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1. Introduction.

Paper 1 [1988g]' of this series began an investigation whose
goal is a thermomechanics of two-phase continua based on Gibbs's
notion of a sharp phase-interface endowed with thermomechanical
structure. In that paper a new balance law, balance of capillary
forces, was introduced and then applied in conjunction with suitable
statements of the first two laws of thermodynamics; the chief
results are thermodynamic restrictions on constitutive equations,
exact and approximate free-boundary conditions at the interface,
and a heirarchy of free-boundary problems. The simplest versions
of these problems (the Mullins-Sekerka problems) are eséentiallg
the classical Stefan problem with the free-boundary condition u=0
for the temperature replaced by the condition u=hK, where K is
the curvature of the free-boundary and h>0 is a material
constant. This dependence on curvature renders the problem
difficult, and apart from numerical studies involving linearization-
stability, there are almost no supporting theoretical results.

For perfect conductors the theory seems far more tractable;?
there the temperature is constant, and the underlying free-boundary
problem reduces to a single set of evolution equations for the

1See also [1986g,1988gg].

2The theory of perfect conductors might b2 applicable to small
interfaces, where bulk effects are small, or to interfaces of
arbitrary size in superconductors such as solid helium in which
heat flow is insignificant (cf. Maris and Andreev [1987]). A
mechanical theory of this type might also model the motion of
grain boundaries (cf. Allen and Cahn [1979]).




interface.

In this paper we develop further the theory of perfect
conductors, but to avoid the severe geometric complications
associated with the motion of surfaces in R®, we restrict our
attention to interfaces that evolve as curves in R For any such
interface, we write T(8) for the unit tangent, N(8) for the unit
normal, and B for the angle from a fixed coordinate axis to N(B).

We begin with a fairly thorough description of the basic laws,
which are balance of capillary forces and a mechanical version of
the second law, and we derive corresponding thermodynamic
restrictions on constitutive equations3 In particular, we show
that the capillary force C(8) must be related to the interfacial
energy* f(8) through the relation

C(8) = f(B)T(B) + T'(B)N(B). (1.1)

Balance of capillary forces in conjunction with the
thermodynamically-reduced constitutive equations lead to an
evolution equation which relates the normal velocity V to the
curvature K; this relation has the form?®

p@e)V = [1(B) + f"(B)IK - F (1.2)

with F the (constant) energy-difference between bulk phases, and
B(B)>0 a kinetic coefficient which measures the drag opposing
interfacial motion. The relation (1.2), when combined with purely
kinematical conditions for an evolving curve and applied on a convex

3The underlying proofs are more transparent in R? than R,
and for that reason we rederive many results which could simply
be taken from [1988gl.

4Throughout we use the term “"energy" as a synonym for "free
energy"”.

SThere is a large and growing literature concerning the evolution
equation V=K (cf., e.g, Brakke [1978], Gage [1986], Gage and
Hamilton [1986], Grayson [1987], and Angenent [1988]).



section of the interface, results in a single partial differential
equation for the velocity V =V(B,t):

*(B)Vi = [V +*(B)]*[Veo + VI, (1.3)
where
$(8) = [f(B). f"(B)]/j3(8), *(B) = FJ3(B).

For $(B)>0 this equation is parabolic® and yields a theory which
seems quite similar in structure to its isotropic counterpart based
on V=K-F. There is, however, no compelling physical reason to
exclude energies f(B) for which f(B)+f"(B)<O over certain ranges
of the angle 8;” for such ranges the equation (1.3) is backward-
parabolic and corresponding evolution problems are generally not
well posed. We show that a necessary condition for the statical
stability of the interface is that f(B) + f"(B) > 0, and for that
reason use the terms strictly stable, stable, or unstable according
as f(B)+fY(B)>0, f(B)+f"(8)>0, or f(B)+f"(B)<O.

We begin our analysis of (1.3) by restricting attention to
interfacial energies that are strictly,. stable, We deduce steady
solutions of (1.3) for which the interface is convex and infinite, in
the shape of a bump. The bump recedes in one solution and
advances in the other; for the receding bump the kinetic coefficient
can be arbitrary, but the advancing bump requires a nonconvex polar
diagram for ]3(B).

We next analyze the global behavior of a smooth interface as
measured by its perimeter L(t) and enclosed area A(t). Our main
result, based on the asumption of a stable interfacial energy, is
most easily stated in terms of a bounded solid in an infinite

®Aside from the trivial degeneracy (v=-UA(B)) which occurs at
inflection points.

"Material scientists often consider such models (cf., e.g., Gjostein
[1963], Cahn and Hoffman [1974]).



liquid bath.

If the bath is not supercooled, then A(t)->0; if the ]
bath is supercooled, then initially small interfaces have
(1.4) L(t)>0, initially large interfaces have A(t)- 0.

We also show that, for the case in which A(t)- o0, the
isoperimetric ratio L(t)’°/4mA(t) remains bounded as t-o0. We
show further that if (for a nonconvex interface) one defines a finger
as a section of the interface between inflection points, then the
total number of fingers as well as the total curvature of each finger
cannot increase with time. These results presume the existence of
a smooth, simple (non self-intersecting) interface. In this regard,
it is clear that in certain circumstances the interface can pierce
itself as it evolves.

We next consider energies f(B8) which are unstable for certain
values of B. Here we find it convenient to introduce a global
definition of stability which is based on ideas of Wulff [1901],
Herring [1951b], and Frank [1963]. We define global stability in
terms of the convexity of the Frank diagram, which is the polar
diagram of the reciprocal function f(8)"'; we refer to the convex
sections of this diagram as the globally-stable (GS) sections, to the
remaining sections as the globally-unstable sections. These
definitions are consistent: f(B) is stable on GS sections; f(B) is
unstable somewhere within each globally-unstable section.

One way of treating unstable energies is to allow the interface
to be nonsmooth with corners which correspond to jumps in B
across the globally-unstable sections. Balance of capillary forces
for corresponding "weak solutions" of the evolution equations leads
to the requirement that C(8) be continuous across each such
corner; interestingly, this requirement is automatically met.

In contrast to standard results for a strictly stable energy,
the presence of corners leads to the possibility of facets (flat
sections); in fact, to the presence of wrinklings, where a wrinkling
is a series of facets with normals that oscillate between two fixed
values. We show that such wrinklings are dynamically stable: the




lengths of the individual facets do not increase with time.

The use of corners leads to free-boundary problems for the
evolution of the interface, as the positions of the corners are not
generally known g-priori. We discuss these problems in some detail.

Material scientists often consider interfacial energies that are
continuous but have derivatives which suffer jump discontinuities?8
We study such interfaces; as before, we use corners to remove the
globally unstable sections. We show that, in agreement with
statical results,® discontinuities in f'(8) lead to facets in the
evolving interface. We show further that the result (1.4) remains
valid for nonsmooth, nonstable energies.

Following Taylor's [1978] statical treatment of crystal shapes,
we consider a particular class of nonsmooth energies, called
crystalline, for which the GS sections are isolated points (that is,
for which the Frank diagram touches the boundary of its convex hull
only at discrete points). An interesting property of crystalline
energies is that their evolution is governed by a system of ordinary
differential equations. Moreover these equations are of a
particularly simple form, involving only nearest-neighbor
interactions. We solve these equations for a rectangular crystal;
the corresponding solution shows that, in situations for which the
crystal shrinks (cf. (1.4)), the corresponding isoperimetric ratio
generally tends to infinity. This is in sharp contrast to an
isotropic interface, which shrinks to a round point.1©

8Cf., e.g., Herring [1951abl, Cahn and Hoffman [1974].
9Cf., e.g., Taylor [1978].
10Gage [1984], Gage and Hamilton [1986], Grayson [1987].



I. The thermomechanics of evolving curves.

2. Kinematics.

This chapter discusses the kinematics of smooth curves which
evolve smoothly in time, and forms the basis of our theory of the
motion of phase interfaces in RZ

2.1. Curves.

A curve is a smooth map per(p) from an interval of R

into R? such that:
(i) rp never vanishes;
(ii) the domain of r is either all of R or a bounded interval

[P,Ql;

(iii) if the domain is R, either r is periodic!! or

Ir(p)l - 00 as Ipl-oo.

The set Range(r) is then called the trace of r.

We will classify curves r as follows: r is bounded or
unbounded according as its trace is bounded or unbounded; r is
closed if the domain is R and r is periodic, r has endpoints
if its domain is a bounded interval. A nonclosed curve is simple if
it is one-to-one; a closed curve is simple if given any p.qeR,
r(p)=r(q) only when p-q is a multiple of the minimal period of
r.

Let r be a curve. An arc-length map for r is a smooth
mapping s(p) from the domain of r into R such that

sp = Il (2.1)
We assume henceforth that an arc-length map is prescribed. Since

the arc length s=s(p) is an invertible function of p, any
function ¢(p) may be considered a function ¢(s), and vice versa.

A function ¢ on R is periodic if there is a A>0 such

that ¢(p)=g¢(p+N) for all peR; A is then a period of ¢ and
the infimum of all periods is the minimal period of ¢. (The
minimal period of a curve r is strictly positive since Irpl = 0.)



The vector
T(s) = rg(s) (2.2)

defines a (unit) tangent to the curve in the direction of increasing
p. We define a corresponding (unit) normal N(s) through the
requirement that {T,N} be a positively-oriented orthonormal basis
of R? and we define the angle 8(s), as a smooth function of s,
through2

N = (cos8,sinB), T = (sinB,-cosB). (2.3)

We will refer to the range of the function s~ 8(s) as the angle
range (Figure 2A). Note that, N and T may be considered as
functions of B8, in which case

Ng=-T, Tg-=N. (2.4)

The function
K(s) = B4(s) (2.5)
is the curvature; by (2.4), K(s) obeys the Frenet formulas:
Ng = -KT, Ts = KN. (2.6)

Let r be a curve with trace s and normal N. Then r is a
boundary curve if r 1is simple and either closed or unbounded.
By the Jordan-curve theorem, s then divides R? into two
regions,'® and one of these regions, Q, say, will have N as
outward normal; we will refer to Q as the reference region.

A curve is convex if K never vanishes In view of (2.5), the

12This defines the function 8(s) up to a multiple of 2m.
13we use the term region as a synonym for connected open set.



Figure 2A.
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mapping s~ B8(s) is then invertible and we may use 8 in place of
s or p as independent variable. In particular, we may parametrize
the curve itself by B8, giving a function r(8); granted this, (2.2)
and (2.5) yield

rg = K'T. (2.7)

Note that, because of our sign curvature for curvature, K<O for a
boundary curve whose reference region is bounded and strictly
convex.

Useful in the study of convex curves is the support function

p=r-N; (2.8)
by (2.4) and (2.7),

r=pN - pgT, Pgg * P = K. (2.9)

We now give three useful lemmas concerning convex curves.

Lemma 1. Two convex curves with the same angle range and
the same curvature are equal modulo a translation.

Proof. By (2.9),, the difference between the support functions
of the two curves r,8) and r,(8) must have the form a=-N(B),
and this with (2.9), implies that r(8)-r,(8)=a. =
zero, and suppose that the curvature has the form K(B(s)) with
K(B) a smooth function on the angle range. Then the curve is
gcanvex.

Proof. Let T denote the angle range, and let I be a
connected component of the set {BeT: K(B)= 0}. We must show
that T'=T. Assume that I'=T. Then there is a boundary point 8,
of I in R with BoeT and K(80)=0. Since K(B) is smooth up



to 8, IK(B)ISCIB—BOI near 8, But on I, s=s(B) and
sB(B)=K(B)'1, so that Is(B)I-» 00 as 8-8, a contradiction. =

Lemma 3. Let K(B) be a smooth, 2wm-periodic function on
R. Then the restriction of K(8) to an open interval O is the
curvature of a convex boundary curve if and only if either (a) or (b)
is satisfied:
(a) =R, K(B) is nonvanishing, and
2m
[K(B)'el®dB = 0; (2.10)
o
(b) © is a bounded interval (8,8,) with B,-8, < m; K(B) is
nonvanishing on (81,82); K(B1)=K(82)=0.
In case (a) the boundary curve is closed; in case (b) the boundary
curve is unbounded. In either case a boundary curve with angle

range O and curvature K(8) is generated by (2.9), with p any
solution of (2.9),.

Proof. Note first that if g(8) is a smooth 2mw-periodic
function on R, then
2

[[g(B) + g"(B)1eiBdB = O, (2.11)
0
an assertion which follows immediately upon integrating the term

g"(8)ei8 twice by parts.

Suppose that the restriction of K(B) to an open interval ©
is the curvature of a convex boundary curve r. Then r is simple
and either closed or unbounded. Assume that r is closed. Then
O =R and (2.10) is a consequence of (2.11) and (2.9),. Thus (a) is
satisfied.

Assume that r is unbounded. Then Ir(p)I-oo0o as
p-> 00, so that

Is(p)l»00 as po oo, (2.12)




10

Further, since r is simple, © is a bounded interval (8,.8,) with
8,-8, < m. Trivially, K(8) is nonzero on (8,8,). Further,
sg(8)=K(8)™' and, by (2.12), Is(B)I»c0 as B-8,B,; thus, since

K(8) is smooth up to B, and B8,, K(B,)=K(B,)=0. Therefore (b) is
satisfied.

Conversely, suppose that @ and K(B) satisfy either (a) or
(b). Let p(B) be any solution of (2.9), on © and define r(8) by
(2.9),.

Case (a). By (2.10), r(B) is 2m-periodic and defines a closed
curve parametrized by B. Further, K is the curvature of r, so
that r is convex. Moreover, B8 is the angle and r(0)=r(2m), so
that r is simple. Thus r is a convex houndarg'curve. -

Case (b). Let s(B) be any solution of SB(B)=K(B)'1 on O.

Since K(B) is smooth up to B, and 8, IK(B)IKCIB-B,1 for all B
near 8, and B, Thus, since K(B,)=K(B,)=0, Is(8)I»>00 as
8-8,8, and, by (29),, Ir(B)I-oc0 as 8-8,8,. The mapping
B8+ s(B) is therefore a smooth bijection of (8,8,) onto R.
writing 8=08(s), Ir(s)il-o0 as Isl-o00; hence r(s) is a convex,
unbounded curve, parametrized by arc length, with B8(s) the angle
function and K(8) the curvature. Since 8,-8, < m, r is simple;
hence r is a convex boundary curve.

The final assertions of the lemma are clear from the
preceding analysis. =

2.2. Evolving curves.

Roughly speaking, an evolving curve is a smooth family of
curves per(pt), where t, the time, ranges in a half-open
interval [0,T), called the duration of r. We will use evolving
curves to model the motion of phase interfaces in R For a given
motion r, the underlying physics must be independent of the choice
of parameter p, and hence can involve r only through intrinsic
quantities such as curvature and normal velocity which are
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independent of parametrization. On the other hand, this invariance
allows us to use any parametrization we wish. In fact, we shall
restrict our attention to parametrizations with ry(p,t).Lry(p,t);
such parametrizations greatly simplify the analysis, chiefly because
the velocity r(p,t) is equal to the normal time-derivative re°(p,t),
an intrinsic quantity.

Precisely, an evolving curve'® is a smooth mapping
(p,t)»r(p,t) with the following properties:
(i) the domain of r is either Rx[0,T) or a set of the form

{(p.t): pelP(), ()], tel0oT)}, (2.13)

where P,Q:[0,T)->R (P<«Q) are smooth functions;

(ii) r(-,t) is a curve for each te[0,T);
(it1) rdp,t)Lry(p,t) for all (p,t) (orthogonality).
We will refer to r(P(t),t) and r(Q(t),t) as the initial and
terminal points (or collectively, as the endpoints) of r, and to
the interval [P(t),Q(t)] (or R) as the parameter interval at
time t

Let r be an evolving curve: r is bounded, unbounded, closed,

simple, convex, or has endpoints, according as r(-,t) has that
property for each te[0,T); a restriction r, of r is an evolving
subcurve of r if, modulo a translation of time, r, is a bounded
evolving curve; r is an evolving facet if its trace gs(t) is a
segment of a straight line at each t.

Let an evolving curve r be given. An arc-length map for
r is a smooth mapping s(p,t) such that s(-,t) is an arc-length

map for the curve r(-,t) at each t. It is not difficult to
construct an arc-length map for r, and any two such maps differ
by a smooth function of time. We assume henceforth that an arc-
length map is prescribed. Since s=s(p,t) is an invertible function
of p, any function ¢(p,t) may be considered a function ¢(s,t),
and vice-versa. We will refer to ¢(s,t) as the arc-length

l4we use the term "normally evolving curve" in Appendix B.
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description of ¢.

We write'>S ¢° for the normal time-derivative of ¢, the
time derivative holding p fixed. In particular, we define the
normal velocity V(s,t) through the identity

re = VN, (2.14)
the arc velocity v(s,t) through
VvV = s°. (2.15)
Given a function ¢(s,t),
$° = Py + Vo, (2.16)
with ¢; the time derivative holding s fixed; thus
(°)s = (g + Vihs)s = Pst + Vs + Vshs = (Pg)° + Vsobs. (2.17)
Transport identities.
vs = -KV, 8° = Vs, Ke = Vg + K?V. (2.18)

Proof. By (2.1) and (2.2), T=Iryl"'r, Thus J=s, =Iry
satisfies

o _ -1 - o _ . = .

J® = Irgl ' rp=(rp)® = T=(VN)J = T=(N)V,
and, in view of (2.6), J°=-JKV. 0On the other hand, (2.15) yields
J°=vy=veJ and (2.18), follows.

