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Abstract

We give a review of some of the results pertaining to the analysis of the

average performance of graph algorithms.
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1. INTRODUCTION

Graph theory is an important source of computational problems and as such

has played a significant part in the development of a theory of algorithms and

their analysis. We find here as elsewhere that the analysis of the execution

times of algorithms has concentrated in the main on that of their worst-case.

There is nevertheless a sizeable literature on the average case performance of

algorithms.

The analysis assumes that the problem instances are randomly selected

from some reasonable distribution of problems and an attempt is made to

estimate the expected running time of algorithms for these problems. The

analytical difficulties are compounded by the fact that algorithms condition

their data quickly. Consequently, the statistical independence which is

required by most common forms of probabilistic analysis is hard to come by.

Probabilistic algorithm analysis has therefore necessitated the development of

its own, often indirect, techniques.

In this paper we will try to review some cases where probabilistic

analysis has something positive to say about the performance of algorithms. We

will look in some detail at eight problems. The first four: the all pairs

shortest path problem, the assignment problem, the matching problem in general

graphs and the minimum spanning tree problem are all solvable in polynomial

time in the worst-case. Nevertheless we will find that algorithms can be

constructed whose average performance on natural distributions is

significantly better than the worst-case of any known algorithm. The next

three: the Hamilton cycle problem, the graph colouring problem and the graph

bisection problem are all known to be NP-hard. We will, in spite of this, be

able to describe polynomial time algorithms which have a high probability of

finding solutions to these problems. Our final example will be that of graph



isomorphism whose exact complexity is at present unknown. Here we will find

that a simple algorithm works with high probability. Thus, in these examples

and many others, the average case is a long way from the worst-case.

In the next section we introduce some notation and state some basic

results needed from probability theory, the next eight sections cover the

problems we have mentioned above. Following this we will mention some results

with a different flavour.

2. NOTATION AND BASIC PROBABILISTIC INEQUALITIES

We first define what we mean by a random graph. Let V = {1,2, .. . ,n}

and suppose 1 < m = m(n) < N = (£). The random graph G has vertex set

£ n, m
V and its edge set E is a randomly chosen subset of m edges. Thus ifn n,m

G is a graph with vertex set V and m edges then Pr(G = G) = ( )

There is a closely related model G where 0 < p = p(n) < 1. This
n, p

has vertex set V and edge set E where each of the N possible edges is

independently included with probability p. Hence if G is a graph with

vertex set V and m edges then Pr(G = G) = p (1-p) . Observe that

if P = o" t h e n P r ( G 1 = G) = 2" and so each graph with vertex set V is
£ x n

n >2

equally likely.

These models have been studied extensively since the pioneering work or

Erdbs and Renyi [ER1] - [ER4]. The book of Bollobas [Bol] gives a systematic

and extensive account of this subject. A gentler introduction is provided by

Palmer [P].

When m ~ Np (i.e. lim |=-p- - 11 = 0) the graphs G and G have
nr"38*

similar properties. Indeed for any graph property A we have



N
(1.1) Pr(Gn € d) = 2 Pr(Gn € d\ |ER pl = ">)

Pr( lE
n>pl =

 m)

m=U

since G , given |E | = m, is precisely G . Now |E | is

distributed as the binomial random variable B(N,p). So for example, if

m = fNpl

(1.2) Pr(G € si) > Pr(G € si) (N)pm(l-p)N m

v J v n,p J - v n,m J vm'^ v ^J

1 Pr(Gn,m € ^ (2

on using Stirling's inequalities for factorials. (1.2) can often be used to

show that Pr(G € si) is small when Pr(G € d) is small.
v n,m ' v n,p /

We are mainly concerned with asymptotic results in this paper and in all

cases we will be concerned with what happens as n -» ™. So let & be some

event (dependent on n). We say that S occurs with high probability

if

lim Pr(fi ) = 1.
n-*x> n

Finally we will note the following bounds on the tails of the binomial

2
—o" np

(1.3) Pr(|B(n,p) - np| > enp) < 2e ^



(See e.g. [Bol]).

_ 1_
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Thus if np -» «> and we take e = (np) then we see that B(n,p) ~ np

nhp. By using this in (1.1) we can see that G and G rM n are
v ' n,p n, |Np|

"similar". We will refer to (1.3) as the Chernoff bound.

3. SHORTEST PATH PROBLEM

In this section we consider the problem of finding a shortest path

between all pairs of nodes in a digraph D= (V,A) with non-negative arc

lengths *(u) for u € A. For notational convenience we assume that D is

the complete digraph on V . The arc lengths are random and satisfy an

"endpoint independence" condition. More precisely the lengths of arcs with

different start vertices are independent and if for a given v € V we have

*(vw-) < ̂ (vw^ < ...< £(vw -) (ties broken randomly) then w-.w^ w - is

a random permutation of V - {v}.

We present here an algorithm of Moffat and Takaoka [MT1] which solves the

2 3

problem in 0(n logn) time. This is to be contrasted with 0(n ) for the best

worst-case performance. (See for example Lawler [La] or Papadimitriou and

Steiglitz [PS]). The algorithm in [MT1] proceeds as follows:

A: sort the arcs incident with each v € V into increasing order to create

list L(v).

B: for each s € V find a shortest path from s to every other vertex.

2
Since A requires 0(n logn) time we need only prove an 0(n logn)

expected time bound for each single source problem in B. The algorithm used

is based on one originally attributable to Dantzig [D] and improved and



analysed in the average-case by Spira [Sp]. We first describe this version

and then given the contribution of Moffat and Tokakoa.

The algorithm works with a set S. Initially S = {s}, finally S = Vn

and at any stage v € S means that a shortest path of length D(v) has been

found from s to v. If v € S then D(v) is an estimate of the shortest

path length.

Suppose now that for v € S, w € S we let X(vw) = D(v) + £(vw) and

D(w) = min{X(vw): v € S}. It is easy to show that if D(x) = min{D(w) :

w € S} then D(x) is the length of a shortest path from s to x.

In the algorithm that follows we keep a priority queue AQ of items

(xy, X(xy)), one for each x € S, ordered by increasing value of X.

