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1. Introduction.
Paper 1 [IQSeg]1 of this series began an investigation whose

goal is a thermomechanics of two-phase continua based on Gibbs's
notion of a sharp phase-interface endowed with thermomechanical
structure. In that paper a new balance law, balance of capillary
forces, was introduced and then applied in conjunction with suitable
statements of the f irst two laws of thermodynamics; the chief
results are thermodynamic restrictions on constitutive equations,
exact and approximate free-boundary conditions at the interface,
and a heirarchy of free-boundary problems. The simplest versions
of these problems (the Mullins-Sekerka problems) are essentially
the classical Stefan problem with the free-boundary condition u = 0
for the temperature replaced by the condition u = hK, where K is
the curvature of the free-boundary and h>0 is a material
constant. This dependence on curvature renders the problem
difficult, and apart from numerical studies involving linearization-
stability, there are almost no supporting theoretical results.

For perfect conductors the theory seems far more tractable;2

there the temperature is constant, and the underlying free-boundary
problem reduces to a single set of evolution equations for the

1See also [1986g,1988gg].
2The theory of perfect conductors might ba applicable to small
interfaces, where bulk effects are small, or to interfaces of
arbitrary size in superconductors such as solid helium in which
heat flow is insignificant (cf. Man's and Andreev [1987]). A
mechanical theory of this type might also model the motion of
grain boundaries (cf. Allen and Cahn [1979]).



interface.
In this paper ve develop further the theory of perfect

conductors, but to avoid the severe geometric complications
associated with the motion of surfaces in IR3, ve restrict our
attention to interfaces that evolve as curves in IR2. For any such
interface, we write T(B) for the unit tangent, N(B) for the unit
normal, and B for the angle from a fixed coordinate axis to N(B).

We begin with a fairly thorough description of the basic laws,
which are balance of capillary forces and a mechanical version of
the second law, and we derive corresponding thermodynamic
restrictions on constitutive equations.3 In particular, we show
that the capillary force C(B) must be related to the interfacial
energy4 f(B) through the relation

C(B) = f(8)T(B) + f'(B)N(B). (1.1)

Balance of capillary forces in conjunction with the
thermodynamically-reduced constitutive equations lead to an
evolution equation which relates the normal velocity V to the
curvature K; this relation has the form5

J3(B)V = [f(8) + f"(8)]K - F (1.2)

with F the (constant) energy-difference between bulk phases, and
p(8)>0 a kinetic coefficient which measures the drag opposing
interfacial motion. The relation (1.2), when combined with purely
kinematical conditions for an evolving curve and applied on a convex

3The underlying proofs are more transparent in IR2 than IR3,
and for that reason we rederive many results which could simply
be taken from [1988g].
throughout we use the term "energy" as a synonym for "free
energy".
5There is a large and growing literature concerning the evolution
equation V = K (cf., e.g.. Brakke [1978], Gage [1986], Gage and
Hamilton [1986], Grayson [1987], and Angenent [1988]).



section of the interface, results in a single partial differential
equation for the velocity V = V(B,t):

*(B)Vt = [V + *(B)]2[VB 0 + V], (1.3)

where

= [f (B) + f
 n(B)]/j3(8), *(B) = F/J3(B).

For $(B)>0 this equation is parabolic6 and yields a theory which
seems quite similar in structure to its isotropic counterpart based
on V = K-F. There is, however, no compelling physical reason to
exclude energies f(B) for which f(B) + f"(B)<0 over certain ranges
of the angle 8;7 for such ranges the equation (1.3) is backward-
parabolic and corresponding evolution problems are generally not
well posed. We show that a necessary condition for the statical
stability of the interface is that f(B) + f"(B) > 0, and for that
reason use the terms strictly stable, stable, or unstable according
as f(B) + fM(B)>0, f (B) + f "(8) > 0, or f(B) + f"(B)<0.

We begin our analysis of (1.3) by restricting attention to
interfacial energies that are strictly stable. We deduce steady
solutions of (1.3) for which the interface is convex and infinite, in
the shape of a bump. The bump recedes in one solution and
advances in the other; for the receding bump the kinetic coefficient
can be arbitrary, but the advancing bump requires a nonconvex polar
diagram for ]3(B).

We next analyze the global behavior of a smooth interface as
measured by its perimeter L(t) and enclosed area A(t). Our main
result, based on the asumption of a stable interfacial energy, is
most easily stated in terms of a bounded solid in an infinite

6Aside from the trivial degeneracy (v=-U^(B)) which occurs at
inflection points.
7Material scientists often consider such models (cf., e.g., Gjostein
[1963], Cahn and Hoffman [1974]).



liquid bath.

If the bath is nsd. supercooled, then A(t)->0; if the
bath is supercooled, then initially small interfaces have
(1.4) L(t)->0, initially large interfaces have A(t)-»oo.

We also show that, for the case in which A(t)-»oo, the
isoperimetric ratio L(t)2/4irA(t) remains bounded as t-»oo. We
show further that if (for a nonconvex interface) one defines a finger
as a section of the interface between inflection points, then the
total number of fingers as well as the total curvature of each finger
cannot increase with time. These results presume the existence of
a smooth, simple (non self-intersecting) interface. In this regard,
it is clear that in certain circumstances the interface can pierce
itself as it evolves.

We next consider energies f(8) which are unstable for certain
values of 8. Here we find it convenient to introduce a global
definition of stability which is based on ideas of Wulff [1901],
Herring [1951b], and Frank [1963]. We define global stability in
terms of the convexity of the Frank diagram, which is the polar
diagram of the reciprocal function f(B)~1; we refer to the convex
sections of this diagram as the globally-stable (GS) sections, to the
remaining sections as the globally-unstable sections. These
definitions are consistent: f(8) is stable on GS sections; f(8) is
unstable somewhere within each globally-unstable section.

One way of treating unstable energies is to allow the interface
to be nonsmooth with corners which correspond to jumps in 8
across the globally-unstable sections. Balance of capillary forces
for corresponding "weak solutions" of the evolution equations leads
to the requirement that C(8) be continuous across each such
corner; interestingly, this requirement is automatically met.

In contrast to standard results for a strictly stable energy,
the presence of corners leads to the possibility of facets (flat
sections); in fact, to the presence of wrinklings, where a wrinkling
is a series of facets with normals that oscillate between two fixed
values. We show that such wrinklings are dynamically stable: the



lengths of the individual facets do not increase with time.
The use of corners leads to free-boundary problems for the

evolution of the interface, as the positions of the corners are not
generally known a-priori. We discuss these problems in some detail.

Material scientists often consider interfacial energies that are
continuous but have derivatives which suffer jump discontinuities.8

We study such interfaces; as before, we use corners to remove the
globally unstable sections. We show that, in agreement with
statical results,9 discontinuities in f'(B) lead to facets in the
evolving interface. We show further that the result (1.4) remains
valid for nonsmooth, nonstable energies.

Following Taylor's [1978] statical treatment of crystal shapes,
we consider a particular class of nonsmooth energies, called
crystalline, for which the GS sections are isolated points (that is,
for which the Frank diagram touches the boundary of its convex hull
only at discrete points). An interesting property of crystalline
energies is that their evolution is governed by a system of ordinary
differential equations. Moreover these equations are of a
particularly simple form, involving only nearest-neighbor
interactions. We solve these equations for a rectangular crystal;
the corresponding solution shows that, in situations for which the
crystal shrinks (cf. (1.4)), the corresponding isoperimetric ratio
generally tends ifl infinity. This is in sharp contrast to an
isotropic interface, which shrinks to a round point.10

8Cf., e.g., Herring [1951ab], Cahn and Hoffman [1974].
9Cf., e.g., Taylor [1978].
10Gage [1984], Gage and Hamilton [1986], Grayson [1987].



1. The thermomechanics of evolving curves.

2. Kinematics.
This chapter discusses the kinematics of smooth curves which

evolve smoothly in time, and forms the basis of our theory of the
motion of phase interfaces in IR2.

2.1. Curves.
A curve is a smooth map pi-*r(p) from an interval of IR

into IR2 such that:
(i) rp never vanishes;
(ii) the domain of r is either all of IR or a bounded interval

[P.Q];
( i i i ) i f the domain is IR, either r is periodic11 or

lr(p)l -»oo as Ipl -»oo.
The set Range(r) is then called the trace of r.

We wil l classify curves r as follows: r is bounded or
unbounded according as its trace is bounded or unbounded; r is
closed if the domain is IR and r is periodic, r has endpoints
i f i ts domain is a bounded interval. A nonclosed curve is simple if
it is one-to-one; a closed curve is simple if given any p.qeIR,
r(p) = r(q) only when p-q is a multiple of the minimal period of
r.

Let r be a curve. An arc-length map for r is a smooth
mapping s(p) from the domain of r into IR such that

sp = l r p l . (2.1)

We assume henceforth that an arc-length map is prescribed. Since
the arc length s = s(p) is an invertible function of p, any
function <$>(p) may be considered a function #(s). and vice versa.

11A function $ on IR is periodic i f there is a X>0 such
that <jj(p) = «j»(p + X) for all peIR; X is then a period of <p and
the infimum of all periods is the minimal period of <p. (The
minimal period of a curve r is str ict ly positive since l rp l ^ 0.)



The vector

T(s) = rs(s) (2.2)

defines a (unit) tangent to the curve in the direction of increasing
p. We define a corresponding (unit) normal N(s) through the
requirement that {T,N} be a positively-oriented orthonormal basis
of IR2, and we define the angle B(s), as a smooth function of s,
through12

N = (cosB.sinB), T = (sinB.-cosB). (2.3)

We will refer to the range of the function s»-»B(s) as the angle
range (Figure 2A). Note that, N and T may be considered as
functions of 8, in which case

NB = -T, Te = N. (2.4)

The function

K(s) = Bs(s) (2.5)

is the curvature; by (2.4), K(s) obeys the Frenet formulas:

Ns = -KT, Ts = KN. (2.6)

Let r be a curve with trace £ and normal N. Then r is a
boundary curve if r is simple and either closed or unbounded.
By the Jordan-curve theorem, £ then divides IR2 into two
regions,13 and one of these regions, Q, say, will have N as
outward normal; we will refer to Q as the reference region.

A curve is convex if K never vanishes In view of (2.5), the
12This defines the function B(s) up to a multiple of 2TT.
13We use the term region as a synonym for connected open set.
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r(p)

N(6)

fr(q)

T(9)

Figure 2A. Sign conventions for curves.
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mapping S H B ( S ) IS then invertible and we may use B in place of

s or p as independent variable. In particular, we may parametrize

the curve itself by 8, giving a function r(B); granted this, (2.2)

and (2.5) yield

G K~1T. (2.7)

Note that, because of our sign curvature for curvature, K<0 for a

boundary curve whose reference region is bounded and strictly

convex.

Useful in the study of convex curves is the support function

p = r-N; (2.8)

by (2.4) and (2.7),

r = pN - pBT, pBB + p = -K"1. (2.9)

We now give three useful lemmas concerning convex curves.

Lemma 1. Two convex curves with the same angle range and

the same curvature are equal modulo §. translation.

Proof. By (2.9)2, the difference between the support functions

of the two curves r^B) and r2(B) must have the form a-N(B),

and this with (2.9)1 implies that r1(B)-r2(B) = a. •

Lemma 2. Consider a. curve whose curvature is ncrt identically

zero, and suppose that the curvature has the form K(B(s)) with

K(8) .a smooth function on ih£ angle range. Then the curve is.

convex.

Proof. Let T denote the angle range, and let T be a

connected component of the set { B G T : K(B) ** 0}. We must show

that f = T. Assume that f ^ T. Then there is a boundary point 80

of f in IR with B0€T and K(Bo) = 0. Since K(8) is smooth up



to 80, IK(8)I < CI8-8OI near 80. But on T. s = s(B) and
sB(B) = K(er1, so that ls(B)l-»oo as B-»80, a contradiction. •

Lemma 3. Lei K(B) bg. a. smooth. 2TT-periodic function on
IR. Then the restriction of K(B) to an open interval O is the
curvature jjf .a convex boundary curve if and only if either (a) or. (b)
is. satisfied:
( a ) 0 = IR, K(8) is nonvanishing. and

2TT

|K(8)"1e ied8 = 0; (2.10)
0

(b) © is a bounded interval (BV82) with B^-B2 < -n; K(8) is.
nonvanishing on (8V82); K(81) = K(82) = 0.

in case (a) Jim boundary curve is. closed: in case (b) ihe boundary
curve is unbounded, in either case a. boundary curve with angle
range O .and curvature K(8) m generated .by (2.9)1 with p any
solution of (2.9)2.

Proof. Note first that if g(8) is a smooth 2iT-periodic
function on IR, then

21T

[[g(B) + g"(8)]eiBd8 = 0, (2.11)
0

an assertion which follows immediately upon integrating the term

g"(8)e10 twice by parts.

Suppose that the restriction of K(8) to an open interval O
is the curvature of a convex boundary curve r. Then r is simple
and either closed or unbounded. Assume that r is closed. Then
O = IR and (2.10) is a consequence of (2.11) and (2.9)2. Thus (a) is
satisfied.

Assume that r is unbounded. Then lr(p)l-»oo as
p-»±oo, so that

ls(p)l-»oo as p-»±oo. (2.12)
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independent of parametrization. On the other hand, this invariance
allows us to use any parametrization we wish. In fact, we shall
restrict our attention to parametrizations with r t(p,t)lrp(p,t);
such parametrizations greatly simplify the analysis, chiefly because
the velocity rt(p,t) is equal to the normal time-derivative r*(p,t),
an intrinsic quantity.

Precisely, an evolving curve14 is a smooth mapping
(p,t)i-»r(p,t) with the following properties:
(i) the domain of r is either IRx[o,T) or a set of the form

{(p,t): p€[P(t).Q(t)]. t€[O.T)>. (2.13)

where P.Q: [O,T)-»IR (P<Q) are smooth functions;

(ii) r( • ,t) is a curve for each t€[O,T);
(iii) r t(p,t) lrp(p,t) for all (p,t) (orthogonality).
We will refer to r(P(t),t) and r(Q(t),t) as the initial and
terminal points (or collectively, as the endpoints) of r, and to
the interval [P(t).Q(t)] (or IR) as the parameter interval at
time t

Let r be an evolving curve: r is bounded, unbounded, closed,

simple, convex, or has endpoints, according as r(-, t) has that
property for each t€[O,T); a restriction r0 of r is an evolving
subcurve of r if, modulo a translation of time, r0 is a bounded
evolving curve; r is an evolving facet if its trace <>(t) is a
segment of a straight line at each t.

Let an evolving curve r be given. An arc-length map for
r is a smooth mapping s(p,t) such that s( • ,t) is an arc-length
map for the curve r(- , t ) at each t. It is not difficult to
construct an arc-length map for r, and any two such maps differ
by a smooth function of time. We assume henceforth that an arc-
length map is prescribed. Since s = s(p,t) is an invertible function
of p, any function <j>(p,t) may be considered a function tf>(s,t).
and vice-versa. We will refer to <$>(s,t) as the arc-length

14We use the term "normally evolving curve" in Appendix B.
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description of $.

We write15 $° for the normal time-derivative of <j>, the
time derivative holding p fixed. In particular, we define the
normal velocity V(s,t) through the identity

r° = VN. (2.14)

the arc velocity v(s,t) through

v = s°. (2.15)

Given a function <Jj(s,t),

<$>° = <}>t + v<ps, (2.16)

with <j>t the t ime der ivat ive holding s f ixed; thus

(<J>°)S = (<J>t + V(})s)s = <pst * v<j>ss + vs$s = (<j)s)° + v s$ s . (2.17)

Transport identities.

vs = -KV. 8° = Vs, K° = Vss + K2V. (2.18)

Proof. By (2.1) and (2.2), T - l r p r V p . Thus J = sp = lrp l
satisfies

J° = I r p r 1 r p - ( r p ) a = T-(VN)SJ = T-(NS)VJ,

and, in view of (2.6), J*=-JKV. On the other hand, (2.15) yields
j» = vp = vsJ and (2.18)1 follows.

Let e be a fixed unit vector. Then, by (2.2), (2.3). and (2.17),

( r s )» . e = (T-e)» = (N-e)8«,

15Cf. Appendix B. We will also write <j>°(t) for the derivative of
a function <j>(t) of time alone.
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(rs)*-e = (r°)s-e - vsT-e,

while (2.6), (2.14), and (2.18)., imply

( i-)8 = VSN + vsT.

The last three relations yield (2.18)2. since e is arbitrary (cf.
(2.16)). Finally, (2.18)3 follows from (2.17) with $ = 8, (2.5), and
(2.1B)1t2. •

Note that, trivially, for an evolving facet (cf. (2.5) and (2.18).,),

K = Bs = 0, vs = 0. (2.19)

An endpoint R(t) = r(P(t),t) is a normal trajectory if
R°(t)-T(P(t),t) = O. Trivially, since R°(t) = rp(P(t),t)P°(t) + r°(P(t).t),
r(P(t),t) is a normal trajectory if and only if P is independent of
t.

Proposition. Lei r have endpoints. and let S(t) denote the
arc length and 0(t) JJia angle of an endpoint R(t). Then

R*(t) = V(S(t).t)N(S(t),t) + [S»(t) - v(S(t).t)3T(S(t).t),

(2.20)
0°(t) = Vs(S(t),t) + [S*(t) - v(S(t).t)]K(S(t),t).

and. if_ ihe endpoint R(t) i s a. normal trajectory.