Let e be a fixed unit vector. Then, by (2.2), (2.3), and (2.17),

(ry)°=e = (T=e)° = (N=e)B°,

15Cf. Appendix B. We will also write ¢°(t) for the derivative of
a function ¢(t) of time alone.
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(rg)e=e = (r°);=e - vgTse,
while (2.6), (2.14), and (2.18), imply
(r°)g = VN + vT.

The last three relations yield (2.18),, since e is arbitrary (cf.
(2.16)). Finally, (2.18), follows from (2.17) with ¢=8, (2.5), and
(2.18),,. =

Note that, trivially, for an evolving facet (cf. (2.5) and (2.18),),
K =85 =0, Vg = O. (2.19)
An endpoint R(t)=r(P(t),t) is a normal trajectory if
Re(t)=T(P(1),t)=0. Trivially, since R°(t)=ry(P(1),t)P°(t) + r°(P(1),1),
r(P(t),t) is a normal trajectory if and only if P is independent of

t.

Proposition. Let r have endpoints, and let S(t) denote the
arc length and O(t) the angle of an endpoint R(t). Then

R°(t) = V(S(1),)N(S(1),t) + [S°(1) - v(S(D,DIT(S(1),1),

(2.20)
B°(t) = Vg(S(1),t) + [Se(t) - v(S(1),t)IK(S(1),1),
and, if the endpoint R(t) is a normal trajectory,
S°(t) = v(S(H),1), O°(t) = Vs(5(1),1). (2.21)

Proof. Since R(t)=r(S(t1),t), O(t)=8(S(t),t), the identities
(2.20) follow from (2.16), (2.14), (2.5), and (2.18)2. If R(t) is a
normal trajectory, then R(t)=r(P,t) with P constant; thus, since
S(t)=s(P,t), (2.21), follows from (2.15), and, in view of (2.20),, this
yields (2.21),. m




14

For a convex evolving curve the mapping s+~ B8(s,t) is
invertible and we may use B8 and t in place of s and t as
independent variables. Then

K® = K; + KgB° (2.22)

(with K; the derivative of K with respect to t holding ©
fixed).

Proposition F r a convex evolving curve with curvature

normal velocity, and arc velocity expressed as functions of (B,t),
Ki = K*(Vgg + V),  vg =-V. (2.23)

In addition, if r has endpoints, and if the angle 8 at an endpgint

Re(t) = V(B,.N(B,) - Vg(B,.1)T(8,). (2.24)

Ve = VgK, Vg = VggK? + VgKgK,

and these relations, (2.22), and (2.18), , yield (2.23),. On the other
hand, vg=vgK and (2.23), follows from (2.18),. Finally, (2.20) with
©°=0 and Vg=VgK imply (2.24). m

The next definition will be useful in discussing evolving curves
that represent interfaces between phases. An interfacial motion

is an evolving curve r with r(-,t) a boundary curve at each t.
The trace s(t) of r then divides R? into two regions. The
region Q(t) with N(s,t) as outward normal is called the
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reference region, and, without loss in generality, Q(t) is taken
to be the bounded region interior to s(t) when r is closed (Figure
2B).

By a steady motion we mean an interfacial motion r with
the following property: there is a vector Us 0 such that, for some
choice of arc-length map,

r(s,t) = r (s) + tuU; (2.25)

U is then the steady velocity, the curve r, the portrait.

Proposition. Given a boundary curve r, and a vector U= 0,
there is a unigue'® steady motion r with r, as portrait and U
as steady velocity.

Proof. Assume that r (s) is parametrized by arc length and
let (st)mk(s,t) (Rx[0,00)-R? be the time-dependent curve
defined by (2.25). Then o(s,t), as defined in (B3), of Appendix B,
is independent of t and given by

v(s) = -U=T(s), (2.26)

with T(s) the tangent for r.(s). Thus k obeys hypothesis (iii) of
Theorem 1 (Appendix B), and there is a reparametrization ¢ of k
such that r=ked¢ is an evolving curve. Writing ¢(p,t)=(¢(p,t),1),
and differentiating r(p,t)=k(¢(p,t),t) with respect to p uyields the
conclusion that ¢(p,t) is an arc-length map for r. Thus Kk(s,t)
is an arc-length description of r(p,t), which is the desired
conclusion. If g is a second steady motion with k as an arc-

length description, then, trivially, g must be a reparametrization
of . m

As is clear from the proof of Theorem 1 (Appendix B), a

16The term “unique”, when used relative to evolving curves, will
always signify "unique up to a reparametrization”.
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Negative curvature

N(6)

T(0)

Reference phase

f2(t)

=

S(t)

Figure 2B. Sign conventions for interfacial motions, {2(t), the region
occupied by the reference phase, has N as outward unit normal and is
the region interior to the trace :?Hn.
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parameter change ¢(p,t)=(s(p,t),t) that converts the arc-length
description (2.25) to a description r(p,t) as an evolving curve has
s(p,t) a solution of the initial-value problem

s°(p,t) = v(s(p,t)), s(p,0) = p; (2.27)

in this case wv(s), given by (2.26), is the arc velocity and the
parameter p is the initial arc-length.

Proposition. Eor g steady motion the normal velocity WV(s),
the curvature K(s), the normal N(s), the tangent T(s), and the
angle B(s) are independent of time, and

V(s) = U=N(s). : (2.28)

Proof. By (2.25), T(s) and (hence) N(s) and B8(s) are
independent of t. Further, since VN=r°=rj+vrg and T-=rg V(s)
is independent of t and given by (2.28). Finally, since K=T¢=N
(cf. (2.6)), K(s) is also independent of t. m

For a convex, steady motion, V(B) and K(B8) are independent
of time, and

V(B8) = U=N(B). (2.29)

By a steadily evolving bump we mean a convex, steady motion
such that

K(8)U«N(B) never vanishes. (2.30)
A steadily evolving bump is advancing or receding according as
K(B)U=N(B) <O or K(B)U=-N(B)>0 (2.31)

(Figure 2C). Note that steadily evolving bumps are necessarily
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Advancing bump.

Q(t)

Receding bump.

Figure 2C. Steadily evolving bumps.
The steady velocity is given by U.
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unbounded.

Finally, we note that a trivial example of a steady motion is a
steadily evolving facet; such motions are completely determined
by U and the corresponding angle 8 (=constant).

2.3. Integral identities.
Let r be an evolving curve with arc length 1ying in an
interval [S,(1),S,(1)]. We use the notation

5,(1)
[pds = [o(s,t)ds, [ = o(5,(D.1) - $(5,(1).1);
s(t) s,(1) 0s(t)
trivially,
[o = [deds.
os(t) s(t)

The intrinsic measure of length on the curve is arc length. In
general, the endpoints of r will not be normal trajectories; hence
s(t) will loose arc length across its boundary at a rate given by
{v(S,(),1)-S,° (1)} - {v(S,(,1)-S.°(1)}. Thus, for ¢(s,t) a smooth
function,

outflow(g,05)(t) = §(S,(1),1){v(S,(1),1)-S,°(1)}

- (S, (O, DIV(S (). -5, (1)}
represents the rate at which ¢ is carried gut of s(t) across
0s(t) with this loss in arc length; note that, by (2.21),

(2.32)

outflow(g,0s)(t) = 0 when the

endpoints are normal trajectories. (2.33)



Transport theorem for integrals.

(d/dt)[pds + outflow(d,05)(t) = [(p°-¢pKV)ds. (2.34)
s(t) s(t)
Proof. By (2.16) (suppressing the argument t where
convenient),
S,(1) S

2
(d/dt)[o(s,t)ds = S,°(S,) - S.°¢(S,) + [($°-vos)ds.
5,(1) S,
On the other hand, (2.18), implies
s, s,
Jvpsds = ¢(S,)v(S,) - $(S)Vv(S,) + [pKVds.
S S

1 1
The last two results and (2.32) yield (2.34). m=m

If we take ¢ =1 in (2.34) and appeal to (2.20) and (2.32), we
arrive at an important identity involving the length

L(t) := length(s(1)).

Transport theorem for length.

Le(t) = R,2(D)=T,(1) - Ro(1)-T (1) - [KVds (2.35)
s(t)
if r has initial and terminal points R, (t) and R,(t) with
corresponding tangents T.(t) and T,(1);

Le(t) = -[KVds; (2.36)

s(t)
if r is closed, or if its endpoints are normal trajectories.

— e —  e— o— o——
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2.4. Piecewise-smooth evolving curves.

We now extend some of the previous definitions and results to
curves that are continuous but not smooth. For convenience, we
write "PS" as an abbreviation for "piecewise smooth".

Let r={r,r,,...} denote a finite or countably infinite list of
evolving curves r;, called arcs of r, of equal duration [0,T),
with [P,(1),Q,(t)] the parameter interval for r; at time t. Then
r is a PS evolving curve if:

(i) at each juncture i
(ie, each i with r; and r;,, arcs of r),

r(Q(t.t) = r, (P, (D1 =2 R(1); (2.37)

(ii) there is an integer N>O such that either:

(@) r consists of N arcs, in which case r, and ry are
terminal arcs, and r has endpoints r . (t)=r (P (1))
and r, (1) =ry(Qy),t); or

(b) r consists of an infinite number of arcs, but r;=r,

for all i; in this case r is closed, and the smallest

such integer N is the essential number of arcs of
r.

In addition: r; is an internal arc if both i and i-1 are
junctures; Ry(t) and R;°(t) are the position and total velocity

of the juncture i; s(t), the trace of r, is the union of the
individual traces

si) = {rp.t): pelP,(1),Q,D] ).

An evolving subcurve r, of r is defined in the obvious manner,

as is the phrase "r is simple”.
Let r be a PS evolving curve. An arc-length map for r is
a list {s,s, ...} with s(pt) an arc-length map for r, and

s5(Q().1) = 5,,,(P;,,(1),1) =1 S(t) (2.38)
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at each juncture i. It is not difficult to construct an arc-length
map for r; granted one is prescribed, we can define arc length s
at time t by s=si(p,t) for any i and pelP,(1).Q,t)]. This
allows us to consider the tangent, normal, orientation, curvature,
normal velocity, and arc velocity as functions T(s,t), N(s,t), B(s,t),
K(s,t), V(s,t), and v(s,t) of arc length and time. These functions
will generally suffer jump discontinuities across s=5(t); with this
in mind, given any function ¢(s,t), we write

it (1) == $(5,(1)20,1). (2.39)
We associate with each juncture i three functions of time:

Kj = T’;.Ni‘ = "Ti-'Ni+:
=2ki/(1 + T+=T7), (2.40)
Vit +Vv{)/2;

ay
[

=
it

k; is the transition curvature and o; the average velocity of
the juncture. Note that

ki = 2sin%;/(1 + cos®;) = 2tan(8;/2), 9 = B;*-8,", (2.41)

so that k; as a function of 9, is strictly increasing on [0,m),
is asymptotic to 9; for §; small, and tends to o as Y;->m.
(In the literature, it is more common to refer to U; as the
curvature of the corner.) Note also that for r; and rj,; convex,
the PS evolving curve {r;r;,1} is convex (in the usual sense for
continuous curves) if and only if k; and the curvatures of r; and
ri,1 have the same sign.
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Corner conditions. At each juncture i

VitN;* + (5°-vi)TiY = Vi'N;™ + (5°-vi )T = Ry,
Rio'(Ti+‘ Ti—) = kioi-

(2.42)

Proof. The identities (2.42)1 are a direct consequence of
(2.20), and (2.37). The inner product of

Vi+Ni+ + (Rio'Ti+)Ti+ = Vi—Ni_ + (Rio'Ti~)Ti-

with T;* and T, gives two equations, whose difference yields
(242), =

The next proposition gives an evolution equation for the
length

L(t) =1ength(s(t))

of r. As this result shows (and as is clear from (2.39),), kv,
measures the rate at which the juncture i generates arc length.

Transport of length.
(i) Let r have N arcs. Further, let R _.(t) and R, _(t) denote
the endpoints of r with T, (t) and T, (1) the

corresponding tangents. Then

N-1
Le(t) = Rterm°(t)-Tterm(t) - Rinif(t)-Tinit(t) - [KVds - 2kjv;.(2.43)
s(t) i=1
(ii) Let r be closed with N the essential number of arcs. Then
N
Le(t) = -]KVds - Zkjv;. (2.44)

s(t) =1
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Proof, We apply (2.35) to each arc of r, add the resulting
equations, and appeal to (2.42), and (2.42). =
A PS interfacial motion is a closed!'’ PS evolving curve r

with r(-,t) a boundary curve at each t. As before, the reference
region Q(t), with outward normal N, is the bounded region
interior to the trace 0Q(t) of r. A standard result is the
following equation for the evolution of A(t)=area(Q(t)):

A°(t) = [Vds. (2.45)
0Q(t)

17with the exception of Section 9.6, the underlying PS curves will
be bounded.
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3. Basic laws.'8

We consider a body which occupies all of R? and consists of
two phases separated, at each time t, by an interface. We assume
that the interface, as a function of t, is an interfacial motion r.
Let s denote the trace of r. The curve s(t) represents the
interface at time t; by definition, s(t) divides R? into two
sets, the regions occupied by the two phases. The reference region,
Q(t), has N as its outward unit normal; we will refer to the phase
occupying Q(t) as the reference phase.

3.1. Balance of forces.!®

Consider an interfacial motion r. The micromechanics of the
interface is described by two functions of s and t: C(s,t), the
force exerted across the interface at s; and b(s,t), the force

exerted on s(t) per unit length. C(s,t) is the capillary force; if
we write

C =0T + EN, (3.1)

then o(s,t) is the surface tension, E(s,t) is the surface
shear.
Balance of internal forces is, to us, the requirement that,

if ¢ 1is the trace of an arbitrary evolving subcurve r, of r,
then

fC + [bds = O (3.2)%°
oc(t) ¢(t)
for the duration of o This law has the local form

18The underlying physics is discussed at greater length in [1988g]
(see also [1986g,1988gg]).

19[1988g].

20(3.2) should be viewed as a conservation law over and above the

usual (gross) balance laws for forces and moments (cf. the
discussion of [1888g]).
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Co+b=0, (3.3)
or equivalently, by (3.1) and (2.6),

Ec + OK + b =0, O - EK + by, = O, (3.9)
where

b =N-=b, bian = T=b

are the normal and tangential components of b.

Motion tangential to the interface depends on the choice of
parameterization and is hence irrelevant to the underlying physics;
the intrinsic evolution of the interface is normal to itself, through
the velocity re°. As is consistent with a "constraint" of this type,
we leave by, as indeterminate and consider only the normal
component (3.4), of the force balance.

We assume that the normal force b consists of two terms:

b = Dext + N;

bext: the external force, represents the normal force exerted on
the interface by the external world;2! 2\, the interactive force,
gives the normal force exerted on the interface by the bulk
material. With this decomposition, the normal force-balance
takes the form

Es + OK + N + bgy = O. (3.5)

3.2. Energy. The second law.

21This force is essential to the thermodynamical development of
Section 4 (cf. [1988gl, Footnote 13). In later sections we will
restrict attention to interfacial motions with bgu=0.
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We associate with each interfacial motion an interfacial
energy f(s,t) per unit length. In addition, the individual phases
possess bulk energies; in accord with our tacit assumption of
isothermal conditions, we assume that the energy of each phase is
constant, and we write F for the energy of the reference phase
minus that of the other phase.

Let R denote a fixed bounded region of space, and let

Qp(t) = QNR,  sp(t) = s(LAR, (3.6)

so that Qpg(t) is the portion of Q(t) in R, while sg(t)
(assumed nonempty) is the portion of s(t) in R. We assume that
the boundary of R is sufficiently smooth that s is the trace of
an evolving subcurve rr of r, at least on a sufficiently small
time interval. Then (modulo an inconsequential constant) the total
energy of R is given by

Farea(Qgp(t)) + [fds.
Sn(t)
Interfacial energy is carried out of R whenever the normal
trajectories of the interface cross OR; in view of (2.32), this
outflow is given by the quantity outflow(f,0sg)(t).

The terms
[C-r° = IEV' lbextv'jS
OSR Osg SR

represent power supplied to R by the portion of the interface
outside of R and by the external world. (For convenience, we write
sg for sg(t).) The surface tension o and the interaction X\ do
not supply power: o because it acts in a direction orthogonal to
the velocity re°; A\ because it represents interactions within R.

The second law for R is the assertion that the rate at which
the energy increases plus the energy outflow cannot be greater than
the power supplied to R:
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(d/dt){Farea(Qg) + [fds} + outflow(f,0sg) < [EV + [beyVds (3.7)

SR OSR SR
during the duration of rg. This global energy-inequality is
assumed to hold for every such region R.
The transport theorem (2.34), the identity (2.45), and the fact
that R is arbitrary imply that

FV + f° - fKV = (EV)g - beyV < O; (3.8)
hence (2.18), and (3.5) yield the local energy-inequality
fo - 8° + (0-KV + (A +F)V ¢ O. (3.9)

Remark. One could also consider, as an additional postulate,
an energy inequality for the interface itself of the form

(d/dt)[fds + outflow(d,0c) < [EV + [bVds (3.10)

¢ oc ¢
with ¢ the trace of an arbitrary evolving subcurve. (Note that we
use b=bgy+ N to account for the power supplied to the interface

by the bulk material.) As we shall see, (3.10) follows as a
consequence of our constitutive assumptions. Note that, by (3.4),,
(3.10) has the local form

fe - EB8° + (o0-fKV < 0. (3.11)
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4. Constitutive equations. Consequences of thermodynamics.
Stability.
4.1. Constitutive equations. The compatibility theorem.

