, our algorithm is an extension of the existing re-
fi nement algorithms. Our experiments show that this new
refi nement algorithm can identify the set of predicates to
verify the given property much more quickly than the tradi-
tional methods alone.

Lazy abstraction for the verifi cation of C programs has
been investigated in [13]. The goals of their algorithm
and ours are different. In [13], the construction of the ab-
stract model and abstract model checking are performed

only from the state where the spurious abstract counterex-
ample fails on the concrete system. While our refi nement al-
gorithm identifi es a subset of the branch conditions that can
invalidate a spurious counterexample without constructing
the full refi ned abstract model.

6 Experimental Results

We have implemented our predicate abstraction refi ne-
ment framework in NuSMV [5]. We also modified the
zChaff SAT solver [21] to generate proofs of unsatisfi abil-
ity. We have two sets of benchmarks: one is the integer unit
(IU) of the picoJava microprocessor from Sun; the other
is a programmable FIR fi lter (PFIR) which is a component
of a system-on-chip design. The size of the benchmarks is
shown in Table 1. The fi rst column is the name of the prop-
erty. The fi rst three properties are from the IU design; the
remaining six are from the PFIR design. For all the prop-
erties shown in the fi rst column of Table 2, we have per-
formed cone-of-inflience reduction before the verifi cation.
The resulting number of registers and gates are shown in the
second and third columns. Most properties are true, except
PFIRscrl and PFIRprop5. The lengths of the counterexam-
ples are shown in the fourth column.

| circuit

IUscrl
IUscr3
IUscr6
PFIRscrl
PFIRprop5
PFIRprop8
PHRprop9
PFIRproplO
PHRpropl2

#regs

4855
4855
4855

243
250
244
244
244
247

# gates

149143
149143
149143

2295
2342
2304
2304
2304
2317

ctrex ||

true
true
true

16
17

true
true
true
true

Table 1. The benchmarks used in the experi-
ments

All these properties are diffi cult for the state-of-art BDD-
based model checker, Cadence SMV. Except for the two
false properties, Cadence SMV can not verify any in 24
hours. The verifi cation time for PFIRscrl is 834 seconds,
and for PFIRprop5 is 8418 seconds. In Table 2, we com-
pare predicate abstraction with and without the techniques
presented in this paper. In Table 2, the second to fourth
columns are the results obtained without our techniques;
while the last three columns are the results obtained with
the techniques enabled. We compare the time (in sec-
onds), the number of refi nement iterations and the num-
ber of predicates in the fi nal abstraction. In all cases, our
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new method outperforms the old one in the amount of time
used; sometimes over an order of magnitude improvement
is achieved. In most cases, we use fewer refi nement iter-
ations and smaller predicate sets to verify the given prop-
erties. A detailed analysis of the PFTR results shows that
the extraction algorithm extracted about 9 branch condi-
tions from the RTL Verilog, which were later used as pred-
icates. Without these extracted predicates, the set of predi-
cates computed using traditional refi nement algorithm was
not suffi cient to fi nish verifi cation within 24 hours (for 3
properties).

circuit

IUscrl
IUscr3
IUscr6
PFIRscrl
PFIRprop5
PFIRprop8
PFIRprop9
PFIRproplO
PFIRpropl2

Old
time
2000
2003
9976
746

1616
>24h
>24h
6808
>24h

iters
11
10
27

109
110

>276
>189

170
>223

pred
7
6

12
44
43

>80
>47

52
>52

New
time
1265
1974
3498

386
756
159
202
178
591

iters
7

16
20
67

101
40
43
50
80

pred
18
7

11
34
44
25
27
25
38

Table 2. Comparison without and with our
techniques

7 Conclusion

We have presented two techniques to improve predicate
abstraction for the verifi cation of hardware/software sys-
tems. We give an algorithm based on localization reduc-
tion to avoid the potential blowup of the abstract models
when verifying control intensive systems. This technique
builds a 'hybrid" abstract model, which includes predicates
as well as unabstracted control variables. It is usually the
case that the predicates/control variables are not indepen-
dent. We give algorithms to compute correlations between
them, which help to make the abstract model more accu-
rate. We also present algorithms to exploit information in
high level design languages. We give a simple method to
extract branch conditions from high level design represen-
tations. Using a new counterexample-based lazy refi nement
algorithm, the necessary branch conditions can be added as
new predicates to invalidate spurious abstract counterexam-
ples. Experimental results demonstrate the usefulness of
our methods.
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Abstract. Hybrid dynamic systems include both continuous and discrete state
variables. Properties of hybrid systems, which have an infinite state space, can
often be verified using ordinary model checking together with a finite-state ab-
straction. Model checking can be inconclusive, however, in which case the ab-
straction must be refined. This paper presents a new procedure to perform this
refinement operation for abstractions of infinite-state systems, in particular of
hybrid systems. Following an approach originally developed for finite-state sys-
tems [1,2], the refinement procedure constructs a new abstraction that eliminates
a counterexample generated by the model checker. For hybrid systems, analy-
sis of the counterexample requires the computation of sets of reachable states in
the continuous state space. We show how such reachability computations with
varying degrees of complexity can be used to refine hybrid system abstractions
efficiently. A detailed example illustrates our counterexample-guided refinement
procedure. Experimental results for a prototype implementation of the procedure
indicate its advantages over existing methods.