Algorithm SHORTPATH(s)

begin

Initialise AQ with (st, X(st)) where st is the first arc on L(s);

D(s) := 0; S := {s};

LI: while S * V do
n

begin

L2: remove the first item (xy, X(xy)) of AQ; add the item (xy', X(xy'))

to AQ where xyf succeeds xy on L(x);

L3: if y € S then do

begin

S : = S U { y } ; D(y) := D(x) + «(xy)

L4: add (yz, X(yz)) to AQ where yz is the first arc on L(y) with

head not in S

end

end

end



The above algorithm spends too much time at L3 with y € S. Building on

an idea of Fredman (Fd) (rediscovered independently later by Frieze and

Grimmett [FG]) Moffat and Takaoka [MT1] "clean up" AQ at line LI when |s|

reaches n =- for k = 1.2.....L = [lglgnj. We shall use lg to denote
2 K

logrt and reserve log for log .

Procedure CLEANUP

begin

E := 0;

for each xy € AQ do

begin

if y € S then E := E U {xy}

Cl: else E := E U {xy'} where xy' is the first arc after xy on L(x)

with head not in S.

end

C2: rebuild AQ out of the arcs in E.

end

Analysis

Let Stage k run from |s| = n £ _ to |s| = n - -% for 1 < k < L =
2 2

[loglognj and le t Stage L+l denote the final part of the algorithm.

1 < k < L

Let T, denote V - S at the start of Stage k. The probability that
ic n

y € S at L2 of SHORTPATH is always at least |- since y € Tk> |Vn~S| 1 \\\\

throughout Stage k and y is equally likely to be any member of T, .

Since -s- vertices are added to S in Stage k we expect to execute L3
2 k



and hence L2 at most -%ZT times. Since L2 requires O(logn) time we have
2 K X

(3.1) E(time spent at L2 in Stage k) = 0( , _., logn) 1 £ k < L.
2 k l

To choose z in L4 we expect to examine at most 2 entries in the list

of arcs leaving y. This is because |V -S| > -r- throughout Stage k and the

n 2K

next vertex of y's list is equally likely to be any vertex not encountered so

far on this list. Hence

(3.2) E(time spent at L4 in Stage k) = 0(-% 2k) 1 < k < L
2 K

Now consider CLEANUP. At line Cl we expect to examine at most 2 arcs

before y' is found (some argument as for L4) and so

(3.3) E(time spent at Cl in Stage k) = 0(n2k) 1 < k < L

It takes 0(n) time to rebuild AQ at C2 and so from (3.1), (3.2), (3.3)

we obtain

E(time spent in first L stages)

L L L . L
= 0( 2 -g^j- logn + 2 n + 2 n 2 K + 2 n )

k=l 2 K k=l k=l k=l

= 0(n logn).
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Let us now consider Stage L+l.

First consider L2. Vertex y € T, - and is equally likely to be any

member of T. - that has not yet been examined on x's list. Suppose

|T I
|s| = n-s at some point. Then we expect to repeat L2 at most = —y—

times before finding y € S. Hence

n/lgn

E(time spent at L2 in Stage L+l) = 0 ( — - — 2 - logn)
logn s=l

= 0(n logn)

(the final logn factor is the time to delete the first element of AQ).

Now consider L4 and suppose again that |s| = n-s. This time we expect to

examine at most — edges before finding z. Hences

n/lgn

E(time spent at L4 in Stage L+l) = 0(n 2 -)
s=l S

= 0(n logn)

o
We have thus shown that algorithm SHORTPATH runs in 0(n logn) expected time.

2
In [MT2] Moffat and Takaoka gave another 0(n logn) expected time algorithm

2
for the same problem. It is not known whether o(n logn) expected time is

achievable for this problem.



4. ASSIGNMENT PROBLEM

In this section we discuss the result of Karp [Kal] that the m x n

assignment problem (m < n) can be solved in O(mn logn) expected time. The

analysis can be applied when the matrix of costs llc(i, j)ll is such that

(i) the costs in different rows are independent and (ii) for each i, if

cCi.jj) < c(i,j2) < ... < c(i,jn) then J r J 2 Jn
 is a random permutation

of {l,2,...,n}. (This is the endpoint independence condition of § 3 ) . The

proposed algorithm starts with an empty matching and then uses shortest

augmenting paths to increase it to size m. The idea of Edmonds and Karp [EK]

and Tomizawa [To] is used to ensure that the shortest path problems that need

to be solved have non-negative arc lengths.

Let G be the bipartite graph with vertex set V = X U Y where

x = {xj.Xg,..,xm), Y = {y1«Y2'*• • »yn}
 a n d t h e c o s t of e d s e ^y,- is c(i.j)-

We are looking for a minimum cost matching that covers X. If M is any

matching of G let D(M) be the digraph with vertex set V and arcs

x.y. whenever edge x.y. t M forward arc

y.x. whenever edge x.y. € M backward arc.
J *- *• J

Let A = A(M) (resp. B = B(M)) denote the vertices of X (resp. Y) not covered

by M.

The following algorithm can be implemented to solve the assignment

2
problem in 0(m n) worst-case time (for a proof see [EK] or [To]).
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Algorithm ASSIGN

begin

M := 0

for v € V do a(v) = 0 {a is the potential function used to keep

arc lengths 2 0}

while |M| < m do

begin

A. Find a shortest path P from A to B in D(M) where the arc-lengths

are given by

= c(i,j) + a(x.) - a(yj) x.yj C M

= ~c(i, j) + a(Yj) - a(x.) x.yj € M

{update M}

Use the alternating path P to alternately add and delete edges to and

from M in the normal way.

{update a}

for v € V do a(v) := a(v) + T(V)

where 'r(v) is the minimum of *(P) and the length of a shortest 2

path from s to v

end

end

To find the shortest paths in A we use a modification of algorithm

SHORTPATH of § 3
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Changes to SHORTPATH

We create adjacency lists L(xi), x± € X, sorted by increasing c(i,*)-

(For y € Y either L(y) = 0 (y € B) or L(y) consists of the unique vertex

of X matched with y by M). We only have time to do the sorting once for

each x € X but on the other hand, at Statement A we need them sorted

according to T and not c. Karp's solution to this problem is rather nice.