As constitutive equations we allow the energy, surface
tension, capillary shear, and interactive force to depend on the
orientation of the interface through a dependence on 8, and on the
kinetics of the interface through a dependence on V:

f=17(8V), E = £7(B,V),

A7 (8,V).

(4.1)%2

o = o”(B,V), A

The first three relations characterize the interface, the last models
the interaction between the interface and the bulk material.

Given an interfacial motion r, the constitutive equations may
be used to compute a corresponding process (f,E,0,\). The normal
force-balance (3.5) then determines the external force by, needed
to support the process. Granted this, the second law (3.7) will hold
in every region R if and only if the local-energy inequality (3.9) is
satisfied. This should motivate the following definition: the
constitutive equations are compatible with thermodynamics
if given any interfacial motion, the corresponding process satisfies
(3.9).

22Each of these functions is assumed to be 2m-periodic with
respect to B.
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Compatibility theorem.22 The constitutive equations are

compatible with thermodynamics if and only if:
(i) the energy, surface tension, and surface shear are independent

of V and satisfy

o™(8) = T7(B), E~(8) = fg(B); (4.2)

A\(BV) = -F - g(BV)V,
peNV) 2 0

(4.3)

Proof. The following simple result will be useful:

Let ¢(x) be smooth and satisfy ¢(x)x2 0 for
all xelR. Then there is a smooth function (4.4)
H(x) 2 0 such that ¢(x)=p(x)x.

The proof is simple: ¢(x)x has a minimum at x=0; thus ¢(0)=0,
so that p(x)=x""'$p(x)> 0 is well defined and smooth at x=0. '

To prove the theorem, we note that, in view of the constitutive
equations, (3.9) is equivalent to the inequality

~ - E™MB YV ° 4 f~ ° 4+
[f~g(B.,V) - E7(B,V)1B° + 7y (B,V)V (4.5)

[c™~(B,V) - £7(B,V)IKV + [A™(B,V) + FIV < O

Assume that (4.5) holds for all motions of the interface. It is a
simple matter to construct an interfacial motion for which, at some
point and time, the fields 8, V, K, 8° and V° have arbitrary
values (cf. the Variation Lemma of Gurtin [1988]); this implies (i)
and the inequality

23This is a special case of a more general theorem [1988g] in
which the bulk material is allowed to conduct heat.
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{F + \>(8,V)}V ¢ 0. (4.6)

Assertion (ii) follows from (4.6) and (4.4) with x=V and
$(x) =-F - A"(8,%).

Conversely, the assertions (i) and (ii) trivially yield (4.5) in
all processes. [ ]

we will refer to §(8,V) as the kinetic coefficient.

By definition, X and V are components with respect to the
same direction, so that, for V positive, X may be regarded as a
force in the direction of motion exerted on the interface by the bulk
material. Equation (4.3) gives this force as the sum of two terms.
The first term is a force -F which is positive if the phase into
which the interface is moving has higher energy (and is thus less
stable) than the other phase. The second term -BV s, by (4.3),,
negative, and represents a drag force opposing interfacial motion.
Note that, for small values of the velocity V, (4.3) has the
approximation

A =-F - BBV,
B,(8) = B(8,0) 2 0.

(4.7)

Some important consequences of the compatibility theorem are
expressed in the following remarks.

Remark 1. The relations (4.2) imply (3.11) with "<" replaced

by "=, and this yields the interfacial energy-inequality (3.10) as
an equality. Thus the interface does not dissipate energy; energy is
dissipated at most in the interaction between the interface and the
bulk material. The right side of (3.7) minus the left side gives this
dissipation, which a simple calculation shows to be

[B(B,V)V?ds . (4.8)
°R
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Thus B(8,V)V? represents the energy dissipated by the interaction
per unit length.

Remark 2. By (2.4) and (4.2), the capillary force (3.1) may be
regarded as a function of orjentation:

C = C(B) = f~(B)T(B) + f~'(B)N(B). (4.9)

The relations (4.2) also imply that og=(EK in every process.
Therefore, by (3.4),, 1angential forces are balanced with by,=0,
which obviates the need for constraint forces. Thus, granted
bian=Dbext= 0, Wwe may use (4.3) to write the capillary balance law
(3.2) in the equivalent integral form

[c(B) = [(F+B(B,VIV)Nds (4.10)
oc(t) c(t)
for every ¢, or, by (3.5), (4.2), and (4.3), in the eguivalent local
form

BB,V = [f(B) + f"(B)IK - F. (4.11)
A final consequence of the compatibility theorem is the

following result, which is essentially a statement of the second law
for evolving curves.

Corollary. Consider a curve r that evolves according to the

normal force-balance (3.5) and the thermodynamic relations (4.2) and
(4.3). Let s denote the trace of r, and let S.(t)<S,(t) denote

the arc lengths corresponding to the endpoints of s(t). Then

(d/dt)[fds + F[Vds = -[B(B,VIV?ds + [beyVds + W,(1) - W (1),

Wi(t) = C(5;(t),t) «(d/dt)r(s;(1).1).
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Proof. By (4.2) and (2.18),, f°-fKV=§Vs-oKV. If we
substitute this relation into (2.34) with ¢=f, integrate the term
EVs by parts, and appeal to (2.32), (3.5), (2.20),, and (3.1), we arrive
at (4.12). =m

4.2. General assumptions. Admissibility for evolving
curves.

Since there is no danger of confusion, we will use the
shorthand:

f(B) = 7(8).

Further, to avoid repeated hypotheses, we will assume, for the
remainder of the paper, that the following hypotheses are satisfied:

Assumptions.

(i) The constitutive equations are compatible with thermodynamics.
(ii) Ihe interfacial energy and kinetic coefficient satisfuy:

f(8) > 0, B(B,V)> O,

B(8,V) is independent of V. (4.13)

(iii) We henceforth restrict attention to evolving curves that
correspond 1o vanishing external forces:
bext = O. (4.14)
We will refer to an evolving curve as admissible if it is
consistent with (4.11). By Remark 2 of the Section 4.1, admissibility

for an evolving curve is equivalent to the requirement that the
curve be consistent with balance of capillary forces.
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4.3. Stability of the interfacial energy.

The following calculation leads to a condition on f which
ensures that straight line segments locally minimize interfacial
energy. Let £ denote an oriented, straight line segment with
initial point r, and terminal point r, and let r denote a (not
necessarily admissible) evolving curve whose initial and terminal
points are fixed at r, and r,. respectively, and whose trace
satisfies s(0)=£. Let F(t) denote the energy of s(t):

F(1) = [f(B)ds.

s(t)
Then
F°(0) = 0, Fee(0) = [f(B,) + 1"(B,)1[(Vs)®ds,  (4.15)
L
with B8, the angle of £. We will establish (4.15) at the end of the
section. Thus? g pecessary and sufficient condition that F(t)

have a strict local minimum at t=0 is that

f(8,) + £'(8,) > 0.

This proposition should motivate the following definition. The
interfacial energy f is strictly stable at B8, stable at 8, or
unstable at B8 according as

f(8) + f(8) » O, f(8) + f(8) > O, f(8) + f'(B) < 0; (4.16)

f is: strictly stable if it is strictly stable for all B¢R; stable
if it is stable for all BeR. As we shall see in Section 6, the
partial differential equation describing the evolution of the
interface will be parabolic where the interfacial energy is strictly
stable and backward parabolic where f is unstable. Since f(8)>0,

24Cf. Herring [1951b], Frank [1963], Gjostein [1963], Gruber
(Gjostein [1963]), Taylor [1978], Fonseca [1988].
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the interfacial energy cannot be unstable for all B.
By (2.4) and (4.9),

C'(e) = [f(B) + f"(B)IN(B), (4.17)

Thus, if the interfacial energy is strictly stable, then given any
angle «, N(x)=C(B) increases strictly with 8 for
x-m/2<B<x+mM/2 and decreases sirictlg with 8 for
®+M/2<B<x+3M/2.

we now prove (4.15). By (2.33) and (2.34)

Feo(t) = [[f'(B)B° - f(B)KVIds,
s(t)
and, since V=0 at the endpoints, while K=0 and B=8, at t=0,
we may use (2.18), to conclude that (4.15), is satisfied. Similarly,

Feo(t) = [If'(B)B°° + 1"(B)(B°)*- f(B)K°VIds at t=0.
s(t)
But B8°=V, and, by (2.17) and (2.18), B°°=KVVg + (V°),,
KoV =V V + K2V%  thus

Feo(t) = JI1"(8,)(Ve)®- 1(B,)VeV1ds at t=0,
s(t)
and integrating the last term by parts we arrive at (4.15),.
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II. Smooth interfacial motions.

5. Evolution equations for the interface.

We now discuss the equations that describe gdmissible
evolving curves; that is, evolving curves whose evolution is governed
by the constitutive equations and the capillary balance law.

5.1. Isotropic interface.
For an isotropic interface f and B are constants. Without
loss in generality, we set f=f8=1; (4.11) then reduces to?

V=K-F (5.1)

A complete set of partial differential equations for an admissible
evolving curve consists of (5.1) suplemented by the kinematical
conditions (2.18) (cf. (2.16)) satisfied by all evolving curves:

V=K -F, B + vBg = Vs, (5.2)

Ky + VKg = Vg + K2V, Vg = -KV

(where the subscript t denotes the time derivative holding s
fixed). The domains of the underlying fields in the arc-length
description are not known a-priori, since s varies in the interval
[0,L(t)] with L(t)=1ength(s(t)). However, (2.36) relates L°(t) to
KV, and we can introduce the rescaled variable s*=s/L(t).2¢

When the curve is convex, the system (5.2) takes a particularly

25A1len and Cahn [1979] and Rubinstein, Sternberg, and Keller
[1987] deduce the equation V=K as a formal approximation to the
Landau-Ginzburg equation. Evolution according to V=K is
discussed by many authors; cf. Brakke [1978], Sethian [1985],
Abresch and Langer [1986], Gage [1984,1986], Gage and Hamilton
[1986], Grayson [1987], Huisken [1987], Osher and Sethian [1987],
and the references therein.

26Abresch and Langer [1986].
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simple form; indeed, (5.1) and (2.23) yield

Ky = K*[Kgg + K - F1. (5.3)

(with K; the time derivative holding 8 fixed).

5.2. Anisotropic interface.
5.2.1. Basic equations.
For convenience, we define

d =B + 1), v =g"F, (5.4)
then (4.11) becomes
V = d(B)K - W(B). (5.5)27

A complete system of equations for an admissible curve consists of
(5.5) in conjunction with (5.2),_,.. When the curve is convex, this

system reduces to

Ky = K2[OK - Wigg + K2[OK - W] (5.6)

(with K; the derivative holding B8 fixed). This equation is also
valid for nonconvex motions, at least locally where K= 0.

Remark. The term of highest order on the right side of (5.6)
is KZCbKBB; thus (5.6) is parabolic for ¢(8)>0, backward parabolic

for ®(B8)<0. (Note that (5.6) degenerates at K=0.) By (4.13),
(4.16), and (5.4), parabolicity is equivalent to the strict stability of
the interfacial energy, while backward parabolicity is egquivalent to
instability (cf. (4.16)). There is no compelling physical reason to
suppose that the interfacial energy is strictly stable; in fact,
material scientists often consider energies which are unstable?® for

2’The special case V=-W(B) was introduced by Frank [1958].
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particular ranges of the orientation B8. Since f(8)>0 and
periodic, at worst we can have an equation which is backward
parabolic for some but not all values of 8.

Note that, by (5.5), the general equation (5.6), when expressed
in terms of the normal velocity V(B,t), has the form

®(B)Vy = [V + W(B)1*[Vgg + V1. (5.7)

5.2.2. Equations when the curve is the graph of a function.

Locally, an evolving curve may be represented as the graph of
a function y=h(x,t), provided the x and y axes are chosen
appropriately. Consider the choice indicated in Figure SA (with
orientation such that arc length increases with increasing x) and
let

p = h, (5.8)
Then
ptand = -1,  h, = (sin®)'V, K =h, (1+p)% (59
and the evolution equation (5.5) takes the form

h, = Q(p)h,, - B(p),

(5.10)
Q(p) = d(B)sin’8, B(p) = W(B)/sins,
or, differentiating with respect to x,
p; = [Q(p)p, - B(p)],, (5.11)

which is in conservation form.

28Cf, e.g., Gjostein [1963], Cahn and Hoffman [1974].
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Figure 5A., Sign conventions when the curve is
a graph y=h(x,t).
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6. Stationary interfaces. Steady interfacial motions.
Wwe assume throughout this section that the interface is
strictly stable. Then

f(B) + "(B)>0
for all B8, and we can write
w(B) = [1(8) + "(B)]17". (6.1)

Note that, by (2.11),
2m
[w(e) 'elBds = 0. (6.2)
0
This section is restricted to evolving curves and interfacial
motions that are admissible; to avoid repetition, we shall omit the
term "admissible" in most of the ensuing discussion.

6.1. Stationary interfaces.

By a stationary interface we mean an interfacial motion
which is independent of time. A trivial consequence of (5.5) is that
for F=0 the unbounded time-independent facets form the complete
collection of stationary interfaces. The next theorem establishes
the existence of stationary interfaces for F = 0.

Wulff's theorem?2® Assume that Fs= 0. Then

r(e) = F'[f'(8)T(B) - f(B)N(B)1. (6.3)

29\ ulff [1901]. See also Dinghas [1944], Taylor [1978]. The
bounded region Q with boundary defined by (6.3) is actually a
Wulff region in the sense of (7.12): Q has least interfacial energy
among all regions [ with area(l')=area(Q).
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defines a stationary interface which is closed, convex, and
parametrized by angle, and any other stationary interface differs

function corresponding to (6.3) are given by

K(8) = Fw(8), p(8) = -f(8)/F. (6.4)
Proof. In view of (4.11) (with V=0), a motion is stationary if
and only if it is convex with curvature given by (6.4),. Moreover, by

(6.2), the function K(B) defined by (6.4), satisfies (2.10). The
theorem therefore follows from Lemma 3 (Section 2.1). m

Let Q denote the orthogonal transformation that rotates
vectors clockwise by m/2. An interesting consequence of (4.9) is
that the capillary force C(B) corresponding to (6.3) is given by

C(8) = Far(e.).
6.2. Steadily evolving facets.
By (2.29), (5.5), and (6.1), steady interfacial motions r

evolve according to

K(8) = [F +B(B)U«N(B)Iw(B), (6.5)

where U(0) is the steady velocity. It is convenient to introduce
the vector potential

B(8) = B(BIN(B), (6.6)

whose locus forms the polar diagram Polar(8) of B, and to write
(6.5) in the form

K(B) = G(B)w(B), G(B) = F + U=g(8). (6.7)
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Appealing to the proposition containing (2.29), we see that a
steady motion is a steadily evolving facet if and only if the
corresponding angle B8 is identically constant and a solution of

G(8) = 0. | (6.8)

The equation (6.8) has a simple geometric solution. To state
this solution concisely, we introduce the following terminology. For
d= 0, let £(d) denote the straight line

2(d) = { x: d=x = I1dI® }; (6.9)

(6.9) defines a one-to-one correspondence between nonzero vectors
and lines that do not pass through the origin; we will refer to d
as the support vector for £=£(d). In the same spirit, for
d=0, we write £=£(0d) for the line through the origin
perpendicular to d and refer to £ as the line with support
vector 0d. Then

G(B,)=0 if and only if the line with
support vector (-F/IUI®)U intersects
the polar diagram Polar(B) at B(8,);

(6.10)

L

hence we have the following result (Figure 6A).

Theorem. Given any vector U O, there is a steadily

evolving facet with steady velocity U and angle El0 if and only if
the line with support vector (-F/1UI®)U intersects Polar(B) at

B(a,).

6.3. Steady motions that are not flat.

Let F and Us O be given. Let r be a steady motion
corresponding to F with U as steady velocity, and assume that r
is not flat in the sense that its curvature is not identically zero.
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velocity U and direction 60.
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Then Lemma 2 (Section 2.1) implies that r is convex. By
definition, r is a boundary curve at each t, and hence is simple
and either closed or unbounded. Assume that r is closed. Let
U=I1UIl, e=U/U. Then (2.10) and (6.7) yield

2m

[[G(B)w(B)] 'e-N(B)dB = O. (6.11)

0
Let M(B,e,U) denote the left side of (6.11). By (6.2) and (6.7),,
M(B,e,0)=0. Further, differentiating M(B,e,U) with respect to U
yields the conclusion that M(B,e,U) is strictly monotone in U.
Thus (6.11) is possible only if U=0, which violates the definition
of a steady motion; hence r cannot be closed. Thus r is
unbounded.

Therefore, appealing to Lemma 3 of Section 2.1, the angle
range of r is a bounded interval (8,8,), and this interval and the
accompanying curvature K(B8) must be a solution of the following
problem:

find an angle interval (6,8,), 8,-8, < m, ]
such that K(B), defined by (6.5), is nonvanishing } (6.12)
on (8,8,) and has K(B,)=K(8,)=0. |

Conversely, if (8,8,) is consistent with (6.12), then Lemma 3
of Section 2.1 implies that K(B) restricted to (8,8,) is the
curvature of a convex, bounded curve r, By virtue of the
proposition following (2.25), r, is the portrait and U the steady
velocity of a (unique) steady motion r; trivially, r has K(B) as
its curvature.

