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Abstract
We present a randomised polynomial time algorithm for approximating

the volume of a convex body K in ra-dimensional Euclidean space. The

proof of correctness of the algorithm relies on recent theory of rapidly mixing

Markov chains and isoperimetric inequalities to show that a certain random

walk can be used to sample nearly uniformly from within K.

Introduction
In this paper we give an algorithm for approximating the volume of a

convex body in Euclidean space. Our algorithm is a randomised polynomial

time bounded algorithm. In other words, suppose we are given a convex

body if, determined by a membership oracle (see Grotschel, Lovasz and

Schrijver [1988]) and a relative error bound e. Then, our algorithm takes

time bounded by a polynomial in n, the dimension of the body K and 1/e.

With probability at least 3/4, it finds an c approximation to the volume of K.

(Here, as usual, we count unit time per call to the oracle. Observe that we

can make the failure probability as small as we like by repeatedly running the

algorithm and taking the median value as output. See [Karp and Luby 1983]

and [Jerrum, Valiant and Vazirani 1986].) Our result should be contrasted
1School of Computer Studies, University of Leeds, Leeds, U.K.
2Mathematics Department, Carnegie-Mellon University
3Department of Computer Science, Carnegie-Mellon University. Supported by NSF

grants ECS-8418392 and CCR-8805199.



with results of Elekes [1986], Barany and Fiiredi [1986], and Dyer and Frieze

[1988]. In particular the first two of these references show that with such an

oracle it is not possible to approximate the volume of a convex set within

even a polynomial factor in deterministic polynomial time. In fact Barany

and Fiiredi showed that the best one could do was to get within a factor

of the volume which is exponential in n. Lovasz had already given such an

approximation algorithm. Furthermore Dyer and Frieze [1988] show that if

K is a polyhedron, given either by a list of its facets or its vertices then it is #

P-hard to compute the volume of K exactly. By comparing our results with

these, we see that here is a case where randomness gives a super-polynomial

speed-up in computing power.

We remark that one consequence of our algorithm is that the number of

linear extensions of a partial order can be similarly approximated. See, for

example, [Lovasz, p. 61].

Our algorithm is based on a scheme for sampling nearly uniformly from

within K. To do this, we place a grid consisting of cubes of side 0(l/ra5/2)

and do a random walk over the cubes in the grid that intersect a slightly

smoother enlargement of K. For this random walk, it is not difficult to show

that eventually it "settles down" to being nearly uniform. What is much

more difficult to show is that the time taken to settle down is polynomial.

To do this we use results on the theory of rapidly mixing Markov chains.

In particular we employ an extremely useful result of Sinclair and Jerrum

[1988] which relates the rapid mixing property to structural properties of

the chain which are somewhat easier to establish. We note that Jerrum and

Sinclair [1988] have used this result to rigorously verify Broder's algorithm

[1986] for approximating dense permanents. These methods are likely to

yield further interesting results. See Aldous [1981] for an expository paper



on other methods for establishing the rapid mixing property. The key step

in the Sinclair-Jerrum approach is to establish an isoperimetric inequality

for the graph underlying the random walk. To do this we use a result from

differential geometry, i.e. the isoperimetric inequality of Berard, Besson and

Gallot [1985] which generalises the more classical inequality of Levy-Gromov

(see Milman and Schechtmann [1980]) on the volume of the boundary of

subsets of smooth Riemannian manifolds with positive curvature.

In the next few sections we will make these arguments more precise. In

§1, we describe the random walk and the algorithm. In §2 we will show

that the algorithm has the claimed properties under the assumption that the

conductance [Sinclair and Jerrum 1988] of our Markov chain is at least l/q(n)

where, q(-) is a polynomial. In §3, we will verify this claim. The final section

contains some technical Lemmas.

Notation and values used throughout
n > 2 is the dimension of the body whose volume is to be approximated,

and 0 < e < 1 is the desired degree of approximation.

6 - L

a = 12\/2n3/2£ a' =

r = y/n(n + 1)

m = [—-—Iog8fc|

r =



B is the unit ball in Rn with the origin as center, and an denotes its surface

area.

By a "convex body" we mean a closed, bounded convex set of non-zero

volume.

For any convex set K and non-negative real number a, we denote by aK

the "dilation" of K by a factor of a, i.e. aK = {ax : x € K}.