Define

= c(i, j) + a(Xi) - a* x.ŷ . € M

where a = max{a(v) • v € V}.

Observe that

(4.1) «*(x.yj) < «(x.yj) x.Yj € M

and

When an item (uv, D(u) + *(uv)) is added to AQ in L2 or L4 we also add

a special item (uv, D(u) + £ (uv)) unless v € B(M) or uv is a backward arc

of D(M). Also, if the item removed from AQ is special, then it is ignored

and the next item of AQ is removed. The point is that we are not

necessarily examining the arcs leaving a vertex x € X in increasing €

order. We want to be sure that the "real" items get to the front of AQ in

the order they would in the unmodified SHORTPATH algorithm. Thus we want to

be sure that when an item (xy, D(x) + *(xy)) gets to the front it has a lower

value than all competing arcs. But this follows from the fact that if this
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item precedes (uv, D(u) + € (uv)) then

D(x) + e(xy) < D(u) + «*(uv) < D(u) + «(uw)

for all w € S.

We can also make the simplification that yz in L4 is now to be the

first item on L(y). Finally, we will of course start each execution of

SHORTPATH with S = A and AQ made from the first items of L(a), a € A and

terminate when S fl B ? 0.

Analysis

We say that xy is a virgin edge if it has not been selected in L2 in

any execution of SHORTPATH. The key observation is that if the selection xy

in L2 is a virgin edge then

(4.3) Pr(y € B) > -If

This is because the virgin edges with start node x come to the head of

AQ in their (original random) order on L(x) and none of the non-virgin edges

with start node x have an end node in B. For when y € B an augmentation

is triggered which means that y gets covered by the new M.

Let Stage k denote the k'th execution of SHORTPATH and afc denote

the number of virgin edge selections at L2 in Stage k. Then by (4.3) we

have

n
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If an edge ceases to be virgin in Stage k then it can be selected at most

2(m-k+l) times altogether. Hence the expected number of executions of L2

overall is bounded above by

211 2 m _ !f? < 2m n (since m < n)
k=l n k + 1

Each such selection requires O(logn) time. The cost of L2 selections and

initial sorting dominates the execution time and Karp's result follows.

5. HATCHINGS IN SPARSE RANDGH GRAPHS

Karp and Sipser [KSp] analysed a simple heuristic algorithm for finding a

large matching in G , p = — for a constant c > 0. The algorithm runs in

0(n) time and produces a near optimal matching wbp. This is to be compared

1 5
with the asymptotically most efficient 0(n * ) algorithm of Micali and

Vazirani [MV] which is much more complex. The analysis is difficult and we

will only be able to outline what is going on. (Even so, our treatment is

technically at variance in some places with what is said in [KSp]).

First the algorithm: here 6(G) is the minimum degree of graph G.

Algorithm MATCH

(i) Remove isolated vertices - if G is now empty, stop.

(ii) if 6(G) = 1 choose a random degree 1 vertex v and let vw be its

incident edge. Otherwise (6(G) > 2) let vw be a random edge of G.

(iii) add edge vw to the output matching M and then remove vertices v,w

from G. Goto (i).
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Phase 1 of the algorithm lasts until the first time that 6 > 2 in Step

(ii) and Phase 2 constitutes the remainder of the algorithm.

Let a vertex be lost by the algorithm if it is deleted in Step (i) and so

is not covered by M. Let L.(n,c) denote the number of vertices lost in

Phase i, i = 1,2. Let R(n,c) denote the number of vertices remaining after

Phase 1.

Karp and Sipser prove the following*

Theorea 5.1

For every e > 0

L (n,c)
(a) lim Pr( |-±- a(c) | > e) = 0

n-*»

for some a(c) > 0.

(b) lim Pr(Lo(n,c) 2 en) = 0
n*> Z

(c) Pr( | ZU±2L _ p(c) | > e) = 0

for some p(c) > 0.

Also p(c) = 0 iff c < e = 2.71828...

D

Now any maximum matching must leave at least L1(n,c) vertices isolated

and so (b) above shows that M is usually of almost optimum size. The final

property that p(c) = 0 iff c < e (the e-phenomenom) is remarkable.
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Analysis

Let <5(n1,n2,m) denote the set of graphs (i) with vertex set V C Vn>

(ii) with n- vertices of degree 1, (iii) n~ vertices of degree > 2 and

(iv) m edges. Suppose that after first removing the isolated vertices of

G = G we have a graph in <S(n1 . n ^ m ) . It is easy to see that each graph
n,p l z

in ^ ( n ^ n ^ m ) is equally likely. (Each such graph arises from a unique G
L <£ n, p

with m edges). More importantly, if we stop the algorithm at the end of any

Step (i) and observe the values of n^.n^.m then the graph we have is still

equally likely to be any of ^ ( n ^ n ^ m ) . This is proved inductively by

showing that each G € ^(n^n^.m) can arise from the same number of graphs in

^nj.n^.m') via a single execution of Steps (i)-(iii).

Knowing this, we examine the Markov chain with state space

{(nj.ng.m): n^ + n 2 < n, n^ + 2n 2 < m < (2), n^iig > 0} with transition

probabilities defined by the algorithm. Using this we can, for example,

examine the length of Phase 1 by seeing how long it is before n1 becomes

zero.

Consider Phase 1. Let n ^ t ) , n~(t), m(t) denote the values of n^n^.m

at the start of the t iteration of the algorithm. If in Step (ii) w has

degree k and k. neighbours of degree i, i = 1,2 then we have

(5.1) nj(t) - nx(t+l) = kj - kg + 6 k j [Kronecker delta

n^t) - n ^ t + l ) = k 2 + 1 - 5 k l

m(t) - m(t+l) = k + 1

Now consider a period of time t € [TO, ( T + 6r)n]. If dr is small one

imagines that whp the values (n^t), n ^ t ) , m(t)) will be close to some values

n y 1 (
T ) . ny2(T)« ny3(T) where y^ . Y g ^ a r e functions of r only. It would
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also be reasonable to assume that whp.

