
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Meeting the Software Engineering Challenges of
Adaptive Mobile Applications

Rajesh Krishna Balan Joao Pedro Sousa
Mahadev Satyanarayanan

February 2003
CMU-CS-03- IH3

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keywords: Software Engineering, Mobile Systems

This research was supported by the National Science Foundation (NSF) under contracts CCR-9901696
and ANI-0081396, the Defense Advanced Projects Research Agency (DARPA) and the U.S. Navy (USN)
under contract N660019928918. Rajesh Balan was additionally supported by a USENIX student research
grant. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NSF, DARPA, USN, USENIX,
nor the U.S. government.

Abstract

A critical factor for the commercial success of mobile and task-specific devices is the fast
turnaround time of software development. However, developing software for mobile devices
is especially hard since applications need to be aware of and adapt to changing resources
such as bandwidth and battery.

In this paper we validate that the idea of stub generation can successfully address the
complexity introduced by resource adaptation. Our approach is based on factoring generic
resource-adaptation mechanisms out of the applications and into operating system exten-
sions. Rather than having to deal with system-specific details, an application writer provides
a high-level description of the adaptation needs for each application. The generation of code
stubs bridges such high-level descriptions to the adaptation mechanisms specific to each
platform.

We validated this approach against three representative applications: a video streaming
application, a natural language translator and an augmented reality application. In all three
cases, the effort for the application writer was reduced by orders of magnitude. The cost of
writing the operating system extensions and the stub generator is amortized over the many
applications that can share the generic resource-adaptation mechanisms.

1 Introduction

The proliferation of task-specific mobile and wearable devices with short lifetimes places
severe stress on the development and maintenance of adaptive mobile applications. A critical
factor limiting the commercial success of such a device is the software development time
needed to create useful applications for it. The longer this development time, the shorter
the useful life of the device in the marketplace. Slow software development can make the
device obsolete by the time it emerges as a product. Business opportunities are measured in
months rather than years in this fast-paced field.

Developing mobile computing applications is especially difficult because they have to be
adaptive [7, 11, 17]. The resource constraints of mobile devices, the uncertainty of wireless
communication quality, the concern for battery life, and the lowered trust typical of mobile
environments all combine to complicate the design of mobile applications. Only through
dynamic adaptation in response to varying runtime conditions can applications provide a
satisfactory user experience. Unfortunately, the complexity of writing and debugging adap-
tive code adds to the application software development time.

How can we reduce the software development time of adaptive mobile applications? In
this paper, we describe our approach to solving this problem. It is based on three observations
that are derived from our first-hand experience with building adaptive mobile applications.

• First, most applications for mobile devices can be created by modifying existing appli-
cations rather than writing new applications from scratch.

• Second, the modifications for adaptation typically affect only a small fraction of total
application code size. Much of the complexity of implementing adaptation lies in
understanding the base code well enough to be confident of the changes to make.

• Third, the changes for adaptation can be factored out cleanly and expressed in a
platform-neutral manner.

Our approach can be summarized as follows:

• We provide a lightweight semi-automatic process for customizing the adaptation API
used by the application. Such customization is targeted to the specific adaptation
needs of each application.

• We provide a tool for automatic generation of code stubs that map the customized
API to the specific adaptation features of the underlying mobile computing platform.

• We factor the run-time support for monitoring resource levels and triggering adap-
tation out of applications and into a set of operating system extensions for resource
adaptation.

Each of these components plays an important role in the overall effectiveness of our ap-
proach. The first component (semi-automatic process) amortizes the effort of understanding
an application and extending it for adaptation. The second component (stub generator) in-
sulates application code from frequent changes of the underlying mobile computing platform.

The third component (OS support) allows a clean separation of policy and mechanism —
the OS monitors resource levels and triggers adaptation, but it is the individual applications
that decide how to adapt. OS support also helps ensure that the adaptations of multiple
concurrently executing applications do not interfere with each other.

Our approach complements traditional software engineering techniques such as code mod-
ularity. In addition, our approach takes into account the context-sensitive nature of adap-
tation policies. In other words, high level attributes such as a user's location, physiological
state, and cognitive load are often important factors in determining how a low-level adap-
tation decision should be made [19]. This implies a bridging of system layers that is not
common in non-mobile applications.