K T C 5 C Rm, we denote the "boundary" of T with respect to S by

dgT. This is the set of points x in the closure of T such that any ball in Rm

with x as center intersects S\T. Usually, the context will make clear what

S is, so we will denote d$T as dT.

For any set K in Rm and a non-negative real number A, we denote by

K(X) the set of points at distance at most A from K. If 7̂  is convex, it is

easy to see that K{\) is too.

All our convex bodies will be given a so-called "well-guaranteed member-

ship oracles" - i.e. we will be given a sphere containing the body, a sphere

contained in the body, both of non-zero radius (this is called the "guarantee"

- see Grotschel, Lovasz and Schrijver [1988] for a discussion of why many

problems are meaningless without these guarantees) and a black box, which

presented with any point x in space, either replies that x is in the convex

body or that it is not. Grotschel, Lovasz and Schrijver [1988] show that

from such an oracle, we may construct (in polynomial time) a so-called weak

separation oracle, (see their §4.4) For convex bodies presented by a weak

separation oracle, Lovasz[1986] shows that we can find in polynomial time a

(nonsingular) affine transformation so that, on applying the transformation,

the body is "well-rounded", i.e. the body contains the unit ball with the

origin as center and is contained in a concentric ball of radius r = y/n(n + 1)

where n is the dimension of the body. (Polyhedra of positive volume fit this



category. Polyhedra of zero volume can be detected in polynomial time by

the ellipsoid algorithm.)

1. A random walk

Throughout we assume that space (Rn) is divided into cubes of side £,

i.e. cubes of the form {x : mt£ < X{ < (mt- + 1)6 for i = 1,2,..., n} where

the rrti are integers. Note that the cubes are defined as closed sets.

Suppose K is any well-rounded convex body. Central to our algorithm

will be the following random walk through the cubes which intersect K{a).

(Reminder : see notation section for the value of a.) The random walk starts

at any cube intersecting K(a), for example the cube containing the origin.

At each step, it stays in the present cube or it moves from the present cube to

one of its adjacent cubes (a cube that shares an (n — l) dimensional face) as

follows : it chooses a facet of the present cube each with probability l/(2n).

If the cube across the chosen facet intersects K(a), the random walk moves

to that cube, else it stays in the present cube. The random walk gives us a

Markov chain with the states corresponding to the cubes. The underlying

undirected graph (containing edges corresponding to the transitions of non-

zero probability) is connected as the following argument shows : if a cube C

intersects K(a) and x is in CC\K{a) the line joining x to the origin of course

lies inside K(a). The sequence of cubes intersected by the line gives us a

path from our cube to the cube containing the origin : if the line "passes"

from a cube C\ to a cube C2 through an (n — i) dimensional face shared by

Ci, C2, then there is obviously a path of length i from C\ to C2 in the graph.

We will later refer to the random walk described here as the natural random



walk4 on K, although we really walk over the cubes that intersect K{a). The

reason for walking over the cubes that intersect K(a) rather than the cubes

that intersect K is that K{a) is a little "smoother" than K ; in particular,

for any point x € K{<x), there is a sphere of radius a which contains x and

is contained in K(a). This fact will be used in our proofs. Note also that

K(a) is "close" to if, in fact it will be easy to see (cf. Proposition 1 of §4)

that (1 + a)K contains K{a). Thus, at least intuitively, we see that we may

replace K by K(a) for purposes like computing the volume approximately.

Since we will be given K by an oracle, and this will not let us decide

precisely whether a particular cube intersects K(a), we will modify the nat-

ural random walk so that the set of cubes over which the random walk is

executed includes all of those that intersect K(a) plus some other cubes each

of which intersects K(a + a') where a' = 6/(2y/n), as defined earlier. We

call this the technical random walk The modification is as follows : it is

easy to see that for any cube C, there is a membership oracle for C(a + a').5

Using this, and the separation oracle for if, with the well-known techniques

of Grotschel, Lovasz and Schrijver [1988] based on the ellipsoid algorithm, we

have a deterministic polynomial time algorithm that terminates with either

(i) a point x G C(a + a') D K whence we know that C D K(a + a1)
is nonempty.

or

(ii) an ellipsoid of volume at most (a')n<7n__1n~2(|)n*~"2r~rH~1 contain-
ing C(a + a') fl K,

whence we will show (cf. Proposition 5, §4) that C{a) (1 K is empty or
4For technical reasons, we will have to modify the natural random walk.
5The nearest point in a cube from an exterior point can be found by "rounding " the

coordinates of the point on to the cube.



equivalently C C\ K{oc) is empty. (See notation section for crn_i.)