+ 6m) - n^Tn) x nfr^T + 6r) - y1(T))

(T+6T)n
2 (kj - kg + 6k j) £ n 6T

In summary we expect that whp the Markov chain (n^iu.m) closely follows

a path n(y1(T),y2(T),y3(T)) for 0 < T < T = inf(T : y^T) = 0), where y(T)

satisfies

(5.2) y^(r) = U ^ T ) . i = 1,2,3 , 0 < r < T

and the u. are the expected values of the RHS of (5.1) at t = nT.

Furthermore

(5.3) y(0) = (ce C, 1 - e C, -ce C, c/2)

since the degree of a given vertex in G . is asymptotically Poisson with
n, c/n

mean c.

The formal justification for (5.2) can be obtained by applying a theorem

of Kurtz [Kz].

The next question is how to compute the u.. Consider a graph G chosen

randomly from ^(n^n^.m). Suppose we know that whp G has approximately v.

vertices of degree i, for i = 1,2,... (thus v~ = n1 and 2u. = 2m). The

study of random graphs with a fixed degree sequence is most easily handled by

the configuration model of Bollobas (see [Bol]: if vertex i is of degree d.
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then it gives rise to a set W. of cardinality d... W = LNL. A

configuration F is a random partition of W into 2-element sets. From F

we obtain a multigraph jx(F) by mapping {a,/3} € F to uv where a € W^,

j3 € W . Conditional on JI(F) being simple each such graph with the given

degree sequence is equally likely. Also if |w|/(n1 + n2) = 0(1) then the

probability of being simple is bounded away from zero by a constant and so we

can study random F in place of random G € ^(n-.n^.m).

Returning to the evaluation of u^.u^.u^ in (5.2), we take any i such

that d. = 1 and pair the unique x € W. with a random element in W - W..

This yields

(5.4) Pr(k = ! ) = - ! ; Pr(k = t > 2) = =£-.
2m

By similar reasoning we obtain

(5.5) ECkJk) = 1 + (k - 1) ̂  * E(k1) = 1 + ̂  (E(k) -

Q 9

(5.6) E(k2|k) = (k - 1) g ^ * E ^ ) = -± (E(k)

2
ILL. «> V t

(5.7) E ( k ) ^ + *

Thus we can compute u^.u^.u^ once we have a handle on u-,Up,... . Now

it is well known that in a random graph with n vertices and average degree

d constant that the degree of vertex 1, say, is asymptotically Poisson with

mean d. We should not be surprised that if we condition on minimum degree at
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least tig £ d then the degree of vertex 1 is asymptotically truncated Poisson

with parameter 8, i.e.

-9 f lt _fi ~ flk
(5.8) Pr(the degree of vertex 1 i s t > dft) X ir ( t ) = e , / ( e B 2 gr ) .

u o,aQ t. k = d K.

0 must be chosen so that the average degree is still d (to get the number of

edges correct) i.e.

(5.9) ua , = 2 t TTQ , (t) = d.

(The proof of (5.8), (5.9) is rather long).

Now in our case we can show that, ignoring vertices of degree 1, the

degree sequence of what remains is precisely that of a graph with 2m-n1 edges,

n~ vertices and minimum degree at least 2. So we now have enough to compute

the u. for (2). Unfortunately, these equations have not been solved

explicitly, but at least Part (a) of Theorem 5.1 follows.

The analysis of Phase 2 is more complicated. There we define clean

states to be those with y = 0 and consider transitions from clean state to

clean state so that each such transition corresponds to a sequence of

iterations of MATCH in which all but the first iteration deletes vertices of

degree 1. It is possible to establish differential equations as in (2), (3)

which describe the process with high probability. We will not try to

establish them here but instead aim to give the barest justification of part

(b) of the Theorem.
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This will be quite easy if we accept that lihp a random graph in

n^.m), m < en satisfies

(5.10a) no two (small) cycles of length < >llogn are

within distance 4Togn of each other.

(5.10b) The number of vertices within distance >llogn of a small

cycle is o(n).

It then follows that whp the number of lost vertices in a transition from

i 4. + i *. - • r\ r# matching edges founds w , ,a clean state to a clean state is 0 ( ^ fi ). We leave the

>llogn

justification of this last remark to the reader and note that it implies part

(b) of the theorem. We will not attempt to justify the e-phenomenon.

6. MINIMUM SPANNING FORESTS

In this section we consider the problem of finding a minimum weight

spanning forest of a graph. Our model of randomness is G with edge
n f m

weights which when ordered define a random permutation of the edge-set.

Remember that it is the edge weight order that defines the minimum weight

forest.

Karp and Tarjan [KT] gave an 0(m+n) expected time algorithm for this

problem based on an algorithm of Cheriton and Tarjan [CT]. This should be

compared with the best deterministic algorithm which runs in O(mco(m,n)) time

([FT] and [GGS]). Here w is a very slowly growing function of m and n

which nevertheless tends to infinity with n. McDiarmid [Ml] gave an

alternative treatment of a key lemma. The algorithm of [KT] is in two stages:
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Stage 1

Step la: construct a queue Q of n trees each consisting of a single

vertex.

Step lb: if the queue has at most >Tn trees go to Stage 2, otherwise delete

the first tree T from Q.

Step lc: let vw be the unexamined (by Step lc) edge of least weight with

one endpoint, v say, in T. (If there are no such edges, go to

Step lb). If w € T then delete vw and restart Step lc.

Otherwise add vw to the minimum forest F~ and go to Step Id.

Step Id: if the tree T' containing w is small (< >fiT vertices) then

delete it from Q and merge T, T' into a single tree T" . If

T" is small then add it to the rear of Q and go to Step lb.