The rest of this paper is organized as follows. We describe our approach in Section 2.
Then, in Section 3, we illustrate how our approach can be applied to three representative
applications in mobile computing: data streaming, natural language translation, and aug-
mented reality. Next, in Section 4, we describe how we incorporate context senstivity into
the choice of adaptation policy. We conclude with a discussion of future work and related
work.

2 Reducing Development Cost

Much of the cost of building and maintaining adaptive applications comes from the low-level
at which adaptation enhancements are captured. Understanding the required adaptation
features and implementing them over the APIs offered by the underlying platform is a costly
process. Currently, there is no effective way to preserve such investment except in the form
of embedded code modifications. These are hard to maintain in the face of the fast rate of
release of new platforms.

We propose to use a high-level declarative language to describe the adaptation aspects
of an application. That description is then compiled and a code stub is generated. This
code stub creates a customized API for the application, which is derived from the high-level
description of the adaptation requirements. This customized API is much closer to the
application's needs than a generic low-level adaptation API, and thus makes it much easier
to integrate the adaptation aspects with the bulk of the application code.

Furthermore, applications in the same domain, say video players, are likely to have very
similar adaptation requirements. Hence, adaptation descriptions can be reused among such
applications. For example, it would be easier to extend the next video player for adaptation
once we've completed the first one.

By having a compiler-based approach, we are able to amortize the effort of retargeting
a set of adaptive applications to a new platform. After all, it is easier to retarget the code
generation of a compiler than to modify each application manually.

The hypothesis here is that it will be easier to retarget the code generation for a new
platform, and recompile all the applications, than retargeting every application.

The specific runtime targeted by our stub generator is Chroma: a resource management
and adaptation layer that we are developing. Chroma provides generic support for adap-
tation in applications, including remote execution: the ability to dynamically run portions

of an application's functionality on a fast compute server [6]. Chroma is part of the Aura
framework [18] for pervasive computing. This paper does not describe Chroma or Aura
in any detail; instead we focus on our platform-independent approach to building adaptive
applications. The stub generator allows us to potentially use any other OS or adaptation
middleware [1, 2, 10, 14], without changes to the application source or description files.

(2)
Stub generator

Domain
expert

Application
description file

Adaptation
expert __

Application
executable

Chroma stub code

xanim.c

1 F
xanim.h

1 r

\
l

/
/

(3) Modify xanim.c

Modified
source code

J

(4) Compiler

Application source code

Figure 1: Process for adding adaptation to an application

We now describe how application developers can create the application descriptions and
the corresponding application stubs. Figure 1 illustrates our 4-step process:

1. The adaptation expert collaborates with a domain expert to produce an application
description that captures the information necessary for the application to be adaptive.
For instance, the description for XAnim contains the adaptive variables relevant to
adaptive video playing: frame rate, encoding, frame quality, height, and width. This
description is platform-independent, and can be reused for other applications that
provide adaptive video playing capabilities. I.e., it applies equally to XAnim and to
MediaPlayer, to Linux and to Windows.

2. A stub generator compiles the application description into a set of stubs that interface
between the application and the underlying runtime support.

3. The application is modified to invoke the functions provided by the stub layer. This
step is manual, and must be done for each application. However, these changes are
small and localized as demonstrated in our case studies, and this fact makes it easy to
preserve the adaptation enhancements in new releases of the applications, as described
in Section 1.

4. The application source code and stub are compiled, and linked together to form the
application binary. When executed, this binary invokes the runtime support layer to
make adaptive decisions.

3 Case studies

To validate our solution we applied it in three representative case studies. We chose ap-
plications which are representative of the unique computational needs of mobile users. As
such, instead of typical desktop applications like Word or Powerpoint, we have a video player
(XAnim), natural language translator (Pangloss-Lite) and an augmented reality application
(GLVU).

3.1 XAnim
The first case study is XAnim. XAnim is a video player that can be used to play AVI format
video files. It represents the class of applications that handle streaming media and for whom
bandwidth is a critical resource. This class of applications is important for mobile users as
mobile users would like the ability to play video files while moving from place to place. In
this section, we will show how the process described in Section 2 can be used to make XAnim
adaptive.