Thus we are reduced to solving (6.12); since w(8)>0, (8,8,) is
a solution of (6.12) if and only if

8,8, 0<¢B,-8,<m are consecutive zeros of G(B). (6.13)
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To facilitate the discussion of such zeros, let us agree to call a
line £ a chord for Polar(g) between B, and 8, if 0<¢8, -
B,¢<m and £ intersects Polar() at fB(8) and B(8,), but not
at any other point @(8) with Be(8,8,). In view of (6.10), (6.13) is
then equivalent to the requirement that

the line £ with support vector (-F/IUI*)U
be a chord for Polar(B) between B, and B8,

Given a line £ with £ a chord for Polar(B) between B,
and 82, wve write

tl(g g,y = { x: x=B(8)+alB(8,)-B(8)). ac(0.1) }

for the segment of £ between f(B,) and B(8,).

Continuing as before, let F and U= O be given, and let r
be a steady motion corresponding to F and U. Let (8,8,) be the
angle range for r, so that the line £ with support vector
(-F/WUIU is a chord for Polar() between B8, and B, Choose
Be(B,,8,). Then there is a unique point xe“(81,82) such that

Xx=0cN(B) for some o 2 O; in addition,

B(B)>x or B(B)<x according as £lg g ) (6.14)
1"°2 :

is interior or exterior to Polar(p).
Since Xef, x=U=-F; thus (6.6) and (6.7) yield
G(8) = [B(B) - x]U«N(B).
Further K=wG with w>0 and K(B)s 0; hence
K(B)U-N(8) = C[B(B) - ], C>0,

and we conclude, with the aid of (2.30), (2.31), and (6.14), that r is
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a steadily evolving bump, which recedes or advances according as
“(8 g.) Iis interior or exterior to Polar(p).
12

The results established above are summarized in the next
theorem, in which F and U= 0 are assumed prescribed.

support vector (-F/1UI1*)U. Let r be a nonflat steady motion
which corresponds to F and has U as steady velocity. Then r

is a steadily evolving bump. If (B,,Elz) is the angle range of r,
then £ is a chord for Polar(B) between B, and B,, and r is
0

Theorem on steady motions. Let £ denote the line with

receding or advancing according as “(8 8.) is interior or exterior
-2
Polar(B).
Conversely, if £ is a chord for Polar(8) between 8, and
a

Elz, then there is a unique steady motion r corresponding to F
with (91,82) as angle range and U as steady velocity.

Camad

=

—

Polar(B) is

Corollary. There are no advancing bumps i
convex, and none when F=0.

Remark. For an isotropic material (f=g=1) and F=0, (6.12)
reduces to K(B8)=U=«N(B); letting U=U(1,0), U>0, there are two
steady motions, one with angle range (-n/2,m/2), the other with
angle range (m/2,3m/2), and both motions are receding bumps.30

Remark. It is generally believed that dendritic growth
requires diffusion in the bulk material. It is interesting that a
steadily advancing bump is possible even without diffusion. In the
present theory such growth is a consequence of anisotropy in the
kinetic coefficient and results when certain orientations suffer drag
forces sufficiently lower than neighboring orientations.

30This solution is known; it is referred to as the "grim reaper" by
geometers (cf. Grayson [1987], p. 298).
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7. Global behavior for an interface with stable energy.

In this section we analyze the global behavior of the interface
under the assumption of a gtrictly stable interfacial energy; in
particular, we consider the general anisotropic equation

B(B)V = [f(B) + f"(B)IK - F (7.1)
with
f(8) + f'(B) > 0, g(B)>0 (7.2)

for all BeR (cf. (4.13), (4.16)).

7.1. Existence of interfacial motions from a prescribed
initial curve.

The existence of an interface evolving from a given initial
configuration is ensured by the

Existence theorem. Let f and B be C™. Let Q, bea

given initial domain, which we assume to be bounded with boundary a
Lipschitz-continuous simple closed curve. Then there is a unique,
maximal family of domains Q(t) (0<t<T,,) such that:

(i) 0Q(t) is a C* simple closed curve, continuous for O<t<T . :
(i) the evolution of 0Q(t) is governed by (7.1);

(iii) Q(0)=Q,.

In fact, this solution is €% for O0c¢t<T,,.

A proof of this theorem is given by Angenent [1988], who
shows that, for T, ,.<o0, one of the following must be true:
(E1) supIK(s,t)l » 00 as t->T

selR

max:?
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(E2) K and its derivatives remain bounded as t-»T so that

max’

9Q(t) converges to a C% curve TI; however T is not simple.
(E1) will occur whenever the interface shrinks to a point, or
whenever the interface develops a kink; (E2) indicates the formation
of self-intersections or self-tangencies (Figure 7A).

wWhen Q. is smooth, 0Q(t) admits a parametrization

(p,t) »r(p,t) as an admissible interfacial motion of duration
[0.Tmax)- In the next section we will study the behavior of such
motions as measured by their perimeter L(t) and enclosed area
A(t),

L(t) = length(9Q(1)), A(t) = area(Q(t)). (7.3)

We will, however, restrict our attention to motions, termed regularly
maximal, whose singularity at t=T (for T,ax<o0) is not too
pathological.

Precisely, an admissible interfacial motion with duration [0,T)
is regularly maximal if either T=00 or

max

T¢oo and A(t)-»0 as t-T. (7.4)

Regularly maximal motions cannot be extended beyond t=T, but for
T finite exhibit fairly regular behavior as t-T: they either
explode or disappear. This class of motions does not include
motions that develop self-tangencies, self-intersections, or kinks
at t=T.

7.2. Growth and decay of the interface.
Let r denote an admissible interfacial motion. For
convenience, we write

F(t) = [f(B)ds (7.5)
20(1)



(just before the collision)
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A
A
I~
/
4

Figure 7A. A simply connected region may evolve
to a multiply connected region.
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for the total interfacial energy. The next result, essentially the
second law, is an immediate consequence of (3.7) and the discussion
of the paragraph containing (4.8).

Growth theorem.3?

Fe(t) + FA°(t) = -[B(B)V?ds < O. (7.6)
2Q(t)

It is convenient to rewrite (7.1) in the form

$(8) = [f(B) + 1"(8)]1/B(8), w(Be) = F/B(8B).

Also, for any 2m-periodic function g(B) on R, we write

2m
Gy = (2M7'[g(B)dB, g = SUP g(B), g, = inf g(B) (7.8)
0 BeR BeR

If we use (2.5) to change variable in (7.8), from 8 to s, using the
fact that as s increases from O to L(t), 8 goes from O to -
2m, we arrive at

[g(B)Kds = -2mg,,. (7.9)
0Q(t)
Note that, by (7.2),

d_. >0, 1

av
Given any bounded region [, we will refer to the number

isoper (') := length(dr)?/dmarea(l) (7.10)

as the isoperimetric ratio for T;

- 31Gurtin [1988gl.
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isoper(I') > 1 (isoperimetric inequality) (7.11)

with equality holding if and only if 9l is a circle®?

The following generalization of the isoperimetric ratio is
useful. Let e(B) be a continuous, piecewise smooth, strictly
positive, 2m-periodic function on R. Then the Wulff ratio for
e(B8) is the number

w(e) = (am)"inf {[e(B)ds}*/ area() (7.12)
ol

with the infimum taken over all bounded regions I with ol
piecewise smooth. This infimum is actually attained:®3 minima T
are called Wulff regions for e(8), and are convex regions, unique
modulo translation and scaling. When e=1, the minimum is a
circle and W(e)=1. More generally, taking I to be a circle yields
w(e) ¢ (e,,)°. so that

0 < (eg)* ¢ W(e) < (ey)? (7.13)

The inequality F>O0 occurs when the reference phase has
higher bulk energy than the other phase; in this instance (7.6)
indicates a tendency for the less stable reference phase to shrink.
On the other hand, F<0O when the reference phase has lower bulk
energy; here FA(t) is negative and of the wrong sign for a
Lyapunov function, indicating a tendency for the more stable
reference phase to grow, at least in situations for which area
dominates length. The next theorem shows that this is indeed the
case. In fact, we show that for F >0 the reference phase shrinks
to zero; for F<O the reference phase shrinks to zero when initially

%2The condition isoper(Q(t))-» o0 might indicate the formation of
a dendritic structure. In this connection Gurtin [1986] (cf. eq.
(7.6)) discusses A(t)-0, L(t)-L,>0.

33Cf. Taylor [1978], who uses the term "Wulff crystal" rather than
"Wulff region”.
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small, but grows unboundedly when initially large.

Theorem on the growth of the reference phase. Consider
a regularly maximal, admissible interfacial motion with duration
[0,T).
(i) If F20, then T<oo and A(t)-0 as t-T.
(ii) If F<oO, then:
(a) if L(0) is sufficiently small, then T<oo and A(t)-0 as

t-T.
(b) if A(O0) is sufficiently large, then T=00 and A(t)»o0 as
t->o00. In this case isoper(Q(t) remains bounded
limsup isoper(Q(t)) < [(B™"),, P/ W(E™); (7.14)
t->o00

thus, for PB=constant, isoper(Q(t))-1.
Proof. We begin with the identities:

A°(t) = -2md,, - F[B(B) 'ds,
0Q(t) (7.15)

L°(t) = -2mW,, - [®(B)K ds.
0Q(t)
To derive (7.15), we integrate (7.7), over 09Q(t) and use (2.45) and
(7.9); to derive (7.15), we multiply (7.7), by K, integrate over
0Q(t), and use (2.36) and (7.9).

If we can show that L(t)-0 in finite time provided the
solution persists that long, then we can conclude from (7.4) that
T<oo and A(t)-»0 as t-T; we cannot conclude (from this alone)
that L(t)»0 as t-T.

Assume that F> 0. Then, by (7.15), and the remark made in
the previous paragraph, (i) follows.

Assume that F<O0. By (75), f
(7.15), yield

mink $F < foo.L; thus (7.6) and

= ‘max—:*

F° < -FA° < -2mIFId,, + (Fz/fminﬁmin)F‘
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which implies (iia).
Next, (7.15), yields
L(t) < L(O) + 2mIFI(B™ "), t. (7.16)

On the other hand, (7.12) yields

[B(®)"ds » 2[nW(E AW,
0Q(t)
therefore, by (7.15),,

1
A°(t) > DA(1)? - C, (7.17)

1
C=2md,, >0, D = 2IFI[TW(E )1z > 0.
By (7.4), (7.16), and (7.17), if A(O) is sufficiently large, then

T=00 and A(t)»co as t-oo. In fact, (7.17), is easily integrated
to give

AT+ kEn[AT-k] > AT+ Kken[A(0)E-k]+Dt/2, (7.18)

where k=C/D. Since A(t)-»o00 as t-oo, (7.10), (7.16), and (7.18)
imply (7.14). m

Conjecture. Consider case (iib) of the last theorem, in which

F<O0 and A(0) is sufficiently large that the interface grows
without bound. We conjecture that, as t- oo,

0Q(t) is asymptotic to a Wulff region for BB (7.19)

Our argument in support of (7.19) is as follows. As the interface
grows the curvature term in (5.5) should ultimately be negligible.
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Granted this, V = -FB(8)"' and the total energy dissipated

[B(B)V ds
0Q(t)
(cf. (4.8)) should be asymptotic to

9 = F*[B(B) 'ds.
0Q(t)
On the other hand, as Q(t) grows, bulk energy should dominate
interfacial energy; hence the total energy should be asymptotic to

€ = Farea(Q(t)).

It seems reasonable to expect that the interface should ultimately
minimize both ® and €. Thus, since F<O0, and since & scales
as :i)z, one might expect the ultimate shape of the interface to
minimize ©2/1€l, which is exactly what a Wulff region for B(8)”"
does.

Remarks.

(1) Assume that (7.19) is valid. Then for B constant Q(t) is
asymptotic to a circle as t-o00. More generally, it follows from
properties of Wulff regions that 0Q(t) will have a smooth
asymptotic shape if and only if B(8) has a gtrictly convex polar
diagram, Polar(g); if not the asymptotic shape will have corners in
which the angle jumps across the Maxwell lines (Appendix A) of
Polar(B).

(2) When Polar(e™") is strictly convex, Wulff regions for
e(B8) have the common isoperimetric ratio

isopery,q(e) = (ey,)°/ W(e). (7.20)

Thus, for Polar(B) strictly convex, (7.14) yields
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limsup isoper (Q(t)) < isopery,(8").
t-o00
(3) Assume that F<O. One can conclude from the proof of the
last theorem that, for the interface initiaglly a circle

A(t)-»0 if L(0)<5,¢%, A(t)»o00 if L(0)>%,
(7.21)

L = Z“ﬁmaxq’a\,/lﬂ- 60 = ﬁminfmin/ﬁmaxfaw

£ represents a critical circumference for a circular interface,
while 6,€(0,11 is a measure of the underlying anisotropy; for
initial circumferences between 6, and £, (7.21) furnishes no
information. For an jsotropic material, 60=1, and the reference
phase grows or shrinks according as the initial circumference is
greater than or less than £=2nf/IFl.

7.3. Evolution of curvature. Fingers.

Let r denote a bounded, admissible interfacial motion. The
next theorem shows that the total curvature between inflection
points cannot increase.

Theorem. Let ¢ be the trace of an evolving subcurve of r.

Assume that the curvature does pot change sign on ¢ and vanishes

N

at the end points of ¢. Then3*
(d/dt)[IKlds ¢ O. (7.22)
c(t)

In fact, if ©O(t) denotes the interval of angles 8(s,t) for arc

lengths s comprising c¢(t), then ©O(t) nests as t increases®

34Cf. Brakke [1978], Prop. 2, p. 230 and Albresch and Langer [1986]
for the case V=K.
35Cf Grayson [1987], Lemma 1.9(iii), for the case V=K.



51

Proof Let [S,(1),5,(1)] dencote the arc-length interval
corresponding to c¢(t). We will give a proof for K(s,t)20 on
[S,(1).5,(1)]. (The proof for K< O is analogous.) For any function
$p(s,b), let o¢,(t)=¢(S(t),1). By hypothesis,

K(t) = O, (7.23)
so that
(K, 2 0, (K, ¢ 0. (7.24)

By (55), V=U-¥ with U=0(B)K, and, since ®>0, (7.23) and
(7.24) yield the conclusion that (7.24) holds with K replaced by U.
On the other hand, since W=W(B), ¥(B),=¥'(B)K=0 at 81(t) and
S,(t). Thus (7.24) holds with (K,); replaced by (V) and, in view
of (7.23) and (2.20),, with (K, ), replaced by (8)°. The desired
conclusions follow from these assertions and (since K=IKl) from
the identity

(d/dt)[Kds = B,°(t) - B°(). m (7.25)
s(t)

For a convex interface,

(d/dt)[iIKlds = O
s(t)
(cf (7.8)). But one can prove more. Intuitively, dividing the motion
into subcurves on which K does not change sign, and then appealing
to (7.22) on each subcurve, makes the following result plausible. We
will give a careful proof of this theorem as well as of the
remaining results of this section in [1989ag].
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Theorem 36

(d/dt)[IKIds < O. (7.26)
s(t)

The next result shows that an initially convex interface will
remain convex for all time. To state the theorem concisely, we use
the term inflection point for an interfacial point37 at which the
curvature changes sign.

Theorem. The number of inflection points cannot increase
with time.

Remark. Roughly speaking, a finger may be defined as a
section of the interface between inflection points. The last theorem
and (7.22) then have the following corollary:

the total number of fingers as well as the total (7.27)

curvature of each finger cannot increase with time.

The final result, essentially a consequence of (5.10) and the
comparison theorem3® for parabolic equations, shows that nested
interfaces remain nested.

Theorem. Let Q(t) and Q*(t), 0<t«T, be reference
regions for two admissible interfacial motions (corresponding to the
same B, f, and F). Assume that Q(0)CQ*(0). Then Q(t)CQ*(t)
for O<t«T.

36Cf. Albresch and Langer [1986] for the case V=K.

37This definition makes sense: from the parabolicity of (5.10),
straight line segments in the interfacial curve disappear
immediately.

38Cf. Protter and Weinberger [1967].
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III. Interfacial motions with corners.

8. Corners. The Frank diagram.

When the interfacial energy is not stable, an admissible
interfacial motion must, at each time, exhibit orientations for which
the evolution equations are backward parabolic. Two ways of
overcoming this difficulty are: (i) to regularize the evolution
equations; (ii) to allow corners which correspond to jumps in B
across the unstable portions of f(B). Here we restrict our attention
to (ii).3°

8.1. Corners.
In this section we will make extensive use of the relation (4.9)
expressing the capillary force as a function of the angle B6:

C = C(B) = f(B)T(B) + f'(B)N(B). (8.1)

Corners are defined by a jump discontinuity in the dependence of B8
on s. An immediate consequence of balance of forces (3.2) is the
continuity of C(B(s,t)) with respect to s. Thus at a corner
defined by a jump in orientation from B8~ to B* we must have
C(B7)=C(8™).4% This discussion should motivate the following
definition. Let B7,8% be distinct angles with C(87)=C(B%). Then
the ordered pair {87,8%} is: a corner if 18*-B87l¢m; a cusp if
B*-8"=m. One should visualize {87,8*} as representing a jump in
angle from B8~ to 8% as arc length increases. If {B87,8*} is a
corner, then {8*,8°} is a corner.

39A suitable regularized theory will be the subject of a future
paper.
4OHerring [1951a], eq. (19).