At the end of Stage 1 there are at most 2>fii subtrees. In 0(m+n) time

we can contract each such tree to a single vertex and reduce the problem to

that of finding a minimum forest on < 2>fri vertices. This requires

0((4ri) ) = 0(n) time. The validity of the algorithm follows, for example,

from Lemma 5.2 of Aho, Hopcroft and Ullman [AHU]. The most interesting

question from the view of probabilistic analysis is answered by

6.1

Pr(w € T in Step lc) < ^
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Proof

Suppose Q contains trees Tj.T^.. . fTk- A vertex v € T\ is virgin if

it has never belong to a tree T in Step lc. It is simple to show by

induction that each tree T. in Q contains exactly one virgin vertex v ^

Now if v,w 6T?JT. then the lengths of vw, w i have not yet been compared

directly or indirectly by the algorithm i.e. interchanging their lengths will

not affect the course of the algorithm to this point. On the other hand

k > 4n > |T| and the result follows.

D

The remainder of the analysis is mainly nonprobabilistic. Th^ sets of

vertices of the trees of Q are treated as the sets in the UNION-FIND problem

in [AHU]. Each set is represented by a tree so that given edge xy say,

where x € T, y € T' it takes O(height (T')) to find out that y € T' and

0(1) time to merge T,T' if T * T'. When merging, if height (T) > height

(Tr) we make the root of T' a child of the root of T and vice-versa. The

sets of unexamined edges incident with trees in Q are represented as

priority queues. Karp and Tarjan used binomial queues (Vuillemin [V]), but

the analysis will be easier, if we use bottom up skew heaps from Sleator and

Tarjan [ST]. Then if there are k unexamined edges indident with T then it

takes O(logk) (amortized) time to remove the one of minimum weight and 0(1)

time to merge two queues.

The final concept is that of level. Initially imagine a marker placed at

the back of Q. All trees (single vertices) are level zero. The marker

continually moves to the front and then is placed at the back. If the marker

has reached the front £ times then we say the trees behind it in Q are at

level £ + 1 and those in front are at level £. The following are easy to

justify inductively:
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p

(a) A tree of level 2 contains at least 2 vertices.

(b) Trees of same level are disjoint (-> at most -2j trees of level 2).

(c) height (T) < level (T) for T € Q.

Let us now bound the (expected amortized) running time of Phase 1

(i) Total time to find the tree containing w in Step lc and merge trees in

Step Id.

00

0( 2 ^j («+l)) = 0(n)
«=0 2

(ii) Total time to find vw in Step lc

CO

0( 2 2 log e(T))
5=0 level(T)=«

(where e(T) = |{unexamined edges incident with T when it reaches front

of Q}|)

= 0( 2 —y log( )) by concavity of log
- ̂  2

= 0(m).

(iii) Total time to merge priority queues in Step Id

=0(n).

One can show that it takes 0(m) time to initialize the data structures

and that amortized time (with a suitable potential function) is within 0(m)

of actual time. This completes the analysis of the algorithm.

7. HAMILTON CYCLES

Komlos and Szemeredi [KSz] prove the following
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Theorem 7.1

Let m = ̂  n log n + ̂  n loglog n + ̂  c
n
n- Then

lim Pr(G is Hami 1 tonian) =
n > m

lim Pr^te ) > 2) =
u

- c- ee
1

c -n

c -n
c -

n

* —00

» c
* + oo

The aim of this section is to prove the result of Bollobas, Fenner and

Frieze [BFF] that there exists an 0(n +O' ') time algorithm HAM satisfying

(7.1) lim Pr(HAM finds a Hamilton cycle in G ) =

lim Pr(G is Hami 1 tonian) .
n m

The most interesting case is where c -» c. For this we can reformulate

(7.1) as

(7.2) lim Pr(HAM finds a Hamilton cycle |6(G ) > 2) = 1.
n > m

The following idea has been used extensively: given a path P =

(V1>V2* * *" fVlP Plus an e<tee e = v,v. where 1 < i < k-2, we can create

another path of length k-1 by deleting edge v.v. - and adding e. Thus let
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ROTATE(P,e) = (v, ,vo v, .v^.v^

HAM proceeds in a sequence of stages. At the beginning of the k'th stage we

have a path Pk of length k, with endpoints wQ and Wj. Stage k ends

when we have constructed a path of length k+1 or created a Hamilton cycle.

We try to extend P, from either wQ or W-. If we fail, but w wt €

E(G ) then, assuming G is connected, as it is whp, we can find a longern, in n, ro

path than P, . Failing this, we can create a set of paths of length k by

constructing all possible paths of the form ROTATE(Pk,e). These paths at

rotation depth 1 from P, are then tested for extension or closure. If none

of these yield a path of length k+1 or form a Hamilton cycle then we create

all possible paths at rotation depth 2 and so on. The algorithm only gives up

trying to find a path of length k+1 or close a Hamilton path (and fails)

when it has created all paths at rotation depth 2T where T = [logn/(loglogn

- logloglogn)].

Now it can be shown that whp the number of distinct pairs of endpoints of

the paths created grows by a factor of at least logn/1000 as we create each

set of paths at a given rotation depth. Thus if HAM fails at any stage there

2

will be a set of an (a > 0 constant) pairs of vertices Z (the distinct

pairs of endpoints of the paths created) which depends on the execution of the

algorithm, such that if (v,w) € Z then vw € E(G ).
11, m

The final part of the proof is rather unintuitive. It is based on a

counting argument of Fenner and Frieze [FF]. In order to get the main idea

across we will omit to mention certain technical conditions which hold whp

and are required for the proof.

Suppose now that HAM fails on G during Stage k. Now P, is derived

n,m K

from P~ (= vertex 1) by a sequence of at most 2nT rotations and
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extensions. Let W = W(G ) denote the set of at most 2nT + n edges which
n, m

are involved in these operations.

Now consider the deletion of w = [log n] random edges X from G^ m

and the following events which are all made conditional on 6(G ) > 2.
n * m

SQ = {HAM fails to find a Hamilton cycle}

= {HAM fails on G - X in the same stage as on G }l n,m n,mJ

Observe first that

Since if X avoids W(G ) then g1 will occur. But on the other
n,m 1

hand, for any fixed graph H with m-w edges

(7.4) Pr(g1|Gnm-X = H) < (1-af

This is because given H, X is a random w-subset of E(H) and in
2

order that i<. occur, X must avoid Z(H) which will be of size an . (7.3)

and (7.4) together show Pr(£Q) = o(l) which yields (7.2).