1 Introduction
Hybrid systems are formal models that include both continuous and discrete state vari-
ables. With the increasing use of hybrid systems to design embedded controllers for
complex systems such as manufacturing processes, automobiles, and transportation net-
works, there is an urgent need for more powerful analysis tools, especially for safety
critical applications. Tools developed so far for automated analysis of hybrid systems
are restricted to low-dimensional continuous dynamics [3]. The reason for this limita-
tion is the difficulty of representing and computing sets of reachable states for contin-
uous dynamic systems. Recent publications have proposed two general approaches to
deal with the complexity of hybrid system analysis, namely, modular analysis (e.g., [4,
5]) and abstraction (e.g., [6-8]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors
of interest [6]. In the context of hybrid system verification, abstraction transforms the
inherently infinite state system into a finite-state model [7,8]. Existing tools often do
not consider the property itself when building an abstract model. Rather, an abstract
representation is constructed for the entire hybrid system using a degree of detail which
seems to be appropriate. If the abstraction is not appropriate to analyze the property, the
whole abstraction process is started again, or the abstract model is globally refined [9].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model
and a safety property, (b) identifies parts of the hybrid system which potentially vio-
late the property, and (c) iteratively refines the abstract model until verification reveals
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whether or not the property in question is satisfied. A framework that follows this gen-
eral scheme of abstraction, refinement, and analysis, is counterexample-guided abstrac-
tion refinement (CEGAR) [1,10,2]: For a given system the initial abstraction leads to
a conservative model that is guaranteed to include all behaviors of the original system.
Model checking is then applied to the abstract model. If the property is violated, the
model checker produces a counterexample as an execution path for the abstract model
for which the property is not true. If the counterexample corresponds to a behavior
of the original system, then the property does not hold for the original system. Other-
wise, the information provided by the counterexample is then used to refine the abstract
model, i.e., some detail is added to the abstract model in order to obtain a more ac-
curate, yet conservative, representation of the original model. In particular, the refined
model is constructed so that it is guaranteed to exclude the spurious counterexample.
The procedure of alternating between model checking and refinement is continued until
the property is confirmed or refuted.

This procedure has recently been applied successfully to finite discrete systems in
a variety of domains, particularly for the verification of digital circuits [1,10]. Earlier
work that is based on the use of counterexamples includes the localization reduction in
the context of concurrent systems [2], and recent work has applied the technique to the
verification of C-programs [11,12].

This paper makes two important contributions. First, we extend counterexample-
guided model refinement to infinite-state systems. Second, we show how our new ap-
proach can be applied to hybrid systems, which include both continuous and discrete
state variables and thus have an infinite-state space. We provide effective means of cop-
ing with the difficulties of computing reachable sets for infinite state systems. In par-
ticular, we employ reachable set computations with varying degrees of complexity to
refine hybrid system abstractions efficiently. This flexibility cannot easily be achieved
with other verification tools for hybrid systems. We note that using counterexamples to
guide generation of discrete abstractions is being pursued independently by Alur et al.
at University of Pennsylvania.

The paper is structured as follows. Section 2 presents preliminaries on abstraction
and counterexample-guided refinement. In Section 3 we describe a new verification ap-
proach that refines abstract models of infinite state systems based on counterexamples.
We introduce hybrid systems in Section 4, and apply our new verification approach to
hybrid systems in Section 5. Section 6 presents conclusions.

2 Preliminaries
We introduce the notions of abstraction and counterexample-guided refinement in a gen-
eral setting for infinite state systems. The type of model we are working with throughout
the section is a transition system defined as follows:

Definition 1 Transition System. A transition system is a 3-tuple TS = (S. 50 , E) with
a (possibly infinite) state set S, an initial set So C 5, and a set of transitions E C
SxS. o

Given two transition systems A and C, A is said to be an abstract model of C if the
following relation can be established.

Definition 2 Abstraction. A transition system A = (S, So, E) with a finite set of states
S is an abstract model of a transition system C = (5. So, E), denoted A >: C, if there
exists an abstraction function a : S —> S such that:
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- the initial set is So = {sol 3s0 £ So : s0 — a(s0)}
- a n d £ D {(si ,s2) | 3si,s2 € S : (si .s2) 6 f i , s i = a(si),S2 = a(s2)}- o

Sometimes the term simulation is used in the literature to describe the abstraction
relation. In contrast to the definitions of abstraction in [1,10], Defn. 2 allows that A
includes spurious transitions, i.e., the set E may contain elements that do not corre-
spond to transitions in C. As a consequence the abstraction function in Defn. 2 does
not uniquely define A. Spurious transitions arise in the construction of abstractions of
hybrid systems because in most cases sets of reachable states for continuous systems
can not be represented and computed exactly.

Abstract models will be used to analyze properties of a given transition system.
Throughout the paper, we will call the given system C the concrete system.

In order to construct a more detailed model from a given abstract model, we define
the following concept of model refinement.

Definition 3 Refinement of Abstract Models. Given a concrete system C = (S, So, E)
and an abstract model A — (S.SQ,E) such that C < A, with abstraction function
a : S -+ S, a model A! = (S". So, E') is called a refined abstract model of C with
respect to A if two abstraction functions af : S —> S" and a" : S' —• S exist, i.e.,
C r< A' -< A. o

The property is verified for the concrete model C using an abstract model A. In this
paper we will consider the verification of safety properties, defined as follows.