3.1.1 Creating the description file

The version of XAnim that we are using receives video streams from a server. The server
can provide different quality levels of the same video stream, which differ in their frame rate
and compression level. XAnim, to be adaptive, should be extended to automatically change
the quality requested from the server according to the current resource availability. This
decision is made periodically every few video segments.

APPLICATION XAnim;

OUT
OUT

IN
IN
IN
IN

DOUBLE frame_rate FROM
DOUBLE compression FROM

STRING video_name;

0
0
TO
TO

ENUM encoding MPEG, MPEG2
INTEGER video.height;
INTEGER video.width;

60;
100;

, QTCinepak;

Figure 2: Description file for XAnim

Figure 2 shows the description file for XAnim. XAnim has two "OUT" variables and four
"IN" variables. An OUT variable is a parameter that can be adapted by the runtime. To
make good adaptive decisions, the runtime needs additional information from the application.

params ();

/* Main loop of video playback
This loop retrieves n segments of the video at a time
from the video server. 7

while (video_needs_Jo_be_played) {

ideo_lBight (params, height);

firamej&te * xanim_playsegn^ril_geclrame_rate (params};

/* Retrieve video from video server using framejrate V

} /* Exiting video playing loop 7

Ccleaiiup (patams);

Figure 3: Source code for the modified XAnim

For example, the runtime will need to know the size of the video before it can decide what
frame rate is appropriate given the current bandwidth. IN parameters are used to specify
this necessary information.

Even though the description file shown in Figure 2 was created for XAnim, it can also
be used for other video players. This is because the description file contains just the adap-
tation behaviour of XAnim and this is similar for other video players as well. Every other
video players will also have inputs consisting of the video name, the encoding and the video
dimensions and they will also require a frame rate and a compression level for the video
stream. Hence, our method of extracting the adaptation behaviour of an application into a
description file allows us to reuse description files between similar applications.

3.1.2 Modifying the application

Figure 3 shows the modifications made to XAnim. Note that all needed to be done was to
place these calls in the correct places in XAnim (shaded lines).

The bulk of the modifications takes place in the part of the application that does the work
that can be adapted. In the case of XAnim, this is the video playing loop.The methodology
used for the modifications is as follows:

• An i n i t i a l i z e function is called at the start of the application to create and initialize
all necessary variables for interfacing with Chroma. The initialize call returns an
opaque data structure, that contains all the information relevant to XAnim, which is
provided as an input to all subsequent stub generated function calls.

• The find_f ideli ty function is called within the video playing loop. This function
queries Chroma and figures out the fidelity level that the application should use, given
the current application settings (the IN parameter values) and the current resource
availability.

• The application sets all the IN parameters via set function calls before calling find_f idelity.

• After calling find_f idelity, the application reads the values of all the OUT param-
eters via get function calls. Using these values, the application performs a chunk of
work at the appropriate fidelity level.

• This process of setting the IN parameters, calling find_f ideli ty, reading the OUT
parameters and then doing a chunk of work at the appropriate fidelity level continues
until the application exits.

The stub generator automatically generates the in i t i a l i ze , cleanup and find_f idel i ty
functions and the application specific params data structure. It also automatically generates
all the set and get functions required to manipulate the IN and OUT parameters. This
greatly reduces the amount of work involved in modifying an application to be adaptive.

3.2 Pangloss-Lite

The second class of applications we consider is natural language translation as characterized
by Pangloss-Lite. Language translation is important for mobile users as their mobility brings
them into contact with documents and speech composed in non native languages. The critical
resource for this class of applications is computional power.

One important way that applications can adapt is to run pieces of code on remote
servers [6], taking advantage of computational resources in pervasive computing environ-
ments. Natural language translation applications are well suited for remote execution as
they are CPU and memory intensive. In this second case study, we show how to extend
Pangloss-Lite, a natural language translator, to adapt using remote execution. Remote exe-
cution services are accessed through an RPC [4] interface.

3.2.1 Creating the Description File

Pangloss-Lite [8] translates text from one natural language to another. It can use multiple
translation engines with varying degrees of accuracy and speed — and correspondingly,
different resource consumptions. Each engine returns a set of potential translations for
phrases contained within the input text. A language modeler combines the output of the
engines to generate the final translation. Since each translation engine consumes different
amounts of resources, Pangloss-Lite is enhanced for adaptation by choosing the translation
engines to use depending on the available resources. In addition, the translation engines and
the language modeler can also be remotely executed. The translation engines can also be
executed in parallel. For the purpose of this case study, we will use just two engines: EBMT
(example-based machine translation) and GBT (glossary-based translation).