S»(t) = v(S(t),t). 0°(t) = Vs(S(t),t). (2.21)

Proof. Since R(t) = r(S(t).t), 0(t) = B(S(t),t), the identities
(2.20) follow from (2.16), (2.14). (2.5), and (2.18)2. If R(t) is a
normal trajectory, then R(t) = r(P,t) with P constant; thus, since
S(t) = s(P,t), (2.21)1 follows from (2.15). and, in view of (2.20)2, this
yields (2.21)2. •
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For a convex evolving curve the mapping si-»8(s,t) is
invertible and we may use 8 and t in place of s and t as
independent variables. Then

K° = Kt + K0B° (2.22)

(with Kt the derivative of K with respect to t holding 8
fixed).

Proposition. FOE a. convex evolving curve with curvature-
normal velocity, and arc velocity expressed aj> functions Q£ (8,0,

Kt = K2(V80 + V), Vg = -V. (2.23)

in addition, i f r has endpoints. and i f the angle B a t a o endpoint
R(t) Jias the constant value 80, then

= V(80.t)N(80) - V0(8o,t)T(Bo). (2.24)

Proof. Clearly.

Vs = VBK, Vss = VBQK2
 + V0K0K,

and these relations, (2.22), and (2.18)23 yield (2.23)r On the other

hand, vs = vBK and (2.23)2 follows from (2.18)v Finally, (2.20) with

0° = O and Vs = VBK imply (2.24). •

The next definition wi l l be useful in discussing evolving curves
that represent interfaces between phases. An interfacial motion

is an evolving curve r with r ( - . t ) a boundary curve at each t.
The trace «;(t) of r then divides IR2 into two regions. The
region Q(t) with N(s,t) as outward normal is called the
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reference region, and, without loss in generality, Q(t) is taken
to be .the. bounded region interior io <;(t) when r is. closed (Figure
2B).

By a steady motion we mean an interfacial motion r with
the following property: there is a vector U * 0 such that, for some
choice of arc-length map,

r(s.t) = ro(s) + tU; (2.25)

U is then the steady velocity, the curve r0 the portrait.

Proposition. Given a. boundary curve r0 and a. vector U ̂  0,
there js. a. unique16 steady motion r with rQ as. portrait and U

steady velocity.

Proof. Assume that ro(s) is parametrized by arc length and
let (s.t) i-» k(s.t) (IRx[o,oo)-»|R2) be the time-dependent curve
defined by (2.25). Then t)(s,t), as defined in (B3)2 of Appendix B,
is independent of t and given by

t)(s) = -U-T(s) , (2.26)

with T(s) the tangent for ro(s). Thus k obeys hypothesis (iii) of
Theorem 1 (Appendix B), and there is a reparametrization $ of k
such that r = k°<|> is an evolving curve. Writing (j>(p,t) = (<jj(p,t),t),
and differentiating r(p,t) = k(<j>(p,t),t) with respect to p yields the
conclusion that <$>(p,t) is an arc-length map for r. Thus k(s.t)
is an arc-length description of r(p,t), which is the desired
conclusion. If g is a second steady motion with k as an arc-
length description, then, trivially, g must be a reparametrization
of r. •

As is clear from the proof of Theorem 1 (Appendix B), a
16The term "unioue". when used relative to evolving curves, will
always signify "unioue up. io a. reparametrization".
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Negative curvature

N(6)

T(9)

5(t)

Figure 2B. Sign conventions for interfacial motions* ft(t), the region
occupied by the reference phase, has N as outward unit normal and is
the region interior to the trace «§(t) .
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parameter change <j>(p.t) = (s(p,t),t) that converts the arc-length
description (2.25) to a description r(p,t) as an evolving curve has
s(p,t) a solution of the initial-value problem

s'(p,t) = t>(s(p,O). s(p.O) = p; (2.27)

in this case t>(s), given by (2.26), is the arc velocity and the
parameter p is the initial arc-length.

Proposition. £QX a. steady motion the normal velocity V(s),
the curvature K(s), ihe_ normal N(s), 1M tangent T(s), and the
angle B(s) are independent of time, and

V(s) = U-N(s). (2.28)

Proof. By (2.25), T(s) and (hence) N(s) and B(s) are
independent of t. Further, since VN = r° = rt + vrs and T = rs, V(s)
is independent of t and given by (2.28). Finally, since K = TS-N
(cf. (2.6)), K(s) is also independent of t. •

For a convex, steady motion, V(8) and K(8) are independent
of time, and

V(B) = U-N(8). (2.29)

By a steadily evolving bump we mean a convex, steady motion
such that

K(B)U-N(B) never vanishes. (2.30)

A steadily evolving bump is advancing or receding according as

K(8)U-N(8) < 0 or K(8)U-N(8) > 0 (2.31)

(Figure 2C). Note that steadily evolving bumps are necessarily
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Advancing bump.

Receding bump.

Figure 2C. Steadily evolving bumps.
The steady velocity is given by U.
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unbounded.
Finally, we note that a trivial example of a steady motion is a

steadily evolving facet; such motions are completely determined
by U and the corresponding angle B (s constant).

2.3. Integral Identities.
Let r be an evolving curve with arc length lying in an

interval [S^O.S^t)]. We use the notation
S2(t)

|«j)ds = J<j)(s.t)ds, f<f> = «j)(S2(t),t) -
?(t) S/t) d?(t)

trivially,

= Jtsds-

The intrinsic measure of length on the curve is arc length. In
general, the endpoints of r will not be normal trajectories; hence
?(t) will loose arc length across its boundary at a rate given by
{v(S2(t),t)-S2»(t)}-{v(S1(t),t)-S/(t)}. Thus, for $(s,t) a smooth
function,

outflov($.d?)(t) »- <Jj(S2(t)Jt){v(S2(t),t)-S2°(t)}

- 4>(S1(t).t){v(S1(t),t)-S1*(t)}
 ( 2 3 2 )

represents the rate at which <j> is carried out of «;(t) across
d<t(t) with this loss in arc length; note that, by (2.21),

outflow(#.d£)(t) • 0 when the

endpoints are normal trajectories. (2.33)
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Transport theorem for integrals.

(d/dt)J(})ds + outflow(<j),d<O(t) = \(<p* -$KV)ds. (2.34)

Proof. By (2.16) (suppressing the argument t where
convenient),

S2(t) S2

(d/dt)|$(s,t)ds = S2>(S2) - S/^CS,) + J(<J>° - v«})s)ds.
S/t) S l

On the other hand, (2.18)1 implies

Jv$sds = (j»(S2)v(S2) - 4»(S1)v(S1) + f<j>KVds.

The last two results and (2.32) yield (2.34). •

If we take <j> = 1 in (2.34) and appeal to (2.20) and (2.32), we
arrive at an important identity involving the length

L(t) := length(?(t)).

Transport theorem for length.

L*(t) = R2°(t)-T2(t) - R1
6(t)-T1(t) - jKVds (2.35)

I I r has initial and terminal points R^t) and R2(t) with
corresopnding tangents T,(t) and T2(t);

L°(t) = -|KVds; (2.36)

I I r is closed, or H Us. endpoints are normal trajectories.
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2.4. Piecewise-smooth evolving curves.
We now extend some of the previous definitions and results to

curves that are continuous but not smooth. For convenience, we
write "PS" as an abbreviation for "piecevise smooth".

Let r-{r1 fr2 . . . .) denote a finite or countably infinite list of
evolving curves r,, called arcs of r, of equal duration [O.T),
with [Pj(t),Qj(t)] the parameter interval for rf at time t. Then
r is a PS evolving curve if:
(i) at each juncture i

(i.e.. each i with r, and ri+1 arcs of r).

r,(Qj(t).t) = r j+1(P j+1(t),t) =: Rs(t); (2.37)

(ii) there is an integer N>0 such that either:
(a) r consists of N arcs, in which case r1 and rN are

terminal arcs, and r has endpoints rjnjt(t) = r1(P1(t),t)
and rtonn(t)-rN(QN(t).t); or

(b) r consists of an infinite number of arcs, but r,= rj+N

for all i; in this case r is closed, and the smallest
such integer N is the essential number of arcs of
r.

In addition: r, is an internal arc if both i and i-1 are
junctures; R,(t) and Rj*(t) are the position and total velocity
of the juncture i; <;(t), the trace of r, is the union of the
individual traces

An evolving subcurve r0 of r is defined in the obvious manner,
as is the phrase "r is simple".

Let r be a PS evolving curve. An arc-length map for r is
a list {svs2 } with Sj(p.t) an arc-length map for r, and

8,(0,(0.0 = s,+1(P,+1(t).t) =: S,(t) (2.38)
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at each juncture i. It is not difficult to construct an arc-length
map for r; granted one is prescribed, we can define arc length s
at time t by s = Sj(p.t) for any i and p€[Pj(t),Qj(t)]. This
allows us to consider the tangent, normal, orientation, curvature,
normal velocity, and arc velocity as functions T(s,t), N(s,t), 8(s,t),
K(s,t), V(s,t), and v(s,t) of arc length and time. These functions
will generally suffer jump discontinuities across s = Sj(t); with this
in mind, given any function <}>(s,t), we write

:= $(S,(t)±O.t). (2.39)

We associate with each juncture i three functions of time:

K| = T t -N j " = -T i - -Ni+ ,

ki = 2Kj/(1 + T + -T " ) . (2.40)

©I - (V,* + V

kj is the transition curvature and t), the average velocity of
the juncture. Note that

kj = 2s1nV(1 +cosdj) = 2tan(d|/2). fy - B,+-B|". (2.41)

so that kj, as a function of ftj( is strictly increasing on [O,TT),

is asymptotic to dj for fy small, and tends to oo as $J-»IT.

(In the literature, it is more common to refer to fy as the
curvature of the corner.) Note also that for i*j and ri+1 convex,
the PS evolving curve {rj,rj+1} is convex (in the usual sense for
continuous curves) if and only if kj and the curvatures of r-t and
ri+1 have the same sign.
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Corner conditions. M each juncture i

Vi + Ni+ + (Sf-v,+ )T,+ = V,-N," + (S,*-v,-)T,- = R,». ( 2

R.o -(Tj + - Tj") = kjOj.

Proof. The identities (2.42)n are a direct consequence of
(2.2O)1 and (2.37). The inner product of

with Tj+ and Tj" gives two equations, whose difference yields

(2.42)2. •

The next proposition gives an evolution equation for the
length

L(t) = length Q>(0)

of r. As this result shows (and as is clear from (2.39)2), kjt>j
measures the rate at which the juncture i generates arc length.

Transport of length.
(i) Let r have N arcs. Further, let Rjnjt(t) and R te rm^ d e n o t e

1M endpoints QI r with Tjnjt(t) i M Tterm(t) the

corresponding tangents. Then

N-1
LO^) - Rterm^^-Tterm^) " *.,*•«>" W ^ " I K V d S " ^ k,t>,.(2.43)

fit) i = 1

(ii) Let r be. closed with N \Jne essential number of arcs. Then

N

L°(t) = -/KVds - Zkjt),. (2.44)
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Proof. We apply (2.35) to each arc of r, add the resulting
equations, and appeal to (2.42)2 and (2.42). •
A PS interfacial motion is a closed17 PS evolving curve r

with r(- , t) a boundary curve at each t. As before, the reference
region Q(t), with outward normal N, is the bounded region
interior to the trace dQ(t) of r. A standard result is the
following equation for the evolution of A(t) = area(Q(t)):

A°(t) = fVds. (2.45)

dQ(t)

17With the exception of Section 9.6, the underlying PS curves will
be bounded.
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3. Basic lavs.18

We consider a body which occupies all of IR2 and consists of
two phases separated, at each time t, by an interface. We assume
that the interface, as a function of t, is an interfacial motion r.
Let £ denote the trace of r. The curve £(t) represents the
interface at time t; by definition, pit) divides IR2 into two
sets, the regions occupied by the two phases. The reference region,
Q(t), has N as its outward unit normal; we will refer to the phase
occupying Q(t) as the reference phase.

3.1. Balance of forces.19

Consider an interfacial motion r. The micromechanics of the
interface is described by two functions of s and t: C(s,t), the
force exerted across the interface at s; and b(s,t), the force
exerted on £(t) per unit length. C(s,t) is the capillary force; if
we write

C = oT + £N, (3.1)

then cr(s.t) is the surface tension, |(s,t) is the surface
shear.

Balance of internal forces is, to us, the requirement that,
if c is the trace of an arbitrary evolving subcurve r0 of r,
then

JC + Jbds = 0 (3.2)20

dc(t) c(t)
for the duration of r0. This law has the local form

18The underlying physics is discussed at greater length in [1988g]
(see also [1986g,1988gg]).
19[1988g].
20(3.2) should be viewed as a conservation law over and above the
usual (gross) balance laws for forces and moments (cf. the
discussion of [1988g]).
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Cs + b = 0, (3.3)

or equivalently, by (3.1) and (2.6),

£s + orK + b = 0, or8 - £K + btan = 0, (3.4)

where

b - N-bf btan = T-b

are the normal and tangential components of b.
Motion tangential to the interface depends on the choice of

parameterization and is hence irrelevant to the underlying physics;
the intrinsic evolution of the interface is normal to itself, through
the velocity r°. As is consistent with a "constraint" of this type,
we leave btan as indeterminate and consider only the normal
component (3.4)1 of the force balance.

We assume that the normal force b consists of two terms:

Jext X;

bext, the external force, represents the normal force exerted on
the interface by the external world;21 X, the interactive force,
gives the normal force exerted on the interface by the bulk
material. With this decomposition, the normal force-balance
takes the form

£s + crK + X + bext = 0. (3.5)

3.2. Energy. The second lav.
21This force is essential to the thermodynamical development of
Section 4 (cf. [1988g], Footnote 13). In later sections we will
restrict attention to interfacial motions with bext=0.
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We associate with each interfacial motion an interfacial
energy f(s,t) per unit length. In addition, the individual phases
possess bulk energies; in accord with our tacit assumption of
isothermal conditions, we assume that the energy of each phase is
constant, and we write F for the energy of the reference phase
minus that of the other phase.

Let R denote a fixed bounded region of space, and let

QR(t) = Q(t)fiR, <>R(t) = ?(t)riR, (3.6)

so that QR(t) is the portion of Q(t) in R, while <»R(t)
(assumed nonempty) is the portion of ^(t) in R. We assume that
the boundary of R is sufficiently smooth that £R is the trace of
an evolving subcurve rR of r, at least on a sufficiently small
time interval. Then (modulo an inconsequential constant) the total
energy of R is given by

Farea(QR(t)) + }fds.

Interfacial energy is carried out of R whenever the normal
trajectories of the interface cross dR; in view of (2.32). this
outflow is given by the quantity outflow(f,d«;R)(t).

The terms

JC-r* = J£V. JbextVds

represent power supplied to R by the portion of the interface
outside of R and by the external world. (For convenience, we write
£R for £R(t).) The surface tension C and the interaction X do
not supply power: cr because it acts in a direction orthogonal to
the velocity r*; X because it represents interactions within R.

The second law for R is the assertion that the rate at which
the energy increases plus the energy outflow cannot be greater than
the power supplied to R:
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(d/dt){Farea(QR) + Jfds} + outflow(f,d<;R) < J|V + JbextVds (3.7)

during the duration of rR. This global energy-inequality Is
assumed to hold for every such region R.

The transport theorem (2.34), the identity (2.45), and the fact
that R is arbitrary imply that

FV + f - fKV - (£V)S - bextV < 0; (3.8)

hence (2.18)2 and (3.5) yield the local energy-inequality

f - IB' + (cr-f)KV + (X + F)V < 0. (3.9)

Remark. One could also consider, as an additional postulate,
an energy inequality for the interface itself of the form

(d/dt)Jfds + outflow(<j>,dc) < ||V + JbVds (3.10)
c dc c

with c the trace of an arbitrary evolving subcurve. (Note that we
use b = bext + X to account for the power supplied to the interface

by the bulk material.) As we shall see, (3.10) follows as a
consequence of our constitutive assumptions. Note that, by (3.4)r

(3.10) has the local form

f° - £8° + (o--f)KV < 0. (3.11)
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4. Constitutive equations. Consequences of thermodynamics.
Stability.

4.1. Constitutive equations. The compatibility theorem.
As constitutive equations we allow the energy, surface

tension, capillary shear, and interactive force to depend on the
orientation of the interface through a dependence on 8, and on the
kinetics of the interface through a dependence on V:

f = r(8.V), | - r ( B . V ) . ( 41 )22

o- = cT(8,V), X = X~(8,V).

The f irst three relations characterize the interface, the last models
the interaction between the interface and the bulk material.

Given an interfacial motion r, the constitutive equations may
be used to compute a corresponding process (f,£,o\X). The normal
force-balance (3.5) then determines the external force bext needed
to support the process. Granted this, the second law (3.7) will hold
in every region R if and only if the local-energy inequality (3.9) is
satisfied. This should motivate the following definition: the
constitutive equations are compatible with thermodynamics
if given any interfacial motion, the corresponding process satisfies
(3.9).