Definition 4 Safety. Given a transition system TS = (S.S0.E), let the set B c S
specify a set of bad states such that So H B = 0. We say that TS is safe with respect
to B, denoted by TS \= AG->5 iff there is no path in the transition system from an
initial state in So to a bad state in B. Otherwise we say TS is unsafe, denoted by
TS \£ AG-.R o

Definition5 Counterexamples. A path a = (s0. s 1 ? . . . , sm) of TS = (S.So.E)
with sm € B is called a counterexample of TS with respect to the safety property
TS \= PiG-^B. Given a concrete transition system C, an abstract transition system
A, and a counterexample a in C, we say that <7 = {SQ. S\. £2 . . . . , sm) is the corre-
sponding abstract counterexample of the abstract system A, if s^ — a(si) holds for all
i e {0 . . . . , m). Given a counterexample a of A, a is called a corresponding concrete
counterexample if s^ = a(si) and (si? s^+i) € £. If a counterexample a of A has no
corresponding concrete counterexample for C, a is called a spurious counterexamples

Lemma 1. Given a concrete model C — (S.SQ.E), and an abstract model A =
(S.So.E) of C with an abstraction function a, let B C S, and B = {6 | 3 b £
B:b = a(b)}. If A (= AG-.B, r/ien C |= AG^B. •

If A |= AG-ijE? can be verified, it can immediately be concluded from Lemma 1
(i.e., without applying verification to the concrete system C) that C \= AG->£?. On the
other hand, the converse of Lemma 1 with respect to the AG-property is not possible.
If the verification of A reveals A \fc AG-«J5, then we cannot conclude that C is not safe
with respect to B, since the counterexample for A may be spurious. We call a method
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that checks whether or not a counterexample is spurious a validation method. If the val-
idation method discovers that the counterexample is spurious, then the counterexample
is used to refine A. We now introduce a scheme for counterexample-guided refinement
of abstractions to verify safety properties for a given concrete model. The basic princi-
ple is to repeat the following sequence of steps until the property is verified or refuted
[1]. The starting point is a concrete model C and an abstract model A (we propose in
Sec. 5.1 one specific way to obtain an initial abstract model for hybrid systems). For
a set B C 5 of bad states for C, we assume for simplicity that a(s) e B implies
s e B. The first step is then to analyze A \= AG->B by model checking. If this property
holds it can immediately be concluded from Lemma 1 that C is safe, too. Otherwise
a counterexample is obtained, and it must be validated whether it has a corresponding
counterexample in C. If there is a corresponding counterexample in C, then the safety
property does not hold for C. In the other case, i.e. the counterexample is spurious, the
counterexample is used to refine the model A. That is, a new and more detailed model
A' with C -< A' -< A is determined, which excludes the spurious counterexample.

The procedure of model checking, validation of the counterexample, and refinement
of the abstract model is repeated until the safety property is proved or refuted for C. The
pseudo-code in Fig. 1 summarizes this procedure:

ALGORITHM: Counterexample-Guided Abstraction Refinement: CEGAR
INPUT: Concrete model C and a set of bad states B
OUTPUT: B is (or is not) reachable

Generate initial abstract model A (bad states are called B)
Generate counterexample a by model checking A wrt. B
WHILE a exists DO

Validation of a
IF a validated THEN terminate with "B reachable"
ELSE

Generate refined model A! using counterexample <r
A:= A'
Generate next a by model checking A wrt. B

END IF
ENDDO
Terminate with "B not reachable"

Fig. 1. CEGAR: Scheme for verifying/falsifying C (= AG-^B based on counterexample-guided
abstraction refinement

The crucial steps in the CEGAR procedure are validation, refinement, and model
checking. With respect to model checking, standard algorithms for AG-properties can
be used [13].

The important step in validating a counterexample is the computation of successors
of states. We define an operator succ that determines the successor states from a given
set S C 5 by succ(S) = {s e S\3s £ S : (s, s) e E}. This set may not be exactly
computable for a given concrete model C, i.e. only over-approximations succ(S) D
succ(S) may be available. We first assume that succ(S) is computable.

A counterexample a — (so,..., sm) of A is then validated as follows: Let 5^ =
a~1(sk)9 k G {0 , . . . . m) denote the set of concrete states corresponding to an ele-
ment of <3\ The reachable parts of these sets are recursively defined by Sleach := 50 ,
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greach .__ succ(^s^h) n Sk, k € { 1 , . . . , m}. The counterexample is spurious iff
greach _ 0 applies for at least one k, and we say the counterexample is refuted. Other-
wise, the counterexample is validated, and B is reachable.

If the counterexample is refuted with Sk
each = 0, the model A is refined to a new

finite abstract model A' = (S", 5Q, £ ' ) (cf. Defn. 3). The refined model should take
into account that there are no concrete transitions from states in 5£!a

1
c/l to states in

Sfc. We therefore require that the set E' of A! does not contain transitions in the set
{(a'(si) ,a '(s2)) |3 si € Sr

k
e^h,s2 e Sk}. Thus, succeeding refined models will

exclude previously explored counterexamples. A method for the refinement of abstract
models for infinite-state systems will be presented in the next section.

3 Refinement of Abstract Models for Infinite State Systems
This section presents a specific method for refining an abstract model A for an infi-
nite state system. The main idea is to directly use the information obtained from the
validation procedure to refine some abstract states: Assume that the abstract model in-
cludes a transition between s\ and s2, while the validation of the counterexample has
revealed that only a subset of concrete states in S2 := OL~1 (S2) is reachable from con-
crete states in S\ := a~1(si). In this case we refine A by splitting s2 into two new
states. The first one, denoted by s2

each, represents the reachable subset of S2, given by
greach ._ succ(^g1

sj p| g2# The second one, denoted by So°mp, represents the comple-
ment of the reachable part, given by S2

omp := S2 \ S£eac /\ In addition, the abstraction
function that maps concrete states to abstract ones has to be refined, too.