Describing how an application can use remote execution requires two components: enu-
merating the functions that can be remotely executed (keyword RPC) and the permitted
execution tactics. Each execution tactic specifies a way of executing a set of functions in
some parallel or sequential order. Naturally, each of these tactics will have different resource
requirements, corresponding to the subset of functions that gets executed. Furthermore,
the adaptation run-time will also select whether to run each function locally on the mobile
platform, or remotely on some previously configured set of servers. This decision is based on
comparing the resource requirements of each tactic against the available CPU cycles, battery
charge, bandwidth to the remote servers, etc. It is up to the adaptive system to pick the
most appropriate tactic for each operation, given the current resources and the constraints
of the users task — see Section 4.

APPLICATION p a n l i t e ;

IN INTEGER nwords FROM 0 TO i n f i n i t y DEFAULT 1;

/ / RPC spec , f or the g l o s s a r y engine

RPC server .gb t (IN STRING l i n e , OUT STRING g b t _ o u t) ;

/ / RPC spec , for the ebmt engine
RPC server_ebmt (IN STRING l i n e , OUT STRING ebmt_out);

/ / RPC spec , for the language modeler
RPC server_lm (IN STRING gbt_out , IN STRING ebmt_out,

OUT STRING t r a n s l a t i o n) ;

TACTICS = gbt OR ebmt OR gbt .ebmt;

/ / g l o s s a r y engine fo l lowed by language modeler
DEFINE gbt = server_gbt ft s e r v e r . l m ;

/ / ebmt engine fo l lowed by language modeler
DEFINE ebmt = server_ebmt ft server_lm;

/ / both engines run in parallel
DEFINE gbt_ebmt = (server.gbt, server_ebmt) ft server_lm;

Figure 4: Description file for Pangloss-Lite

The description file for adaptive Pangloss-Lite is shown in Figure 4. There is one IN
variable that specifies the number of words in the input string. Chroma uses this value to
decide how much resources the translation will require. The RPC definitions for Pangloss-
Lite correspond to the GBT engine, EBMT engine and the language modeler. As shown,
Pangloss-Lite has three tactics for remote execution: gbt, ebmt and gbLebmt. The gbt tactic
executes just the GBT engine and sends the output to the language modeler. The ebmt tactic

8

params ~ paalite^traiislateJoilialize.jmrams 0*

while (do_translation) {

/* read input into "line" and do other processing 7

paiilite_traiislate_set_awords (params, value);

panlite_traaslate_do_tactics (params, line, translation);

/* display translation and do other processing 7

Figure 5: Modifications to Pangloss-Lite

executes only the EBMT engine and sends the output to the language modeler. Finally, the
gbt-ebmt tactic executes both of the engines in parallel and sends the output to the language
modeler.

3.2.2 Modifying the Application

Figure 5 shows the modifications that were made to the Pangloss-Lite source. The method-
ology used to modify Pangloss-Lite to make it adaptive is similar to XAnim.

• An in i t i a l i ze call is made at the start of the application with a corresponding
cleanup call at the end of the application.

• The single IN variable for Pangloss-Lite is set via a set function call before calling
find_fidelity.

• A call to find_f idelity is made to determine which tactic to use. This choice is made
by checking the resource availability of the local and remote servers and the value of
the IN parameter.

• The main difference is a do_tactics function call which is inserted after the find.f idel i ty
call. The do-tactics function call (this function is also automatically generated by
the stub generator) performs the remote execution of Pangloss-Lite using the tactic
decided by find_f idelity.

By separating the decision making of which tactic to use (done in find_f idelity) from
the actual execution of the tactic (done in do.tactics), we allow the application to cache
the selected tactic. Deciding which tactic to use can be potentially expensive as Chroma
needs to search through all possible tactics and decide on the optimal one given the values of

all the IN variables and the resource availability on the local and remote machines. Caching
the result thus allows the application to tradeoff the overhead of computing a new tactic for
every translation against the agility of adaptation to changing resource conditions.