22Each of these functions is assumed to be 2-n-periodic with
respect to 8.
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Compatibility theorem.23 The constitutive equations are
compatible with thermodynamics i l and only if:

(i) .the. energy, surface tension, and surface shear are independent
V and satisfy

r(B). r(B) = rB(B); (4.2)

(ii) the interactive force has the form

X~(B.V) = - F - J3(8.V)V, ( 4 3 )

P(B,V) > 0.

The following simple result will be useful:

Let $(x) be smooth and satisfy $(x)x > 0 for
all xelR. Then there is a smooth function (4.4)
ji(x) > 0 such that $(X)=JJL(X)X.

The proof is simple: <j>(x)x has a minimum at x = 0; thus <j>(0) = 0,
so that u.(x) = x~1$(x) > 0 is well defined and smooth at x = 0.

To prove the theorem, we note that, in view of the constitutive
equations, (3.9) is equivalent to the inequality

[r e (B,V) - f(8,V)]8« + r v ( 8 . V ) V +

[cr̂ CB.V) - r(B,V)]KV + [X~(BfV) + F]V < 0.

Assume that (4.5) holds for all motions of the interface. It is a
simple matter to construct an interfacial motion for which, at some
point and time, the fields B, V, K, 8°, and V° have arbitrary
values (cf. the Variation Lemma of Gurtin [1988]); this implies (i)
and the inequality

23This is a special case of a more general theorem [1988g] in
which the bulk material is allowed to conduct heat.
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{F + X~(B,V)}V < 0. (4.6)

Assertion (ii) follows from (4.6) and (4.4) with x = V and

Conversely, the assertions (i) and (ii) trivially yield (4.5) in
all processes. •

We will refer to J3(8,V) as the kinetic coefficient.
By definition, X and V are components with respect to the

same direction, so that, for V positive, X may be regarded as a
force jjn the, direction of motion exerted on the interface by the bulk
material. Equation (4.3) gives this force as the sum of two terms.
The f irst term is a force -F which is positive if the phase into
which the interface is moving has higher energy (and is thus less
stable) than the other phase. The second term -|3V is, by (4.3)r

negative, and represents a drag force opposing interfacial motion.
Note that, for small values of the velocity V, (4.3) has the
approximation

X - - F - J3O(8)V, ( 4 ? )

J30(B) = P(8,O) > 0.

Some important consequences of the compatibility theorem are
expressed in the following remarks.

Remark 1. The relations (4.2) imply (3.11) with "<" replaced
by "-", and this yields the interfacial energy-inequality (3.10) as
an equality. Thus ihe_ interface does not dissipate energy: energy is
dissipated at most in the interaction between the interface and the
bulk material. The right side of (3.7) minus the left side gives this
dissipation, which a simple calculation shows to be

J|3(B.V)V2ds. (4.8)
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Thus J3(8,V)V2 represents the energy dissipated Jky, JJie. interaction
per unit length.

Remark 2. By (2.4) and (4.2), the capillary force (3.1) may be
regarded gs_ ̂  function ja£ orientation:

C = C(B) = r(B)T(8) + r'(B)N(e). (4.9)

The relations (4.2) also imply that ffs = £K in every process.
Therefore, by (3.4)2, tangential forces are balanced with btan = 0,
which obviates the need for constraint forces. Thus, granted
btan = bext= 0, we may use (4.3) to write the capillary balance law
(3.2) in the equivalent integral form

JC(B) = J(F + J3(8,V)V)Nds (4.10)
dc(t) c(t)

for every c, or, by (3.5), (4.2), and (4.3), in the equivalent local
form

J3(8.V)V = [f(8) + f"(B)]K - F. (4.11)

A final consequence of the compatibility theorem is the
following result, which is essentially a statement of the second law
for evolving curves.

Corollary. Consider a. curve r that evolves according to the
normal force-balance (3.5) and the thermodynamic relations (4.2) and
(4.3). L£i £ denote the trace of r, and. let S1(t)<S2(t) denote
the arc lengths corresponding ia ihjj endpoints £f_ ^(t). Then

(d/dt)Jfds + FfVds = -Jj3(8,V)V2ds + |bextVds + W2(t) - W^t),
?(t) ?(t) pit) ( 4 1 2 )

W,(t) = C(S|(t).t)-(d/dt)r(Sj(t).t).
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Proof. By (4.2) and (2.18)2, f°-fKV = ̂ Vs-o-KV. If we
substitute this relation into (2.34) with <j> = f, integrate the term
£VS by parts, and appeal to (2.32). (3.5), (2.2O)v and (3.1). we arrive
at (4.12). •

4.2. General assumptions. Admissibility for evolving
curves.

Since there is no danger of confusion, we will use the
shorthand:

f(8) - r (8) .

Further, to avoid repeated hypotheses, we will assume, for the
remainder of the paper, that the following hypotheses are satisfied:

Assumptions.
(i) The constitutive equations are compatible with thermodynamics,

(ii) The interfacial energy and kinetic coefficient satisfy:

f(B) > 0, J3(8,V) > 0,

p(8,V) is independent of V. ( 4 1 3 )

(iii) &£. henceforth restrict attention XQ. evolving curves that
correspond iQ vanishing external forces:

bext = 0- (4.14)

We will refer to an evolving curve as admissible if it is
consistent with (4.11). By Remark 2 of the Section 4.1. admissibility
for an evolving curve is equivalent to the requirement that the
curve be consistent with balance of capillary forces.
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4.3. Stability of the interfacial energy.
The following calculation leads to a condition on f which

ensures that straight line segments locally minimize interfacial
energy. Let Z denote an oriented, straight line segment with
initial point r0 and terminal point rv and let r denote a (not
necessarily admissible) evolving curve whose initial and terminal
points are fixed at r0 and rv respectively, and whose trace
satisfies ?{O) = l. Let F(t) denote the energy of

F(X) = |f(8)ds.

Then

F«(O) = 0. F«»(0) = [f(B0) + f"(B0)]J(Vs)
2ds, (4.15)

I
with Bo the angle of i. We will establish (4.15) at the end of the
section. Thus24 a. necessary and sufficient condition that F(t)
have a strict local minimum at t«0 is that

f(80) + f"(B0) > 0.

This proposition should motivate the following definition. The
interfacial energy f is strictly stable at 8, stable at B, or
unstable at 8 according as

f(8) + f"(8) > 0, f(8) + f"(8) > 0. f(8) + f"(B) < 0; (4.16)

f is: strictly stable if it is strictly stable for all BeIR; stable
if it is stable for all BelR. As we shall see in Section 6, the
partial differential equation describing the evolution of the
interface will be parabolic where the interfacial energy is strictly
stable and backward parabolic where f is unstable. Since f(B)>0,

24Cf. Herring [1951b], Frank [1963], Gjostein [1963], Gruber
(Gjostein [1963]), Taylor [1978], Fonseca [1988].
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the interfacial energy cannot be unstable for all 8.
By (2.4) and (4.9),

C'(B) = [f(B) + f"(B)]N(B), (4.17)

Thus, if the interfacial energy is strictly stable, then given any
angle oc, N(oc)«C(B) increases strictly with B for
oc - TT/2 < 8 < oc + I T / 2 and decreases strictly with B for
oc + TT/2 < 8 < oc + 3TT/2.

We now prove (4.15). By (2.33) and (2.34)

F°(t) = {[f(B)8» - f(B)KV]ds,

and, since V = O at the endpoints, while K = O and B = 80 at t = O,
we may use (2.18)2 to conclude that (4.15)., is satisfied. Similarly,

J[f'(8)B°« + f"(B)(8°)2- f(B)K<>V]ds at t = O.

But 8* = VS and. by (2.17) and (2.18), BOO = KWS + (V°)s.
K ' V - V S S V + K V ; thus

= J[f"(B0)(Vs)
2- f(B0)VwV]ds at t -O.

and integrating the last term by parts we arrive at (4.15)
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II. Smooth Interfacial motions.

5. Evolution equations for the interface.
We now discuss the equations that describe admissible

evolving curves; that is, evolving curves whose evolution is governed
by the constitutive equations and the capillary balance law.

5.1. Isotropic interface.
For an isotropic interface f and J3 are constants. Without

loss in generality, we set f = J3 = 1; (4.11) then reduces to25

V = K - F. (5.1)

A complete set of partial differential equations for an admissible
evolving curve consists of (5.1) suplemented by the kinematical
conditions (2.18) (cf. (2.16)) satisfied by all evolving curves:

V = K - F. Bt + vBs = Vs,

Kt + vKs = Vgs + K2V. vs = -KV
(5.2)

(where the subscript t denotes the time derivative holding s
fixed). The domains of the underlying fields in the arc-length
description are not known a-priori, since s varies in the interval
[0,L(O] with L(t) = length(<;(t)). However. (2.36) relates L°(t) to
KV, and we can introduce the rescaled variable s* = s/L(t).26

When the curve is convex, the system (5.2) takes a particularly
25Allen and Cahn [1979] and Rubinstein, Sternberg, and Keller
[1987] deduce the equation V = K as a formal approximation to the
Landau-Ginzburg equation. Evolution according to V = K is
discussed by many authors; cf. Brakke [1978], Sethian [1985],
Abresch and Langer [1986], Gage [1984,1986], Gage and Hamilton
[1986], Grayson [1987], Huisken [1987], Osher and Sethian [1987],
and the references therein.
26Abresch and Langer [1986].
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simple form; indeed, (5.1) and (2.23) yield

Kt = K2[KB0 + K - F]. (5.3)

(with Kt the time derivative holding B fixed).

5.2. Anisotropic interface.
5.2.1. Basic equations.

For convenience, we define

* = jT1( f + f " ) , * = P~1F, (5.4)

then (4.11) becomes

V = $(8)K - *(B). (5.5)27

A complete system of equations for an admissible curve consists of
(5.5) in conjunction with (5.2)2^. When the curve is convex, this

system reduces to

Kt = K2[*K-Uf]BB + K 2 [$K-* ] (5.6)

(with Kt the derivative holding 8 fixed). This equation is also
valid for nonconvex motions, at least locally where K ̂  0.

Remark. The term of highest order on the right side of (5.6)
is K2tf>K0B; thus (5.6) is parabolic for *(B)>0, backward parabolic

for 4>(8)<0. (Note that (5.6) degenerates at K = 0.) By (4.13).
(4.16), and (5.4), oarabolicity is. equivalent ip_ Uie strict stability of
the interfacial energy, while backward parabolicity is. equivalent to.
instability (cf. (4.16)). There is no compelling physical reason to
suppose that the interfacial energy is strictly stable; in fact,
material scientists often consider energies which are unstable28 for

27The special case V--V(8) was introduced by Frank [1958].
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particular ranges of the orientation 8. Since f(B)>0 and

periodic, at worst we can have an equation which is backward

parabolic for some but not all values of B.

Note that, by (5.5), the general equation (5.6), when expressed

in terms of the normal velocity V(B,t), has the form

4>(B)Vt = [V + *(B)]2 [VB9 + V]. (5.7)

5.2.2. Equations when the curve Is the graph of a function.
Locally, an evolving curve may be represented as the graph of

a function y = h(x,t), provided the x and y axes are chosen

appropriately. Consider the choice indicated in Figure 5A (with

orientation such that arc length increases with increasing x) and

let

p = hx, (5.8)

Then

ptanB = - 1 . ht = (sinB)"1V, K = hxx(1 + p2)"372, (5.9)

and the evolution equation (5.5) takes the form

h, . Q(p)hxx - B(p). ( s ] o )

Q(p) = *(8)sin28, B(p) = *(8)/sinB.

or, differentiating with respect to x,

pt = [Q(p)px - B(p)]x, (5.11)

which is in conservation form.

28Cf.. e.g., Gjostein [1963], Cahn and Hoffman [1974].
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Figure 5A, Sign conventions when the curve is
a graph y = h(xft).
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defines a. stationary interface which is. closed, convex, and
parametrized £y. angle, and any other stationary interface differs
from (6.3) by. M most .a. translation. The curvature and support
function corresponding io (6.3) are given

K(8) = Fw(8), p(B) = -f(8)/F. (6.4)

Proof. In view of (4.11) (with V = O), a motion is stationary if
and only if it is convex with curvature given by (6.4)r Moreover, by
(6.2), the function K(B) defined by (6.4)1 satisfies (2.10). The
theorem therefore follows from Lemma 3 (Section 2.1). •

Let Q denote the orthogonal transformation that rotates
vectors clockwise by IT/2. An interesting consequence of (4.9) is
that the capillary force C(B) corresponding to (6.3) is given by

C(8) = FQr(8).

6.2. Steadily evolving facets.
By (2.29), (5.5), and (6.1), steady interfacial motions r

evolve according to

K(8) = [F+j3(8)U-N(8)]w(8), ( 6 5 )

where U(?*0) is the steady velocity. It is convenient to introduce
the vector potential

J3(B) = J3(8)N(8), (6.6)

whose locus forms the polar diagram Pplar(J3) of J3, and to write
(6.5) in the form

K(8) = G(8)w(B), 6(8) = F + U.0(8). (6.7)
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Appealing to the proposition containing (2.29), we see that a
steady motion is a steadily evolving facet if and only if the
corresponding angle 8 is identically constant and a solution of

G(B) = 0. (6.8)

The equation (6.8) has a simple geometric solution. To state
this solution concisely, we introduce the following terminology. For
d * 0, let 1(6) denote the straight line

1(6) = { x : d-x - Idl2 }; (6.9)

(6.9) defines a one-to-one correspondence between nonzero vectors
and lines that do not pass through the origin; we will refer to d
as the support vector for 1 = 1(6). In the same spirit, for
d j * 0. we write Z = Z(06) for the line through the origin
perpendicular to d and refer to Z as the line with support
vector Od. Then

G(8J = 0 if and only if the line with
2> (6.10)support vector (-F/IUI )U intersects

the polar diagram Polar(p) at J3(8O);

hence we have the following result (Figure 6A).

Theorem. Given any vector U^O, there is a steadily
evolving facet with steady velocity U and angle 80 i f and only i f
the line with support vectcr (-F/IUI2)U intersects Polar(j3) o\

6.3. Steady motions that are not flat.
Let F and U ** 0 be given. Let r be a steady motion

corresponding to F with U as steady velocity, and assume that r
is not flat in the sense that its curvature is not identically zero.
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Figure 6A. When the line £ with

support vector
-F

lol2 U intersects

Polar(g) at 6 , then there is

a steadily evolving facet with steady

velocity U and direction 0 .

The facet (for F < 0)
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Then Lemma 2 (Section 2.1) implies that r is convex. By
definition, r is a boundary curve at each t, and hence is simple
and either closed or unbounded. Assume that r is closed. Let
U = IUI, e = U/U. Then (2.10) and (6.7) yield

2TT

J[G(B)w(B)]"1e-N(8)d8 = 0. (6.11)
0

Let M(8,e,U) denote the left side of (6.11). By (6.2) and (6.7)2,
M(B,e,0) = 0. Further, differentiating M(B,e,U) with respect to U
yields the conclusion that M(B,e,U) is strictly monotone in U.
Thus (6.11) is possible only if U = 0, which violates the definition
of a steady motion; hence r cannot be closed. Thus r is
unbounded.

Therefore, appealing to Lemma 3 of Section 2.1, the angle
range of r is a bounded interval (B1,B2), and this interval and the
accompanying curvature K(8) must be a solution of the following
problem:

find an angle interval ( B ^ ) , 82 -B1 < IT,
such that K(B), defined by (6.5), is nonvanishing
on (81,B2) and has K(B1) = K(82) = O.

(6.12)

Conversely, if (B1,82) is consistent with (6.12), then Lemma 3
of Section 2.1 implies that K(B) restricted to (8V82) is the
curvature of a convex, bounded curve r0. By virtue of the
proposition following (2.25), r0 is the portrait and U the steady
velocity of a (unique) steady motion r; trivially, r has K(8) as
its curvature.

Thus we are reduced to solving (6.12); since w(B)>0, (B1,82) is
a solution of (6.12) if and only if

B^Bj, 0 < 8 1 - B 2 < T T , are consecutive zeros of G(8). (6.13)
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To facil i tate the discussion of such zeros, let us agree to call a
line I a chord for Polar(p) between B1 and 82 if 0<8 1 -
B2 < IT and I intersects Polar(J3) at 0(8^ and J3(82). but not
at any other point p(8) with 8€(81,B2). In view of (6.10), (6.13) is
then equivalent to the requirement that

the line I with support vector (-F/IUI2)U
be a chord for Polar(J3) between B1 and 82.

Given a line I with I a chord for Polar(j3) between 81

and B2, we write

,B ) ,)]. a€(0.1)

for the segment of I between fl(BJ and J3(B2).
Continuing as before, let F and U ̂  0 be given, and let r

be a steady motion corresponding to F and U. Let (B^Bj) be the
angle range for r, so that the line I with support vector
(-F/IUI2)U is a chord for Polar(p) between B1 and B2. Choose
86(8.,,B2). Then there is a unique point X€l\^Q g ) such that

x = ocN(8) for some oc > 0; in addition,

J3(B)>oc or J3(B)<oc according as l\ra a \
\avazj (6.14)

is interior or exterior to Polar(p).

Since xei, x -U = -F; thus (6.6) and (6.7) yield

G(B) = [J3(8) - oc]U-N(8).