Definition 6 Refinement by State Splitting. Given a concrete model C = (S.So.E)
and an abstract model A — (S,So,E) with an abstraction function a : S —> 5.
Let (si ,s2) G E be a transition of a counterexample a. Then, we define psput as
a refinement function that maps A, a, and (si.s2) £ E onto the refined abstract
model A' = (S'.SQ.E1) and the refined abstraction function af : S —> 5", i.e.,
(A', a') = pspiit(A. a, (si.s2)), defined as follows:

- S' = (S\ s2) U {sr
2
eacked, sc

2
omp}

( a(s) if s # S2

preach [f g £ greach
sc

2
omp if seSc

2
ornp

- Sj> = {s' e S'\a"(s') e So}
- E' = {(si.s;

2) G S' x S;|3Si.s2 e S : (Si.52) e E A h = o//(S/
1)As2 -

/ / ( / ) } \ ( ? > m p )

where a" : Sf -* S maps s' onto itself if §' & {sr
2
eacked,sc

2
omp}, and on s2

otherwise. o

Lemma 2. Let A = (S.S0,E) be an abstract model of C = (S,S0,E) with the
abstraction function a : S —> S. For a given transition (si,s2) e E, assume that
greach ^ 0 hoMs Then9 ( ^ a,) .= p^.^A, a, (si,s2)) satisfies A^A'^C. D

As a next step, we consider the case where the set of successors of Si and the set
S2 are disjoint. In this case, we can simply omit the corresponding abstract transition.
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Definition 7 Refinement by Eliminating a Transition. The function ppurge is a refine-
ment that maps an abstract model A = (5 ,5 0 , E), an abstraction function a : S -> S
and a transition (si,s2) € £ onto A' = (5, 50 , £ ' ) with Ef = E\ (Si, s2). o

Lemma 3. Let A = (S,So,E) be an abstract model of C = (S,So,E) with the
abstraction function a : S —> S. For a given transition (si,s2) € E, assume that
greach = 0 ho[ds Therli # . = Ppurge(A, a, («i, s2)) satisfies A h A! ^ C. D

Based on these results, we now present a more specific formulation of the CEGAR

algorithm in Fig. 2, called INFINITE-STATE-CEGAR, which uses the functions psput
and PpUrge for refinement.

ALGORITHM: INFINITE-STATE-CEGAR
INPUT: Concrete model C and a set of bad states B
OUTPUT: B is (or is not) reachable

Generate initial abstract model A and abstraction function a
B := a(B)
Generate counterexample a = (s0, • • •, sm) by model checking of A wit. B
or each . _, — 1 / £ \

WHILE <7 exists DO
// validation of counterexample
k:=0

WHILE 5fceacAl # 0 AND fc<mDO
A: : = A: H-1

ENDDO
// if counterexample is validated, then terminate, else refine
IF Sleach / 0 THEN terminate with "B reachable"
ELSE

FOR/ = l , . . . , f c - 1
// split abstract state si into two: one that corresponds
// to S{each and one that corresponds to a" 1 (sj) \ 5z

reac / l

IF Sr e o c / l^ a"1 (sz)
THEN (A, a) := psput(A, a, ii-i, sz)
END IF

ENDFOR
// remove spurious transition between s^-i and §k
A := PpWrge(^, « , Sfc-1 , 5fc)
Generate 6" by model checking of A wrt. 5

ENDIF
ENDDO
Terminate with "B not reachable"

Fig. 2. INFINITE-STATE-CEGAR.

Correctness of the algorithm is implied by the following two lemmas.1 Note that
termination of the algorithm cannot be guaranteed as the number of states in the con-
crete model may be infinite, and a finite abstract model to verify (or disprove) the given
property may not exist.

1 The proofs of all lemmas in the paper can be found in the Appendix.
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Lemma 4. If the algorithm terminates with "B reachable", then C \fi AG^B. •

Lemma 5. If the algorithm terminates with "B not reachable", then C (= AG-*B. D

The proposed procedure of validating counterexamples and refining abstract mod-
els is based on the computation of successor states. Alternatively, one could formulate
a similar algorithm that uses sets of predecessors, or even a combination of both as
presented in [1] and [10].

The INFINITE-STATE-CEGAR algorithm in Fig. 2 is based on the assumption that
sets of successor states are exactly computable. Lemma 5 holds, however, also if suc-
cessor states are not exactly computable, and instead only over-approximations of the
set of successor states can be computed. If only under-approximations of successor sets
can be computed, Lemma 5 will not hold, but Lemma 4 will. For the class of hybrid
systems considered in the following section only over-approximations of successor sets
are computable.

4 Hybrid Systems
Hybrid systems are a class of infinite state systems that include both continuous and
discrete state variables. This section presents the syntax and semantics of hybrid au-
tomata, which are used to model hybrid systems. We will illustrate these definitions
with an example that models a simple car controller. The same example will be used in
later sections to illustrate our new approach to the verification of hybrid systems.

4.1 Definition of Hybrid Automata

Definition 8 Syntax of the Hybrid Automaton HA. A hybrid automaton is a tuple
HA = (Z. zo, X, inv, Xo, T, g,j, f) where

- Z is a finite set of locations with an initial location z0 € Z.
- X C Rn is the continuous state space.
- inv : Z —> 2X assigns to each location z £ Z an invariant of the form inv(z) C X.
- Xo C X is the set of initial continuous states. The set of initial hybrid states of HA

is thus given by the set of states {20} x ^o-
- T C Z x Z is the set of discrete transitions between locations.
- g : T —> 2X assigns a guard set g((zi, z2)) C X to t = {z\,z2) € T.
- j : T x X -» 2X assigns to each pair {z\«z<i) £ T and x £ g((zi.z2)) a jump set

3({zi,z2),x)CX.
- / : Z —> (X —> Rn) assigns to each location z € Z a continuous vector field

f(z). We use the notation fz for f(z). The evolution of the continuous behavior in
location z is governed by the differential equation x(t) = fz{x(t))- We assume that
the differential equation has a unique solution for each initial value x(0) G Xo. o

The semantics of HA is defined by means of a trace transition system. Each state (z,x)
in the trace transition system corresponds to a continuous state x within location z. Two
such states, (zi.xi) and (22?#2), are connected by a transition in the trace transition
system if and only if state (z2, x2) can be reached from state (zl5 x\) by a continuous
evolution within location z\ followed by a discrete transition to location z2.