The random walk will go to cubes for which the alternative (i) occurs and

will not go to those for which (ii) occurs. We will show (cf. Proposition 11

(proof), §4) that any cube for which alternative (i) occurs must in fact either

itself intersect K(a) or one of its adjacent cubes must, so the technical walk

does not "stray" too far from the original, a fact that will be useful later. If

(i) is the result of the algorithm, we say that the cube C weakly intersects

the convex body K(a).

We wish to show that, after a polynomial number of steps, the steady

state probabilities of the (modified) Markov chain will be approximated with

an exponentially small error. More precisely, suppose N is the number of

states of the Markov chain and let the states be numbered 1,2,... ,iV. Let

Pij be the probability of transition from state i to state j . The p^ 's assume

values 0 or at least l/(2n). Let P be the matrix with the ptJ as entries and

for any natural number t, we denote by p\J the entries of the matrix P*, the

t th power of P which represents the t step transition probabilities. It is

easy to see that our Markov chain is "irreducible", i.e. for each pair of states

z, j , there is a natural number s such that p\j is nonzero. This follows since

the graph of the natural random walk is connected, and each cube in the

technical random walk is either included in the natural random walk or is

adjacent to such a cube. Also the Markov chain can be seen to be aperiodic,

i.e. gcd{s : p\* > 0} = 1 for all i,j. To see this, note that the border cubes

have self-loops in the graph ; since the graph is connected, there is a path

from i to a border cube and from the border cube to j . By using the self-loop

once, we see that there is an integer t such that p\j ,p\j are both non-zero,

thus the chain is aperiodic. Hence, the chain is "ergodic" [Feller 1968] and



there exist "stationary" probabilities 7r1? TT2, . . . , nN > 0 such that

The vector TT of TCJ 'S is the unique solution to the equations TTP = TT and

YIKJ = 1- In o u r case, since P is symmetric, it is easy to see that all

the Wj 's are equal. Thus also, the Markov chain is "time-reversible" : i.e.

Our approach is as follows : we will use a result from Sinclair and Jerrum

[1988] on time-reversible ergodic Markov chains6 to show that our Markov

chain is "rapidly mixing", i.e. we will prove the following :

Theorem 1 For any e,j, and i, we have

Thus, when t is a sufficiently large, yet polynomial function of ra, the

p\j are approximately equal. Roughly speaking, this gives us the ability to

pick a random cube intersecting the convex body with uniform distribution

in polynomial time. Using this, we will argue in the next section that the

following algorithm does the job.

1. Let K be the convex body in Rn whose volume is to be found. Trans-

form the body so that it is now well-rounded, i.e. now we have B C

K C rB where r = y/n{n +1). The determinant of the linear trans-

formation gives the factor by which the volume is changed. We keep

track of this.

technically, Sinclair and Jerrum's results require that pa > 1/2. We could (as they
do) add a random wait in each state to ensure this. We ignore this technicality, since it
affects only the constant factor in the running time of our algorithm.
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2. Let p = 1 — i. Let fc = [logi r] and for i = 0,1,2,. . . , fc, let pt =

max{/?V, 1}. The algorithm will find for i = 1,2,..., k an approxima-

tion to the ratio

The ratio will be found by a sequence of "trials". In each trial, we

first do the technical random walk on ift_i = p%-\K n rB for r steps.

(The states of the random walk will be the cubes that weakly intersect

/<V-i(<*).) Suppose we are in cube C = {x : q{6 < X{ < (gf- + 1)8} after

r steps. We pick randomly (uniformly and independently) integers

7i, 72? • • • ? In each from {0,1,2,..., 7} where 7 = 2^ — 1. Let x0 =

If x0 G ^t - i then we declare the trial a proper trial and check to see

if x0 G K{. If it does we declare the trial a success. This completes

the trial. We repeat until we have made m proper trials and we keep

track of the ratio of the number of successes to m. We will later show

that with high probability, the ratio will be a good approximation to

the ratio of volumes that we want to compute.