Further K = wG with w>0 and K(B) ̂  0; hence

K(8)U-N(8) = C[j3(8) - a], C > 0.

and we conclude, with the aid of (2.30), (2.31), and (6.14), that r is
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a steadily evolving bump, which recedes or advances according as
^'(8 8 ) *s interior or exterior to Polar(J3).

The results established above are summarized in the next
theorem, in which F and U s* 0 are assumed prescribed.

Theorem on steady motions. Lei I denote the line with
support vector (-F/IUI2)U. Lei r be a nonflat steady motion
which corresponds ip_ F s M Jiss. U as steady velocity. Then r
is. a steadily evolving bump, i f (B1,82) js_ ihe angle range of r,
then t is. a. chord for Polar(p) between 81 and B2, and r is
receding jor advancing according .as ^l(g 9 ) is. interior cir exterior

io Polar(J3).
Conversely. if_ t is. 3. chord for Polar(J3) between 81 and

82, then there is, a. unioue steady motion r corresppnding io F
with (B1,B2) as angle range and U as steady velocity.

Corollary. There are no advancing bumps i f Polar(J3) is.
convex, and none when F • 0.

Remark. For an isotropic material (f = j3 = 1) and F = 0, (6.12)
reduces to K(8) = U-N(8); letting U = U(1,0). U>0, there are two
steady motions, one with angle range (-TT/2.TT/2), the other with
angle range (TT/2,3TT/2), and both motions are receding bumps.30

Remark. It is generally believed that dendritic growth
requires diffusion in the bulk material. It is interesting that a
steadily advancing bump is possible even without diffusion. In the
present theory such growth is a consequence of anisotropy in the
kinetic coefficient and results when certain orientations suffer drag
forces sufficiently lower than neighboring orientations.

30This solution is known; it is referred to as the "grim reaper" by
geometers (cf. Grayson [1987], p. 298).
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7. Global behavior for an interface with stable energy.
In this section we analyze the global behavior of the interface

under the assumption of a strictly stable interfacial energy; in
particular, we consider the general anisotropic equation

J3(B)V = [f(B) + f"(8)]K - F (7.1)

with

f(8) + f"(B) > 0, J3(8)>0 (7.2)

for all 8€lR (cf. (4.13), (4.16)).

7.1. Existence of interfacial motions from a prescribed
initial curve.

The existence of an interface evolving from a given initial
configuration is ensured by the

Existence theorem. JLei f arid J3 &e C°°. Le_t Qo be a
given initial domain, which we assume to b_e bounded with boundary a
Lipschitz-continuous simple closed curve. Then there is. .a unique-
maximal family of domains Q(t) (0<t<Tmax) such that:
(i) dQ(t) is. a. C2 simple closed curve, continuous for 0<t<Tmax ;
(ii) the evolution of dQ(t) is governed by (7.1):
(111) Q(0)-Q0.

In fact, this solution is C°° t£z 0<t<T
max.

A proof of this theorem is given by Angenent [1988], who
shows that, for Tmax<oo, one of the following must be true:
(E1) suplK(s,t)l -* oo as t-»Tmax;

seIR
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(E2) K and its derivatives remain bounded as t-»Tmav, so that
max1

dQ(t) converges to a C00 curve f; however f is not simple.
(E1) will occur whenever the interface shrinks to a point, or
whenever the interface develops a kink; (E2) indicates the formation
of self-intersections or self-tangencies (Figure 7A).

When Qo is smooth, dQ(t) admits a parametrization
(p,t)i->r(p,t) as an admissible interfacial motion of duration
[0,Tmax). In the next section we will study the behavior of such
motions as measured by their perimeter L(t) and enclosed area
A(t),

L(t) = length(dQU)), A(t) = area(QU)). (7.3)

We will, however, restrict our attention to motions, termed regularly
maximal, whose singularity at t = Tmax (for Tmax<oo) is not too
pathological.

Precisely, an admissible interfacial motion with duration [O,T)
is regularly maximal if either T = oo or

T<oo and A(t)-+O as t-»T. (7.4)

Regularly maximal motions cannot be extended beyond t = T, but for
T finite exhibit fairly regular behavior as t-»T: they either
explode or disappear. This class of motions does not include
motions that develop self-tangencies, self-intersections, or kinks
at t = T.

7.2. Growth and decay of the interface.
Let r denote an admissible interfacial motion. For

convenience, we write

Fit) := }f(B)ds (7.5)
dQ(t)
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(just before the collision)

Figure 7A. A simply connected region may evolve
to a multiply connected region#
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for the total interfacial energy. The next result, essentially the
second law, is an immediate consequence of (3.7) and the discussion
of the paragraph containing (4.8).

Growth theorem.31

F°(t) + FA*(t) = -Jj3(B)V2ds < 0. (7.6)
dQ(t)

It is convenient to rewrite (7.1) in the form

V = *(B)K - V(8). ( 7

*(B) = [f(B) + f"(B)]/J3(B). *(8) = F/J3(8).

Also, for any 2iT-penodic function g(8) on IR, we write
2TT

gav = (2<nr1Jg(B)dB, gmax = sup g(B). gmin = inf g(8) (7.8)
0 BefR B€lR

If we use (2.5) to change variable in (7.8)1 from B to s, using the
fact that as s increases from 0 to L(t), 8 goes from 0 to -
2TT, we arrive at

(7.9)jg(8)Kds
dQ(t)

Note that, by (7.2),

= -2-ngav.

* m i n > C

Given any bounded region F\ we will refer to the number

isoper(D := length(dD2/4TTarea(D (7.10)

as the isoperimetric ratio for V;

31Gurtin [1988g].
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1soper(D > 1 (isoperimetric inequality) (7.11)

with equality holding if and only if dF is a circle.32

The following generalization of the isoperimetric ratio is
useful. Let e(8) be a continuous, piecewise smooth, strictly
positive. 2TT-periodic function on IR. Then the Wulff ratio for
e(B) is the number

W(e) = (4TT)~1 inf {Je(B)ds}2 / area(D (7.12)
dr

with the infimum taken over all bounded regions F with dF
piecewise smooth. This infimum is actually attained:33 minima F
are called Wulff regions for e(8), and are convex regions, unique
modulo translation and scaling. When e = 1, the minimum is a
circle and W(e) = 1. More generally, taking F to be a circle yields
W(e) < (eav)

2, so that

0 < (emjn)2 < W(e) < (eav)
2. (7.13)

The inequality F>0 occurs when the reference phase has
higher bulk energy than the other phase; in this instance (7.6)
indicates a tendency for the less stable reference phase to shrink.
On the other hand. F<0 when the reference phase has lower bulk
energy; here FA(t) is negative and of the wrong sign for a
Lyapunov function, indicating a tendency for the more stable
reference pTiase to grow, at least in situations for which area
dominates length. The next theorem shows that this is indeed the
case. In fact, we show that for F>0 the reference phase shrinks
to zero; for F<0 the reference phase shrinks to zero when initially

32The condition isoper(Q(t))-»oo might indicate the formation of
a dendritic structure. In this connection Gurtin [1986] (cf. eq.
(7.6)) discusses A(t)->0, L(t)-*L0>0.
33Cf. Taylor [1978], who uses the term "Wulff crystal" rather than
"Wulff region".
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small, but grows unboundedly when initially large.

Theorem on the growth of the reference phase. Consider
a. regularly maximal, admissible interfacial motion with duration
[O.T).
(i) If. F>0. then T<oo and A(t)->0 ss_ t-»T.
(ii) i t F < 0, then:

(a) i f L(0) is sufficiently small, then T<oo ^nd A(t)-»O a§
t-*T.

(b) i f A(0) is sufficiently large, then T = oo and A(t)-»oo
t-»oo. i n this case isoper(Q(t) remains bounded

limsupisoper(Q(t)) < [(J3"1)av]
2/W(J3"1); (7.14)

t -»oo
thus, for J3 = constant. 1soper(Q(t))-»1.

Proof. We begin with the identities:

A°(t) = -2iTtt>av - F|j3(8)"1ds.
dQ(t) ( 7 1 5 )

L°(t) = -2 i r*a v - J*(B)K2ds.

dQ(t)
To derive (7.15)1 we integrate (7.7), over dQ(t) and use (2.45) and
(7.9); to derive (7.15)2 we multiply (7.7), by K, integrate over
dQ(t). and use (2.36) and (7.9).

If we can show that L(t)->0 in finite time provided the
solution persists that long, then we can conclude from (7.4) that
T<oo and A(t)-»O as t-»T; we cannot conclude (from this alone)
that L(t)-»O as t-»T.

Assume that F > 0. Then, by (7.15)2 and the remark made in
the previous paragraph, (i) follows.

Assume that F<0. By (7.5), fminl_ < F < fmaxL; thus (7.6) and
(7.15), yield

F* < -FA* < -2TTlFI*av + (F2/fminJ3min)F,
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which implies (iia).

Next, (7.15)2 yields

L(t) < L(0) + 2iTlFI(j3-1)avt- <7-16)

On the other hand, (7.12) yields

fp(8)~1ds > ;
dQ(t)

therefore, by (7.15)v

- C, ( 7 1 7 )

C = 2iT*av > 0. D = 2IFI [TTW(J3"1)F > 0.

By (7.4), (7.16), and (7.17), if A(0) is sufficiently large, then
T = oo and A(t)-»oo as t-»oo. In fact, (7.17)1 is easily integrated
to give

-K] > A ( 0 ) K K^n[A(0)2-K] + Dt /2, (7.18)

where K = C/D. Since A(t)-»oo as t-»oo. (7.10). (7.16), and (7.18)
imply (7.14). •

Conjecture. Consider case (iib) of the last theorem, in which
F<0 and A(0) is sufficiently large that the interface grows
without bound. We conjecture that, as t-»oo,

dQ(t) is asymptotic to a Wuiff region for j3(8)~1. (7.19)

Our argument in support of (7.19) is as follows. As the interface
grows the curvature term in (5.5) should ultimately be negligible.
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Granted this, V =* -Fj3(B)~1 and the total energy dissipated

fp(8)V2ds
dQ(t)

(cf. (4.8)) should be asymptotic to

8 = F2fj3(8)-1ds.
dQ(t)

On the other hand, as Q(t) grows, bulk energy should dominate
interfacial energy; hence the total energy should be asymptotic to

Z = Farea(Q(t)).

It seems reasonable to expect that the interface should ultimately
minimize both S and £. Thus, since F<0, and since £ scales
as £»2, one might expect the ultimate shape of the interface to
minimize S)2/I£l, which is exactly what a Wulff region for J3(8)"1

does.

Remarks.
(1) Assume that (7.19) is valid. Then for |3 constant Q(t) is

asymptotic to a circle as t-»oo. More generally, it follows from
properties of Wulff regions that dQ(t) will have a smooth
asymptotic shape if and only if J3(8) has a strictly convex polar
diagram, Polar(J3); if not the asymptotic shape will have corners in
which the angle jumps across the Maxwell lines (Appendix A) of
Polar(p).

(2) When Polar(e"1) is strictly convex, Wulff regions for
e(8) have the common isoperimetric ratio

isoperWulff(e) := (eav)
2/W(e). (7.20)

Thus, for Polar(j3) strictly convex, (7.14) yields
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T1limsup isoper(Q(t)) < isoperWu|ff0T1).
t-*oo

(3) Assume that F<0. One can conclude from the proof of the
last theorem that, for the interface initially a, circle.

A(t)->0 if L(0)<604, A(t)->oo if L(O)>4>,
(7.21)

I represents a critical circumference for a circular interface,
while 60€(0,1] is a measure of the underlying anisotropy: for
initial circumferences between 6Ql and I, (7.21) furnishes no
information. For an isotropic material. 60 = 1, and the reference
phase grows or shrinks according as the initial circumference is
greater than or less than 4 = 2iTf/IFI.

7.3. Evolution of curvature. Fingers.
Let r denote a bounded, admissible interfacial motion. The

next theorem shows that the total curvature between inflection
points cannot increase.

Theorem. Let c Jbe tire trace of an evolving subcurve ol r.
Assume that the curvature does not change sign on c and vanishes
i l l tjhe. end points erf c. Then34

(d/dt)JlKlds < 0. (7.22)
c(t)

in fact, i f 0(t) denotes the interval o l angles B(s,t) lor arc
lengths s comprising c(t), then 0(t) nests as t increases.35

34Cf. Brakke [1978], Prop. 2, p. 230 and Albresch and Langer [1986]
for the case V = K.
35Cf Grayson [1987], Lemma 1.9(iii), for the case V = K.
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Proof Let [S^O.S^t)] denote the arc-length interval
corresponding to c(t). We will give a proof for K(s,t) > 0 on
[S1(t).S2(t)]. (The proof for K < 0 is analogous.) For any function
$(s,t), let <j>j(t) = <j>(Sj(t),t). By hypothesis,

Kj(t) = 0, (7.23)

so that

( K ^ > 0, (Ks)2 < 0. (7.24)

By (5.5), V = U-W with U = *(8)K. and, since * > 0 , (7.23) and
(7.24) yield the conclusion that (7.24) holds with K replaced by U.
On the other hand, since * = * (8 ) , Uf(8). = UfI(8)K = 0 at S i t ) and
S2(t). Thus (7.24) holds with (Ks)j replaced by (Vs)j, and, in view
of (7.23) and (2.20)2, with (Ks)j replaced by (8j)°. The desired
conclusions follow from these assertions and (since K = IKI) from
the identity

(d/dt)jKds = B2*(t) - 8 / ( 0 . • (7.25)

For a convex interface,

(d/dt)flKlds = 0

(cf (7.8)). But one can prove more. Intuitively, dividing the motion
into subcurves on which K does not change sign, and then appealing
to (7.22) on each subcurve, makes the following result plausible. We
will give a careful proof of this theorem as well as of the
remaining results of this section in [1989ag].
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Theorem.36

(d/dt)flKlds < 0. (7.26)

The next result shows that an initially convex interface v i l l
remain convex for all time. To state the theorem concisely, we use
the term inflection point for an interfacial point37 at which the
curvature changes sign.

Theorem. The number JQ£ inflection points cannot increase
with time.

Remark. Roughly speaking, a finger may be defined as a
section of the interface between inflection points. The last theorem
and (7.22) then have the following corollary:

the total number fil fingers as_ well as. the total (7 27)
curvature .of each finger cannot increase with time.

The final result, essentially a consequence of (5.10) and the
comparison theorem38 for parabolic equations, shows that nested
interfaces remain nested.

Theorem. Lgt Q(t) and Q*(t), 0<t<T, be reference
regions for two admissible interfacial motions (corresponding Jto. the
same J3, f, and F). Assume that Q(0)cQ*(0). Then Q(t)cQ*(t)
for 0<t<T.

36Cf. Albresch and Langer [1986] for the case V = K.
37This definition makes sense: from the parabolicity of (5.10),
straight line segments in the interfacial curve disappear
immediately.
38Cf. Protter and Weinberger [1967].
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in. Interfacial motions with corners.

8. Corners. The Frank diagram.
When the interfacial energy is not stable, an admissible

interfacial motion must, at each time, exhibit orientations for which
the evolution equations are backward parabolic. Two ways of
overcoming this difficulty are: (i) to regularize the evolution
equations; (ii) to allow corners which correspond to jumps in B
across the unstable portions of f(B). Here we restrict our attention
to (ii).39

8.1. Corners.
In this section we will make extensive use of the relation (4.9)

expressing the capillary force as a function of the angle B:

C = C(B) = f(8)T(B) + f'(B)N(B). (8.1)

Corners are defined by a jump discontinuity in the dependence of 8
on s. An immediate consequence of balance of forces (3.2) is the
continuity of C(B(s,t)) with respect to s. Thus at a corner
defined by a jump in orientation from 8" to 8+ we must have
C(B") = C(B+).40 This discussion should motivate the following
definition. Let 8",8+ be distinct angles with C(8~) = C(B+). Then
the ordered pair {8",B+} is: a corner if I8+-B~l <IT; a cusp if
8 + - B " = TT. One should visualize {8",8+} as representing a jump in
angle from 8" io B+ as arc length increases. If {B",B+} is a
corner, then {8+,8~} is a corner.

39A suitable regularized theory will be the subject of a future
paper.
40Herring [1951a], eq. (19).
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Cusp and corner theorem. CUSPS are not possible. Corners
are not possible when the interfacial energy is strictly stable, in
fact, if {8~,8+} is a corner (labelled so that 0 < 8 + - 8 ~ < T T ) , then
either f is unstable somewhere in (8",8+) QZ f(B) + f"(8)sO cm

Proof. Let {8,8 + IT} be a cusp. Since N(8)=-N(8 + TT) and
T(8)=-T(B + IT), if we take the inner product of T(8) with
C(B)=C(8 + TT), we conclude, with the aid of (8.1), that
f(B)=-f(8 + IT), which contradicts the assumption f>0.

Next, since N(8) = (cos8,sin8), we may use (4.17) to conclude
that C(8") = C(B+) if and only if

8+

f[f(8) + f"(8)]cos(B + oc)dB = 0
8~

for all otelR, and this implies the remaining assertions of the
theorem. •

8.2. The Frank diagram.
In this section we will use the notation and terminology of

Appendix A on polar diagrams. Here, because the interfacial energy
is smooth, the polar diagrams we will encounter will not have sharp
spots; for that reason we will give a direct proof of certain
assertions, even though these assertions actually follow from the
more general results of Appendix A.