3.3 GLVU

Our third case study looks at GLVU which represents the augmented reality application class.
Augmented reality applications allow a mobile user to access information about his current
environment on his mobile device or even via a head mounted display. This information
is superimposed over the current viewing environment; hence the name augmented reality.
This class is characterized by strict performance constraints as large jitter or delays can have
nauseating effects on the user.

GLVU is a 3D graphics rendering application that uses the OpenGL library to display
3D models of buildings. GLVU computes the image to display by factoring in the current
position of the viewer (in 3D space) and the current maximum and minimum display co-
ordinates. The quality of the final image, the latency and the computational requirements
of GLVU is highly dependent on the number of polygons used to create the 3D model.

3.3.1 Creating the Description File

APPLICATION

OPERATION

OUT
OUT

IN
IN
IN

IN
IN
IN

IN
IN
IN

double

double

double

double

double

double

double

double

double

double

double

glvu

draw

polygons

resolution

min_x

min_y

min_z

max_x

max_y

max_z

eye_x

eye.y

eye_z

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

0
0

0
0
0

0
0
0

0
0
0

TO
TO

TO
TO
TO

TO
TO
TO

TO
TO
TO

infinity

1

infinity

infinity

infinity

infinity

infinity

infinity

infinity

infinity

infinity

Figure 6: Description file for GLVU

The description file for GLVU is shown in Figure 6. As shown, GLVU has nine IN variables
and two OUT variables. The nine IN variables are used to provide additional information
about the current state of GLVU to the runtime. In this case, the nine IN variables specify
the current minimum and maximum display co-ordinates as well as the current co-ordinates

10

params ~

/* Main loop of 3D rendering
This loop renders the 3D using the specified resolution
and number of polygons */

while (model_needs_to_be_rendered) {

user

glvu_ren<ier_set_{)olygoii& (p&raois, numjpolygaM);
glva_render_finci_fidelity (params);
resolution « glvujrender^eCmsolution (params);
polygons ** glvujrencferjgetjpalygoiis (params);

/* Render model using resolution and number of
polygons 7

} /* Exiting 3D rendering loop loop 7

xanim_mnder_cleamip (params);

Figure 7: Source code for the modified GLVU

of the viewer. The OUT variables are used by the runtime to tell GLVU what resolution it
should use to render the image and how polygons should be used to construct the 3D model.

3.3.2 Modifying the Application

The modifications that were made to GLVU are shown in Figure 7. GLVU was modifed
using a methodology similar to XAnim.

• An in i t i a l i ze call is made at the start of the application with a cleanup call made
at the end of the application.

• The IN variables are assigned values using set functions.

• The f ind_f idel i ty function is called. This call invokes the runtime which uses the
values of the IN variables to determine the optimal fidelity for the application given the
current resource availability. The values of the OUT variables are set by the runtime
to reflect the optimal fidelity settings.

• The values of the OUT variables are read via get function calls. These values are then
used by GLVU to render the image.

All the calls used above are generated automatically by the stub generator.

11

4 Adaptation policy

In Section 3, we presented three case studies to demonstrate that it is possible to extract the
adaptive behavior of applications in a platform independent manner. However, in reality,
the exact decision of how to adapt an application is frequently context sensitive and thus
dynamic. For instance, would the user of a language translator prefer accurate translations
or snappy response times? Should an application running on a mobile device use power-save
modes to preserve battery charge, or should it use resources liberally in order to complete
the user's task before he or she runs off to board their plane? That knowledge is very hard
to obtain at the application level.

Does this dynamism mean that our static descriptions of adaptation are inapplicable
in real environments? We claim that this is not the case. Our architecture allows us to
specify various static policies for different contexts. The exact policy to use is determined by
the runtime based on the current environmental conditions and user specified preferences.
In general, we would need an infinite number of policies to handle every possible context.
However, in practice, the situation is not so bad.

We claim that we can statically define a family of adaptation policies that covers a
satisfactory dynamic range. Choosing one particular instance from such a family of policies
is achieved by parameterization.

The key observations here are that, first, user expectations ultimately determine which
adaptation policies are appropriate. Second, these expectations change as a function of the
nature of the user's task and of the physical context around the user. Although describing
how user expectations are captured is beyond the scope of this paper, we briefly describe
our approach to this problem, and give some detail on how user expectations are represented
and used to determine the adaptation policy enacted by the application.