Clearly this together with the fact that K^ = K and the volume of

Ko = rB is known in closed form gives us the volume of K, as required.

Note that K{ contains pKi-ii so each of the ratios to be computed is

at least pn which is known to be at least 1/4. This fact will be required

later.

Remark We conjecture that Theorem 1 can be considerably strengthened

- i.e. the polynomial O(n19) in that Theorem is not optimal. Whether this

is true or not, a heuristic method would be to run the random walk above

for many fewer than r steps. See also Remark 8 of §5.



2. Proof of correctness of the algorithm

Consider the % th step of our algorithm. We first estimate the probability

that a trial is declared proper. Let W be the set of cubes that weakly intersect

i^_i(a). Observe that \W\ < (3r/6)n. Then

Pr(proper trial) = ^ Pr(proper trial|walk ends in C) Pr(walk ends in C)

Consider a fixed C E W and let ac = Voln(C n K^/S71. We imagine C

divided into subcubes of side rj = 2~~/36 and our sample point x0 is equally

likely to be the corner of any one of these subcubes.

Let now NQ be the number of "border" subcubes (i.e. which meet /ifz_i,

but are not fully contained in i^-i) and Nc = 2^n. Then with

7Tc = Pr(proper trial|walk ends inC),

we have

\ac-Kc\ < -rr = Cc (say).

Now ( = 52cew Cc is (w/S)n times the total number of subcubes which meet

iT,_i, but are not fully contained in it. Using Proposition 3 of §4, this is at

most ^n^2r1Vo\n{K^1)l8
n.

Now, using Theorem 1,

Pr(proper trial) < £ (ac + fo, [±-] + (l - J J ^ - ) ' )

using the fact that 1 + x < exV real x
e

\W\6» { ^ 300k}

10



Pr(proper trial) ;> ™ ^ 2 ( i _ _ £ _ ) > 0.33,

Similarly,

using Proposition 4 and the bounds on e and k.

Observe that this lower bound is independent of the starting point of

the random walk and so the number of proper trials occuring in s walks

stochastically dominates the Binomial Bin(s, 0.33). Thus, with probability

close to one, at least a quarter of any large number of trials will be proper.

We now consider the probability of success. By an identical argument to

that above, we obtain

e
- ioojfc) -

So, if p = Pr(success | proper trial) and v = Voln(lft)/Voln(.K'i_i), we have

which implies \ < (1 - -^)v < p < (1 + -

Let rh be the number of successes after there have been m proper tri-

als. It is a standard result from probability theory (for example, an easy

consequence of Theorem 1 of Hoeffding [1963]), that for any positive A < 1,

P r ^ _ p | > Xp\ <

Hence, P r ( | ^ - , | > A . ) < Pr g - P\> (x-

So with A = j£ we have

P r (I™ _ v\ > ± u \ < 2e-^/20fc)2mp < 2c-|(«/20fc)»m

\lm 5k J ~ ~

11



Now we must make k volume estimates and so assuming that we compute

Voln(iifo) to within 1 ± | we see that the above algorithm computes an esti-

mate v satisfying

with probability at least

The reader may check, with the constants given in the notation section,

that v turns out to be within l i e of Vo\n(K) with probability at least | as

required.

The running time of the algorithm is that needed to solve

O(krnr) = 0(ra23(logn)5e~2log(-)) convex programs .

3. The Markov chain is rapidly mixing

Let Ai be an ergodic Markov chain with states {1,2,... , N} and station-

ary probabilities TTI, TT2, •.., K^. Sinclair and Jerrum define, for any subset S

of states, the capacity Cs of S to be J2ies ̂ % a nd the ergodic flow out of S to

be

They also define the conductance $5 of S to be the ergodic flow out of S

divided by the capacity of S. Finally, they define the conductance of the

whole chain to be

$ = min $5.
S:Cs<l/2

12



Intuitively, $ measures the minimum relative connection strength between

subsets of the states and we expect that if $ is relatively high, the random

walk will not "get stuck" in some subset S of states, thus it will "mix" rapidly.

The following is a direct consequence of their main Theorem.