The Frank diagram41 is the polar diagram of f(B)~1, and is
hence the locus of the Frank potential

o*(B) = f(B)~1N(8). (8.2)

The Frank potential and the capillary force (8.1) have an interesting
relationship. First of all, by (2.4),

41Frank [1963].
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C(8) = - f (B)V(8) , (8.3)

so that the capillary force is tangent to the Frank diagram and
points in the direction of decreasing 8. Further, (A1) with
g(8) = f(8)"1 and (T2) of Appendix A yield the following (cf. Figure
8A)

Theorem. The capillary force is. the. negative of the
supporting tangent ol .the Frank diagram. Thus

C(B) = -<r*(8). (8.4)

and IC(8)I~1 is the support function of the Frank diagram.

In view of of this result, {8~,8+} is a corner if and only if
81 and 82 have a common supporting tangent (relative to the Frank
diagram).

The next theorem42 establishes the existence of corners for
unstable interfacial energies and shows how this energy may be
decomposed into stable sections separated by corners.

Convexity-stability theorem.
(i) The Frank diagram is convex i f and only i f f is stable.
(ii) More generally, f is stable op the globally-convex sections jrf

the Frank diagram, i f (B",8+) is an open interval separating
twp adjacent globally-convex sections, then {8",8+} is a. corner.
and f is unstable somewhere in (8",8+).

42The ideas underlying this theorem are due to Wulff [1901],
Herring [1951b], Frank [1963], Gjostein [1963], and Gruber (cf.
Gjostein [1963]).
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Polar ( Q ) = the Frank diagram.

-1
Figure 8A. The Frank diagram = Polar (f ).

•s.

The capillary force C(0) is the negative of the supporting
tangent of the Frank diagram.



and (i) and the first assertion of (ii) follow.
Suppose that (ETfB

+) is an open interval separating two
adjacent globally-convex sections. Then (Br82) is an angle
interval for a Maxwell line, and the final assertion of (ii) follow
from (ii) of the Maxwell theorem (Appendix A). •

This theorem should motivate the following terminology in
which we use "GS" as shorthand for the term "globally-stable
The globally-convex sections of the Frank diagram will be referr
to as GS sections of the energy; angles B that belong to GE
sections will be referred to as GS angles; an open interval (8"
that separates two adjacent GS sections will be referred to as a
globally-unstable section; the corresponding corners {8"\B+}
{B+,B~} will be referred to as GS corners and the angles 8" a
8+ as GS corner angles.

We will refer to an energy f as regular if:
(R1) the GS sections of f are finite in number;
(R2) each GS angle 8 is strictly stable,
(R3) the Maxwell lines (Appendix A) of the Frank diagram are

mutually disjoint.
(Cf. Figure 8B). A consequence of the proposition containing (8.3
and the properties of the convex hull is the following alternative
characterization of regular energies.

ly if f(B) + fM(B)> 0, (8.5)

of (ii) follow.
an open interval separating two

ons. Then (BrB2) is an angle
id the final assertion of (ii) follows
em (Appendix A). •

ivate the following terminology in
hand for the term "globally-stable".
)f the Frank diagram will be referred
Brgy; angles 8 that belong to GS
s GS angles; an open interval (8",B+)
5 sections will be referred to as a
e corresponding corners {8"\B+} and

GS corners and the angles 8" and

gy f as regular if:
3 finite in number;
ctly stable,
ix A) of the Frank diagram are

e of the proposition containing (8.3)
ex hull is the following alternative
orgies.
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Maxwell lines

Regular Frank diagram

GS sections

Two Maxwell lines touch 1

Irregular Frank diagram.

Flat section

Figure 8B* Examples of Frank diagrams.
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Proposition. Regular interfacial energies have the following
properties:
(R4) GS sections are not singletons.
(R5) i £ i {B~.B+} J2£ a corner with 8" aM B+ GS angles. Then

{B",B+} I s a GS corner, and (aside from {B+,8~}) there is. no
other corner involving B" Q£ 8+.

1Q fact, granted (R1) aM (R2), (R3) is. equivalent i f l either (R4) Q£
(R5).
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9. Unstable interfacial energies. Motions with corners.
Consider now an energy f such that

f is not stable, but regular. (9.1)

It seems reasonable to consider "motions" in which the interface at
each time is a piecewise-smooth closed curve whose regular arcs
and "corners", respectively, correspond to GS sections and GS
corners of f. For such an "interfacial motion" the evolution
equations are parabolic, since the nonparabolic portions are removed
by corners, but the positions of the corners as functions of time are
not known a-priori and hence constitute free boundaries. The next
section begins our discussion of such motions.

9.1. Corner conditions for piecevise-smooth evolving curves
that are admissible.
Let r = {rvr2 , . . . } be a PS (piecewise-smooth) evolving curve.

We will use the notation and terminology of Section 2.4; thus Rs(t)
and Rj*(t) are the position and total velocity of the juncture i; s
is the arc length; T(s,t), N(s,t). 8(s,t), K(s,t), V(s,t). and v(s,t)
are the tangent, normal, angle, curvature, normal velocity, and arc
velocity.

Our interest is in PS evolving curves that are consistent with
balance of capillary forces and have arcs which correspond to GS
sections of the energy. Such curves are the subject of the next
definition.

Let r be a PS evolving curve. Then r is admissible if:43

(A1) 8(s,t) is always GS;
43There is a slight ambiguity in our use of the word "admissible":
in Section 4.2, which concerned smooth evolving curves,
admissibility meant consistency with balance of capillary forces
and the underlying constitutive equations. Here and in what
follows we require, in addition, that admissible evolving curves
have angles B(s,t) that are GS.
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(A2) the capillary force C(B) defined by (8.1) is consistent with
capillary balance in the form (cf.(4.10))

|C(B) = J(F+J3(8)V)Nds; (9.2)
dc(t) c(t)

whenever c is the trace of an evolving subcurve of r.
Given an admissible PS evolving curve, smoothness dictates that on
each evolving arc the angle 8(s,t) belong to a single GS section.
Further, we may, without loss in generality, assume that on adjacent
arcs B(s,t) belongs to different GS sections; were this not the
case 8(s,t) would be continuous across the juncture of the arcs,
and the arcs may be combined to form a single (smooth) evolving
curve.

Alternative characterization of admissibility. Let r
be a PS evolving curve consistent with (A1). Then r is admissible
i f and only if:
(A3) each of the arcs r, evolves according ip_

V = *(8)K - *(B), ( g 3 )

*(B) = [f(B) + f"(8)]/j3(B). W(8) = F/J3(8);

(A4) each of the pairs {BtSjaj-O.O.BtSjtO + O.t)} (i a juncture) is

independent .of time and is. a. GS corner &f the. interfacial

energy-

Proof. Note that, by Remark (ii) of Section 4.1.

(A2) is equivalent to (A3) and
the continuity in s of C(B(s,t)). (9.4)

Thus, in view of the definition of a corner, (A3) and (A4) yield
admissibility. Conversely, suppose r is admissible. Then, by
(9.4), (A3) holds and each {B(Si(t)-0,t).8(Si(t) + 0,t)} is a corner.
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Thus, in view of (9.1) and the last proposition of Section 8.2, (A4)
follows. •

In view of (A4), the corner-angles

B,* := 8(Sj(t)±0,t) (9.5)

are constants, as are the quantities (cf. (2.40))

Kj = T(8ft).N(8j-) = -T(Bj-)-N(Bi+). (9.6)

It is often convenient to use (B,t) as independent variables
on a given convex arc, irrespective of the sign the curvature takes
on the other arcs.

Corner conditions for admissible PS evolving curves.
At each juncture i:
(CC1) the capillary force C(s,t) is continuous across s = Sj(t);

(CC2) K(Sj(t)±O,t)Ki > 0, K(Sj(t)-O,t)K(Sj(t) + O,t) > 0;

(CC3) Vs(Sj(t)±O,t) = [v(Sj(t)±O,t) - Sj«(t)]K(S,(t)±O,t);

(CC4) i f the. evolving arcs r*j and ri+1 are convex, then
V(8.t)N(B)-Vg(B.t)T(B,t) is continuous across {8j~,Bj+} and

its value a i 8 = 8^ is. ihe. total velocity Rj'(t).

Proof. (9.4) yields (CC1), (CC3) follows from (2.20)2 and (A4).
and (CC4) follows from (2.42)v (2.24). and (2.18). We have only to
prove (CC2). Since {8j",8j+} is a GS corner of f, one of the
intervals (Bf.Bj*). (Bj+.Bj~) is a globally unstable section of f.
Assume that (8j",Bj+) is such a section. Then, by property (ii) of
admissible PS evolving curves, 8 < Bj~ on £j, while
B> 8j+ on «fi+1, so that K(Sj(t)±O,t) > 0. On the other hand,
since 0<8j+ -8 j "<-n, (9.6) implies that iq > 0, so that (CC2) is
satisfied. A similar argument applies when (Bj+,Bj~) is a globally
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unstable section of f. •

Remark. It should be emphasized that the corner inequalities
(CC2) are based on the hypothesis that the underlying arcs
correspond to adjacent GS sections of the interfacial energy. These
inequalities imply that corners preserve local convexity. In
particular (cf. (2.40)),

i f two adjacent arcs are convex, then their
curvatures as well as the transition curvature
oi ihe corner between them are o£ .the. same sign.

(9.7)

9.2. Facetings. Evolving curves with wrinkles.
Let r = {rvr2. • •-,rN} be an admissible PS evolving curve. Then

r is a faceting if each of its arcs is a facet, and if no two
adjacent arcs combine to form a single facet. On each facet, B(s,t)
is independent of s; if 8(s,t)s constant on each facet, then r
has fixed orientations. An example of a faceting with fixed
orientations is a wrinkling (Figure 9A); here there are fixed angles
8odd and

( g 8 )

in this case r is a wrinkling between angles 8 ^ and Beven.
Note that, by (9.3).,, for a wrinkling the normal velocity V of each
facet is constant (in space and time) with

°even

B(s.t)

8(s.t)

such that

d

= Beven

. for

on s

on Si

all

,(t)

(t)

t.

for

for

i

i

odd,

even;

V = - T O ^ ) on <;,- for i odd, ( g g )

V = -Uf(8even) on <fj for i even.

By definition, on a facet, B(t) = 8(s,t) is independent of s.
Therefore its normal velocity is given by V = -V(B(t)) and Vs = 0.
Thus, by (2.18)2, B* = 0; since 8t = 8°-vBs, Bt=0. Thus the angle 8
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N
even

Figure 9A. Wrinkling between the angles 8 _., and 0
odd even

Here N ,, = N(8 ) and N = N(0 ).
odd odd even even



62

is identically constant on a facet. Consider now a faceting. Each
internal facet meets two corners, {oc~,oc+} and {8~,8+}, say. Since
the orientation of the facet is constant, oc+ = 8~. Our assumption
that the energy be regular then implies that oc" = 8+ (cf. (R5)).
Thus and by (A1) we have the following

Proposition.44 The only possible facetings are wrinklings
between the fixed angles of 3. GS corner.

Let rA and rB be admissible evolving curves, and let
r = { r v r 2 , rN} be a faceting. Then r connects rA and rB if
{ rA . r v r2 ,rN,rB} is an admissible PS evolving curve. The next
theorem, the main result of this section, shows that wrinkles decay
with time.

Wrinkle-decay theorem. Let r be. a. wrinkling that
connects admissible evolving curves rA and rB. Then the total
length of the. wrinkling decreases with time. In fact, the lengths of
the initial and terminal facets decrease with time, while the lengths
o l ihe internal facets remain constant.

Our proof is based on two subsidiary results.

Proposition. The length o l each internal facet .of a. wrinkling

is independent o l time. Thus (since the orientation o l each facet is.

fixed) the system .of internal facets behaves as a. rigid body

undergoing transiationai motion-

Proof. Let Tj be an internal facet (Figure 9B). The two

adjacent facets ri±1 have the same normal velocity Vj±1 = -W(8 i±1),

so that the distance d between them does not change with time.

The middle facet rf will move relative to its two neighbors, but it
44Here the smoothness of f(B) is crucial. In Section 10.3 we will
show that certain nonsmooth energies exhibit more general types
of facetings.
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even

Figure 9B. The length of an internal facet r.(t)
does not change with time.
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will always meet them at the fixed angle IB j -8M I =oc. Therefore
its length L(t) = d/sinoc is also independent of time. •

Let r = { r v r 2 , . . . ,rN} be a wrinkling that connects admissible
evolving curves rA and rB. It is convenient to use the following
notation: RA*, BA> TA. NA, KA, and VA, respectively, denote the
total velocity, orientation, tangent, normal, curvature, and normal
velocity of the terminal point of rA; an analogous notation
applies to the corresponding quantities associated with the Initial
point of rB; KA denotes the corner curvature between rA and the
initial facet; KB denotes the corner curvature between the terminal
facet and rB; LA and LB. respectively, denote the lengths of the
initial and terminal facets; given any function g(B), we write

with Bodd and Beven as in (9.8).

Properties of wrinklings that connect evolving curves.
Let r = {rvr2 rN} be a wrinkling that connects admissible
evolving curves rA aM rB. Then:
for N even:

0 A " 0even« R A ° ' Nodd • ~ *

for N odd:

6A - BB - Beven. RA° • Nodd = RB* ' Nodd - "^oddi O-11)

In either case:

*(8A )KA - -KALA«, *(8B)KB = -KBLB« for N > 2.

*(BA)[KA - KB] = -KALA° for N = 1 . ( 9 J 2 )
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Proof. We will establish only those results which concern A.
The conclusions concerning B are verified analogously. Assume
that N > 2. Then the corner condition (2.42)v applied at s = SA(t)
to the corner between rA and r1 and at s = S1(t) to the corner
between r1 and r2, yields the relations

= -*e v e nNe v e n + (S^ - v2)Teven.

Thus RA°"Nodd = ~*odd- Further, since VA - RA° • Neven a n d

KA = Todd"Neven (cf. (9.6)), the above relations yield

Thus VA—^even + CSA-S^KA. But LA = S1-SA and, by (9.3),
VA + *ev.n-*(BA)KA; thus *(8A)KA = - K A L A ' .

We have established all of the results for A except (9.12)2.
Thus let N = 1. Applying (2.42)., to the corners at s = SA(t) and
s = SB(t), taking the inner product of the resulting relations with
Neven- a n d t n e n subtracting the two relations yields
VA- V B = ( S A - S B ) ' K A . But BA = BB and LA>LB-SB-SA ; in view of
(9.3), (9.12)2 follows. •

Proof fif i M wrinkle-decay theorem. For N > 2 the proof
follows from (CC2). (9.12)v and the proposition following the
wrinkle-decay theorem. For N = 1, (9.6) yields KB = -KA. SO that
(KA - K B ) / K A = (KA/ICA) + ( K B / K B ) ; (CC2) and (9.12)2 then yield LA° < 0.

9.3. Curves that are convex except for wrinkles.
A PS admissible evolving curve is convex if each of its

arcs is convex. The remark (9.7) renders this definition meaningful.
In particular, at each t the corresponding PS curve ?(t) is convex
in the usual sense for continuous curves. For convenience, we write
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"CPS" as an abbreviation for "convex Diecewise-smooth".
An admissible PS evolving curve r is convex except for

wrinkles if r consists of CPS evolving curves, called convex
sections, connected by wrinklings. Each convex section is the union
of convex arcs (which are smooth). A convex section rc is
internal if r is closed, or if the initial and terminal arcs of rc

are internal arcs of r; in this case the initial and terminal points
of rc connect to wrinklings. It is generally most convenient to
take (8,t) as independent variables on each convex section and to
express the underlying system of evolution equations in terms of
the normal velocity V(8,t). For an internal convex section. (5.7),
(CC4), (9.10), and (9.12), yield an interesting system of equations for
V(B.t).

Evolution equations for convex sections. LjBt r be a PS
evolving curve that is. closed, admissible, and convex except for
wrinkles. Consider a convex section of r, M 0A £M BB.
respectively, denote the angles corresponding io. ihje initial and
terminal points ol ihg. section, and let {jfi,,BA} and {8B,7B} denote
the corners at these terminal points. Then the evolution Q£ V(8,t)
for this section is. governed .by ihe_ following conditions:
(E1) on each convex arc:

*(0)V t = [V + Uf(B)]2[VB0 + V];

(E2) VN - VgT is. continuous across corners separating convex arcs:

(E3) ai tJie initial and terminal points:

[V(8A,t)N(eA) - Ve(8Ajt)T(8A)].N(rA) - -

[V(BB.t)N(8B) - Ve(BB.t)T(eB)]-N(rB) =

Remark. It seems reasonable to expect that (E1)-(E3), with
compatible initial data, yield a well-posed problem for V(8,t) on
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each convex section. Thus wrinklings between convex sections
essentially decouple these sections from each other, at least until
the wrinkles decay. If V(B,t) and (hence) K(B,t) are known on
each section, then the evolution of the wrinkles (from prescribed
initial positions) is easily determined using (9.12) and properties (i)
and (ii) of wrinklings. Granted this is done, the initial and terminal
positions of the convex sections are known as functions of time, and
this data and a knowledge of the corresponding curvatures yields the
complete evolutionary behavior of the convex sections, and hence of
the complete evolving curve.