The novelty in our approach is threefold:

• User expectations are captured outside the adaptive application, in a layer that is
aware of the user's task and surrounding context. That layer builds models of user
expectations that can be passed to adaptive applications [19].

• User expectations are represented in an application- independent way, making it easy
to reuse models of user expectation across multiple applications. For instance, a model
of the expectations of the user when watching a video can be used to drive adaptation
in every video playing application equipped to work in this framework.

• The representation we adopt is easy to pass to a running application, making it easy
to adjust adaptation policies on the fly to changes in user expectations.

4.1 Defining the adaptation policy

We use a simple model of user expectations based on utility functions. These functions take
the user-perceived quality attributes as inputs and return a value indicating their appropri-
ateness. The higher the value the more appropriate the combination is relative to the user's
expectations. For instance, utility functions for watching a video would take frame-update

12

rate and video quality as inputs. Now, if the user is watching a sports video, an appropriate
utility function is one that is more sensitive to the frame-update rate than the video quality.
However, if the user is watching a tour of a museum, an appropriate utility function is one
that is more sensitive to the video quality, and not as sensitive to frame-update rates.

The adaptation policy is implicitly defined by maximizing utility functions. The values
that maximize these utility functions give the fidelities that the application should run at.
These values are returned by the calls to find-fidelity (in Figures 3 , 5 and 7) as values for
the OUT parameters. Naturally, the maximization of the utility functions is constrained by
the available resources.

APPLICATION

OUT DOUBLE
OUT DOUBLE

UTILITY =

IN ...

XAnim;

frame_rate FROM 0 TO 60;
compression FROM 0 TO 100;

WSIGMOID(frame_rate) *
WSIGMOID (compression);

Figure 8: Utility function description for XAnim

The description for XAnim in Figure 8 extends the description in Figure 2 by defining the
generic form of the utility functions driving the adaptation in XAnim (and in fact in any video
playing application that follows this model of user expectations.) Each of the user-perceived
quality attributes has a model of utility: in this case a weighted sigmoid function. Sigmoid
functions are step-like functions that have a "bad" threshold, below which the function is
exponentially close to zero, and a "good" threshold, above which the function is exponentially
close to one. Between the "good" and "bad" thresholds the function grows smoothly (and is
roughly linear). A weighted sigmoid is raised to a power, its weight, between 0 and 1. The
overall utility is obtained by multiplying the two weighted sigmoids. Note that assigning
a small weight to a sigmoid tends to make it flat, and hence reduces the sensitivity of the
overall utility to the corresponding quality attribute.

This representation allows utility functions to be encoded in a totally parametric way,
which is a big advantage. For example, in Figure 8, a utility function is encoded by six nu-
meric parameters: the "good" and "bad" thresholds and the weight for each of the sigmoids.

4.2 Enacting the adaptation policy

The stub generator takes the description of utility in the application description file and
generates an interface that allows an external source to set the corresponding parameters.
In our work, the information exchanged between the layer modeling the user and the ap-
plications is encoded in XML [19]. Therefore, the interface produced by the stub generator
includes a parser for the specific XML format we are using. Note that the implicit assump-
tion here is that the language to build utility functions in the application description file is

13

expressive enough to represent the possible forms of user expectation for the relevant quality
attributes. In the case studies we analyzed so far we had no difficulty expressing the form
of utility functions using sigmoids for continuous attributes and simple tables for discrete
attributes.

For example, suppose that the user is watching a sports video and that the layer in
charge of capturing the user expectations has empirically determined the range of quality
attributes that makes the user happy in those circumstances. Suppose that the range is as
follows: the user is happy as long as the frame-update rate is above 20 frames per second,
and really unhappy if it drops below 5 frames per second. Video quality is expressed by the
"compression" parameter in Figure 8. Although higher quality is better, it is of secondary
importance.

<utility combine="mult">

<wSigmoid attr=nfraine_rate" weight="0.8"
bad=M5M good="20'7>

<wSigmoid attr="compression11 weight=ll0.211

bad="0" good=ll100'7>
</utility>

Figure 9: XML encoding of utility function

This knowledge is encoded in a utility function composed of two weighted sigmoids with
the following parameters: for the frame rate sigmoid, set "bad" to 5, "good" to 20 and
weight to 0.8. For the compression sigmoid set "bad" to 0, "good" to 100 and weight to
0.2. Note that the sigmoid for the compression attribute degenerates into a linear function
by placing the thresholds at the extremes of the scale for the attribute. Note also, that the
relative weights of the two sigmoids are empirically set by observing what makes the user
happy. Figure 9 shows the encoding of this utility function.