54

Cusp and corner theorem. Cusps are not possible. Corners
are not possible when the interfacial energy is strictly stable. In
fact, if {87,8*} is a corner (labelled so that 0<B*-87«<m), then

gither f is unstable somewhere in (87,8%) or f(8)+f"(B)=0 on
(87,8%).

Proof. Let {B8,8+mw} be a cusp. Since N(B)=-N(B+w) and
- T(B)=-T(B+m), if we take the inner product of T(B) with
C(B)=C(B + ), we conclude, with the aid of (8.1), that
f(B)=-f(B + ), which contradicts the assumption f>O.
Next, since N(B)=(cosB8,sinB), we may use (4.17) to conclude

that C(87) = C(B*) if and only if

B+

JIf(B) + f"(B)Icos(B +x)dB = O

8-

for all oeR, and this implies the remaining assertions of the
theorem. m

8.2. The Frank diagram.

In this section we will use the notation and terminology of
Appendix A on polar diagrams. Here, because the interfacial energy
is smooth, the polar diagrams we will encounter will not have sharp
spots; for that reason we will give a direct proof of certain
assertions, even though these assertions actually follow from the
more general results of Appendix A.

The Frank diagram*' is the polar diagram of f(8)™', and is
hence the locus of the Frank potential

o(8) = f(8) 'N(B). (8.2)

The Frank potential and the capillary force (8.1) have an interesting
relationship. First of all, by (2.4),

41Frank [1963].
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C(8) = -f(8)?0'(8), (8.3)

so that the capillary force is tangent to the Frank diagram and
points in the direction of decreasing 8. Further, (A1) with
g(8)=f(8)"' and (T2) of Appendix A yield the following (cf. Figure
BA)

Theorem. The capillary force is the negative of the
supporting tangent of the Frank diagram. Thus

C(B) = -o*(8), (8.4)

and IC(B)I"" is the support function of the Frank diagram.

In view of of this result, {87,8*} is a corner if and only if
B, and 8, have a common supporting tangent (relative to the Frank
diagram).

The next theorem*2 establishes the existence of corners for
unstable interfacial energies and shows how this energy may be

decomposed into stable sections separated by corners.

Convexity-stability theorem.

(i) IThe Frank diagram is convex if and only if f is stable.

(ii) More generally, f is stable on the globally-convex sections of
the Frank diagram. If (87,8%) is an ppen interval separating
two adjacent globally-convex sections, then {87,8*} is a corner,
and f is unstable somewhere in (87,8%).

42The ideas underlying this theorem are due to Wulff [1901],
Herring [1951b], Frank [1963], Gjostein [1963], and Gruber (cf.
Gjostein [1963]).
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Polar ) = the Frank diagram.

1
F®

Figure 8A. The Frank diagram = Polar (f—l).

The capillary force 6(6) is the negative of the supporting
tangent of the Frank diagram.
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Proof. Let kg(B) denote the curvature of the Frank diagram, so
that kg(B) is given by (AS) with g(B)=f(8)"". Then

ke(B) 2 0 if and only if f(B)+f"(B)2 0, (8.5)

and (i) and the first assertion of (ii) follow.

Suppose that (B7,8%) is an open interval separating two
adjacent globally-convex sections. Then (8,8,) is an angle
interval for a Maxwell line, and the final assertion of (ii) follows
from (ii) of the Maxwell theorem (Appendix A). =

This theorem should motivate the following terminology in
which we use "GS" as shorthand for the term "globally-stable".
The globally-convex sections of the Frank diagram will be referred
to as GS sections of the energy; angles B8 that belong to GS
sections will be referred to as GS angles; an open interval (87,8%)
that separates two adjacent GS sections will be referred to as a
globally-unstable section; the corresponding corners {87,8*} and
{8*,87} will be referred to as GS corners and the angles B8~ and
8* as GS corner angles.

We will refer to an energy f as regular if:

(R1) the GS sections of f are finite in number;

(R2) each GS angle B8 is strictly stable,

(R3) the Maxwell lines (Appendix A) of the Frank diagram are
mutually disjoint.

(Cf. Figure 8B). A consequence of the proposition containing (8.3)

and the properties of the convex hull is the following alternative

characterization of regular energies.
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k{/’/j———-Maxwell lines

GS -sections

Regular Frank diagram

Two Maxwell lines touch!

Irregular Frank diagram

Flat section

Figure 8B. Examples of Frank diagrams.
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Proposition. Regular interfacial energies have the following
propertijes:

(R4) GS sections are not singletons.

(RS) Let {87,8"} be a corner with 8" and B* GS angles. Then
{87,8*} is a GS corner, and (aside from {8%,87}) there is no
other corner involving 8 or B

In fact, granted (R1) and (R2), (R3) is equivalent to either (R4) or

(R5).



58

9. Unstable interfacial energies. Motions with corners.
Consider now an energy f such that

f is not stable, but regular. (8.1)

It seems reasonable to consider "motions” in which the interface at
each time is a piecewise-smooth closed curve whose regular arcs
and “corners”, respectively, correspond to GS sections and GS
corners of f. For such an “"interfacial motion" the evolution
equations are parabolic, since the nonparabolic portions are removed
by corners, but the positions of the corners as functions of time are
not known a-priori and hence constitute free boundaries. The next
section begins our discussion of such motions.

9.1. Corner conditions for piecewise-smooth evolving curves
that are admissible.

Let r={r1,r2,...} be a PS (piecewise-smooth) evolving curve.
We will use the notation and terminology of Section 2.4; thus Ri(t)
and R;°(t) are the position and total velocity of the juncture i; s
is the arc length; T(s,t), N(s,t), B(s,t), K(s,t), V(s,t), and v(s,t)
are the tangent, normal, angle, curvature, normal velocity, and arc
velocity.

Our interest is in PS evolving curves that are consistent with
balance of capillary forces and have arcs which correspond to GS
sections of the energy. Such curves are the subject of the next
definition.

Let r be a PS evolving curve. Then r is admissible if:43
(A1) B(s,t) is always GS;

43There is a slight ambiguity in our use of the word "admissible":
in Section 4.2, which concerned smooth evolving curves,
admissibility meant consistency with balance of capillary forces
and the underlying constitutive equations. Here and in what
follows we require, in addition, that admissible evolving curves
have angles B8(s,t) that are GS.
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(A2) the capillary force C(B8) defined by (8.1) is consistent with
capillary balance in the form (cf.(4.10))

[c(B8) = [(F+B(B)VINds; (9.2)
oc(t) c(t) ‘
whenever ¢ 1is the trace of an evolving subcurve of r.
Given an admissible PS evolving curve, smoothness dictates that on
each evolving arc the angle B8(s,t) belong to a single GS section.
Further, we may, without loss in generality, assume that on adjacent
arcs B(s,t) belongs to different GS sections; were this not the
case B(s,t) would be continuous across the juncture of the arcs,

and the arcs may be combined to form a single (smooth) evolving
curve.

Alternative characterization of admissibility. Let r
be a PS evolving curve consistent with (A1). Then r is admissible
if and only if:

(A3) each of the arcs r; evolves according to

V = ®(B)K - W(B),

, (9.3)
®(B) = [f(B) + f"(B)1/B(B), W(B) = F/B(B);

(Ad) each of the pairs {B(5/(t)-0,t),8(S5,(t)+0,t)} (i a juncture) is
independent of time and is a GS corner of the interfacial
energy.

Proof. Note that, by Remark (ii) of Section 4.1,

(A2) is equivalent to (A3) and
the continuity in s of C(8(s,t)). (9.4)

Thus, in view of the definition of a corner, (A3) and (A4) yield
admissibility. Conversely, suppose r is admissible. Then, by
(9.4), (A3) holds and each {B(S;(1)-0,t),8(5,(t)+0,t)} is a corner.
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Thus, in view of (9.1) and the last proposition of Section 8.2, (A4)
follows. m

In view of (Ad4), the corner-angles

I+

8i* = 8(5(t)£0,1) (9.5)

are constants, as are the quantities (cf. (2.40))
Ki = T(8))«N(8;") = -T(8;")«N(5;"). (9.6)

It is often convenient to use (B,t) as independent variables
on a given convex arc, irrespective of the sign the curvature takes
on the other arcs.

Corner conditions for admissible PS evolving curves.
At each juncture i:
(CC1) the capillary force C(s,t) is continuous across s-=S5;(t);

(CC2) K(si(t)zo,t)k; 2 0, K(5i(t)-0,t)K(S(t)+0,t) > O;

(CC3) Vi(Si(D£0,1) = [V(S(1)20,1) - §°(DIK(S{(t)%0,1);

(CCa4) if the evolving arcs r; and r;,; are convex, then
V(B8,t)N(B) - Vg(B,t)T(B,t) is continuous across {B;",8;*} and

its value at B8=8;*

is the total velocity R;°(1).

Proof. (9.4) yields (CC1), (CC3) follows from (2.20), and (Ad),
and (CC4) follows from (2.42),, (2.24), and (2.18). We have only to
prove (CC2). Since {8;°,8;*} is a GS corner of f, one of the
intervals (8,7,8;*), (8;*,8,”) is a globally unstable section of f.
Assume that (8,7,8;*) is such a section. Then, by property (ii) of
admissible PS evolving curves, 8<8; on s, while
B>68"% on s, so that K(S;(t)x0,t)2 0. On the other hand,
since 0<B;*-8,"<m, (9.6) implies that «k;20, so that (CC2) is
satisfied. A similar argument applies when (8;*,8,”) is a globally
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unstable sectionof f. m

Remark. It should be emphasized that the corner inequalities
(CC2) are based on the hypothesis that the underlying arcs
correspond to adjacent GS sections of the interfacial energy. These

inequalities imply that corners preserve local convexity. In
particular (cf. (2.40)),

if two adjacent arcs are convex, then their ]
curvatures as well as the transition curvature }(9,7)

9.2. Facetings. Evolving curves with wrinkles.

Let r={rr, ..., ry} be an admissible PS evolving curve. Then
r is a faceting if each of its arcs is a facet, and if no two
adjacent arcs combine to form a single facet. On each facet, B8(s,t)
is independent of s; if B8(s,t)=constant on each facet, then r
has fixed orientations. An example of a faceting with fixed
orientations is a wrinkling (Figure 9A); here there are fixed angles
Bogdg and Bgen, such that, for all t,

B(s,t) = Bogq on s(t) for i odd, (9.8)

B(s,t) = Bgyen 0N si(t) for i even;

in this case r is a wrinkling between angles B8,4 and Bgyen.
Note that, by (9.3),, for a wrinkling the normal velocity V of each
facet is constant (in space and time) with

\%
\%

-W(Bogq) on s; for i odd, (9.9)

-W(Been) 0N s; for i even.

By definition, on a facet, B8(t)=8(s,t) is independent of s.
Therefore its normal velocity is given by V=-W(B(t)) and V =0.
Thus, by (2.18),, B8°=0; since B,=8°-vB,, B8,=0. Thus the angle B
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N
even
Nodd
Figure 9A. Wrinkling between the angles eodd and eeven.
Here Nodd = N(Godd) and Neven = N(eeven)'
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is identically constant on a facet. Consider now a faceting. Each
internal facet meets two corners, {x",x*} and {87,8%}, say. Since
the orientation of the facet is constant, o*=8". Our assumption
that the energy be regular then implies that o~ =8% (cf. (R5)).
Thus and by (A1) we have the following

Proposition4* The only possible facetings are wrinklings
between the fixed angles of a GS corner.

Let rpo and rg be admissible evolving curves, and let

ry} be a faceting. Then r connects r, and rg if
{rar,r, ....,ryrg} is an admissible PS evolving curve. The next
theorem, the main result of this section, shows that wrinkles decay
with time.

Wrinkle-decay theorem. Let r be a wrinkling that
connects admissible evolving curves rp and rg. Then the tota

length of the wrinkling decreases with time. In fact, the lengths of

the initial and terminal facets decrease with time, while the lengths
of the internal facets remain constant.

-

Our proof is based on two subsidiary results.

undergoing translational motion.

Proof. Let r; be an internal facet (Figure 9B). The two
adjacent facets r;,, have the same normal velocity V,,,=-¥(8,,,),

so that the distance d between them does not change with time.
The middle facet r; will move relative to its two neighbors, but it

44Here the smoothness of f(8) is crucial. In Section 10.3 we will

show that certain nonsmooth energies exhibit more general types
of facetings.
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Figure 9B. The length of an internal facet ri(t)
does not change with time. '
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will always meet them at the fixed angle 18,-8;,l=x. Therefore
its length L(t)=d/sinx is also independent of time. m

Let r={r,r, ...,ry} be a wrinkling that connects admissible
evolving curves rp and rg. It is convenient to use the following
notation: Rp°, Ba, Ta, Na, Ka, @and V,, respectively, denote the
total velocity, orientation, tangent, normal, curvature, and normal
velocity of the terminal point of r,; an analogous notation
applies to the corresponding quantities associated with the initial
point of rg; Ka denotes the corner curvature between rp and the
initial facet; kg denotes the corner curvature between the terminal
facet and rg; Lap and Lg respectively, denote the lengths of the
initial and terminal facets; given any function g(B), we write
Godd =9(Bodd), Geven=09(Beven). With Bogg and Beyen as in (8.8).

Properties of wrinklings that connect evolving curves.
Let r={r,r,..., ry} be a wrinkling that connects admissible
evolving curves rp and rg. Then:
for N even:

BA = Beven- RA° 'Nodd = "wodd'
° (9.10)
Bg = Bogd. RB° *Neven = ~Weven:
for N podd:
Ba = Bg = Beven.  RA® *Nodg = Re°*Nogg = -Woqq: (8.11)

(b(BA)KA = -KALA°, ¢(BB)KB = _KBLBo for N2 2,

®(8)[Kp - Kgl = -kalLp® for N=i (312)
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Proof. We will establish only those results which concern A.
The conclusions concerning B are verified analogously. Assume
that N> 2. Then the corner condition (2.42)1, applied at s=5x(t)
to the corner between r, and r, and at s=S.(t) to the corner
between r, and r, yields the relations
RA® = -WoddNoda + (Sa° - V) Togd.
‘woddNodd + (S1° - V1)Todd = ’wevenNeven + (51° = Vz)Teven-

Thus RA®sNggg = ~Wogq- Further, since Va=Rp°=Ng,, and
KA=Todd*Neven (cf. (9.6)), the above relations yield

Va = ~Wo4d(Nogd * Neven) + (Sp° - v, )Kap,
-Wodd(Nogg * Neyen) + (S1° - V1)KA = -Weyen-

Thus Va=-Wgyen+ (Sp-5,)°ka. But Lpo=S.,-Sp and, by (9.3),
Va+Weoven=2(Ba)Ka: thus &(Ba)Ka=-KaLA®.

We have established all of the results for A except (9.12)2.
Thus let N=1. Applying (2.42)1 to the corners at s=5,(t) and
s =Sg(t), taking the inner product of the resulting relations with
Neven. and then subtracting the two relations yields
VA-VB=(SA'SB)°KA- But 9A=BB and LA=LB=SB—SA; in view of
(9.3), (9.12), follows. =

Proof of the wrinkle-decay theorem. For N2> 2 the proof
follows from (CC2), (9.12),, and the proposition following the
wrinkle-decay theorem. For N=1, (9.6) yields kg=-ka, so0 that
(Kp - Kg)/ka=(Ka/ka) + (Kg/Kkg); (CC2) and (9.12), then yield Lp°<O.
[

9.3. Curves that are convex except for wrinkles.

A PS admissible evolving curve is convex if each of its
arcs is convex. The remark (9.7) renders this definition meaningful.
In particular, at each t the corresponding PS curve gs(t) is convex
in the usual sense for continuous curves. For convenience, we write
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"CPS" as an abbreviation for "convex piecewise-smooth".

An admissible PS evolving curve r is convex except for
wrinkles if r consists of CPS evolving curves, called convex
sections, connected by wrinklings. Each convex section is the union
of convex arcs (which are smooth). A convex section rg is
internal if r is closed, or if the initial and terminal arcs of r¢
are internal arcs of r; in this case the initial and terminal points
of rg connect to wrinklings. It is generally most convenient to
take (B8,t) as independent variables on each convex section and to
express the underlying system of evolution equations in terms of
the normal velocity V(8,t). For an internal convex section, (5.7),
(CC4), (9.10), and (9.12), yield an interesting system of equations for
V(8,t).

Evolution equations for convex sections. Let r be a PS
evolving curve that is closed, admissible, and convex except for
wrinkles. Consider a convex section of r, let 84 and B8p,
respectively, denote the angles corresponding to the initial and
terminal points of the section, and let {ya.Ba} and {Bg,yg} dencote
the corners at these terminal points. Then the evolution of V(8,t)
for this section is governed by the following conditions:

(E1) on each convex arc:

d(B)V, = [V + W(B)1*[Vgg + VI;

(E2) VN - VgT is continuous across corners separating convex arcs;
[V(BA.1IN(BR) - Vg(Ba.t)T(BA)I=N(7,a) = -W (7)),
[V(Bg,1)N(Bg) - Vg(Bp,t)T(BR)I1=N(7R) = -W(7p).