Theorem 2 (Sinclair and Jerrum) For a time-reversible ergodic Markov

chain with all the TTJ 'S equal,

We will show that the conductance of our Markov chain cannot be too

small. First, we work on the natural Markov chain whose states are precisely

the cubes that intersect K(a). (We should of course talk about Ki(a), but

we will drop the subscript for clarity). We then extend the result to the

technical version whose states are all cubes that weakly intersect K{a).

For any subset S of states (of the natural Markov chain), we denote by

S the complementary set of states and by (5, S) the set of edges in the

underlying transition graph from a vertex of S to a vertex of S. Since all the

TTJ'S are equal, and for any edge (i, j) in the graph, pij = l/(2n), we have

So a lower bound on $ will follow from a lower bound on the minimum of

7(5) which we prove next.

Lemma 1 *f(S) > 7#o for any subset S of states in the natural
v 7 ~ 1000n7/2

Markov chain with Cs < | .

Proof : A "cube" means a cube that intersects K(a). A cube is called

a "border cube" if it intersects both K(a) and the complement of K(a) and
13



it is called an "inside cube" if it is wholly contained in K(a). We will also

look upon a subset S of states as the union of whole cubes corresponding to

the states. We let SB be the border cubes in S and S1 be the inside cubes

in 5. Now, by Proposition 10, for any subset S of states,

\SB\<2n\(S,S)\

We deduce that

Voln(5 fl K{a)) > |S7|£n = (\S\ - \SB\)6n > (\S\ - 2n\(S, S)\ -

> (|5| - 2n|(S, S)\)Sn - 8Voln(S n K(a)).

Hence

VoU(Sn K(a)) > lSn(\S\ -2n\(S,S)\.

Let S be an arbitrary subset of states with \S\ < N/2. This S will be fixed

for the rest of this proof. We need the following basic fact from analysis (for

example, see Gilbarg and Trudinger §7.2 [1983]) : every convex body can be

approximated arbitrarily closely by a convex body containing it whose surface

forms a smooth (C°°) Riemannian manifold. Let KK be a convex body such

that dKK forms a smooth Riemannian manifold, K{a) C KK and the set

of cubes intersected by KK is precisely the set of cubes intersected by K(a).

(Since the cubes are defined as closed sets, the last condition can be ensured

by a sufficiently close approximation to K(a) .)

If 7(5) > ^ , then the Lemma is proved, so assume that 7(5) < ^ .

Then, letting T = S n KK and f = S n KK, we have

Voln(S)
Vo\n(T)>Vo\n(SnK(a))> 18

14



By the classical isoperimetric inequality, [Milman and Schechtman 1980, page

125]7

where cn = Voln(5).

But we know that Vol^T) < Voln(KK) < cnr
n(l + a + Sy/n)n < 2.5cnr

n.

Substituting this for the denominator for the above expression, we get

>

Consider the set T\ = (dT\dKK). This set consists of the union of parts of

facets of cubes with the property that on one side of the facet is a cube in S

and on the other side is a cube in S. So we have \(S, S)\ > Voln_i(Ti)/£n~1.

Thus if the volume of 7\ is at least half the volume of dT, by the above

inequality on Voln_i(c?T), we have a lower bound on 7(5), of 20Q
1
0n3. This

would give us the Lemma. So assume that the volume of T\ is at most half

the volume of dT. Then, letting T2 = (dT) n (dKK), we have that

We define similarly 3\ = (dT \ dKK). If the volume of 2\ is greater than

or equal to Voln(5)/(100n1/2), this would again imply i(S) > ^ok^- B u t

7(5) = 7(5) |5| / |5 | > 7(5), and so this would imply that 7(5) > j ^ .

This would complete the proof of the Lemma. Assume this fails. Then,

letting ?2 = (dT) n (dKK), we have

V o U - l ( T 2 ) ^
7This inequality states that the ball has the least surface area to volume ratio among

all (reasonable) subsets of Rm .

15



Now one of the two sets T2, T2 must have at most half the (n — l)-volume of

dKK. We treat the two cases :

Case 1 : T2 has at most half the volume of dKK. Then by using the

inequalities of Berard, Besson and Gallot [1985], (see Proposition 6), we have

that

n_2(c?r2) >

Now each point in dT2 belongs to a facet F with an 5 cube on one side and

an S cube on the other. Thus dT2 is the union of (n — 2) dimensional pieces

of the form F H dKK. By convexity, each such piece has (n — 2) volume

bounded above by the (n — 2) dimensional volume of dF which is less than

2n6n~2. Thus the number of such pieces (and therefore |(5, S)\) must be at

least <52|5|/(1000n7/2), so we have the Lemma in this case.