9.4. Equations near a corner when the curve is a graph.
Consider the situation shown in Figure 9C, in which an evolving

PS curve is represented, in a neighborhood of a corner {8~,8+}, as
the graph of a function y = h(x,t). Here x ranges in an interval
(xo,x1); t€[O,T); x = £(t) is the position at time t of the corner;
and the curve is oriented so that arc length increases with
increasing x. Then h(x,t) is continuous and piecewise smooth,
with a jump discontinuity in P = hx at the free boundary x = £(t).

The function p satisfies (5.11) away from the free boundary
and is consistent with two free-boundary conditions. The first of
these, a direct consequence of (5.9), is given by

p(£(t)±O,t) = P* (9.13)

with

P1 = -cote1*.

The second condition is more complicated. For any function

<}>(x,t), let * ± ( t ) = (})(t(t)±O,t). By (2.2O)r

V* = R'-N*; (9.14)
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Figure 9C. A corner when the evolving curve is a
graph y = h(x,t); x = £(t) marks the corner.
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thus, since N = (cos8,sin8), if we eliminate the y-component of
R° between the two equations (9.14), and use the fact that £• is
the x-component of R°, we arrive at an expression for £• as a

function of V* and 81; the expressions V = *K- ty and
2 o/p

K = px(1+p )" then lead to the free-boundary condition:

£• = A+(px)+ - A"(pxr - C (9.15)

with A* and C the constants defined by

A1 = * (B ± )D ± /W ± , C = W(B+)D+ - W ) D " .

W* = (1 +(P±)2)3/2, D+ = sinB"/a, D" = sin8+/a,

a = sin(8~-8+).

The basic system of equations then consists of (5.11) away from
x = £(t) supplemented by (9.13) and (9.15) at x = £(t). A change in
dependent variable renders this system more transparent. Thus let

A"(p(x,t) - P") for x <

A+(p(x.t) - P+) for x >
u(x,t)

so that u(x,t) is continuous across x = ̂ (t). Further, let Q and
B be as specified in (5.10), and define

Q±(u) = Qau/A1) + P
1), B*(u) = A±B((u/A±) + P1).

Then the system under consideration reduces to the partial
differential equations

ut = CQ"(u)ux - B"(u)]x for x < £(t), (9 16)

ut = [Q+(u)ux - B+(u)]x for x >
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In conjunction with the free-boundary conditions

u(t(t)±O.t) = 0, ( g 1 7 )

ux(£(t) + O.t) - ux(£(t)-O,t) = £»(t) + C.

Apart from the constant C. which may be transferred from (9.17)
to (9.16) by the coordinate change x* = x + Ct, (9.17) are exactly the
free-boundary conditions of .the classical Stefan problem.

9.5. Stationary interfaces and steady interfacial motions
vith corners.
Stationary interfaces and steady interfacial motions are

defined as for smooth interfaces,45 except that we now add the
requirement that all angles be GS angles and all corners GS corners.

An argument analogous to that given in Section 6.1 then
implies that r(9) defined on the set of GS angles 8 by

KB) = F-1[f(B)N(B) - f(8)T(B)]

yields a closed, convex stationary interface that is PS. (The remark
given in the last paragraph of Section 6.1 and the fact that B
jumps only at GS corners implies that r(8) is continuous across
such jumps).

We also have the possibility of steady motions with corners.
Let F ?* 0 be given. Let {B1,82}, 0<B2 -B1<TT, be a GS corner, let
I be a line with I a chord for Polar(j3) between B1 and B2

(if J3 is strictly convex, then exactly one such line exists), and
compute U by the requirement that -(F/IUI2)U be the support
vector for t (cf. Section 6.2). Then any (stationary) infinite
wrinkling in which 8 jumps back and forth between Bt and 82 is
a portrait of a steady interfacial motion with steady velocity U.

45To begin with, our definition of a PS evolving curve is
restricted to bounded curves, but the extension to unbounded
curves is straightforward.
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One might refer fo this motion as a steady wrinkling (Figure 9D).
Other solutions are possible. For example, when the Frank

diagram and the polar diagram of j3 are of the form shown in
Figure 9E, there is a steadily receding bump (with a corner) as
shown. Similarly, one can construct advancing bumps with corners
for nonconvex Frank and j3-diagrams of certain prescribed shapes.

9.6. Existence.
Let Qo be a bounded, simply connected domain in IR2. Then

dQ0 is a BS boundary if it is piecewise C2+0C for some
oc€(0,1), if its outward normal always points in a GS direction, and
if all of its corners are GS corners (cf. Section 8.2).

Existence theorem.46 Lei f a M P b_£ C00. LSI Qo

a. given initial domain, assumed Jtp_ b_e_ admissible. Then there is. i .
unique, maximal family of domains Q(t) (0<t<Tmax) such that:
(i) dQ(t) is. an admissible PS evolving curve:
(ii) Q(O)-QO.

In fact, this evolving curve is Diecewise C°° iQL 0<t<Tmax.

Further, for Tmax<oo, as t-»Tmax either (E1) or (E2) (of
Section 7.1) must hold, or
(E3) an arc of dQ(t) shrinks to zero.
The condition (E3) is possible with the facets of a wrinkling and
with arcs whose initial and terminal points correspond to the same
corner angle.

9.7. A note on regularized equations.
Another method of treating situations in which the evolution

equations are backward parabolic is to develop a suitable
regularization of these equations. Such a regularization will be
discussed elsewhere; under certain simplifying assumptions (among
them that j3 = 1) this regularization reduces to the following fourth

46Angenent and Gurtin [1989].
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velocity U
(for F > 0)

Frank diagram

Polar(3)

Figure 9D. Construction of a steady
wrinkling.



69b

Frank diagram

Polar(3)

Receding bump

Figure 9E. Construction of a receding bump.
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order parabolic system for a convex section:

K| = K (VQQ
 + V)*

V = *(8)K - eK[(K2)0Q + K2] - F.

with e>0 a small constant.
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I V . Nonsmooth Interfacial energies.

10. Interfacial energies with sharp spots.
Material scientists often consider interfacial energies that are

continuous but have derivatives which suffer jump discontinuities.47

We now discuss energies of this type.

10.1. Sharp spots. The capillary set. Stability.
By an interfacial energy with sharp spots48 we mean a

2TT-periodic, strictly-positive function f(B) on IR that is smooth
except for sharp spots (Appendix A). The sharp spots are then the
angles across which f'(B) jumps, the remaining angles are smooth
spots. Tacit in this definition is the requirement that the number
of sharp spots be nonzero.

Let Bo be a sharp spot. By (8.1), the capillary force49

C~(8) is discontinuous across Bo: the tangential component
o' = f(B) is continuous, but the normal component £ = f'(8) is not:

CT(BO + O) - CT(BO-O) = [ f (80 + 0) - fl(Bo-O)]N(Bo).

If we think of the energy at a sharp spot as the limit of a sequence
of smooth, locally-convex energies, then it seems reasonable to
allow the capillary shear | at Bo to have values between the two
extremes f'(80 ± 0). With this in mind, we define the capillary
set {C~(80)} at Bo to be the vector fan between C^(BO-O) and

47Cf., e.g., Herring [1951ab], Cahn and Hoffman [1974].
48We use this terminology to avoid confusion: a sharp spot marks
a loss in smoothness for the interfacial energy: corners denote
jumps in orientation that are consistent with capillary balance,
and hence denote possible discontinuous tangencies for an
evolving curve.
49 lt is convenient to write C~(B), rather than C(B), for the
capillary force defined by (8.1) away from sharp spots, and to
reserve C(s,t) for the capillary force on an evolving curve.
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C~(80 + 0); {C"(B0)} is thus the set of all vectors of the form

C = f(B0)T(B0) + £N(80) (10.1)

with £ in the closed interval bounded by the numbers f'(Bo-O)
and f'(Bo + 0). It is convenient to also use this terminology at
smooth spots, in which case the capillary set is the singleton

The proposition following (8.4) then generalizes:

Proposition. The capillary set is. the negative Q£ the
supporting tangent-fan ol ihe_ Frank diagram:

{(T(B)} = -{tr*(B)}. (10.2)

There is a natural extension of the notions of corners and
cusps: we simply replace the condition C~(8~) = C~(8+) by

the theorem on common tangents (Appendix A) then implies that B~
and 8+ have a common supporting tangent:

Corner-force theorem. CUSPS are not possible. if_ {B~,8+}
with 0 < B + - 8 ~ < I T is a corner, then {C"(8")}fl{C"(B+)} consists of
exactly one vector a, and a points in ihe, same direction as
o'(B")-o'(B+). We write a = CT(8~,8+) and refer to
C^(8~,8+) = C~(8+,B~) a_s ihe. corner force corresponding to {B",B+}.

We can also extend the terminology concerning stability to
sharp spots. Indeed, the paragraph containing (4.16) with f"(B)
considered as a distribution yields the following definitions: f is
strictly-stable or unstable at a sharp spot Bo according as

f (8 0
+ ) >f(B0 - ) or f'(B0

+) < f(B0"). (10.3)
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With these definitions ihg. convexity-stability theorem o l Section 8
holds without change.

GS sections and GS corners of the interfacial energy are
defined as for smooth f. GS angles (whether sharp spots or
smooth spots) are, as before, angles that belong to GS sections;
GS sharp spots are then, necessarily, strictly stable.

The convexification of the Frank diagram is the polar diagram
of a function S(8) and is hence the locus of a vector potential

1(8) = Z(8)N(8).

the convexified Frank potential. On GS sections Z(8) coincides
with cr(B); between such sections E(8) coincides with the Maxwell
lines of the Frank diagram. The function

S*(8) = I (er 2 I ' (8) = -I(8)~1T(8) + E(8)"2Z1(8)N(8) (10.4)

is the supporting tangent of the the convexified Frank diagram. By
(i) of the Maxwell theorem (Appendix A), we have the following
analog of the "thermodynamic relation" (8.4) (cf. Figure 10A).

Proposition. Lei {8",8+} with 0 < 8 + - 8 " < T T be a GS corner-
Then, for M l 8€(8",8+),

(T(8-.8+) = -Z*(B). (10.5)

Remark. Let {B^B,} be a GS corner with Bo a sharp spot.

Let U be a fixed neighborhood of 80 containing no sharp spots

other than 80. Consider f(8) as the limit, as s-»0. of energies

f8(8) which are C1 on Tt, which are strictly stable on

Jte := (80-e,B0 + s), and which satisfy f(B) = fe(B) outside Jl8 . Let

C8(8) denote the capillary force for f8(8), and consider the set

C8 o {C8(B): B€J18 is a GS angle of fe(8) }.
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C(9 -0)

fc(6 +0)

Frank diagram = Polar(f )

/\ — +
Figure 10A. The corner force c(6 ,0 ).
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The limit C of the sets Ce (that is. the intersection of the sets

Ce over all sufficiently small e) in some sense represents the

globally-stable set of capillary forces at Bo. It is not difficult to
show that C is independent of the choice of f8(8); in fact, C is

the negative of the supporting tangent-fan {S*(B0)} of the
convexified Frank diagram. Since {Z*(Bo)}c{o**(8o)}J C is a

subset of the capillary set {C~(80)}. For these reasons, we refer to
{-Z*(B0)} as the GS capillary set at Bo.

Regularity for an interfacial energy with sharp spots is
defined exactly as in Section 8.2.

Remark. A major difference between smooth energies and
energies with sharp spots is that for the latter regularity does not
rule out singleton GS sections, which are possible at sharp spots.
Further, granted regularity, if {B",B+} ( 0 < 8 + - 8 ~ < I T ) is a corner
with B" and B+ GS angles, then {8".8+} is a GS corner.
Moreover, there is another corner involving 8" (other than {8+.B~})
if and only if {8"} is a singleton GS section, in which case the
corner is of the form {oc.B"} (O<B~-OC<TT); an analogous assertion
applies to 8+.

10.2. Admissibility in the presence of sharp spots.

We consider now an energy f with the following properties:

f is. an interfacial energy with sharp spots: f js_ regular.

The following notation is useful:

T := the convexified Frank diagram of f.
JO := the set of GS angles of f,
JOsm := the interior of the set of GS angles which are smooth

spots50 of 7,
50By the smooth and sharp spots of T we mean the smooth and
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j&smco:= the set of all smooth spots of T which are GS
corner angles,

J0sh := the set of GS angles which are sharp spots of T.

Note that J0sm, J0smco, and J0sh are mutually disjoint and have #
as their union. We use the term smooth GS part to designate the
closure of a connected component of >Bsm.

Let r be a PS evolving curve. Fix t and the angle 90, and
let (R be the set of all s such that B(s,t) = Bo. We will refer to
the closures of the connected components of ft as the Bo-
sections at time t.

We use the following terminology for arcs r(- of r: (i) rt is
curved if, at each t, Bs(s,t) = O at most at a discrete set of
points of £j(t); (ii) if rt is a facet with 8j(t) the corresponding
angle, then ri is maximal if j,(t) is a 8j(t)-section at each t.

At sharp spots Bo there is no uniquely defined capillary
force; instead there is a vector fan {CX80)} of possible forces. It
thus seems reasonable to allow the capillary force C(s,t)
associated with a given evolving curve to vary within {C^(B0)}
whenever B(s,t) = B0. This should motivate the following notion of
admissibility.

A PS evolving curve r is admissible if:51

(AP1) 8(s,t) is always GS;
(AP2) there is an associated capillary force C(s,t) such that

C(s,t)€{(T(8(s.t))} for all (s.t) and

JC = J(F+j3(8)V)Nds (10.6)
dc(t) c(t)

whenever c is the trace of an evolving subcurve of r;

sharp spots of E(8). Sharp spots of T are GS sharp spots of
f(B), but the converse is not always true.
51We will also need one technical assumption: for Bo€>Osh, the
set of all s such that B(s,t) = 80 has a finite number of
connected components.
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Characterization of the capillary force. Ĵ eJ. r be a
closed.52 admissible PS evolving curve. Then there is exactly one
capillary force C(s.t) associated with r, and C(s,t) has. I M
following properties:
(i) C(s,t) belongs ia the GS capillary set {-I*(8(s,t))}. so that

C(s,t)=-Z*(8(s,t)) whenever B(s,t) is a smooth soot of T.
(ii) Let Bo a sharp soot of T, and let £=[H,S] M a . BQ-section

ai some fixed time t€(O,T).
(Fl) i f A is transitional, then A is nontrivial. and C(s.t)

varies linearly with s on ^, going from -Z*(80-0) io_
-Z*(80 + 0) ox from -Z*(B0 + 0) to. -Z*(80-0) according
as B(s,t) increases or decreases across &.

(F2)if A is. nontransitionai. then C(s,t) is. constant on Z
with value -Z*(80-0) or -Z*(80 + 0) according as A is.
a. local maximum pjr a. local minimum for 8(s,t).

Proof. By (AP1) and (10.2), C(s.t)=-Z*(8(s,t)) whenever
8(s,t) is a smooth spot. Further, this result, (F1), and (F2), imply
that C(s,t) is uniquely determined with C(s»t)e{-Z*(8(s,t))} for
all (s,t). Thus we have only to establish (F1) and (F2). We will
prove only (Fl), and only when 8(s,t) increases across &; the
remaining assertions are proved analogously. Since the time t is
fixed, we shall suppress it as an argument. Suppose that

80 + 6 is GS for all sufficiently small 6>0. (10.7)

Then B(S + O) = BO and

C(S-O) = C(S + O) = CT(80 + 0) = -o**(80 + 0) = -Z*(80 + 0). (10.8)
52For r not closed C(s,t) is determined uniquely (and (F1),
(F2) hold) on the internal arcs of r, and also on the terminal
arcs provided they are not sharp-spot facets (facets whose
angles are sharp spots). Boundary conditions are needed to
determine C(s,t) uniquely on terminal sharp-spot facets.
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On the other hand, if (10.7) is not satisfied, then there is a corner
{8^8.,} such that B(S + O) = B1, and, appealing to (10.5) and the
corner-force theorem,

C(S - 0) = C(S + 0) = C ^ . B , ) = -E*(80 + 0). (10.9)

Similar results hold at H. The results (10.8) and (10.9) and their
counterparts for H have the following consequences: (i) £ is
nontrivial, for otherwise E*(80 -0) = E*(B0 + 0), which is not
possible when Bo is a sharp spot of the convexified Frank diagram;
(ii) C(s,t) goes from -E* (8 0 -0 ) to -E*(80 + 0).

Finally, since 8(s)sB0 on £, capillary balance (10.6) must
there have the local form

Cs = [F+J3(8O)V]N(8O) (10.10)

with V = V(t) independent of s. Thus C(s) varies linearly on £. •

Let

A(8) := [E*(8-0) - E*(8 + 0)]-N(8)

« Z(B)-2[E'(B-O) - E'(8

(cf. (A11) of Appendix A). Because of (F1), evolving facets on which
8sB0, with Bo a sharp spot, are to be expected. By (F1) and
(10.10), the length L(t) and the normal velocity V(t) of a
"transitional" facet are related by

±A(B0) = L(t)[F + J3(80)V(t)] (10.12)

with the plus or minus sign chosen according as 8(s,t) increases or
decreases across the corresponding Bisection. For a
"nontransitional" facet, (10.12) remains valid, but with A(B) = 0.
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Remark 1. Let Sr(t) be the arc length at a juncture i of a
closed, admissible PS evolving curve. Then 8j~ := 8(Sj(t)-0,t) and
Bj+ := 8(Sj(t) + 0,t) are independent of time, and either:
(i) {Bj".Bj+} is a GS corner, in which case the juncture is

nontrivial; or
(i i) Bj~ = Bj+€jfcJsh in which case the juncture is trivial.