5 Future work

We are developing a new runtime system called Chroma that builds on our past experience
with Odyssey [14]. Currently we are still using Odyssey as our adaptive runtime system as
Chroma is still being developed. Chroma will have many features currently not found in
Odyssey. These include:

• The ability to easily enhance applications for adaptation using the process described
in this paper.

• The ability to accept application-specific stubs. These stubs will be automatically
generated by the stub generator based on the application's description file. They will
provide Chroma with the necessary logic to handle the application's resource require-
ments.

• Integration with Prism (see below).

14

• Better handling of global constraints like battery power.

One key observation of our work is that determining appropriate adaptation policies is
critically dependent on the ability to capture user expectations. Capturing user expectations
is a hard problem that we plan to address in a layer called Prism. Prism treats user tasks
as first class entities and interacts with context-aware components to assess the physical
context around the user. It determinines the most accurate models of user expectations
using stochastic techniques to correlate the current user context to past experiences. By
capturing user expectations outside of applications, we enable the reuse of user expectation
models. This allows the migration of user tasks in pervasive computing environments [19].

Chroma and Prism are being developed as part of the Aura framework [18]. Aura aims
to provide a complete pervasive computing environment ranging from better user interfaces
to low level intelligent networking.

Additionally, we plan to do more case studies using our process to evaluate its effectiveness
for a larger class of applications. This will allow us to refine our process and tools where
necessary.

6 Related work

As mentioned in Section 1, our current work builds on previous experience with Odyssey [14].
Odyssey provides support for mobile information access through application-aware adapta-
tion, a collaborative partnership between the operating system and applications.

The technique of using stubs and a stub generator is derived from RPC [4]. RPC has
shown the effectiveness of stubs in insulating system details from applications and the use-
fulness of a stub generator for automated code generation. We have simply applied these
techniques to the realm of adaptation in pervasive computing.

The application description language addresses some of the same issues as 4GLs [12]
and "little languages" [3]. The latter are task-specific languages that allow developers to
express higher level semantics without worrying about low level details. Our description
language is similar as it allows application developers to specify the adaptation capabilities
of their applications at a higher level without needing to worry about low level system
integration details. Our stub generator converts this high level description into low level
code for interfacing the application with the runtime. Another system that uses this method
is CORBA [15, 20]. However, our approach is focused towards adaptive systems.

Initial research [5] on adaptive multimedia applications concentrated on low-level system
parameters, while concern for user-perceived quality attributes appeared later [13]. Ex-
pressing user satisfaction took an econometric slant, and new expressive power, with the
introduction of utility functions in resource allocation systems in [16]. Capturing user goals
and using that knowledge to drive systems is a cornerstone of recent work on expert systems
that provide assistance to computer users. For example, Horvitz [9] uses Bayesian networks
to perform inference on user goals and utility functions to evaluate the relative merit of
alternative system actions.

15

7 Conclusions
In this paper we have shown an effective approach for reducing the cost of developing and
maintaining mobile adaptive applications. Specifically, our approach is:

• A description language for representing the adaptation features of applications in a
platform and implementation-independent fashion. The description language is rich
enough to describe features for adaptation by remote execution and for driving the
adaptation policies based on user expectations.

• A stub generator that produces an interface between the application and the underlying
runtime support for adaptation. Although the design of such interfaces is applicable
to a broad class of adaptive applications, the stub generator tailors each generated
interface to the specific adaptation features of the application, thus making it easier
to extend each application.

• A methodology for extending applications for adaptation.

We have implementated this approach for a video player (Xanim), a language translator
(Pangloss-Lite), a speech recognizer (Janus) and a 3-D viewer (GLVU). We have reported
three of these experiments as case studies in this paper. From Figures 3, 5 and 7, we see
that a small amount of manual effort had to be done to modify XAnim, Pangloss-Lite and
GLVU. These changes were also systematic and very similar across all the three applications.
This provides preliminary evidence that our process minimizes the amount of work needed
to modify the application.