Definition 9 Semantics of the Hybrid Automaton HA. The semantics of a Hybrid au-
tomaton HA is a transition system TTS — (S.SQ.E) with:
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- the set of all hybrid states (z, x) of HA,

S=\J |J (z,x) (1)
xEinv(z)

the set of initial hybrid states So = {zo} x Xo,
transitions (si .s2) € Ewiths1 = (z1,x1)Js2 = (z2, x2), iff there exists (zu z2) €
T and a trajectory x • [0, r] —> X for some r G R > 0 such that:

( ) ( )

forte[0,r],
X(t) einv(zi) forte [0,r],
^2 G inv(z2).

A path a = {s0. si, «2j • • •} of TTS is called a frace of HA, and we refer to TTS as
the frace transition system of i / A o

Definition 10 Safety of a Hybrid Automaton. For a hybrid automaton i/^4 with a se-
mantics as in Defn. 9, let 2& G Z \ {s0} denote an unsafe location. # A is said to be
safe with respect to z&, denoted by I T S (= AG-»z& iff for all traces a applies: $s € a
with s = (zb, x) for some x G X. We write TTS \fi AG-iz6 otherwise. o

The extension of the analysis task to multiple initial locations and/or multiple unsafe
locations is straightforward but is omitted here for simplicity.

4.2 Example

As a motivating example, we use a simple controller that steers a car along a straight
road. The car is assumed to drive at a constant speed r = 2, and its motion is modeled
by the horizontal position x (x = 0 corresponds to the middle of the road) from the
middle of the road and the heading angle 7 (7 = 0 corresponds to moving in the
vertical direction). Fig. 3 shows a scenario in which the car drives initially on the road.
The controller is able to detect whether the car is on the left or right border (i.e. x < — 1,
x > 1) - whenever the car enters the left border, the controller forces it to turn right
until the car is back on the road again. Then a left turn is initiated, and continued until
the car is again going straight ahead in the direction of the road, i.e. when the heading
is aligned with the road (7 = 0). A similar strategy is employed when the car enters the
right border.

Fig. 4 shows a hybrid automaton model of the controlled behavior for the car. Be-
sides the position x and the heading angle 7, the description includes an internal timer
c, that the controller uses to time the steering manoeuvres. The differential equations for
these three continous variables depend on the location: we have x = — r • sinfr) in all
locations except of in.canai. The derivative of 7 varies when a border is reached. On the
border the motion of the car describes an arc with the angular velocity 7 = —cu = — TT/4
(or u) = TT/4 respectively), i. e., the arc is part of a circle with radius r/uo. The timer
c measures the time period which the car spends on a borders. In the correction modes
the timer decreases with double rate, i.e., the correction takes half the time as the car
was on the border before. Since the sign of 7 is reversed when the car moves back on
the road, the angle has the value zero when the correction mode is left (c = 0), i.e., the
car moves then along the road. During this correction it might, however, happen that the
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Fig. 3. i) Initially, the car drives on the road with heading angle 7. ii) If the controller detects that
the car left the road, it corrects the heading by turning right to avoid the canal. Hi) Once the car is
back on the road, a left turn is initiated until the car moves straight again.

other border is reached, which means that the controller then switches to the strategy of
the corresponding location.

The three continuous variables are initialized to — 1 < x < 1 (the car is on the road),
—TT/4 < 7 < TT/4, and c = 0. It has to be verified for this set of initial states whether
the given control strategy guarantees that the unsafe location in.canai (z^) is never
reached. The following sections present how this task can be solved by abstraction-
based and counterexample-guided verification.

ccrrect-left

x - -rsin(-Y)

7 = u>

c = -2

-1 < x < 1

c > 0

c - 0 x = -rsin(7)

7 = 0

c = 0

c - 0

correct-right

x — -r sin(7)

c = -2

-1 < x < 1

c > 0

left-border

x = -rsin(7) x = -rsin(7;

T - i < x < 1

7 € [-7r/4,-ir/4]

|c = 0

Fig.4. Hybrid automaton that models the car steering example. Location in.canai has to be
avoided. For each location, the continuous dynamics of the three variables x, 7 and c is described
by differential equations, and invariants are specified as inequalities. Guards and jumps are as-
signed to the transitions, e.g., a transition from location go.ahead to l e f t .boarder is possible
if the value of x is 1, and then the value of c is set to zero.

5 Refinement of Abstractions for Hybrid Systems
This section applies the general concepts of Section 3 to the particular class of infinite
state systems of hybrid systems.

We present specific solutions for the two crucial steps, the validation of counterex-
amples and the refinement of abstract models. The key to the validation step is the
computation of successor states for a given set of states in the trace transition system.
Starting from the initial set, the validation procedure computes the successors along the
counterexample until either the unsafe location zsp is reached or a transition is deter-
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mined to be spurious. The computation of sets of successors states is usually the most
expensive step in hybrid system verification. Moreover, successor sets can be com-
puted and represented exactly only for certain sub-classes of hybrid systems [15,16].
However, several approaches to over-approximate successor sets have been published,
as e. g., successor set approximations by orthogonal polyhedra [17], general polyhe-
dra [18], projections to lower dimensional polyhedra [19], or ellipsoids [20]. Most of
these approaches aim at providing an efficient way to obtain conservative but tight ap-
proximations to sets of reachable states for hybrid systems.