Remark 2. There are exactly three possibilities for an arc rt

of an admissible PS evolving curve.
(1) Tj is a curved arc. Since each boundary angle of a smooth GS

part must belong to J&smcoUjBsh, i t is a clear from (F1) that
(on Tj) B(s,t) must belong to a single smooth GS part X}-v In
this case rt evolves according to

V = *(8)K - J3(8)~1F,

*(8) = j3(8)"1[f(8) + f"(8)] >O.

with f"(B) computed by restricting f(B) to Xit. Further, the
init ial and terminal orientations, Bjnjt and Bterm, are
constants belonging to J8smcoU>Bsh (cf. the paragraph
containing (9.4)). We assign a transition number to rt as
follows: the transition number is +1, - 1 , or 0 according as
8term > 8inif 0term < 8inif o r 8term = 8inif

(2) r, is a facet with orientation Bj€>Osmco. Then rf evolves
according to

J3(8j)V = -F.

(3) Tj is a facet with orientation 8j€,0sh. Then either 8(s,t)
increases across ^j(t) for all t, or decreases across ^(X) for
all t, or £j(t) is nontransitional for all t; we define the
transition number Xj for rf to be +1, -1 . or 0,
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respectively, for these three possibilities. Then Tj evolves
according to (cf. (10.12))

j j = Lj(t)[F + P(Bj)V(t)] (10.14)

with L:(t) the length of r,.

10.3. Crystalline energies.
Let f(B) be an interfacial energy with sharp spots. Then

f(8) is crystalline53 if its convexified Frank diagram is. a.
polygon, and if the vertices of this polygon form the complete set
of GS angles (cf. Figure 10B). Such energies are clearly regular.

Let f(B) be crystalline, and consider an admissible PS
evolving curve r. Each arc of r must have B(s,t) equal to one
of the GS angles, and hence must have 8(s,t)s constant. Thus we
have the following54

Proposition. Facetings with fixed orientations are the only
admissible PS evolving curves for a. crystalline energu.

By an evolving crystal we mean a faceting r that is
simple and closed. In view of the proposition, these are the only
admissible interfacial motions consistent with a crystalline energy.
As before, we let the reference region Q(t) denote the bounded
region interior to the corresponding curve at each time, so that
Q(t) has N as its outward unit normal. We will refer to r as
essentially convex if Q(t) is a convex region at each t. (Note
that r cannot be convex as an evolving curve, since K = 0 on each
facet.)

Let r = { r v r 2 , . . . ,rN} be an evolving crystal, and let Bj, Vj,
53Cf. Taylor [1978], who studies the stable equilibria of
interfaces coresponding to crystalline energies.
54Facetings are as defined in Section 9.2, except that the
underlying notion of admissibility is as defined in Section 10.2.
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Frank diagram = Polar(f )

Figure 10B. The Frank diagram of a crystalline energy f.
The GS angles are the angles corresponding to the five sharp
spots.
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and Lj denote the orientation, normal velocity, and length of rv

Further, for any function g(B) let gs = g(Bj), and define

Pi.j • - [Tj-N,]-1. ocu := (T j .Tpp j . j . (10.15)

Remark. From (10.11) and the definition of a crystalline

energy, it is clear that each of the (fixed) angles 8j€jOsh; thus

Ai !=A(B j )>0 . (10.16)

Moreover, our agreement that N be outward implies that, for an

essentially convex crystal, B decreases across each facet and

Pi ,u i <0. ocu+1 <0. (10.17)

Curves governed by smooth energies have, as evolution

equations, a fairly complex system of partial differential equations:

the next theorem shows that, in contrast, crystals evolve according

to a finite set of ordinary differential equations.

Evolution equations for a crystal. Crystals corresponding

ip_ a. crystalline energy evolve according ip_ Uig. equations

i + i + ocM i i ]Vi - p M f i V M - Pu

V, = 1

ai each juncture i.

Proof. The second of (10.18) is (10.12). To derive the second,

let Vj denote the arc velocity and [SitSi+1] the arc-length

interval for r*j. Then

V M N M + [S,« - v M ] T M = VjNj + [S; - V | ]T | t

VjN, + [S l+1* - v,]T, = V i+1N i+1 + [SI+1» - v i + 1 ]T i + 1 .
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If we take the inner product of these equations with Tf and then
add the resulting equations, we find that

Lf - - (pi-i,i)"1Vi-i - (Pi,i+i)"1Vi+1 +
•T i+1) - [Sf - Vi.-jHTj-T,.-,). (10.20)

Next, we take the inner product of (10.19) with N,-; the result is

( P I - I . I ) ' 1 ^ , * - v,.,] - - V, • ^ . , (1 , -7 , . , ) .

V, - VI

The relations (10.20) and (10.21) combine to give (10.18)r •

A geometric derivation of (10.18) follows upon noting that, for
#j = 8 j - 8 M (Figure 10C),

L f - -[cotflj + cotfl,+1]V, + (sin#j)~1VM + (sinf l i +1r1V i +1 .

which is easily obtained, at least formally, by incrementing the time
by a "small" amount.

10.3.1. Evolution of a rectangular crystal.
A simple example that yields useful information occurs when

the convexified Frank diagram is quadrilateral with vertices at
8 = 0, TT/2, IT, 3TT/2. A corresponding evolving crystal, if essentially
convex, is rectangular at each t with sides having these angles as
orientations. Therefore L^ = Ly L2«LH. and, by (10.15), pf r+1 = - 1 ,
o c i , i+ i = 0 - Thus, defining

F, = F(J32 + fis)/fizfis. F2 =

H. 62 = (A3J31 + AP)/J3i3 ( 1 0 2 2 )
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- V. f- v. Cot(lT+1)At

The contribution of V

V.
+ X"l At

t +At

The contribution of V

Figure IOC* Derivation of L.*(t) , expressed

as a linear combination of V. , V. and V .
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the evolution equations (10.18) reduce to

r * /, (10.23)
L

2 * = - F
2 - 6

2 / L 1

with (cf. (10.16))

sgnFj = sgnF, 6j > 0. (10.24)

Case 1: F = 0. Solutions of (10.23) approach zero in finite time
T. Defining

6 = 6,/62.

there is a constant C>0 such that

L/t) = CL2(t)6. (10.25)

Thus for 6 = 1 the isooerimetric ratio
p(t)= [length(dQ)]2/4iTarea(Q) is constant, but for 6 ^ 1

p(t) -+ co as t -> T. (10.26)

For 6>1, L^t) approaches zero faster than L2(t), so that the
crystal shrinks to a point, but is ultimately in the shape of a
"needle oriented by 82 and Blf". This is in sharp contrast to an
interfacial motion for an isotropic interface (cf. Section 5.1); there
the interface shrinks to a round point.55

55Gage [1984], Gage and Hamilton [1986], Grayson [1987].
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Case 2: F>0. Solutions still approach zero in finite time T.
The result (10.25) holds asymptotically, and the discussion of Case 1
for 6 * 1 is appropriate.

Case 3: F<0. This case corresponds to a crystal evolving in a
supercooled liquid. Here (10.23) has an equilibrium at

L2 = IF1I/61, L^ IF . I /6^ (10.27)

which is a saddle. For any given initial value 1 (̂0) there is a
number i>0 such that: (i) if L2(0)<£, the sides shrink to zero
in finite time, in which case the asymptotic behavior of the crystal
is as discussed in Case 1; (ii) if L2(0)>4, the sides grow to
infinity as t-*oo, asymptotically as

L/t) * IF^t, L2(t) * IF2lt.

The equilibrium (10.27) represents the Wulff shape of the
crystal. Interestingly, none of the asymptotic shapes of the crystal
are of this form.
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11. General global behavior.
Section 7 established results for the growth and shrinking of

an interface whose energy is smooth and stable. We now generalize
these results. We assume that

f i i a (np_t necessarily stable) regular
interfacial energy with sharp spots.

Let r be a PS Interfacial motion that is admissible in
the sense of (AP1), (AP2), and (AP3),56 and let L(t). A(t), and
Fit) denote the perimeter, area, and total interfacial energy as
defined in (7.3) and (7.5).

Theorem.

F°(t) + FA°(t) = -Jj3(8)V2ds < 0. (11.1)
dQ(t)

Proof. Our f irst step will be to show that (4.12) (with bext = 0)
holds for each arc rt of r. It is clear from its proof that (4.12)
holds for rs in cases (1) and (2) of Remark 2 (Section 10.2). We
now show that (4.12) is also satisfied in case (3). For this case N
and T are constant, KsO, and V is independent of arc length.
Let R^t) and R2(t) denote the initial and terminal points of rt,
with C^t) and C2(t) the corresponding capillary forces. Since
f(8j) = constant, (2.35) yields

(d/dt)Jf(8j)ds =

while (10.6) implies

56Cf. the paragraphs containing (2.45) and (10.6).
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FjVds = -|p(Bi)V2ds + V[C2-C1 ] -N.

Further, by (10.1), fCB^-C^T = C2-T; this relation, (2.2O)v and the
last two Identities Imply (4.12).

Thus (4.12) holds on each arc of r. If we apply (4.12) to each
such arc, add the resulting equations, and use (2.45), (2.37), and the
fact that, by (10.6), C(s,t) Is continuous In s, we arrive at (11.1). •

Let e(8) be a continuous, piecewise smooth, strictly positive,
2TT-period1c function on IR. We need a generalization of the Wulff
ratio (7.12); a generalization in which the exterior normals of the
underlying regions Y are restricted to point in GS directions.57

This is easily accomplished by replacing e(8) by +oo whenever 8
is not GS. Thus, letting

e*(8) = «
e(B) for 8 a GS angle

(11.2)
+oo otherwise,

the GS Wulff ratio for e(8) is the number

WQS(e) := (4IT)"1 inf { Je*(8)ds}2/ area(D (11.3)

ar
with the infimum taken over all bounded regions T with df
piecewise smooth. Corresponding minima T are called GS Wulff
regions for e(B).

Let {0m~,0m
+}, m = 1,2, ...,M, denote the GS corners in the

order encountered as the Frank diagram is traversed in the
clockwise direction, so that 01">01

+> 02">02
+> 03", and so

forth;58 for each such corner, let59

57GS is with respect to the interfacial energy f(B), so that
WQS(e) depends also on f(8).
58We use this numbering scheme since for a closed, convex curve
the angle decreases with increasing arc length.
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km := 2tan(»m/2) < 0, * m - 0m
+-0m". (11.4)

We define the GS average gGSav of a function g(B) by
M

2TT9Gsav ! = f 9 ( 0 ) d B + i 2:iJlm i [g(0m
+)+g(0m-)]. (11.5)

Theorem on the growth of the reference phase. Consider
a. regularly maximal.60 admissible PS interfacial motion with
duration [0,T).
(1)11 F>0, then T<oo and A(t)-»O as t-»T.
(ii) JI F<0. then:

(a) i f L(0) is sufficiently small, then T<oo and A(t)-»O as
t-»T.

(b) i f A(0) is sufficiently large, then T = oo and A(t)-»oo as.
t-»oo. In this case isoper(Q(t)) remains bounded

limsup isoper(Q(t)) < [(i3"1)GSav^/WGS(J3~1). (11.6)

t -»oo

Proof. Our f i rs t step wil l be to show that

59The fe.m are M numbers associated with a given interfacial
energy; these should be differentiated from the transition
curvatures (2.41), which correspond to the actual junctures in an
interfacial motion (cf. (11.9)).
60ln the sense of the sentence containing (7.4). Here it must be
kept in mind that we have, as yet, no existence theorem
appropriate to an energy with sharp spots, although we do have an
existence theorem for a smooth but unstable energy (cf. Section
9.6).



A'(t) = -C - Fjj3(B)"1ds.
dQ(t)

F* < FC + [F2/(fm,JU,)]F.

L°(t) < -2TTF(J3"1:
GSav1

where C>0 is a constant.
To prove (11.7)v let N denote the essential number of aj

r, let

{ i: is a curved arc, 1 < i < N },

:= { i : r is a facet with 1 < i < N },

and, for each i€Jlarc, let JO-, denote the smooth GS partl a r c

corresponding to rv Since N is the outward normal to dQ,
interface is negatively (clockwise) oriented as a closed curve.
Moreover, because of the regularity of f, as s increases,
varies continuously through smooth GS parts, crosses sharp spc
adjacent smooth GS parts, or jumps across GS corners to
sharp spots or smooth GS parts. Thus:
(i) The sum of the transition numbers for the totality of

i€JLrc, corresponding to a given smooth GS part is -1 , ar

= interior ( U J8: ).
'sm

(ii) For each B0€jDsh there is at least one i€^sh such that
and the sum of the transition numbers Xj of the r{ witf
i€Jtsh and BS = BO is -1 .

Because of these conclusions, and since K = 8S, for any contini
2u-periodic function g(B),
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Jg(B)Kds = -Jg(B)dB.

c ft 0€^lsm ( 1 1 8 )

I X|g(B,)A(B,) = - S g(B)A(B).

Thus, integrating V(s,t) over dQ(t), we conclude, with the aid of
(2.45) and the remark containing (10.14), that (11.7), holds with

C = J*(B)d8 + I J3(B)"1A(B) > 0.

Next, by (7.5), fminL<P; (11.1) and (11.7), therefore yield (11.7)2.
To verify (11.7)3, let

$ = the set of nontrivial junctures j , 1 < j < N.

Each j€$ will have transition curvature kj defined by (2.41).
These transition curvatures are related to the numbers km define
by (11.4): for each j there is a corresponding m = m(j) such that

kj = fem and {Bj-,Bj+} = {0m",0m
+}, or ( n g )

kj = -km and {Bf.Bj*} = (Qm
+.0m"}.

Further, letting J(m) denote the set of all j with lkjl = l l m l ,

I kj - A.m. (11.10)
J€J(m)

If j is a juncture for a facet whose angle is a sharp spot of the
Frank diagram, and if x denotes the transition number of the
facet, then

> 0. (11.11)

The verification of (11.7)3 is based on (2.44), which we write in
the form
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L°(t) = -fKVds - ZkjOj (11.12)

dQ(t) J«S
with t»j the average velocity (2.40)3 of the juncture j . By Remark

2 of Section 10.2 and (11.B)V

fKVds = I J[*(B)K2-FJ3(8)~1K]ds > Ffj3(8)~1dB, (11.13)

dQ(t) i€Jlarc h 8 € * s m

Let j€? be the juncture of an arc r{ of r. Then, on the arc at
that juncture,

kjV > -kjP(B)"1F. (11.14)

Indeed, (11.13) holds trivially if r*j is a facet with angle B€jBsmco;
for r*j a facet with angle B€jBsh, (11.14) is a consequence of
(10.15), (10.11), and (11.11); if rt is curved, then (11.14) follows
from (10.13) and (CC2) of Section (9.1) (which also holds in the
present circumstances). By (2.40)3, (11.10), and (11.14),

M

> - i F l f e . m [ p ( 0 m
+ r 1

 + J3(0mT1]- (11-15)
m=i

Since km<0, (11.5). (11.12). (11.13), and (11.15) imply (11.7),.
Finally, an argument identical to that given in the paragraph

containing (7.16) shows that (11.7) yields all of the desired
conclusions. •

Conjecture. Consider case (iib) of the last theorem. We
conjecture that, as t-»oo,

dQ(t) js asymptotic io £ GS Wulff region for J3(B)"1.



91

Remark. Suppose that the energy is crystalline with
B1>B2>- ->BM the complete set of GS angles. Then {8m,8m+i},
m = 1,2,--,M (81^+1=8^ are the GS corners,

km = 2sinf lm / (1 + cosflm). flm = Bm+i - Bm,

and it is not di f f icul t to verify, using the Wulff construction,61

that

Further, as is clear from (11.3), W_o(1) represents the minimum

value of the isoperimetric ratio isoper(F) over all polygons T
whose outward unit normals are limited to the GS directions
81 ,82 ,-18M . Thus, when J3 = constant, (11.9) yields, for case (lib) of
the last theorem,

M

isoper(Q(t)) -» (2TT)"1Z lfcml

as t-»oo.
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61Cf. Taylor [1978].
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Appendix A. Polar diagrams.
Let g(B) be a 2TT-periodic, strictly-positive function on IR.

Then g is smooth except for sharp spots if:
(i) g is continuous;
(ii) g1 and g" are continuous except possibly for a finite number

of jump discontinuities.
The angles at which g" suffers jump discontinuities will be
referred to as sharp spots; all other angles will be referred to as
smooth spots.

Let N(8) and T(B) be defined by (2.3). The polar diagram
Polar(g) of g is the simple closed curve in IR2 defined by the
vector function

g(B) := g(8)N(B).