Modifications of these ideas have been used to find Hamilton cycles in

sparse random graphs [Fl], random directed graphs [F2] and to solve travelling

salesman problems [F3].

8. GRAPH COLOURING

In this section we discuss an algorithm which tries to 3-colour graphs.

If a graph is chosen uniformly at random from the set of 3-colourable graphs
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with vertex set Vn then it succeeds *hp. Our discussion is based on work of

Dyer and Frieze [DF] and Turner [Tu].

Before getting into this discussion it is as well to briefly state what

is known about colouring random graphs in general, say for G ^ where each

graph with vertex set Vn is equally likely. Now it has been shown by

Bollobas [Bo2] that

* -

(See also Luczak [L] for the sparse graph case). In spite of a great deal of

effort the best polynomial time algorithms tend to use roughly twice as many

colours as are really needed (see e.g. Grimmett and McDiarmid [GM], Bollobas

and Erdbs [BE], Shamir and Upfal [SU]).

Having explained this sorry situation we can turn to 3-colourable graphs.

(Actually, the proposed methods extend to k-colourable graphs, k fixed - see

[DF] or [Tu] for details). It is not obvious how to deal with the probability

space ^(n: \ = 3) = the set of 3-colourable graphs with vertex set V . We

must deal with it indirectly.

First consider a simple way of constructing a random 3-colourable graph.

Suppose B1 ,BO,B~ is a random partition of V into sets of size ~ zr. For

each e € (BjXB^ U (B-xBO U (B2xB3) independently put in the coresponding

edge with probability p ~ ̂ -. (We need to allow p close to <r as well as

= ?>•). Call the resulting random graph G-. Clearly G. is 3-colourable.

Can we 3-colour G- whp without knowing B-.Bg.B^? The answer is yes. In

the following algorithm Xj.Xg.Xg will (hopefully) denote a 3-colouring of

G-. We use the notation d~(v) to denote the number of neighbours of a vertex

v in a set S.
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Algorithm COLOUR

begin

for i: = 1 to 2 do

begin

X.: = 0 ; Y : = V - U X
i i n j a i

repeat

choose v € Y. such that cL, (v) is minimal;
1 i

X.: = X. U {v}; Y. := Y. - {v} - T(v)

until Y± = 0

end

2
if ^ = Vn - U Xi is independent then Xj.X^Xg is a 3-colouring

else COLOUR has failed.

end

(Replace 2 by k-1 and 3 by k to get an algorithm for colouring

k-colourable graphs.)

8.1

Pr (COLOUR fails) = o(l).

Proof

It is only necessary to show that the first repetition of the for-loop in

COLOUR terminates with Xj = B- or B 2 or B^. If this is the case then we

are effectively re-applying the algorithm having replaced 3 by 2.

Without loss of generality assume that the first v € Y1 is in B. .

Suppose inductively that r £ 1 vertices have been selected in X- and
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suppose Xj C B r Note that Yj = V R - TCXj) - Xj. If r < 3 then we can

show using the Chernoff bound that for any r-subset X of B1, |B. - T(X)

— r
r + 1

— — , j = 2,3, nhp and if v € B. then it has degree £ — - — r in
3x2r x 3x2r+1

B. - T(X), j * 1. Similarly v € B ^ i * 1 has degree S g- in Bj. Hence

under these assumptions

X 2

~ n
~ 6 '

3x2 r + 1 '

n

3x2 r + 1 '

V

V

€ B l

B l

and so the next choice is also in B- . For r > 3 we use the fact that whp

|(B2 U B3) n Yjl < ̂  while v « Bj retains Z g- neighbours in Bj. Q

Now we have not yet proved that COLOUR works with high probability on

graphs chosen uniformly at random from ^(n: \ = 3) and we do not have the

space here to give all the details of how to "translate" the result of Lemma

8.1 to obtain this result. On the other hand it is easy to show that whp G.

is uniquely 3-colourable, a fact which is of interest in its own right and

vital to the "translation".

8.2

Pr (G- is not uniquely 3-colourable) = o(l),

Proof (Outline)

Consider a vertex v € B-. Whp it has £ 2. neighbours N. C B., i =

1,2. Whp N1 U N^ induces a connected, and hence uniquely 2-colourable,

bipartite graph. But then whp each w € B- - {v} is adjacent to a vertex in
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both N., and No and so B1 is determined as one colour class. Finally,

whp B 9 U B 9 induces a connected bipartite graph which then determines ^o*^3

uniquely.

D

We can now discuss the "translation" of Lemma 8.1. Let G^ be the

2
random graph in which we randomly choose m ~ -̂ - edges from

(B1xB2) U (BjXB^ U (B2xB3) where B rB 2,B 3 are as for Gj. If we let p =

-Tj- ~ cf then we have
n

Pr(OOLOUR fails on Gj) > Pr(OOLOUR fails on G][ | |E(G1) | = m) PrdECGj)! = m)

= Pr(OOLOUR fails on G2) Pr( ̂ (Gj) | = m).

Now if the calculations are made explicit in Lemma 8.1 then we can prove that,

say,

Pr(COLOUR fails onG.) < e ^ n

and it is easy to see that

(8.1) PrdECGj)! =m) = n(l/n)

1 n 2

for p,m close enough to ^, -g- respectively. Hence, with these caveats,

one sees imnediately that

Pr (COLOUR fails on G2) = o(l)
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Similarly

(8.2) Pr(G2 i s n o t un**!11^ 3-colourable) =

Now some rather tedious calculations show that almost all graphs in

2

^(n: x = 3) have ~ ~- edges and have 3 colour classes of size ~ ̂  only,

(the approximations here are good enough for (8.2) to hold). Thus we really

only have to show that Lemma 8.1 can be translated to G~ chosen uniformly
2

from <&' = the set of 3-colourable graphs with m £ ̂ - edges and a set of

colour classes of size n^.n^.n^ ~ ~.