The verification framework presented here can include different techniques to over-
approximate the set of successors. The idea of using different methods is motivated
by the trade-off between the accuracy and the computational complexity of different
methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a
counterexample, there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton
can be obtained, and then focus on the validation of counterexamples and the refinement
based on the use of different methods for computing successor states.

5.1 Abstraction of Hybrid Systems

For the first step of the INFINITE-STATE-CEGAR algorithm, the construction of an
initial abstraction, we introduce one abstract state for each location of HA. This means
that two hybrid states {z^xi) and (ZJ.XJ) of TTS are mapped to the same abstract
state if and only if z\ = Zj. This rule applies for all but the initial location, for which we
introduce one abstract state s0 to represent all initial hybrid states of TTS, and another
one (sf

0) to represent the remaining hybrid states corresponding to the location ZQ\

Definition 11 Initial Abstraction of Hybrid Systems. Given a hybrid automaton HA
with Z — {zoi z\,..., zUz}, let S denote the set of hybrid states as defined in (1). For
i e { 0 , 1 , . . . . nz}, we define the abstraction function a : S —• S by:

{ s0 if i — 0 A x G XQ

s'oifi = 0Ax(£Xo (2)

Si otherwise
and the initial abstract model A = (S ,5 0 , E) is defined by (i e { 0 , 1 , . . . . n}, j e
{ 0 , 1 , . . . , n*}):

- S = {so.so,Si,. . . ,Sn}
- 50 = {so}
- E = {(5*, SJ)\(ZU Zj) eT}U {(sf

0: Sj.JK*), ZJ) eT}U {(si, s'0)\(zi, zo) e T} o

The initial abstract model represents the discrete structure of the hybrid system
without regarding the continuous dynamics and guards. Given this definition, it has to
be shown that A is indeed an abstract model of the underlying trace transition system,
i.e., that it fulfills Defn. 2:

Lemma 6. For HA with trace transition system TTS = (5, So, E), let A = (S, So, E)
denote the initial abstract model for TTS.' Then, A h TTS. •
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Example (cont.) Fig. 5 depicts the initial ab-
stract model of the hybrid system in Fig. 4. It is
a copy of the discrete part of the hybrid system,
except that the initial location is divided into
two parts: s0 represents the states in location
go.ahead With £ G [—1. l], 7 G [—7r/4, 7r/4]
and c = 0, and s'o all other states in go-ahead.
The abstract states si to s6 represent the hy-
brid states of the other locations (left_border, pjg 5. initial abstract model of the
right .border, correct-left, correct-right, hybrid System depicted in Fig. 4
straight-ahead and in.canal, respectively). •
5.2 Over-approximation of the Sets of Successors

We now turn to the point of computing sets of successor states, as required in the valida-
tion and refinement steps. The goal is to use different over-approximations with differ-
ent precisions and different computational needs. We first define an over-approximation
operator of the successor relation for a tuple of sets of states. The operator conserva-
tively approximates which states in the second set (target set) are successors of states in
the first set (source set).

Definition 12 Over-approximation of successor states. Let HA be a hybrid automaton
with the trace transition system TTS = (S, So, E), and let A and a be defined as in
Defn. 11. For a transition (s\, s2) G E of A, we call Si := a~l(s\) the set of hybrid
source states and S2 := a" 1 (^2) the set of potential hybrid successor states. Then,
succ : (2s x 2s) —•> 2s is an over-approximation of the hybrid successor states in 52
iff the following holds:

- succ(SUS2) C S 2 ,
- for all si G Si and s2 G S2 \ s~ucc(Si, S2), (si, s2) £ E. o

A possible explicit realization of the operator succ combines the following steps:
(a) By approximating the continuous evolution for all states in Si, the reachable subset
of the guard set g(t) is determined, where t = {z\,z2) G T is the transition of HA
that corresponds to the transition (si,s2) G E of A. Usually, this step is the most
costly of the whole verification procedure; (b) the jump function j(t. x) is applied to all
hybrid states {z\. x) which are in the reachable subset of g(t); (c) the image of j(t,x)
is intersected with the set S2 of potential hybrid successor states.

Example (cont.) Our prototype implementation uses two different methods, succcoarse

and sUcctight, to over-approximate the set of successor states. Fig. 6 illustrates these
two methods for the discrete transition from correct-right to lef t_border. For loca-
tion correct-right we choose Si as subset of the plane x — 1, and S2 as all states of
location ieft_border that satisfy the invariant - 2 < x < - 1 . Fig. 6 depicts Si and
the face of S2 that coincides with the guard x = — 1. The transition is not spurious, if
there exists a trajectory that starts in Si, and ends in S2 without leaving the invariant of
correct-right ( -1 < x < 1 A c > 0). Fig 6 i) depicts a number of trajectories that
start in Si, none of them reaches S2.

The first method ~succcoarse poses the existence question for a trajectory between
Si and S2 as an optimization problem. The distance between a trajectory and S2 is
defined as the minimum distance between all points on the trajectory and S2. If the
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ii)

Fig. 6. All trajectories that originate in S\ leave the invariant when c = 0, and none of them
comes close to £2. Figure i) shows the result of the optimization method. Figure ii) the result of
the method that enclose the trajectories by polyhedra.

global minimum over all trajectories that start in Si is strictly greater than zero, then
no successor state of Si exists in 52- In this case succcoarse returns an empty set.
If the minimum distance is zero, at least one corresponding concrete path exists, and
~succcoarse returns the complete set £2 as an over-approximation of the set of successor
states. The bold trajectory in Fig. 6 i) is the optimal trajectory. Its distance to 52 is
greater than zero, and there is hence no trajectory from Si to 52.