We orient Polar(g) by 8, so that Polar(g) is positively
(counter-clockwise) oriented as a closed curve. Since N' = -T,

g'(8) = -g(8)T(8) + g'(B)N(B)

whenever 8 is a smooth spot; thus

n(8) s= lgl(8)r1[g(B)N(8) + g'(B)T(B)]

defines an outward unit normal to Polar(g). A tangent vector on
Polar(g) more useful than g'(8) is the supporting tangent

g*(8) := g(B)-2g'(B)

= -g(B)-1T(8) + g(B)-2g'(8)N(8), (A1)

which is well defined for 8 a smooth spot. This notion has an
extension which is defined for all angles. By the vector fan
between vectors a and b we mean the set of all vectors c such
that
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c = a + oc(b - a). 0 < oc < 1.

For each 8, the supporting tangent-fan {g*(8)} is the vector
fan defined by g* (8 -0) and g*(B + 0), and is hence the s_e_t of
vectors of the form

-g(8)'1T(8) + £N(8), (A2)

where £ varies in the closed interval of IR bounded by
g(8)~2g'(B-0) and g(8)~2g'(8 + 0). This definition has some simple
consequences for 8 a sharp spot: let j and f, respectively,
designate the smaller and larger values of g*(8 ± O)-N(B), and
choose a,b€{g*(8)}; then

g*(8 + 0) - g*(8 - 0) = g(8)"2[g"(B + 0) - g'(8 - O)]N(B), ( A 3 )

7 < a-N(8) < T, a - b is parallel to N(8).

Somewhat less t r iv ia l are the following:

Properties of the supporting tangent.
(T1) Lei a€{g*(8)}, and let I be the line through g(8) in th

direction a. Then the perpendicular distance from I to. the
origin is. lal~1.

(T2) lg*(B)l~1 is the support function of Polar(g):

g(8)-n(8) = lg*(8)r1 lac 8 a smooth soot.

(T3) g*(8) is constant on a connected open subset t flf Polar(g)

if_ and only Z is. a. straight line-

Proof. Let a€{g*(8)}, so that a=-g(8)"1T(B) + £N(8).

Omitting the argument 8, the unit vector u= lal"1[g~1N + £T] is

orthogonal to a, so that d := Ig-ul is the perpendicular distance

from I to the origin. But d = lal"1. Thus (T1) is valid. (T2) is
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an obvious consequence of (T1), and (T3) follows from (T2). •

Theorem on common tangents. Lei {g*(B1)}D{g*(B2)} ^ 0 .
Then:
(CT1) IBj -e j^TT;
(CT2) {g*(B1)}n{g*(B2)} consists o_f a single vector a;
(CT3) letting B J - B ^ T T , a points in the same direction as

in this case we will refer io a as. ia§_ common supporting
tangent for B1 and B2.

Proof. Assume that B J - B ^ I T . Let a€{g*(B1)}n{g*(B2)}, and
let l\ denote the line through g(Bj) in the direction a. It
suffices to show that l^-^r

 SuPP°se n°t- Then ly and tz are
parallel, and, by (Tl), the origin lies equidistant between them.
Thus TCB^-a and T(B2)-a are of opposite sign. But by (A2),
T(Bj)"a = g(Bj)~1>0, a contradiction. •

Corollary. Lei P(g) be. convex. Let BvB2€lR with
0<82-81<-n and {g*(B1)}n{g*(B2)} ^ 0 . Then g(B), B, < B < B2, is a
straight line.

The curvature kg(B) of Polar(g) (positive for Poiar(g)
strictly convex) is given by

kg = tg2 - 99" + 2(g')2]/[(g')2 + g2]3/2 (A5)

whenever g' and g" exist. By (AD,

(d/d8)g*(8) = -A(8)kg(B)N(B), ( A 6 )

A = g-3[(g')2
 + g

2r3 /2 > o.
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Theorem. .Lei 81 and B2 have a_ common supporting tangent-
Then one erf Jthe. following three conditions must hold:
(C1) P(g) is a straight line between B1 and B2;
(C2) g'(B + 0)>g'(8-0) at some sharp soot B€[BrB2];
(C3) kg(B)<0 at some smooth soot Be[B1(B2].

Proof. Let a be the common supporting tangent, and let b
be the unit vector with

b-a = O and b-N(8)>0 for all B€[BVB2]. (A7)

Suppose that neither (C2) nor (C3) are satisfied: for B€[BVB2],

g'(8 + 0)<g ' (8 -0) for 8 sharp, kg(8) > 0 for 8 smooth. (A8)

Let 0 denote the set of sharp spots in (BVB2). If we integrate
(d/dB)g*(8) from 8, + 0 to 8 2 - 0 using (A6) and (A3)v and then
take the inner product of the resulting relation with b, we find
that

[ g * (B 2 - 0 ) -g * (8 1 + 0 ) ] -b = I c(B)[g'(8 + O)-g'(B-O)] -./C(8)kg(8)d8,

8 6 0 B i (A9)
c(B), C(8)>0 on [BVB2];

thus, by (A8) and (A7),

[g* (8 2 -0 ) - a]-b - [g*(81 + 0) - a]-b < 0. (A10)

Next, in view of (A3) , , and (A8L,

g* (8 2 -0) - a = oc2N(82), oc2 > 0,

g 'CB^O) - a = oc^CB,), oc1 < 0,

and we may use (A7) to conclude that (A10) holds with "<"
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replaced by "="; hence (A9) vanishes, and this yields (A8) with
inequalities replaced by equalities. Thus, by (A3)1 and (A6), g*(8)
is constant on (BrB2); in view of (T3), this implies (Cl). •

The convex hull62 of Polar(g) is a polar diagram Polar(G)
of a function G(B). We will refer to Polar(G) as the
convexification of g(B). Let

G(B) := G(B)N(B).

The set Polar(g)flPolar(G) on which the polar diagram coincides
with its convex hull is important. This subset of IR2 is
conveniently identified with a set of angles, namely

C(g) := {B€lR: g(B) = G(B)}.

We will refer to the connected components of C(g) as the
globally-convex sections of Polar(g). The portion of Polar(G)
that is disjoint from Polar(g) is the union of open line-segments;
the closures of these line segments will be referred to as the
Maxwell lines of Polar(g). Let m be a Maxwell line with end
points gCB^ and g(B2), B^B^ we will refer to (BV82) as the
angle interval for fn. and to B and B as Maxwell angles.

62More precisely, boundary of the convex hull of Polar(g). In our
discussion of curves the term "convex" means "strictly convex".
Here our terminology is ambiguous, as the boundary of the convex
hull will generally not be strictly convex. Thus the globally-
convex sections of Polar(g) are allowed to have subsets with
vanishing curvature.
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Maxwell theorem. Lsl 8 belong IQ. 3. globally-convex
section Q± Polar(g). Then:

g(8) = G(6), {G*(8)}C{g*(8)}.

g'(B + 0) < G'(B + 0) < G'(B - 0) < g'(B - 0), (A11)

N(B)-[G*(8 + 0) - G*(B-O)] < 0

with inequality in (A11\ if B is a sharp spot of g.
Let (BVB2) be. an angle interval for a Maxwell line. Then:

(i) 81 and 82 have a common supporting tangent Go with Go

the constant value o l G*(8) on (BVB2);
(ii) either (C2) or (C3) holds on (8rB2).

Proof. (A11)1 is obvious; (A11)3 follows directly from the
properties of the convex hull; (A11)3 implies (A11)2 and, by virtue of
(A1), also (A11),,. Further G*(B)HGQ on ( 8 ^ ) follows from (T3)
applied to G rather than g, while (A11)2 yields
G0€{g*(81)}n{g*(82)}; the desired conclusion in (i) then follows from
the theorem on common tangents. Finally, between 81 and 82,
P(G) is a straight line disjoint from P(g), thus (CD is not
possible, so that either (C2) or (C3) is satisfied. •
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Appendix B. Invariance under reparametrization.
A suitable discussion of invariance requires a class of time-

dependent curves broader than the class of evolving curves. Let T,
0<T<oo, be fixed. A time-dependent interval is a set of the
form IRx[o,T) or a set of the form

{(p.t): pe[P(t).Q(t)]. t€[O.T)> (B1)

with P.Q: [O,T)-»IR (P<Q) smooth functions. A time-dependent
curve is a smooth mapping (p.t)i-»r(p,t) such that:
(i) the domain of r is a time-dependent interval;

(ii) r( • ,t) is a curve for each t€[O.T).
If Domain(r) has the form (BO. then r has endpoints r(P(t),t)
and r(Q(t).t).

We write C for the set of time-dependent curves. Let r€C.
Then r evolves normally i f

r t(p,t)-rp(p.t) = O

for all (p,t)€Domain(r); thus the term "evolving curve" as used
in the main body of the paper is here synonymous with normally
evolving curve.

Let reC. We consider the tangent T(p.t) := rp(p,t)/lrp(p.t)l
and normal N(p,t) to r as functions of (p,t)€Domain(r), and
similarly for the normal velocity

V(p.t) := rt(p.t)-N(p.t). (B2)

Further, we define

J(p.t) := lrp(p.t)l. ( B 3 )

o(p.t) ;= -J(p.t)"V t(p.t).T(p,t).

Let Z(t) be given with (Z(t),t)€Domain(r) for some interval of t.
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Then the curve tn»r(Z(t),t) is a normal trajectory provided

T(Z(t),t).(d/dt)r(Z(t).t) = 0.

But by (B3),

T(Z(t),t)-(d/dt)r(Z(t).t) = J(Z(t),t)[dZ(t)/dt - t>(Z(t).t)]. (B4)

so that o(p,t) gives the rate at which the parameter p changes
with time following a normal trajectory. This discussion should
motivate the following definition.

Choose (po,to)€Domain(r). The function ti-*Z(t). maximally
defined as the solution of the problem

dZ(t)/dt = t>(Z(t).t). Z(t0) = p0. (B5)

is the normal parameter-trajectory through (po.to).
Let reC, let * be a smooth function on Domain(r), and

choose (p,t)€Domain(r). Then the normal time-derivative
*°(p,t) of * at (p,t) is defined as follows:

**(p,t) = (d/dT)*(Z(T)/r) |T . t . (B6)

with Z(T) the normal parameter-trajectory through (p,t). Clearly,
r*-N = r t-N ( while (B4) and (B5) yield r ° -T = 0; hence (B2) implies

i-(p.t) = V(p.t)N(p,t). (B7)

The next proposition is easily verified.
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Proposition 1. Lfii reC. Then the following are equivalent:
(i) r evolves normally:
(ii) the normal parameter-trajectories are &f_ UlS. form Z = constant;
(iii) rt E r ° ;
(iv) x> a 0.
Moreover, i l r evolves normally, and i t * is a. smooth function
on domain(r), then

* • = * t . (B8)

Let reC. By a parameter change for r we mean a smooth
bijection <J>, from a time-dependent interval onto Domain(r), of
the form

$p > 0;

if r is closed we require, in addition, that there exist a smooth
function u>0 on [0,T) such that

(B9)

for all (p.t)€lRx[0,oo), where X(t) is the minimal period of

r( • ,t). Given a parameter change $ for r. the function r°<|> on
Domain (<£) defined by

(r»()))(p,t) = r($(p.O) = r(4)(p,t),t) (B10)

is also a member of C (and is closed if r is closed); we refer to
ro<j) as a reparametrization of r. This definition, (B4) with
Z(t) = (})(p,t), and the equivalency of (i) and (iv) in Proposition 1
yield
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Proposition 2. JLet reC. Then r<><j) evolves normally if and
only if <j>t(p.t) = t>(<j>(p,t),t) IQT all (p.OeDomainGjD, so that each
jo_f the functions t H» <£(p,t) is. a_ normal parameter-trajectory.
Thus, when r evolves normally. r°<|> evolves normally if and only
if <pt = 0.

The next result is central; it shows that within a large class
of time-dependent curves there is no essential loss of generality in
limiting attention to curves that evolve normally.

Theorem 1. .Lei reC satisfy one erf ihe. following three
conditions:
(i) r is. closed:

(ii) r has endpoints. and the endooints are normal trajectories:
(iii) r is unbounded, and there are smooth functions a:IR-»IR and

b:[O,T)-*IR such that, for all (p,t)€Domain(r),

lo(p.t)l < a(p)b(t). (BID

Then there is §. parameter change $ for r such that ro$ js a.
normally evolving curve-

Proof. For each p in the initial interval [P(O).Q(O)] or IR,
let t^Z(p.t) denote the normal parameter-trajectory through
(p,0). Consider (ii). In this case Z(P(O),t) = P(t) and Z(Q(O).t) = Q(t)
for 0 < t < T ; thus, since Z(p,t) is, for p fixed, a maximal
solution of (B5), and since P(0) < p < Q(0), Z(p,t) is also defined
for 0< t<T . In fact, the definition of Z as the solution of (B5)
renders the mapping 0 defined by $(p,t) = (Z(p,t),t) a smooth
bijection of [P(O),Q(O)]x[o,T) onto Domain(r). Further,
differentiating Zt(p.t) = o(Z(p,t),t) with respect to p, one easily
concludes that Zp(p.t)>0, since it has this property at p = O. Thus
$ is a parameter change for r. The last proposition then implies
that r°<jj is a normally evolving curve.
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Consider (iii). Let $0 denote the parameter change for r
defined by <|>0(p.t) = (<j>0(p),t) with <}>0(p) any solution of
d<j>0(p)/dp = a(p). Then the reparametrization ro°<J)o obeys (BID with
a(p) = 1. Thus it suffices to consider unbounded curves r€C that
obey an estimate of the form

lt>(p,t)l < b(t) (B12)

with b continuous on [O.T). This estimate and the definition of
Z as the solution of (B5) imply that, for each peIR, Z(p,t) is
defined for 0<t<T. In fact, arguing as above, the mapping <J> is
a parameter change for r, and r°ty is a normally evolving curve.

Consider (i). Since r is periodic with period X(t) a smooth
function of t, the estimate (B12) again is satisfied. Thus the
mapping $ defined by c|>(p,t) = (Z(p,t),t) is a smooth bijection of
IR*[O,T) onto Domain(r). and Zp(p,t)>0. Since
r(z,t) = r(z + X(t),t), (B3) yields viz + X(t),t) = t>(z,t) + Xt(t), and this,
in turn, leads to the conclusion that z(p,t) := Z(p,t) + X(t) satisfies
zt(p.t) = t>(z(p,t),t), z(p,O) = p + X(O). Thus z(p,t) = Z(p + X(O),t), so
that Z(p,t) + X(t) = Z(p + X(O),t) for all (p,t). and we have
compliance with the condition (B9). Thus $ is a parameter change
for r, and r«>̂  is a normally evolving curve. •

We define the arc-length derivative *s(p.t), the
curvature K(p,t), and the angle derivative *e(p,t) through:

*s(p.t) := *p(p,t)J(p.t)-1,

K(p,t) := N(p,t)-Ts(p,t), (B13)

*g(p.t) := K(p,t)"1*s(p.t)

(the last definition being appropriate to (p,t) with K(p,t) ^ 0).
To discuss invariance under reparametrization, we now write

Tr(p,t), Nr(p.t), Vr(p,t), and Kr(p,t) to make explicit the
dependence of these quantities on the time-dependent curve reC
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in question. This allows us to consider, for example, the normal
velocity as a mapping V that assigns to each reC a function
(p,t)n> Vr(p,t) on Domain (r).

More generally, a curve descriptor is a mapping * that
assigns to each reC a function (p,t)t-»U^r(p,t) on Domain(r).
Given a curve descriptor U*. we may consider its normal time-
derivative, its arc-length derivative, and its angle derivative as
curve descriptors; i.e., e.g., (Ws)r '•= (^r)s-

A curve descriptor Uf is intrinsic if it is invariant under
reparametrization; that is, if, at each t, its value at p on a
reparametrized curve r»$ is the same as its value at $(p,t) on
the original curve r. Precisely, W is Intrinsic if, given any
r€C and any parameter change $ for r,

The following result is well known.

Invariance theorem. The following curve descriptors are
intrinsic: tangent, normal, normal velocity, and curvature, i f .a. curve
descriptor i s intrinsic, then so. also are its normal time-derivative.
its arc-length derivative, and its angle derivative-

Proof. Let <p be a parameter change for reC. let g
and write g(p.t) = r(q,t), q = «j)(p,t). Since gp = rq<pp,
Tg(p.t)-gp(p.t)/ lgp(p,t)l-rq(q,t)/ lrq(q.t)l-T r(q,t). so that T and
(hence) N are invariant. Let * be an intrinsic curve-descriptor.
Then the same argument applied to (B13)1 yields 4*s intrinsic.
Thus, by (B13)23, K and WQ are invariant. Next, let Z(t) be the
normal parameter-trajectory for g through (po.to). A simple
calculation shows that

(d/dt)r(<j)(Z(t),t),t) = (d/dt)g(Z(t),t) = 0,
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so that z(t) := <})(Z(t),t) is the normal parameter-trajectory for r
through $(po,to). On the other hand, since 4* is intrinsic,

(d/dT)Ufg(Z(T).T) = (d/dT)*r(z(T).T). (B14)

At T = t0. the left side of (B14) is (W)g(p0.t0), the right side is
t0)); thus the normal time-derivative of an intrinsic

curve-descriptor is intrinsic. In particular, r n r ' is intrinsic;
hence, by (B7), V is intrinsic. •
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