Now while G~ is chosen uniformly from <&', G^ is chosen from *S' with

probability proportional to the number, ^(GU) of different 3-colourings G^

(with colour-classes of the appropriate size).

Now for any sA C <S'

. \d

> (1 - o(l)) Pr(G3 € si)

since the result of Lemma 8.2 can be expressed as

Thus

Pr(G3 € d) < (1 + o(l)) Pr(G2 € d).
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We obtain the result we want by taking si = {G € W : COLOUR fails on G}.

The failure probability of COLOUR is not quite small enough so that one

has a polynomial expected time algorithm if one handles exceptional cases by

enumeration. In [DF] we construct another algorithm COLOUR 2 to handle the

exceptional cases of COLOUR. It has polynomial running time and failure

probability 0(e~n^n l o g n ) ) . Thus if both COLOUR and OOLOUR1 fail we can then

resort to enumeration of all possible 3-colourings and we will have a

polynomial expected time algorithm for colouring, 3-colourable graphs.

9. GRAPH ISOMORPHISM

In this section we give the earliest and simplest result concerning the

graph isomorphism problem for random graphs. It is due to Babai, Erdos and

Selkow [BES]. Suppose we are given graphs G. = (V , E.), i = 1,2 where Gj

is the random graph G ~ and Go is any graph. Can we quickly tell
n, .o £

whether or not G- = Go i.e. whether there exists a bijection f: V -» V
1 z n n

such that vw € Ej iff f(v)f(w) € Eg. The answer in [BES] is that whp we

2
can check this in 0(n ) time.

The method is based on the fact that wbp G1 has the properties (9.1)

and (9.2) below. Let the vertices of Gj be relabelled so that d(i) >

d(i+l), i = l,2,...,n-l. Let r = [3 log2nl. Then whp

(9.1) d(i) > d(i+l) for 1 < i < r.

Next, for i > r let X = {i: 1 < i < r and ij € Ej}. then

(9-2) X * Xk for j,k > r.
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Thus we can relabel the vertices r+l,...,n so that

(9.3) Xi is lexicographically larger than XJ+1, i = r+l,...,n-l.

Given (9.1) and (9.2) it is easy to check if G1 and G2 are isomorphic.

1. Compute the degree sequence of G~. If the largest r degrees do not

coincide with those of G- then G. and G~ are not isomorphic.

If they are then by (9.1) we can identify f(1),...,f(r) in any possible

isomorphism. By relabelling vertices of G~ we can assume f(i) = i

for 1 < i < r.

2. For each vertex v > r of G~ compute Y = {i: 1 < i < r and

iv € E(Gp)}. Sort these n-r sets into lexicographic order. If there

exists i > r such that Y± ? X± then by (9.2) and (9.3) Gj and G^

are not isomorphic. Otherwise the only possible isomorphism is now

f(i) = i.

3. Finally, check if f(i) = i is an isomorphism i.e. check if now Gj =

The proof of (9.1) requires a lot of calculation. Babai, Erdbs and

Selkow proved considerably more than this. They showed that

(9.4) d(i) - d(i+l) > n 0 3 for 1 < i < n 15.

For an even stronger result see Theorem III. 15 of Bollobas [Bol]. Given

(9.4) it is quite easy to prove (9.2). If (9.4) holds and X. = X. for some

i,j > r then i and j have the same set of neighbours among the r



33

largest vertices in U± . = Gj - {i,j}. Denote the this event by « . Now

since the graph H. . is independent of i, j the probability of £. . is

d ) r . Hence

n-1 n
Pr(3 i,j > r : X. = X.) < 2 2 PrU. ) + Pr( (9.4) fails)

1 J i=l j=l 1J

n 2

The result of [BES] has been strengthened by Karp [Ka2], Lipton [Li] and

Babai and Kucera [BK]. In particular Babai and Kucera handle exceptional

graphs in such a way that graph isomorphism can be tested in linear expected

time on G c. For regular graphs, the above algorithm(s) would be
n, .o

particularly ineffective. However, Kucera [Ku] has recently devised an

algorithm for regular graphs which runs in linear expected time, i.e. O(nd),

assuming the degree d does not grow with n.

10. GRAPH BISECTION

Here we are given a graph G = (V,E) with n vertices, n even, and the

problem is to find the partition of V into two equal sized subsets S^S^

so that the number of S-: S~ edges is minimised. The minimum such number of

edges is called the bisection width of G. The problem is useful in VLSI

design problems (see Bhatt and Leighton [BL]), but is NP-hard (Garey, Johnson

and Stockmeyer [GJS]).

If we take the graph G as a model of random input then we find that
n, m
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mall relevant cuts have ~ ?r edges whp provided m is sufficiently large e.g.

m = fi(n logn). Finding the bisection width in these circumstances is still

open.

Positive results can be obtained if we consider sampling uniformly from

^(n.m.b), the set of graphs with vertex set V edges and bisection width
n,m

b. Basically, the idea is to have b significantly smaller than ~ and then

whp there will be a unique cut of size b which will be easy to find. Bui,

Chaudhuri, Leighton and Sipser [BCLS] considered this approach for regular
2

graphs. Dyer and Frieze [DF] considered ^(n.m.b) with m = fi(n ) and Boppana

[Bp] considered the case m = Q(n logn). We will outline Boppana's approach

here.

First of all we remark that it is not easy to work directly with

^(n.m.b). Instead one chooses a random partition of V into S^S^ of

equal size, and then add edges between S1 and So of equal size, and then
2

adds edges between S- and S~ with probability q = 4b/n and within each

fH
S. with probability p = 4(m-b)/ o . Results are proved for this
I i z j

"independent" model and then translated to ^(n.m.b) - see §8 on colouring.