The second method succtight computes polyhedra that encloses all trajectories that
originate in S\. This over-approximation with polyhedra is based on work presented
in [18]. The set of successor states 'succtigflt(Si, S2) is then obtained by intersecting
the polyhedra with 52. Fig. 6 ii) shows that this intersection is empty, i.e. there are no
successors of Si in S2. •

5.3 Validation and Refinement

The INHNITE-STATE-CEGAR algorithm makes a clear distinction between the valida-
tion of a counterexample, and the refinement of the abstract model. For hybrid sys-
tems, we propose a slightly different approach, in which the steps of validation and
refinement are interleaved. We assume to have a set of over-approximation techniques

. . , ~succn that can (but not necessarily need to) establish a hierarchy of coarse
to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a coun-
terexample is shown in Fig. 7. Let u = (SQ, . . . . sm) denote a counterexample of the
abstract model A. The algorithm consists of two nested loops. The outer loop corre-
sponds to checking each transition of the counterexample. The inner loop applies each
of the over-approximation techniques to the current transition of the counterexample,
and, depending on the result, one of the two refinement operations is executed: If an
over-approximation technique ~succi reveals that the current transition is spurious, i.e.
preach _ ^ t j i e n tke transition is removed from the abstract model by ppUrge- When
a transition is removed, the set of behaviors of A does not include the current coun-
terexample anymore, and thus the combined validation and refinement of the current
counterexample is completed.

If on the other hand, Hucci returns a non-empty set S^each and this set is a true subset
of the states corresponding to Sk, the function psput divides §k into two states sr

k
each and

comp ( ch J)§comp
c_15 ss

reach S
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FORk = l , . . . , m
FOR I = l , . . . , n

Sr
k
each : ( F f , ( ) )

IF STac/ l = 0
-4 := pVurge{A, Sfc_i,Sfc),
RETURN //jump out of both loops

ELSElF5fceach £ a"1^*.)
(i4,Q):=p.piit(i4,Q,S fc_i,5 fc,Si;eoch)

END IF
ENDFOR

ENDFOR
Fig. 7. Refinement and Validation Steps for Hybrid Systems.

remains a counterexample of the refined model. Thus the algorithm continues with the
next transition (k + 1) until either Sr

k
each = 0 or until the last transition of the coun-

terexample is validated.
There is some freedom in combining the steps of validation and refinement, i. e., the

scheme in Fig. 7 is just one possible implementation. One interesting alternative is to
apply the coarsest method for validation first to all transitions in the abstract counterex-
ample, or to apply state splitting (psput) only based on the result of the most accurate
approximation method Juccn.

The algorithm as proposed in Fig. 7 has two possible outcomes: either it is proved
that a forbidden state cannot be reached or that there exists a counterexample that can-
not be refuted. Since the validation procedure relies on over-approximations, it can
not be guaranteed that this abstract counterexample corresponds to a concrete one.
In this case, under-approximations of sets of successor states can possibly be used
to prove that a counterexample exists: Assume that the procedure terminates with a
counterexample a — (so, s i , . . . . s^ , . . . . sm) , no transition of which could be re-
futed. Similar to Defh. 12, we can define an under-approximation of successor states
greach = 8UCC(greach^ a-i($ f c)) which returns a set Sr

k
each C a~l(sk) for which it is

ensured that it only contains true successors of 5£fa
1
c/l. If this operator is applied along

the counterexample (from k = 1 to k — m) and 5£eac/l / 0 applies, there exists at least
one path for the hybrid system which violates the safety property.
Example (cont) The requirement that the hybrid model in Fig. 4 should never en-
ter the location in.canai translates into the reachability question for state s& of the
abstract model in Fig. 5. The first counterexample for the initial abstract model is
o\ — (^0;^i;^6) (see Fig. 8(i)). The validation procedure considers first the transi-
tion (so? s\) which corresponds to the transition between go_ahead and ieft_border in
the hybrid automaton. As a first step, 'succcoarse(So, a'1 (s\)) is computed with the
result that the minimum distance over all initial states is zero. This is obvious from the
fact that those states of the initial set for which x = — 1 enable the transition guard im-
mediately. Thus, ~succcoarse returns the entire invariant of location lef tborder as set
52 . The next step is to compute S£eac/i = ~succtight(So, a~l (si)). The algorithm then
splits Ji such that s\ represents the set S2 e a c / \ and the new abstract state s[ represents
S2 \ Sr

2
each (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the transition (s\ ,se)is con-
sidered next. Method ~succcoarse finds that the minimal distance between the trajectories
that start in 5£ e a c / \ and the guard x — - 2 is greater than zero. This means no trajectory
reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).
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(vii) T (viii) T (ix)

Fig. 8. Counterexample guided abstraction illustrated for the car steering problem.

The procedure continues with the next counterexample a2 = (so, £2,54, s[, s6), as
depicted in Fig. 8 (iv). As for the first counterexample, the abstract state s2 is split into
the states that are reachable from the initial set So, and the remainder (Fig. 8 (v)). Then,
the procedure moves one transition ahead and splits state 54 as a result of applying
'succught- The reachable part is represented by s4 in Fig. 8 (vi). Method ~succcoarse

then finds that one cannot reach any state that is represented by s[ from this set, and the
transition (§4, s[) can be deleted from A (Fig. 8 (vii)).