Case 2 : In this case, arguing symmetrically, we have j(S) > £2/(1000n7/2)

and since j(S) > 7(5), the proof of Lemma 1 is now complete.

Now we extend the Lemma to the technical Markov chain.

Lemma 2 If S is any subset of states of the technical Markov chain with

Cs < \ then we have

l{S) > £2/(18000n7/2).

Proof Let S' be the cubes in S that actually intersect K(a) and let S'

be the cubes not in 5 that actually intersect K(a). Now by Proposition 11

16



If, \(S,S)\ > \S\/2, then clearly 7(5) > i, so assume not. Then we have

\S'\ > |5|/18. We may similarly assume, |S'| > \S\/18. Lemma 1 yields :

Lemma 2 now follows.

Theorem 1 follows now from Lemma 2, Theorem 2 and the fact that

), VS.

4. Technical Results

Proposition 1 Suppose K is a convex body in Rn such that B C K

and e is a positive real. Then for any y in Rn \ (1 + e)K, and z in K, we

have \z — y\ > e.

Proof : Let v.x < (1 + e) separate y from (1 + e)if, i.e. v • y > (1 + e)

and for all z in if, i; • (1 + e)z < (1 + e). From the last inequality it follows

that v - z < 1 and so we have v • (y — z) > e. ^From the fact that if contains

5 , we have \v\ < 1 and hence we must have \y — z\ > e.

Proposition 2 With the same hypothesis as before and e < 1, we have

y G (1 — e)K implies that the distance from y to the boundary of K is at

least e.

17



Proof : If z is on the boundary of K, there exists a vector v such that

v - z = 1 and v • x < 1 for all x in K. So we have v • (z — y) > e and again

M < 1? so |z — y\ > e.

Suppose K is a convex body in R n such that B C K. Consider a division

of R n into "cubes" of side 77 (i.e. cubes of the form {x : rrtiT] < xt <

(mt- + 1)77 for i = 1,2,. . . , n} where mt- are integers) where rj < ^JJ. Let K1

be the set of cubes that are wholly contained in K and KB the set of cubes

that intersect both K and R n \ K. Then,

Proposition 3

\KB\ < 3rz3/2r7|/^J|.

Proof : Any point y in any cube in KB is at distance at most rj^/n from

jftT, so by Proposition 1, it is contained in (1 + 7]y/n)K. Further, y is at

distance at most r\>Jn from the boundary of K, so it is not in the interior

of (1 — 7jy/n)K from Proposition 2 . These together imply that the cubes in

KB are all wholly contained in the closure of (1 + rj^/n)K \ (1 — r}y/n)K from

which it follows8 that their total volume is at most 2.5n3/27/Voln(/^) which

implies that \KB\ < 2.5n3'2Vo\n(K)/rt
n-1. The cubes in KB, K1 together in-

clude K, so we have \KB\ + |/^7| > Vo\n(K)/r]n and the Proposition follows.

Proposition 4 If K contains the unit ball, then the number of cubes
8Observe that, i f O < y < l < z < ( l + a/n), then xn - yn < nea(x - y).

18



that weakly intersect K(a) is at most three times the number of cubes that

are fully contained in K.

Proof : Using the same argument as in Proposition 3, this follows from

the fact that any cube that weakly intersects K(a)j but is not contained in

if, is wholly contained in the set

(1 + a + ar + 6^K \ (1 - Sy/n)K.

Proposition 5 If

Vo]»(C(a + a') D K) < (a')Vn_1n-2(-)B~3»<-B+1

then C(a) n K = 0.

Proof Suppose not and x € C(a) n K. Let 0 be the angle between

the line joining x to the origin and any line through x tangent to B. Then

C(a + ctf) fl K contains the intersection of a ball X of radius a' centered at

x and a cone Y of half-angle 0 > 1/r with vertex x whose extreme rays are

the tangents from x to B. The volume of X n Y is

ref
Using the lower bound sin<£ > 2^/TT, for 0 < <f> < TT/2 and integrating, we

get the Proposition.

Proposition 6 Let KK be a convex set in Rn with a C°° boundary.