For S C V n we define x = x(S) € Rn by xj[ = 1, i € S and = -1

otherwise. Given d € Rn we let B = B(d) = A + D where A is the
n

adjacency matrix of G and D = diag(d). Also let sum(B) = 2|E| + 5 d. =
i=l 1

the sum of the entries of B. Next let

1 " xixi 1 n

f(G,D,x) = 2 ^ 4 2

2 4

= | (sum(B) - xTBx).
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The significance of this function is that

(10.1) f(G,d,x(S)) = |(S: Vn-S)| for
n

X 1
Observe that llx(S)ll = >(n (Euclidean norm) and e x(S) = 0 when |s| = ̂
T

(e = (1,1, . . . ,1)). So from (10.1) it is natural to consider

g(G,d) = min f(G,d,x)
T

ex=0

llxll=>Tn

1 T^
= min -r (sum(B) - x Bx)

llxl l [n

where B = B(d) = (I - — ee )B. (Observe that the matrix I - — ee projects

Rn onto {x € Kn: eTx = 0}.

Bopanna's idea is that one can find d for which the x minimising

f(G,d,x) is x(S) for a minimum bisection S.

Note that

(10,2) g(G,d) = |(sum(B) - nX(B))

where X(B) is the largest eigenvalue of B.

Now g(G,d) being the infimum of a collection of linear functions is

concave in d and so

h(G) = max g(G,d)

d€Kn
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can be computed in polynomial time. (Grotschel, Lovasz and Schrijver (GLS)).

Since g(G,d) £ f(G,d,x(S)) for S C V we see that

h(G) < bisection width of G.

The nice probabilistic result of Boppana is that if G is sampled

uniformly from ^(n.m.b) and

(10.3) 0 < b < | m - 5 >lmn logn

then whp the bisection width of G is b = h(G) = g(G,d ) and the eigenvector

corresponding to X(B(d )) yields the minimum bisection. The proof of this

result is as follows. First of all it is straightforward to show given

(10.3), that in the independent model there is whp a unique minimum bisection

of size b. Next let S-.S^ be a minimum bisection. For i € S1 let

d* = d(i,S2) - d(i,S1) and for i € S 2 let d* = d(i,Sj) - d(i,S2) where

d(v,S) = |{w € S: vw € E}|. Now sum(B(d*)) = 4b and so by (10.2) g(G,d*) =

b iff X(B(d*)) = 0. Observe also that B(d*) x(Sj) = 0 and so Boppana's

result is reduced to showing that whp B(d ) has a unique eigenvalue of zero

and every other eigenvalue is negative.

Now we have E(B) = M - |{p-q)nl where M = E(A). Also M x ^ ) = 0,

x(S1)
TM = 0 and so if fT(B-M)f < 0 always then fTBf < 0 always, which is

what we need. This follows a fortiori if B-M has non-positive eigenvalues

or equivalently if B-E(B) has eigenvalues bounded above by cjr(p-q)n.

X(B - E(B)) < A(A - E(A)) + X(D -
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The eigenvalues of D - E(D) are precisely its diagonal entries and using

Chernoff 's bound we find that X(D - E(D)) < 5-Jpn logn.

Extimating X(A - E(A)) is more difficult, but the eigenvalues of random

matrices have been intensively studied. By modifying a result due to Furedi

and Komlos [FuK] Boppana shows that X(A - E(A)) < 3>Ipn whp and so X(B -

E(B)) < 6>lpn logn *hp. The reader can now check that if (10.3) holds then

16>lpn logn < ̂ {p-q)n as required.

The probability that Boppanafs algorithm fails to work is not

sufficiently small that exceptional cases can be dealt with more crudely and

still yield a polynomial expected time algorithm which handles all graphs.

For m = Q(n ) however, there is a polynomial expected time algorithm, [DF].

11. OTHER ASPECTS

We have concentrated here on positive results that arise in probabisistic

analysis. This field also has its share of negative results. We mention

three: Chvatal [C] showed that a certain class of approaches to finding the

largest independent set in a graph took exponential time nhp; McDiarmid [M]

proved a similar result for graph colouring as did Ahn, Cooper, Cornuejols and

Frieze [ACCF] for finding a small dominating set.

There is an increasing interest in finding fast parallel algorithms.

There are a few results here of interest to us: Frieze and Rudolph [FR] gave

an O(loglogn) expected time parallel algorithm for the shortest path problem

o
of 53; Frieze [F4] gave an 0((loglogn) ) expected time parallel algorithm for

the Hamilton cycle problem in G , p constant; Frieze and Kucera [FrK] give
n, p

a polylog expected time algorithm for colouring graphs; Coppersmith, Raghavan

and Tompa [CRT] give polylog expected time algorithms for graph colouring,

finding maximal independent sets and finding Hamilton cycles; Calkin and
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Frieze [CF] deals with maximal independent sets.

Finally we mention an area of particular interest to probabilists. Given

a weighted optimisation problem, determine the properties of the (random)

optimal value. We first mention two similar results: consider the nxn

assignment problem in which the costs c(i, j) are independent uniform [0,1]

random variables. Let W denote the minimal value of an assignment. Walkup

[W] showed that, rather surprisingly, E(W ) < 3 for all n. Karp [K]

improved this to E(Wn) < 2 (see also Dyer, Frieze and McDiarmid [DFM]). A

lower bound of 1 + e was proved by Lazarus [Lz].

Consider next the minimum spanning tree problem where the edge weights

are also independent uniform [0,1] random variables. Let L denote the

minimum length of a spanning tree. We showed [F5] that

00 -3lim E a ) = f (3) = 2 k *.
n k=l

(see also Steele [Stl] and Frieze and McDiarmid [FM]).

Probabilists have found Euclidean problems even more interesting. For

example, suppose Xn ,XO,... ,X are independetntly chosen uniformly at random
i. £ n

2

in the unit square [0,1] . In a very important paper Beardwood, Hal ton and

Hammersley [BHH] showed that if T is the minimum length of a travelling

salesman tour through these points then there exists a constant j5 > 0 such

that

T
Pr(lim — = j3) = 1.

n-*» 4ii

Steele [St2] has generalised this result considerably and the paper by
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Karp [Ka4] was very influential in generating interest in the probabilistic

analysis of algorithms.

For a bibliography on topics related to this paper see Karp, Lenstra,

McDiarmid and Rinnooy Kan [KLMR].
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