The final counterexample is a3 = (SQ.SI, S3, S'2,S'4, S^.SQ). The state si was al-
ready split for the first counterexample. Similarly to the procedure for the counterex-
ample (72, abstract state £3 is split as depicted in Fig. 8 (viii). It can then be shown that
transition (s3, s2) is spurious, which eliminates the last counterexample (Fig. 8 (ix)).
Consequently, the abstract state s^ is not reachable, and thus the same applies for the
location in.canai of the hybrid automaton. •
5.4 Experimental Results

Experimental results for a prototype implementation of the procedure indicate its ad-
vantages over existing methods. We compare INFINITE-STATE-CEGAR with a method
based on breadth-first application of the successor operator succtight- Breadth-first ap-
plication is the most prevalent method used for model checking hybrid systems. This
approach needs 175 second cputime on a Pentium 4, 1.4GHz, to compute that location
in.canai is not reachable.

INFINITE-STATE-CEGAR together with only one of the two over-approximation
methods, 'succtig}xu takes about 120 seconds to verify that the system satisfies the prop-
erty. As in in the case of the breadth-first methods, 99% of the cputime is spend on
computing succught- If INFINITE-STATE-CEGAR employs both approximation meth-
ods, then the time is cut in about half. The algorithm takes 68 seconds for the verifica-
tion, of which 64 seconds ares used to compute ~succtigflt, and 3 seconds to solve the
optimization problems of succcoarse.
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6 Conclusions
This paper presents a new method for using counterexamples to refine abstractions of
hybrid systems. The principal alternative for verifying the safety properties considered
in this paper is to compute the reachable states for the hybrid system using a breadth-
first application of the successor operator succ. It is apparent that the INFINITE-STATE-

CEGAR procedure can be faster than breadth-first reachability when the safety prop-
erty does not hold for the concrete system, since in this case it is possible that the
model checker will quickly find a true counterexample. On the other hand, if the safety
property holds, refuting one counterexample may implicitly refute others. However, the
INFINITE-STATE-CEGAR procedure may continue until all possible counterexamples
have been explored (and indeed, may not terminate), which is in some cases equivalent
to the breadth-first reachability computation. Nevertheless, INFINITE-STATE-CEGAR

offers the possibility of using multiple methods for computing approximations to the
successor states. Further evaluation of the INFINITE-STATE-CEGAR procedure and a
comparison of INFINITE-STATE-CEGAR to breadth-first reachability as well as other
alternatives is currently underway.

A Proofs
Proof of Lemma 1.

Proof. By contradiction: If C ^ AG-<£, then at least one path a = (SO J s i ? . . . . b)
with b G B must exist for C. From Defn. 2, it follows that the corresponding abstract
counterexample a = (s0, s 1 ? . . . . b) of A is a counterexample which contradicts the
premise A \= AG->B. •

Proof of Lemma 2.

Proof, (i) A >z A. It follows straightforwardly that A is an abstract model of A! with
abstraction function a" as defined in Defn. 6.
(ii) A1 >z C. From the above definitions of A' = (S". S£, E') and a', it follows that A!
would be an abstract model of C, if E' also included the transition (si, sc

2
ornp). How-

ever, since S2€ach and g^0771^ are disjoint, this abstract transition does not correspond
to any concrete transition and can therefore be omitted. •

Proof of Lemma 3.

Proof, (i) A>z Af. The corresponding abstraction function is the identity. Since A has
just an additional transition it is an abstract model of A!.
(ii) A! >: C. The abstraction function for this abstraction is a. We can then omit the
abstract transition («si. £2), since it does not correspond to any concrete transition. •

Proof of Lemma 4.

Proof If the algorithm terminates with "B reachable", then the set of reachable states
in the concrete model is non-empty along the path of the last checked counterexam-
ple. Formally, S£eac/l ^ 0, fc = 0 , . . . . m due to the conditions in the IF statement
(Sleach ^ 0) and the WHILE statement (S7

k
eacfl / 0 AND k < m).

We can now show that the last checked counterexample in the algorithm is not
spurious. To do so, we first show that for each k, all sk e S7

k
each can be reached by

paths in the concrete model. The proof is done by induction on k. For k = 0, each
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s0 £ Sleach can be reached by a path of length zero. For k > 0, for each s/- G S£eac/l

there exists an sfc_i G Sr
k
e^h such that (sfc-i ,^) G E (by definition of the succ

operator). By induction, Sk-\ is reachable by some concrete path ( s 0 , . . . . s/c-i), hence
Sk is reachable via the concrete path (s$,..., s^).

Since for each /c, all s/c G S£eac/l can be reached by paths in the concrete model,
there are paths (s0, s i , . . . , sm) with sm € S™ack. Each such path corresponds to a
counterexample in the concrete model, i.e. S™ach ^ #> since a ( s m ) € 5 (as the path
is a counterexample in the abstract model), and a(sm) G B implies sm € B. Thus,
C |= AG-^B M

Proof of Lemma 5.

Proof. The algorithm terminates only if it was not possible to find any counterexample
for the current abstract model A. But since A is in each step an abstraction of C we can
conclude by Lemma 1 that C \= AG->£? holds. •

Proof of Lemma 6.

Proof. We show that a as defined in Def. 11 is an abstraction function. The first condi-
tion in Def. 2 follows directly from the definition of a. To show the second condition,
it must be proved that

E = {{susj)\(z^zj) £ T) U {(s^s^Kzo.Zj) G T} U{(^,so)|(^,2O) € T) D
{(si:sj)\ 3si.Sj e S : (si,Sj) E E,s{ = a(si).Sj = a(sj)}.

Assume (si.Sj) G E, and Si = (zi,X{) and Sj — (ZJ,XJ) with Xi.Xj G X and
ij ^ 0. Then, it follows from the definition of E in Def. 9 that (zi, Zj) G T. Thus,
(si, Sj) G JE1. The other cases (i = 0 or j = 0) can be shown in a similar way. •
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