Let T be a subset of dKK and suppose that Voln_i(T) <
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Then,

Proof: In the following m is a positive integer. Let u?m = /^(sin t)m 1dt.

Then from the relation um = ;-Jirf ̂ m-2? Tn>3 and u>i = 7r,a;2 = 2, we deduce

(inductively) that for m > 2, um > y±-j > ^L. Let A = (1 + mo;m)1/m - 1.

It is easy to see that A > logm/2m? from which it follows that A > 1/m for

all m > 1.

Let M be a Riemannian manifold without boundary of dimension m

with everywhere non-negative (Ricci) curvature and diameter d(M). Berard,

Besson and Gallot show that if il C M is such that

= /?, then

where Sm is the unit sphere and B(f3) is the spherical cap on Sm such that

Volm(£(/?)) _ a

We can rewrite the above inequality as

Now we can show straightforwardly, that the ratio Ar-1 /n/o\\ decreases

with /3j so for fi < 1/2, we get

/ f7r/2
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using the inequality cos t < e *2/2 for 0 < t < TT/2.

Thus, V'^Uflf) > Iogm/(4v«(M)).

We use this with M = dKK, m = n — 1, and 17 = T\ Observe that

d(dKK) < 7Ty/n(n +1). A simple calculation now completes the proof of the

Proposition.

For the next Proposition we need to define a function <f> : R n —* R n as

follows: If x E R n let J = {j : \Xj\ > ^ } and £ = $(x) = Zjejtf- Then let

<f>j(x) = x?/£ if j E J , and <f>j(x) = 0 otherwise.

Proposition 7

Let i«i, t*2, ...wn be vectors in R n with |t/t-| = l(Vz) and |ut- — t/j| < )

for 1 < i7j < n. Then E L i <f>i(ui) < 8.

Proof : Observe first that £(ut) > \u{\2 — n • ̂  = ~, i = 1,2,. . . , n. Now

for any i, j we have |ti,-,t|- |ujft-| < ^ ^ and so if |ut-ft-| > ^ then u t> | < 2|wift|

and hence ^ t(u t) < 2u\• < 8u|-. But if |ut-ft-| < ^ then <f>i(ui) = 0 < 8u|t-

trivially. So

t = l t = l

I

Proposition 8

Let C be any cube such that there exists x 6 C D dK(a). Let q be

the closest point in K to x and let u = (x — q)/\x — q\ = (x — q)/a. For

any k such that \uk\ > 1/V2n and any / satisfying 2n < I < 20n, the cube

C = C — IS sign(uk)ek is wholly contained in K(a).
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Proof For /, k as above, let x' = x - 18 sign(u*)e*. Then we have,

\x> - q\> = \x- q\2 - ((xk - qk)
2 - (xk - lsign(uk)6 - qk)

2)

= a2- (2(xk - qk)l6sign(uk) - 1262) <a2- {^L - ^ < (a-Sy/n

where the last inequality uses the fact that 2n < I < 20n. From the above,

we see that a sphere of radius 6y/n around xf is contained in the sphere of

radius a around q which is contained in K(a). This implies that the whole

cube containing x' is inside K{a) proving the Proposition.

Proposition 9

Fix 6 > 0. Let a?i, x2 G dK{9) and let <?i, <?2 be the points in K nearest to

# i , X2 respectively. Let U{ = (#t- — q%)l\xi — qi\ for i = 1,2. Then |ui — u2\ <

2\x1-x2\/0.

Proof: Without loss of generality, move the origin to 91. So, now, qi = 0

belongs to K. We have U{\y — Xi) < 0 for i = 1,2 and y G K(6). (Otherwise,

we would have X{ G int/^(^).) Putting i = 1, y = x2 gives Ui • x2 < 6 and

i = 2, y = ^u2 gives 0 < u2 • x2. Thus, ^i • a;2 < u2 • x2. Now,

- 29u2 • x2 + 62 < \x2\
2 - 2^ua - x2 +

Hence |o;2 — 0u2\ < \x2 — 0ui\ = \x2 —

Now
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Proposition 10 : If S is any set of cubes meeting K{a), with S1 the