Remark. It seems reasonable to expect that (E1)-(E3), with
compatible initial data, yield a well-posed problem for V(B,t) on
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each convex section. Thus wrinklings between convex sections
essentially decouple these sections from each other, at least until
the wrinkles decay. If WV(8,t) and (hence) K(B8,t) are known on
each section, then the evolution of the wrinkles (from prescribed
initial positions) is easily determined using (9.12) and properties (i)
and (ii) of wrinklings. Granted this is done, the initial and terminal
positions of the convex sections are known as functions of time, and
this data and a knowledge of the corresponding curvatures yields the
complete evolutionary behavior of the convex sections, and hence of
the complete evolving curve.

9.4. Equations near a corner when the curve is a graph.

Consider the situation shown in Figure 9C, in which an evolving
PS curve is represented, in a neighborhood of a corner {B87,8%}, as
the graph of a function y=h(x,t). Here x ranges in an interval
(Xg%X,); tel0,T); x=t(t) is the position at time t of the corner;
and the curve is oriented so that arc length increases with
increasing x. Then h(x,t) is continuous and piecewise smooth,
with a jump discontinuity in p=h, at the free boundary x =¢(1).

The function p satisfies (5.11) away from the free boundary
and is consistent with two free-boundary. conditions. The first of
these, a direct consequence of (5.9), is given by

p(t(t)+0,t) = P* (9.13)
with

P* = -cotB®.

The second condition is more complicated. For any function
p(x.1), let ¢*(1)=9¢(t(1)£0,t). By (2.20),,

vE = R°.N%:; (8.14)



Figure 9C.

A corner when the evolving curve is a
graph y=h(x,t); x = £(t) marks the corner.
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thus, since N=(cosB,sinB), if we eliminate the y-component of
R° between the two equations (9.14), and use the fact that ¢&° is
the x-component of R°, we arrive at an expression for {° as a

function of V¥ and B%; the expressions V=0K-W and

K=p,(1+p) ¥ then lead to the free-boundary condition:

te = A*(p)* - AT(p)" -C (9.15)
with A* and C the constants defined by

A = d(8%)DE/WE, C = W(B*)D* - W(BT)D".
wt =1+ P, Dp* =sinB/a, D = sinB*/a,

a = sin(8™ -8%).

The basic system of equations then consists of (5.11) away from
x=t(t) supplemented by (9.13) and (9.15) at x=¢&(t). A change in
dependent variable renders this system more transparent. Thus let

[ A"(p(x,t) - P7) for X < E(t)
u(x,t) = {
| A*(p(x.t) - P*) for x> &(b),

so that wu(x,t) is continuous across x=((t). Further, let Q and
B be as specified in (5.10), and define

Qf(u) = Q(u/a®) +PY),  BY(u) = ATB((u/A%) + P).

Then the system under consideration reduces to the partial
differential eguations

u; = [Q7(Wu, - B7(W], for x < &(b), (9.16)
u, = [Q*(Wu, - B* (W1, for x> &(1),
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in conjunction with the free-boundary conditions

u(t(t)zo,t) = 0, (9.17)
u, ((t)+0,t) - u (5(1)-0,t) = £°(t) + C.

Apart from the constant C, which may be transferred from (8.17)
to (9.16) by the coordinate change x*=x+Ct, (9.17) are exactly the

9.5. Stationary interfaces and steady interfacial motions
with corners.

Stationary interfaces and steady interfacial motions are
defined as for smooth interfaces,?® except that we now add the
requirement that all angles be GS angles and all corners GS corners.

An argument analogous to that given in Section 6.1 then
implies that r(8) defined on the set of GS angles B8 by

r(e) = F'[f(B)N(B) - f'(8)T(B)]

yields a closed, convex stationary interface that is PS. (The remark
given in the last paragraph of Section 6.1 and the fact that B
jumps only at GS corners implies that r(B) is continuous across
such jumps).

We also have the possibility of steady motions with corners.
Let Fs=0O be given. Let {8,8,}, 0¢B,-8,<m, be a GS corner, let
£ be a line with £ a chord for Polar(B) between B, and 8,
(if B is strictly convex, then exactly one such line exists), and
compute U by the requirement that —(F/IUIZ)U be the support
vector for £ (cf. Section 6.2). Then any (stationary) infinite
wrinkling in which 8 jumps back and forth between B8, and B, is
a portrait of a steady interfacial motion with steady velocity U.

45To begin with, our definition of a PS evolving curve is
restricted to bounded curves, but the extension to unbounded
curves is straightforward.
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One might refer fo this motion as a steady wrinkling (Figure 9D).
Other solutions are possible. For example, when the Frank
diagram and the polar diagram of f are of the form shown in
Figure OE, there is a steadily receding bump (with a corner) as
shown. Similarly, one can construct advancing bumps with corners
for nonconvex Frank and B-diagrams of certain prescribed shapes.

9.6. Existence. -
Let Q. be a bounded, simply connected domain in R% Then

0Q, is a GS boundary if it is piecewise C2+*% for some
x€(0,1), if its outward normal always points in a GS direction, and

if all of its corners are GS corners (cf. Section 8.2).

Existence theorem?*® Let f and B be C™. Let Q, be
a given initial domain, assumed to be admissible. Then there is a
unique, maximal family of domains Q(t) (0<t<T,,) such that:
(i) 0Q(t) is an admissible PS evolving curve;

(i) Q(0)=Q,.
In fact, this evolving curve is piecewise C%° for O<t<T .

Further, for T, <o, as t->T_, either (E1) or (E2) (of
Section 7.1) must hold, or
(E3) an arc of 0Q(t) shrinks to zero.
The condition (E3) is possible with the facets of a wrinkling and
with arcs whose initial and terminal points correspond to the same
corner angle.

9.7. A note on regularized equations.

Another method of treating situations in which the evolution
equations are backward parabolic is to develop a suitable
regularization of these equations. Such a regularization will be
discussed elsewhere; under certain simplifying assumptions (among
them that p=1) this regularization reduces to the following fourth-

46Angenent and Gurtin [1989].
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Polar (R)

Figure 9D.
wrinkling.
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velocity U
(for F > 0)

Construction of a steady
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Frank diagram

Receding bump

Polar(B)

Figure 9E. Construction of a receding bump.



order parabolic system for a convex section:

KZ(VBB + V),
®(B)K - eK[(K*)gg + K1 - F,

Kt
Vv

with >0 a small constant.

70
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I'V. Nonsmooth interfacial energies.

10. Interfacial energies with sharp spots.

Material scientists often consider interfacial energies that are
continuous but have derivatives which suffer jump discontinuities.4”
We now discuss energies of this type.

10.1. Sharp spots. The capillary set. Stability.

By an interfacial energy with sharp spots*® we mean a
2m-periodic, strictly-positive function f(B) on R that is smooth
except for sharp spots (Appendix A). The sharp spots are then the
angles across which f'(8) jumps, the remaining angles are smooth
spots. Tacit in this definition is the requirement that the number
of sharp spots be nonzero.

Let B, be a sharp spot. By (8.1), the capillary force*®
C~(B) is discontinuous across 8, the tangential component
o =f(B) is continuous, but the normal component t=f'(B) is not:

C™(B, +0) - C*(8,-0) = [f'(B, +0) - '(8, - 0)IN(B,).

If we think of the energy at a sharp spot as the limit of a sequence
of smooth, locally-convex energies, then it seems reasonable to
allow the capillary shear t at 80 to have values between the two
extremes f'(8,+0). With this in mind, we define the capillary
set {C"(8,)} at B, to be the vector fan between C"(B8,-0) and

47Ccf., e.g., Herring [1951ab], Cahn and Hoffman [1974].

48\we use this terminology to avoid confusion: @ sharp spot marks
a loss in smoothness for the interfacial energy; corners denote
jumps in orientation that are consistent with capillary balance,
and hence denote possible discontinuous tangencies for an
evolving curve.

491t is convenient to write C~(8), rather than C(B), for the
capillary force defined by (8.1) away from sharp spots, and to
reserve C(s,t) for the capillary force on an evolving curve.
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C™(8,+0); {C7(B,)} is thus the set of all vectors of the form
C = f(8,)T(8,) + EN(B,) (10.1)

with E in the closed interval bounded by the numbers f'(8,-0)
and f'(8,+0). It is convenient to also use this terminology at
smooth spots, in which case the capillary set is the singletaon
{C~(B)}. The proposition following (8.4) then generalizes:

Proposition. The capillary set is the negative of the
supporting tangent-fan of the Frank diagram:

{C7(8)} = -{o™(B)}. (10.2)

There is a natural extension of the notions of corners and
cusps: we simply replace the condition C~(87)=C"~(8%) by

{creHN{C(BY)}I=a;

the theorem on common tangents (Appendix A) then implies that 8~
and 8% have a common supporting tangent:

Corner-force theorem. Cusps are not possible. If {87,8%}
with 0¢B%-87«¢<m jis g corner, then {C~(87)}N{C~(B*)} caonsists of
exactly one vector a, and a points in the same direction as

o(87)-0o(B*). We write a=C~(87,8%) and refer to
C~(87,8%)=C"(8*,87) as the corner force corresponding to {87,8*}.

We can also extend the terminology concerning stability to
sharp spots. Indeed, the paragraph containing (4.16) with f"(B)
considered as a distribution yields the following definitions: f is
strictly-stable or unstable at a sharp spot B, according as

f'(8,%) » f'(8,”) or f'(Bo*) < 1'(8,7). (10.3)
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With these definitions the convexity-stability theorem of Section 8§
holds without change.

GS sections and GS corners of the interfacial energy are
defined as for smooth f. GS angles (whether sharp spots or
smooth spots) are, as before, angles that belong to GS sections;
GS sharp spots are then, necessarily, strictly stable.

The convexification of the Frank diagram is the polar diagram
of a function Z(B) and is hence the locus of a vector potential

2(8) = Z(B)N(B),

the convexified Frank potential. On GS sections Z(B8) coincides
with o(B8); between such sections Z(B8) coincides with the Maxwell
lines of the Frank diagram. The function

T*(8) = £(B)72L'(8) = -Z(8)"'T(B) + Z(B) 2Z'(B)N(B) (10.4)

is the supporting tangent of the the convexified Frank diagram. By
(i) of the Maxwell theorem (Appendix A), we have the following
analog of the "thermodynamic relation" (8.4) (cf. Figure 10A).

Proposition. Let {B87,8*} with 0<B8*-8"«<m be a GS corner.
Then, for all 8¢(87,8%),

C~(87,8%) = -2%(8). (10.5)

Remark. Let {90,81} be a GS corner with 80 a sharp spot.
Let N be a fixed neighborhood of 80 containing no sharp spots
other than 8, Consider f(8) as the limit, as €-0, of energies
fe(B) which are c' on M, which are strictly stable on
dg:=(B,-€,8,+¢€), and which satisfy f(8)=1g(B) outside Jdg. Let
Cg(B) denote the capillary force for fg(B), and consider the set

Ce = {Cg(B): Bedg is a GS angle of fg(B) }.
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Frank diagram = Polar(f_l)

A - 4+
Figure 10A. The corner force C(6 ,6 ).
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The limit C of the sets Cg (that is, the intersection of the sets
Cg over all sufficiently small &) in some sense represents the

globally-stable set of capillary forces at 8, It is not difficult to

show that C is independent of the choice of fg(B); in fact, C is

the negative of the supporting tangent-fan {Z*(8))} of the
convexified Frank diagram. Since {Z*(8)}C{g*(8,)}, C is a

subset of the capillary set {C”(8,)}. For these reasons, we refer to
{-Z*(8,)} as the GS capillary set at B8,

Regularity for an interfacial energy with sharp spots is
defined exactly as in Section 8.2.

Remark. A major difference between smooth energies and
energies with sharp spots is that for the latter regularity does not
rule out singleton GS sections, which are possible at sharp spots.
Further, granted regularity, if {87,8%} (0<8*-B8"«<m) is a corner
with B8~ and B GS angles, then {87,8%} is a GS corner.
Moreover, there is another corner involving 8~ (other than {8%,87})
if and only if {87} is a singleton GS section, in which case the
corner is of the form {x,8"} (0<B -w<m); an analogous assertion
applies to 8%,

10.2. Admissibility in the presence of sharp spots.
We consider now an energy f with the following properties:

f 1s an interfacial energy with sharp spots; f is regular.

The following notation is useful:

at
]

the convexified Frank diagram of f,
the set of GS angles of f,
Mg, = the interior of the set of GS angles which are smooth

spots®® of ¥,

xt
i

50By the smoath and sharp spots of ¥ we mean the smooth and
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= the set of all smooth spots of ¥ which are GS

corner angles,
Mg, = the set of GS angles which are sharp spots of ¥.

p smco :

Note that M., M, and Mg are mutually disjoint and have X
as their union. We use the term smooth GS part to designate the
closure of a connected componhent of ”sm-

Let r be a PS evolving curve. Fix t and the angle 8, and
let ® be the set of all s such that 8(s,t) = B, We will refer to
the closures of the connected components of ® as the B, -
sections at time t.

We use the following terminology for arcs r; of r: (i) r; is
curved if, at each t, B,(s,t)=0 at most at a discrete set of
points of s(t); (ii) if r; is a facet with 8;,(t) the corresponding
angle, then r; is maximal if gs(t) is a B;(t)-section at each t.

At sharp spots 8, there is no uniguely defined capillary
farce; instead there is a vector fan {C"(8,)} of possible forces. It
thus seems reasonable to allow the capillary force C(s,t)
associated with a given evelving curve to vary within {C"(8,)}
whenever B8(s,t)=8,. This should motivate the following notion of
admissibility.

A PS evolving curve r is admissible if:5!

(AP1) B(s,t) is always GS;
(AP2) there is an associated capillary force C(s,t) such that

C(s.t)e{C”(B(s,t))} for all (s,t) and-

[C = [(F+B(B)V)Nds (10.6)
oc(t) (1)
whenever ¢ is the trace of an evolving subcurve of r;

sharp spots of 2(B). Sharp spots of ¥ are GS sharp spots of
f(8), but the converse is not always true.

Slwe will also need one technical assumption: for B, €M, the
set of all s such that B8(s,t) =8
connected components.

o has a finite number of
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(AP3) each arc of r is either a maximal facet or a curved arc, and
adjacent curved arcs correspond to different smooth GS parts.

The associated capillary force is, in fact, unique, a result we shall
prove by showing that C(s,t) is essentially characterized by the
convexified Frank diagram.

Let r be a closed PS evolving curve. Fix t and the angle
B, Wwith B ed, and consider a given B, -section 8=[HS]. Then
8 is trivial or nontrivial according as H=S or S>H. Further:
(T1) 8(s,t) increases across 3 if,

for all sufficiently small &>0,

B(H-g,t) < B, B(S +&.t) > B;

the statement "8(s,t) decreases across 8" has an
analogous meaning; in either case we refer to 8 as

transitional;
(T2) 8 is a local maximum for B8(s,t) if, for all sufficiently
small >0,
B(H-gt,)) < 8, B(S+gt)) < B;

the statement "8 a local minimum for 8(s,t)" has an

analogous meaning; in either case we refer to 8 as

nontransitional.
Finally, a function g(s) goes from a to b if g(H+0)=a and
g(S-0)=b.

The degree of smoothness assumed for PS evolving curves
ensures that each & is either transitional or nontransitional.
Indeed, if 8 =[HS], then there is an €>0 such that B8 is
different from B8, everywhere in (H-¢,HU(S,S +€); the continuity
of B8 then yields the following four possibilities: t(El—Bo)>0 on
(H-gH), x(B-B,)>0 on (S,S+e).
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Characterization of the capillary force. Let r be

a
closed,? admissible PS evalving curve. Then there is exactly gne

capillary force C(s,t) associated with r, and C(s,t) has the

following properties:
(i) C(s,t) belongs to the GS capillary set {-Z*(8(s,t))}, sao that

C(s,t)=-Z*(8(s,t)) whenever B8(s,t) is a smooth spot of ¥.
(ii) Let B, a sharp spot of ¥, and let 8=[HS] be a B, ,-section
at some fixed time te(0,T).

(F1) If B8 is transitional, then 8 is nontrivial, and C(s,t)
varies linearly with s on 8, going from -Z*(8,-0) to
-Z*(8,+0) or from -Z*(B,+0) to -Z*(B,-0) according
as B(s,t) increases or decreases across =.

(F2)If 8 is nontransitional, then C(s,t) is constant on 8
with value -Z*(B,-0) or -Z*(8,+0) according as & is

Proof. By (AP1) and (10.2), C(s,t)=-Z*(8(s,t)) whenever
B(s,t) is a smooth spot. Further, this result, (F1), and (F2), imply
that C(s,t) is uniquely determined with C(s,t)e{-Z*(8(s,t))} for
all (s,t). Thus we have only to establish (F1) and (F2). We will
prove only (F1), and only when B8(s,t) increases across R; the
remaining assertions are proved analogously. Since the time t is
fixed, we shall suppress it as an argument. Suppose that

B,+6 is GS for all sufficiently small §>0. (10.7)
Then B8(S+0)=8, and

C(S-0) = C(S+0) = C™(B,+0) = -0™(B, +0) = -Z*(8, + 0). (10.8)

2For r not closed C(s,t) is determined uniquely (and (F1),
(F2) hold) on the internal arcs of r, and also on the terminal
arcs provided they are not sharp-spot facets (facets whose
angles are sharp spots). Boundary conditions are needed to
determine C(s,t) uniquely on terminal sharp-spot facets.
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On the other hand, if (10.7) is not satisfied, then there is a corner
{8,.8,} such that B(S+0)=8, and, appealing to (10.5) and the
corner-force theorem,

C(S-0) = C(S +0) = C*(8,.8,) = -£*(8, + 0). (10.9)

Similar results hold at H. The results (10.8) and (10.9) and their
counterparts for H have the following consequences: (i) 8 is
nontrivial, for otherwise Z*(8,-0)=Z*(8,+0), which is not
possible when B, is a sharp spot of the convexified Frank diagram;
(ii) C(s,t) goes from -Z*(B,-0) to -Z*(8,+0).