Although more case studies are needed to further validate our approach, we are confident
that the mechanisms that we have created can be used to extend a broad class of applications
for adaptability.

We have also shown how adaptive mobile applications can deal effectively with the prob-
lem of adjusting adaptation policies to cope with dynamically changing user expectations.
We recognized that the appropriate policy is best determined outside the application and
designed an interface that allows an adaptive application to receive a representation of that
policy at runtime, as often as required by the changes in user expectations.

References
[1] Amiri, K., Petrou, D., Ganger, G., and Gibson, G. Dynamic function placement for data-

intensive cluster computing. Proceedings of the USENIX 2000 Annual Technical Conference,
San Diego, CA, June 2000.

[2] Basney, J. and Livny, M. Improving goodput by co-scheduling CPU and network capacity.
Intl. Journal of High Performance Computing Applications, 13(3), Fall 1999.

[3] Bentley, J. Little languages. Communications of the ACM, 29(8):711-21, 1986.

[4] Birrell, A. D. and Nelson, B. J. Implementing remote procedure call. ACM Transactions on
Computer Systems, 2(l):39-59, Feb. 1984.

16

[5] Clark, D. D., Shenker, S., and Lixia, Z. Supporting real-time applications in an integrated
services packet network; architecture and mechanism. ACM SIGCOMM '92, 22(4): 14-26, aug
1992.

[6] Flinn, J., Narayanan, D., and Satyanarayanan, M. Self-tuned remote execution for pervasive
computing. Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-
VIII), Schloss Elmau, Germany, May 2001.

[7] Forman, G. and Zahorjan, J. Survey: The challenges of mobile computing. IEEE Computer,
27(4):38-47, April 1994.

[8] Frederking, R. and Brown, R. D. The Pangloss-Lite machine translation system. Expanding MT
Horizons: Proceedings of the Second Conference of the Association for Machine Translation
in the Americas, pages 268-272, Montreal, Canada, 1996.

[9] Horvitz, E. Principles of mixed-initiative user interfaces. Proceedings of CHI '99, ACM SIGCHI
Conference on Human Factors in Computing Systems, Pittsburgh, PA, May 1999.

[10] Hunt, G. C. and Scott, M. L. The Coign automatic distributed partitioning system. Proceedings
of the 3rd Symposium on Operating System Design and Implemetation (OSDI), pages 187-200,
New Orleans, LA, Feb. 1999.

[11] Katz, R. H. Adaptation and mobility in wireless information systems. IEEE Personal Com-
munications, 1(1):611-17, 1994.

[12] Martin, J. Fourth-Generation Languages, volume 1: Principles. Prentice-Hall, 1985.

[13] McCanne, S. and Jacobson, V. Vic: A flexible framework for packet video. ACM Multimedia,
pages 511-522, Nov. 1995.

[14] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., and Walker, K. R.
Agile application-aware adaptation for mobility. Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP), pages 276-287, Saint-Malo, France, October 1997.

[15] Object Management Group. The Common Object Request Broker: Architecture and Specifi-
cation, 1999. Revision 2.3.1, ftp://ftp.omg.org/pub/docs/formal/99-10-07.ps.

[16] Rajkumar, R., Lee, C , Lehoczky, J., and Siewiorek, D. Practical solutions for QoS-based
resource allocation. The 19th IEEE Real-Time Systems Symposium (RTSS'98), pages 296-
306, Dec. 1998.

[17] Satyanarayanan, M. Mobile Information Access. IEEE Personal Communications, 3(1), Febru-
ary 1996.

[18] Satyanarayanan, M. Pervasive computing: Vision and challenges. IEEE Personal Communi-
cations, 8(4): 10-17, Aug. 2001.

[19] Sousa, J. and Garlan, D. Aura: An architectural framework for user mobility in ubiquitous
computing environments. In Jan Bosch, Morven Gentleman, C. H. and Kuusela, J., editors,
Software Architecture, System Design, Development and Maintenance, pages 29-43. Kluwer
Academic Publishers, Aug. 2002.

[20] Vinoski, S. CORBA: Integrating diverse applications within distributed heterogeneous envi-
ronments. IEEE Communications, 35(2):46-55, Feb. 1997.

17