Finally, since 8(s)=8, on 8, capillary balance (10.6) must
there have the local form

Cs = [F +B(B8,)VIN(B,) (10.10)
with V=V(t) independent of s. Thus C(s) varies linearly on 3. m
Let

A(B) = [Z*(B-0) - Z*(B +0)]=N(B)
= £(8)[£'(B-0) - £'(B+0)] > O

(10.11)

(cf. (A11) of Appendix A). Because of (F1), evolving facets on which
B=8, with B, a sharp spot, are to be expected. By (F1) and
(10.10), the length L(t) and the normal velocity V(t) of a
"transitional” facet are related by

+

+A(B,) = LIOIF + B(BIV(D)] (10.12)

with the plus or minus sign chosen according as 8(s,t) increases or
decreases across the corresponding B8 -section. For a
“nontransitional” facet, (10.12) remains valid, but with A(8)=0.
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Remark 1. Let S;(t) be the arc length at a juncture i of a
closed, admissible PS evolving curve. Then B8, := B8(5,(t1)-0,t) and
B8,* := B(5,(1)+0,t) are independent of time, and either:

(i) {8,7.8;*} is a GBS corner, in which case the juncture is
nontrivial; or
(i) 87 =8"ey, in which case the juncture is trivial.

Remark 2. There are exactly three possibilities for an arc r;
of an admissible PS evolving curve.
(1) r, is a curved arc. Since each boundary angle of a smooth GS
part must belong to M, UM, it is a clear from (F1) that
(on r) B(s,t) must belong to a single smooth GS part X, In
this case r; evolves according to

vV = &(8)K - B(B)'F,

®(8) = B(8)'[1(B) + 1(B)] > O. (10.13)

with f"(8) computed by restricting f(8) to M, Further, the
initial and terminal orientations, 8,,; and B8, are
constants belonging to X, U¥,, (cf. the paragraph
containing (9.4)). We assign a transition number to r;, as
follows: the transition number is +1, -1, or O according as
Biorm > Binitt  Bierm < Binit  OT Bterm = Binit:

(2) r; is a facet with orientation B8,ed_ . ., Then r; evolves

according to

B(BYV = -F.

(3) r; is a facet with orientation B8,e¥,. Then either B8(s,t)
increases across g;(t) for all t, or decreases across g§(t) for
all t, or si(t) is nontransitional for all t; we define the
transition number x,; for r; to be +1, -1, or O,
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respectively, for these three possibilities. Then r; evolves
according to (cf. (10.12))

X;A(8) = LOIF + BBYIV(D)] (10.14)

with L/(t) the length of r;

10.3. Crystalline energies.

Let f(B) be an interfacial energy with sharp spots. Then
f(8) is crystalline®® if its convexified Frank diagram is a
polygon, and if the vertices of this polygon form the complete set
of GS angles (cf. Figure 10B). Such energies are clearly regular.

Let f(B) be crystalline, and consider an admissible PS
evolving curve r. Each arc of r must have B8(s,t) equal to one
of the GS angles, and hence must have B8(s,t)=constant. Thus we
have the following>4

Proposition. Facetings with fixed grientations are the ognly

admissible PS evolving curves for a crystalline energy.

By an evolving crystal we mean a faceting r that is
simple and closed. In view of the proposition, these are the only
admissible interfacial motions consistent with a crystalline energy.
As before, we let the reference region Q(t) denote the bounded
region interior to the corresponding curve at each time, so that
Q(t) has N as its outward unit normal. We will refer to r as
essentially convex if Q(t) is a convex region at each t. (Note
that r cannot be convex as an evolving curve, since K=0 on each
facet.)

Let r={r,r.,...,ry} be an evolving crystal, and let 8, V,
"I N gcry i i

53Cf. Taylor [1978], who studies the stable equilibria of
interfaces coresponding to crystalline energies.

S4Facetings are as defined in Section 9.2, except that the
underlying notion of admissibility is as defined in Section 10.2.
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Frank diagram = Polar(f-l).

Figure 10B. The Frank diagram of a crystalline energy f£.
The GS angles are the angles corresponding to the five sharp
spots.
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and L; denote the orientation, normal velocity, and length of r;
Further, for any function g(B8) let g;=g(6;), and define

pi,j 1= [Tj'Ni]-1' (x'i,j = (T|-T])pl,] (1015)

Remark. Fraom (10.11) and the definition of a crystalline
energy, it is clear that each of the (fixed) angles B8;e¥g,; thus

Ai = A(BI) > 0 (1016)

Moreover, our agreement that N be outward implies that, for an
essentially convex crystal, B decreases across each facet and

pi,i+1 (0, Cx.i'i_” <0. (1017)

Curves governed by smooth energies have, as evolution
equations, a fairly complex system of partial differential equations;
the next theorem shows that, in contrast, crystals evolve according

to a finite set of grdinary differential equations.

Evolution equations for a crystal. Crystals corresponding
1o a crystalline energy evolve according o the equations

Li = [jis1 + &g il Vi = picg,iVie = PiistVisr,

Vi= B)I-F + xi(A/L)]

(10.18)

at each juncture 1.

Proof. The second of (10.18) is (10.12). To derive the second,
let v; denote the arc velocity and [S;S;,4] the arc-length
interval for r;. Then

ViaNig + IS¢ - viITiy = ViN; + [S9° - vIT,,

i+1

(10.19)

is1Nigr * [Si44° = Vi I Ty
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If we take the inner product of these equations with T, and then
add the resulting equations, we find that

Li° = - (Pi-1,i);1vi-1 = (Piien) Wiy
[S- ° - Vi+1](Tg 'Ti+1) - [Si° - Vi-1](Ti 'Ti-1). (10.20)

i+1

Next, we take the inner product of (10.18) with N;; the result is

(pi-1,i)-1[8i° - Vi_1] = - Vi + Vi-1(Ti'Ti-1)-
(Pi.) ' [S141° = Vigrd = Vi = Vi (TisTiup). (10.21)

The relations (10.20) and (10.21) combine to give (10.18),. m

A geometric derivation of (10.18) follows upon noting that, for
9;=8;-8;_¢ (Figure 10C),

Lo = -[cot9; + cot®;,(1V; + (sin®)™'V;y + (sin®;,4) "V,

which is easily obtained, at least formally, by incrementing the time
by a "small" amount.

10.3.1. Evolution of a rectangular crystal.

A simple example that yields useful information occurs when
the convexified Frank diagram is quadrilateral with vertices at
B=0,m/2, 7 3n/2. A corresponding evolving crystal, if essentially
conveX, is rectangular at each t with sides having these angles as
orientations. Therefore L,=L,, L,=L,, and, by (10.15), p;;,q=-1,
® i+ =0. Thus, defining

-
n

, = F(B,+8,)/8,8., F, = F(B,+8,)/8 B,

8, = (A B, +A,B,)/B,8,, 6,=(AB,+AB,)/BS, (10.22)
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the evolution equations (10.18) reduce to

Ly =-F, - 8,/L,.

° (10.23)
L,° =-F, - §,/L,
with (cf. (10.16))
sgnF; = sgnF, 5, > 0. (10.24)

Case 1: F=0. Solutions of (10.23) approach zero in finite time
T. Defining

6 = 61/62,
there is a constant C>0 such that

L,(t) = cL(1O, (10.25)

Thus for 6=1 the isoperimetric ratio
p(t)= [length(dQ)1?/4marea(Q) is constant, but for & s 1

p(t) >0 as t-T. (10.26)

For &8>1, L,(t) approaches zero faster than L,(t), so that the
crystal shrinks to a point, but is ultimately in the shape of a
“needle oriented by 8, and B.,". This is in sharp contrast to an
interfacial motion for an isotropic interface (cf. Section 5.1); there
the interface shrinks to a round point.5®

SSGage [1984], Gage and Hamilton [1986], Grayson [19871.
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Case 2: F>0. Solutions still approach zero in finite time T.
The result (10.25) holds asymptotically, and the discussion of Case 1
for 6s=1 is appropriate.

Case 3: F<O0. This case corresponds to a crystal evolving in a
supercooled liquid. Here (10.23) has an equilibrium at

L,=IF1/6, L,=IF,1/6, (10.27)

which is a saddle. For any given initial value L.(0) there is a
number £>0 such that: (i) if L,(0)<Z%, the sides shrink to zero
in finite time, in which case the asymptotic behavior of the crystal
is as discussed in Case 1; (ii) if L,(0)>£, the sides grow to
infinity as t- oo, asymptotically as

L1(t) ~ |F,It, Lz(t) ~ IF,It.
The equilibrium (10.27) represents the Wulff shape of the

crystal. Interestingly, none of the asymptotic shapes of the crystal
are of this form.
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11. General global behavior.

Section 7 established results for the growth and shrinking of
an interface whose energy is smooth and stable. We now generalize
these results. We assume that

f is a (not necessarily stable) regular
interfacial energy with sharp spots.

Let r be a PS interfacial motion that is admissible in
the sense of (AP1), (AP2), and (AP3),%6 and let L(t), A(t), and
f(t) denote the perimeter, area, and total interfacial energy as
defined in (7.3) and (7.5).

Theorem.

Fe(t) + FA°(t) = -[B(B)V?ds < O. (11.1)
0Q(t)

Proof. Our first step will be to show that (4.12) (with b_,=0)
holds for each arc r; of r. It is clear from its proof that (4.12)
holds for r; in cases (1) and (2) of Remark 2 (Section 10.2). We
now show that (4.12) is also satisfied in case (3). For this case N
and T are constant, K=0, and V is independent of arc length.
Let R,(t) and R,(t) denote the initial and terminal points of r,
with C.(t) and C,(1) the corresponding capillary forces. Since
f(B) =constant, (2.35) yields

(d/dt)[f(B))ds = f(B)IR,*> - R °]«T,
si(t)
while (10.6) implies

S6Cf. the paragraphs containing (2.45) and (10.6).
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F[vds = -[B(B)V*ds + VIC,-C 1-N.
S,(t) Si(t)
Further, by (10.1), f(8)=C,=T=C,-T; this relation, (2.20),, and the
last two identities imply (4.12).
Thus (4.12) holds on each arc of r. If we apply (4.12) to each
such arc, add the resulting equations, and use (2.45), (2.37), and the
fact that, by (10.6), C(s,t) is continuous in s, we arrive at (11.1). m

Let e(B) be a continuous, piecewise smooth, strictly positive,
2m-periodic function on R. We need a generalization of the Wulff
ratio (7.12); a generalization in which the exterior normals of the
underlying regions I are restricted to point in GS directions.%’
This is easily accomplished by replacing e(B) by +o00 whenever 8
is not GS. Thus, letting '

[ e(8) for B a GS angle
e*(8) = { (11.2)
| +c0 otherwise,

the GS Wulff ratio for e(B) is the number

Ws(®) == (am)~" inf {[e*(8)ds}?/ area() (11.3)
or
with the infimum taken over all bounded regions I with or
piecewise smooth. Corresponding minima I are called GS Wulff
regions for e(B).

Let {8,,°.6,*}, m=12,...,M, denote the GS corners in the
order encountered as the Frank diagram is traversed in the
clockwise direction, so that ©,75>0,720,7>06,*> 0,7, and so
forth;58 for each such corner, let5°

57GS is with respect to the interfacial energy f(8), so that
WGS(e) depends also on f(B).

58 \we use this numbering scheme since for a closed, convex curve
the angle decreases with increasing arc length.
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B = 2tan(8,/2) <0, Oy = Op*-Opn. (11.4)

We define the GBS average g, of a function g(8) by

M
2‘"gGSav = ]g(B)dB + 12' 2 1&pml [g(9m+)+ g(Gm")]. (11.5)
Bel m=1

Theorem on the growth of the reference phase. Consider
a regularly maximal,®® admissible PS interfacial motion with
duration [O,T).
(i) If F20, then T<oo and A(t)-0 as t-T.
(ii) If F<O, then:

(a) if L(0) is sufficiently small, then T<co and A(t)-»0 as
t-T.
(b) if A(0) is sufficiently large, then T=00 and A(t)»o0 as
t >o00. In this case isoper(Q(t)) remains bounded
limsup isoper(Q(t)) < [(B™gga )’/ W8 (11.6)
t-o00

Proof. Our first step will be to show that

9The &, are M numbers associated with a given interfacial
energy; these should be differentiated from the transition
curvatures (2.41), which correspond to the actual junctures in an
interfacial motion (cf. (11.9)).

80ln the sense of the sentence containing (7.4). Here it must be
kept in mind that we have, as yet, no existence theorem
appropriate to an energy with sharp spots, although we do have an
existence theorem for a smooth but unstable energy (cf. Section
8.6).



A°(t) = -C - F[B(B) "ds,
0Q(t)

Fo < FC + [F?/(f i Brin)1F. (

° -1
Le(t) € -2mF(B7) 4q,,-
where C>0 is a constant.

To prove (11.7), let N denote the essential number of a
r, let
is a curved arc, 1<i<N },

Soe = 110 1

dg, == {i: r; is a facet with Bedy, 1<i<N},

and, for each ied,. let X; denote the smooth GS part
corresponding to r. Since N is the outward normal to 0Q,
interface is negatively (clockwise) oriented as a closed curve.
Moreover, because of the regularity of f, as s increases,
varies continuously through smooth GS parts, crosses sharp sp
adjacent smooth GS parts, or jumps across GS corners to adjac
sharp spots or smooth GS parts. Thus:
(i) The sum of the transition numbers for the totality of X,
ied corresponding to a given smooth GS bart is -1, a

arc’

B, = interior (U »;).
ie‘o‘arc
(ii) For each B8, eXd,, there is at least one ied, such that
and the sum of the transition numbers x; of the r; wit
iedy, and 6;=8, is -l
Because of these conclusions, and since K=8, for any contin
2m-periodic function g(8),
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p2 [g(B)Kds = -[g(B)dB,

ied e Si Bel g, (11.8)
T x,;0(8)A(8) = -Z g(B)A(B).

iedy, Beldg,

Thus, integrating V(s,t) over 0Q(t), we conclude, with the aid of
(2.45) and the remark containing (10.14), that (11.7), holds with

C = [#(B)dB + T B(B) 'A(B) > 0.
Bepsm Be'ush
Next, by (7.5), fL<F; (11.1) and (11.7), therefore yield (11.7),.
To verify (11.7),, let

§ = the set of nontrivial junctures j, 1<j<N.
Each jed will have transition curvature k; defined by (2.41).
These transition curvatures are related to the numbers &, defined

by (11.4): for each j there is a corresponding m=m(j) such that

ki=&km and {§.8"} = {6,7.8,7}, or
—&m and {Bj-n81+} = {0m+,9m—}.

(11.9)

Kj

Further, letting J(m) denote the set of all j with Ikjl=Ikpl,

> Kj = k. (11.10)
jed(m)
If j is a juncture for a facet whose angle is a sharp spot of the
Frank diagram, and if < denotes the transition number of the
facet, then

xkj 2 0. (11.11)

"The verification of (11.7)3 is based on (2.44), which we write in
the form
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Le(t) = -[KVds - Zkp; (11.12)
2Q(t) jed
with v; the average velocity (2.40), of the juncture j. By Remark
2 of Section 10.2 and (11.8),,

[Kvds = X J[b(B)K*-FB(B) 'KIds > F[B(B) 'dB, (11.13)
0Q(t) ied . s Bel

Let j68 be the juncture of an arc r; of r. Then, on the arc at
that juncture,

KV 2 -k;B(8)'F. (11.14)

Indeed, (11.13) holds trivially if r; is a facet with angle B8ed
for r; a facet with angle Bed,, (11.14) is a consequence of
(10.15), (10.11), and (11.11); if r; is curved, then (11.14) follows
from (10.13) and (CC2) of Section (9.1) (which also holds in the
present circumstances). By (2.40),, (11.10), and (11.14),
M

Zkoj 2 -t FZ by (BB + B0, '] (11.15)

jed m=1
Since #&n<0, (11.5), (11.12), (11.13), and (11.15) imply (11.7),.

Finally, an argument identical to that given in the paragraph

containing (7.16) shows that (11.7) yields all of the desired
conclusions. =

smco*

Conjecture. Consider case (iib) of the last theorem. We
conjecture that, as t- oo,

9Q(t) is asymptotic to a GS Wulff region for B(8)7".
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Remark. Suppose that the energy is crystalline with
8,>8,>--->8y the complete set of GS angles. Then {Bm.Bm.1},
m=1.2,--,M (Bms1=8,) are the GS corners,

£m = 2sindm/(1 + cosYpy), Y¥m = Bm+1 - Bm,

and it is not difficult to verify, using the Wulff construction,b
that

M
Woe(D = @M Z byl = (1)

m=1

GSav’

Further, as is clear from (11.3), WGS(1) represents the minimum
value of the isoperimetric ratio isoper(I') over all polygons T
whose outward unit normals are limited to the GS directions
8,8,.---.By. Thus, when f=constant, (11.9) yields, for case (iib) of
the last theorem,

M
isoper(Q(t)) » 2m™'Z 1k,

m=1

as t-o0.
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61Cf. Taylor [1978].
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Appendix A. Polar diagrams.

Let g(B) be a 2m-periodic, strictly-pasitive function on R.
Then g is smooth except for sharp spots if:
(i) g 1is continuous;
(ii) g¢' and g" are continuous except possibly for a finite number

of jump discontinuities.

The angles at which g' suffers jump discontinuities will be
referred to as sharp spots; all other angles will be referred to as
smooth spots.

Let N(B) and T(B) be defined by (2.3). The polar diagram
Polar(g) of g is the simple closed curve in R? defined by the
vector function

g(8) := g(BIN(B).

We orient Polar(g) by 8, so that Polar(g) is positively
(counter-clockwise) oriented as a closed curve. Since N'=-T,

g'(8) = -g(B)T(B) + g'(B)N(B)
whenever B8 is a smooth spot; thus
n(B) := 1g'(8)I '[g(B)N(B) + g'(B)T(B)]

defines an outward unit normal to Polar(g). A tangent vector on
Polar(g) more useful than g'(8) is the supporting tangent

g*(8) := g(8)%g'(e)
= -g(8)"'T(8) + g(B) %g'(BIN(B), (A1)
which is well defined for B8 a smooth spot. This notion has an
extension which is defined for all angles. By the vector fan

between vectors a and b we mean the set of all vectors ¢ such
that
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c=a + (b -a), O<ox <1,

For each B8, the supporting tangent-fan {g*(8)} is the vector
fan defined by g*(@-0) and g*(B+0), and is hence the get of
vectors of the form

-g(8)7'T(B) + EN(B), (A2)

where ¢ varies in the closed interval of R bounded by
g(8)?g'(8-0) and g(B)7’g'(8+0). This definition has some simple
consequences for B8 a sharp spot: let 7 and T, respectively,
designate the smaller and larger values of g*(8: 0)=N(B), and
choose a,be{g*(B)}; then

g*(8+0) - g*(B8-0) = g(B)*[g'(B + 0)-g'(B-0)IN(B), (53)
7 < a=N(B8) < T, a-b is parallel to N(B).

Somewhat less trivial are the following:

Properties of the supporting tangent.

(T1) Let ae{g*(8)}, and let £ be the line through g(B) in the
direction a. Then the perpendicular distance from £ to the
origin is lal™".

(T2) 1g*@)1~" is the support function of Polar(g):

g(8)=n(B) = 1g*(B)I"" for B a smooth spot.

(T3) g*(B) is constant on a connected open subset £ gof Polar(g)
if and only £ is a straight line.

Proof. Let ae{g*(B)}, so that a=-g(B8) 'T(8)+tN(B).
Omitting the argument B, the unit vector u=lal"'[g"'"N +¢tT] is
orthogonal to a, so that d:=Ig-ul is the perpendicular distance
from £ to the origin. But d=lal”". Thus (T1) is valid. (T2) is
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an obvious consequence of (T1), and (T3) follows from (T2). m

Theorem on common tangents. Let {g*(8,)}N{g*(8,)} = @&.
Then:
(CT1) 18,-8,1 = m;
(CT2) {g*(8,)}N{g*(B,)} consists of a single vector a;
(CT3) letting 82—B1<'n, a points in the same direction as
g(8,)-g(8,).
In this case we will refer to a as the common supporting

Proof. Assume that 8,-8,<m Let ae{g*(8,)}N{g*(8,)}, and
let £; denote the line through g(B8;) in the direction a. It
suffices to show that £ =£, Suppose not. Then £, and £, are
parallel, and, by (T1), the origin lies equidistant between them.
Thus T(B)-a and T(B,)-a are of opposite sign. But by (A2),
T(B)-a=g(8) '>0, a contradiction. m

Corollary. Let P(g) be convex. Let 8,8,eR with
0¢B8,-8,<m and {g*(8,)}N{g*(8,)}= . Then g(B), B,<B<B, isa
straight line.

The curvature k4(8) of Polar(g) (positive for Polar(g)
strictly convex) is given by

kg = [gz _ ggn + 2(91)2]/[(91)2 + g2]3/2 (AS)
whenever g' and g" exist. By (A1),

(d/dB)g*(B) = -A(B)ky(B)N(B), (AB)
A = 9-3[(g|)2 + g2]"3/2 > 0.
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Theorem. Let B1 and B2 have a common supporting tangent.

Then one of the following three conditions must hold:
(C1) P(g) is a straight line between B, and B,;
(C2) g'(B+0)>g'(B-0) at some sharp spot B€[B,8,];
(C3) kg(8)<0 at some smooth spot B8€[B8,8,]

Proof. Let a be the common supporting tangent, and let b
be the unit vector with

b=a=0 and b:N(B)>0 for all 86[81,812]. (A7)
Suppose that neither (C2) nor (C3) are satisfied: for B8€[8,8,],
g'(8+0)<g'(B-0) for B8 sharp, kyB)20 for 8 smooth. (AB)
Let © denote the set of sharp spots in (81,82). If we integrate
(d/dB)g*(8) from B,+0 to B,-0 using (A6) and (A3),, and then

take the inner product of the resulting relation with b, we find
that

8

2
[g*(B,-0)-g*(B,+0)]-b = X c(B)[g'(B + 0)-g'(B-0)] -[C(B)ky(B)dB,
Be® % (A9)
c(8),C(8)>0 on [B,8,];

thus, by (A8) and (A7),

[g*(8,-0) - al-b - [g*(B,+0) - a]-b ¢ ©. (A10)
Next, in view of (A3)2'3 and (AB),,

g*(8,-0) - a = «,N(8,), x, 2

g*(8,+0) - a = x N(8), x, <O,

and we may use (A7) to conclude that (A10) holds with “¢<"
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replaced by "="; hence (AS) vanishes, and this yields (A8) with
inequalities replaced by equalities. Thus, by (A3), and (A6), g*(B)
is constant on (B8,8,); in view of (T3), this implies (C1). =

The convex hull®2 of Polar(g) is a polar diagram Polar(G)
of a function G(B). We will refer to Polar(G) as the
convexification of g(8). Let

G(B) := G(B)N(B).

The set Polar(g)NPolar(G) on which the polar diagram coincides
with its convex hull is important. This subset of R? is
conveniently identified with a set of angles, namely

C(g) = {BeR: g(8)=G(8)}.

We will refer to the connected components of C(g) as the
globally-convex sections of Polar(g). The portion of Polar(G)
that is disjoint from Polar(g) is the union of open line-segments;
the closures of these line segments will be referred to as the
Maxwell lines of Polar(g). Let -m be a Maxwell line with end
points g(B,) and g(8,), B,<B,; we will refer to (8,8,) as the
angle interval for -m and to 8, and B, as Maxwell angles.

62More precisely, boundary of the convex hull of Polar(g). In our
discussion of curves the term "convex" means "strictly convex".
Here our terminology is ambiguous, as the boundary of the convex
hull will generally not be strictly convex. Thus the globally-
convex sections of Polar(g) are allowed to have subsets with
vanishing curvature.
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Maxwell theorem. Let B8 pelong to 3 globally-convex
section of Polar(g). Ihen:

g(8) = G(B), {6*(B)}C{g*(®)},
g'(B+0)<G'(B+0)<G'(B-0)<g'(B-0), (A11)
N(B)-[G*(B+0) - G*(B-0)]1 < O

with inequality in (A11), if B8 is a sharp spot of g.
Let (B,B,) be an angle interval for a Maxwell line. Then:
(i) 8, and B, have a common supporting tangent G, with G,
the constant value of G*(8) on (8,8,);
(ii) either (C2) or (C3) holds on (81,92).

Proof. (A11), is obvious; (A11), follows directly from the
properties of the convex hull; (A11), implies (A11), and, by virtue of
(A1), also (A11),. Further G*(8)=6, on (8.8, follows from (T3)
applied to G rather than g, while (A11), yields
G,e{g*(8,)}N{g*(8,)}; the desired conclusion in (i) then follows from
the theorem on common tangents. Finally, between B8, and B8,
P(G) is a straight line disjoint from P(g), thus (C1) is not
possible, so that either (C2) or (C3) is satisfied. m
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Appendix B. Invariance under reparametrization.

A suitable discussion of invariance requires a class of time-
dependent curves broader than the class of evolving curves. Let T,
0<T <oo, be fixed. A time-dependent interval is a set of the
form Rx[0,T) or a set of the form

{(p,t): pelP().Q(t)], tel0,T)} (B1)

with  P,Q:[0,T)-»R (P<¢Q) smooth functions. A time-dependent
curve is a smooth mapping (p,t)~»r(p,t) such that:
(i) the domain of r is a time-dependent interval;

(ii) r(-,t) is a curve for each tel[0,T).
If Domain(r) has the form (B1), then r has endpoints r(P(t),t)
and r(Q(t),t).

we write C for the set of time-dependent curves. Let reC.
Then r evolves normally if

rdp.t)=ry(p,t)=0

for all (p,t)eDomain(r); thus the term "evolving curve” as used
in the main body of the paper is here synonymous with normally
evolving curve.

Let reC. We consider the tangent T(p,t):= rp(p,t)/lrp(p,t)l
and normal N(p,t) to r as functions of (p,t)eDomain(r), and
similarly for the normal velocity

V(p,t) := rt(p,t)-N(p,t). (B2)
Further, we define

J(p.t) = Ir (p, )1, (63)
o(p,t) = -J(,17rp,H)«T(p,t).

Let Z(t) be given with (Z(t),t)eDomain(r) for some interval of t.



Then the curve twr(Z(t),t) is a normal trajectory provided
T(Z(t),t) = (d/dt)r(Z(t).t) = O.
But by (B3),

T(Z(), )=« (d/dtdr(z(t),t) = J(Z(H),DIdZ(t)/dt - o(Z(1),1)], (Bg)
so that o(p,t) gives the rate at which the parameter p changes
with time following a normal trajectory. This discussion should
motivate the following definition.

Choose (p,.t,)eDomain(r). The function twZ(1), maximally
defined as the solution of the problem

dzZ(t)/dt = o(Z(1),1), Z(ty) = p,, (BS)
is the normal parameter-trajectory through (p,.t,).
Let reC, let ¢ be a smooth function on Domain(r), and

choose (p,t)eDomain(r). Then the normal time-derivative
d°(p,t) of & at (p,t) is defined as follows:

¢e(p,t) = (d/dDD(Z(1), V)¢ .y (B6)
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with Z(t) the normal parameter-trajectory through (p,t). Clearly,
resN=r,=N, while (B4) and (B5) yield r°=T=0; hence (B2) implies

re(p,t) = V(p,t)N(p,t). (B7)

The next proposition is easily verified.
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Proposition 1. Let reC. Then the following are eguivalent:
(i) r evolves normally;
(ii) the normal parameter-irajectories are of the form Z=constant;
(iii) ry = re;
(iv) o = 0.
Moreover, if r evolves normally, and if & is a smooth function
on domain(r), then

¢° = ¢t' (BB)

Let reC. By a parameter change for r we mean a smooth
bijection ¢, from a time-dependent interval onto Domain(r), of
the form

(p.t) » ¢p(p,t) = (d(p,t)t), ¢, > O;

if r 1is closed we require, in addition, that there exist a smooth
function w>0 on [0,T) such that

$(p + w(t),1) = d(p,t) + N(t) (B9)

for all (p,t)eRx[0,00), where \(t) is the minimal period of

r(-,t). Given a parameter change ¢ for r, the function re¢ on
Domain(¢) defined by

(reg)(p,t) = r(¢(p,t)) = r(¢p(p,t),t) (B10)

is also a member of C (and is closed if r is closed); we refer to
reg as a reparametrization of r. This definition, (B4) with
Z(t)=¢(p,t), and the equivalency of (i) and (iv) in Proposition 1
yield
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Proposition 2. Let reC. Then reo¢ evolves normally if and
only if ¢,(p.t)=o(ep(p,t),t) for all (p,t)eDomain(¢), sa that each
of the functions tw¢(p,t) is a normal parameter-trajectory.

Thus, when r evolves normally, re¢ evolves normally if and only
if ¢,=0.

The next result is central; it shows that within a large class
of time-dependent curves there is no essential loss of generality in
limiting attention to curves that evolve normally.

Theorem 1. Let reC satisfy one of the following three
conditions:
(i) r is closed;
(ii) r has endpoints, and the endpoints are normal trajectories;
(iii) r is unbounded, and there are smooth functions a:R->R and
b:[0,T)-»R such that for all (p,t)eDomain(r),

lo(p,t)I < al(p)b(t). (B11)

Then there is a parameter change ¢ for r such that red is a
normally evolving curve.

Proof. For each p in the initial interval [P(0),Q(0)] or R,
let t-Z(p,t) denote the normal parameter-trajectory through
(p,0). Consider (ii). In this case Z(P(0),t)=P(t) and 2Z(Q(0),t)=0Q(t)
for O0<t<T; thus, since Z(p,t) is, for p fixed, a maximal
solution of (BS), and since P(0)<p<Q(0), Z(p,t) is also defined
for O0<t<T. In fact, the definition of Z as the solution of (BS)
renders the mapping ¢ defined by ¢(p,t)=(Z(p,t),t) a smoaoth
bijection of [P(0),Q(0)Ix[0,T) onto Domain(r). Further,
differentiating Z,(p,t)=0o(Z(p,t),t) with respect to p, one easily
concludes that Z,(p,t)>0, since it has this property at p=0. Thus
¢ 1is a parameter change for r. The last proposition then implies
that re¢ is a normally evolving curve.
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Consider (iii). Let ¢, denote the parameter change for r
defined by ¢,(p,t)=(¢,(p).t) with ¢, (p) any solution of
dp,(p)/dp=a(p). Then the reparametrization r ¢, obeys (B11) with
a(p)=1. Thus it suffices to consider unbounded curves reC that
'obeg an estimate of the form

lo(p,t)I < b(t) (B12)

with b continuous on [0,T). This estimate and the definition of
Z as the solution of (B5) imply that, for each peR, Z(p,t) is
defined for O0<t<T. In fact, arguing as above, the mapping ¢ is
a parameter change for r, and re¢ 1is a normally evolving curve.
Consider (i). Since r is periodic with period X\(t) a smooth
function of t, the estimate (B12) again is satisfied. Thus the
mapping ¢ defined by ¢(p,t)=(Z(p,t),t) is a smooth bijection of
Rx[0,T) onto Domain(r), and Z,(p,t)>0. Since
r(z,t) =r(z + XM(t),t), (B3) yields o(z + A(1),t)=0(z,t) + N (1), and this,
in turn, leads to the conclusion that 2z(p,t):= Z(p,t) + A\(t) satisfies
zi{p,t)=o(z(p,),t), z(p,0)=p+N(0). Thus z(p,t)=Z(p+N(0),t), so
that Z(p,t) + AN(t)=Z(p + A (0),t) for all (p,t), and we have
compliance with the condition (B9). Thus ¢ is a parameter change
for r, and re¢ is a normally evolving curve. =

We define the arc-length derivative &(p,t), the
curvature K(p,t), and the angle derivative ®g(p,t) through:

¢ (p.t) = & (p.)J(PO,
K(p,t) := N(p,t)-T_(p,1), (B13)
bg(p.t) = K(p,t) "o (p,t)

(the last definition being appropriate to (p,t) with K(p,t) = 0).
To discuss invariance under reparametrization, we now write

T.(pt), N/(pt), V/(pt), and K.(pt) to make explicit the

dependence of these quantities on the time-dependent curve reC
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in question. This allows us to consider, for example, the normal
velocity as a mapping V that assigns to each reC a function
(p.t) » V (p,t) on Domain(r).

More generally, a curve descriptor is a mapping ¥ that
assigns to each reC a function (p,t)-»W. (p,t) on Domain(r).
Given a curve descriptor W, we may consider its normal time-
derivative, its arc-length derivative, and its angle derivative as
curve descriptors; ie., e.g, (W) = (W ),.

A curve descriptor W is intrinsic if it is invariant under
reparametrization; that is, if, at each t, its value at p on a
reparametrized curve re¢ is the same as its value at ¢(p,t) on
the original curve r. Precisely, W is intrinsic if, given any
reC and any parameter change ¢ for r,

The following result is well known.
Invariance theorem. The following curve descriptors are
intrinsic: tangent, normal, normal velocity, and curvature. If a curve

descriptor is intrinsic, then so also are its normal time-derivative,
its arc-length derivative, and its angle derivative.

Proof. Let ¢ be a parameter change for reC, let g=reog,
and write g(p,t)=r(qt), g=¢(p,t). Since 0, =rq®p
Tg(p,t)=gp(p,t)/lgp(p,t)l=rq(q,t)/qu(q,t)l=Tr(q,t), so that T and
(hence) N are invariant. Let W be an intrinsic curve-descriptor.
Then the same argument applied to (813)1 yields W, intrinsic.
Thus, by (B13),,, K and Wg are invariant. Next, let Z(t) be the

normal parameter-trajectory for g through (p,t,). A simple
calculation shows that

(d/dr($(Z(t),1),1) = (d/dt)g(Z(t),t) = O,
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so that z(t):= ¢(Z(t),t) is the normal parameter-trajectory for r
through ¢(p,.t,). On the other hand, since W is intrinsic,

(d/dDW,(Z(1),1) = (d/dDW (z(7),7). (B14)

At T=t,, the left side of (B14) is (W‘)g(po,to), the right side is
(W) (p(p,.t,)); thus the normal time-derivative of an intrinsic
curve-descriptor is intrinsic. In particular, rere° is intrinsic;
hence, by (B7), V is intrinsic. =
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