subset of cubes in S that are wholly contained in K(a) and SB = S \ S1, we

have,

Proof : Let C" be any border cube and let x 6 C D dK(a) ; let q be the

nearest point of K to x. Let u = (x — q)/\x — q\. Now, let J = {j : |WJ| >

l/v^2n}, let ê  = sign(uj)ej for j G J. Then, we know that Cj = C'—2n8etj C

if (a). Suppose first that some Cj, j £ J is not 5. By convexity, the whole

"stack" of cubes between C and C meets K(a), and thus there is an (5, S)

facet F somewhere between C and C". In this case, we will associate all

the volume of C with one such facet F. Note that any one facet may only

"receive" the volume of a stack of 2n cubes by this process. If Cj is in S for

all j G J, we do the following : for each j £ J, we associate <f>j = Uj/(Y^ieJ ul)

of the volume of C with Cj.

Now any (5, S) facet receives volume at most 2n8n. Thus the volume

mapped onto all (S,S) facets is at most 2n8n\(S, S)\.

Now consider an inside cube C. This is mapped onto by border cubes

C^ ,using a direction ±e^, for k 6 A C {1,2,..., n}. We use superscript (k)

to refer to quantities associated with

Now \xW - x^\ < 6y/8n2 + n - 2 < 3n5. Thus, by Proposition 9, we

have

But, the total volume mapped onto C is

6n J2 Mu(k)) < 86n by Proposition 7

Thus the total volume mapped onto inside cubes is at most
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Proposition 11

Let K be a convex body containing the unit ball and let S be a set of

cubes that weakly intersect K(a). Let S' C S be those cubes which actually

intersect K(ct). Then

Proof : Let C G S - S". Then there exists x G C 0 dK(a + a7). Let

y G /{ be the nearest point to x in if. Then a <• \x — y\ < a + a' and

u = jfẑ T- Now let J = {j : \UJ\ > -75̂ } and observe now that if j G J then

the point x — sign(t/j)£ej is at distance at most a from y and so is in K(a).

Hence for every J G J the neighbouring cube Cj across the face Fj in the

direction sign(uj)ej meets K(a). If there exists j G J such that Cj ^ 5 then

we map all of the volume of C onto any such Cj. Otherwise we share out

the volume of C by mapping <f>j(u)6n of it to Cj G S' for j G J. The result

follows (as in Proposition 10) once we have shown that a cube in Sf has at

most 86n in volume mapped onto it in this way. So now let Cf G S' be fixed.

This is mapped onto by cubes C(*> G S - 5', using z ^ , tx<*>, A: G if Cl,2,...,n

(in the notation of Proposition 10). Now

which implies

and hence (Proposition 7)

u^)8n < 86n.
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Remark: The term 2n|(5, S)\ in the inequality of Proposition 10 can be

replaced by 8\/2n\(S, S)\. This is done by modifying the argument, and using

a strengthening of Proposition 9 to show that an inside cube can be reached

in distance 8\f2nju\t. However it turns out that this is not the dominant

term in the complexity analysis, so we have omitted this refinement.

5. Remarks

Remark 1 If the convex body K is a polytope given explicitly by its

constraints, then we can just use the natural random walk - since it is now

possible to test in polynomial time if the body intersects C{ot) for any cube C.

This is done by solving a quadratic programming problem using the ellipsoid

algorithm.

Remark 2 We do not quite need the oracle we have described. We may

instead use the so-called "weak membership oracle" (Lovasz [1986]). A "weak

membership oracle" for a convex body K does the following : given a point

x and a rational A, it tells us (in unit time) either (i) x belongs to K(X) or

(ii) tells us that x does not belong to K(—\), the set of points in K which

are at distnace at least A from the boundary of K. It is straightforward to

see that such an oracle will do for our purposes.

Remark 3 Given a weak oracle for a convex body K containing the

origin in its interior, it is easy to construct an oracle for the so-called "polar"

or "dual" body K* = {u : max{w • x : x £ K} — min{u • x : x G K} < 1}.

We briefly sketch the argument. Given any t/, we can find the approximate

maximum and minimum of u - x over K to a desired degree of approximation
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using the weak oracle for K (see Lovasz [1986]). Then if the difference

between these is suitably close to 1, we answer yes, otherwise answer no.

Thus, it is possible to find the volume of the polar body given an oracle for

the "primal" body.

Remark 4 We can integrate any bounded nonnegative concave function

defined over a convex body K in Rn . This is because we can express JK f

as Voln+iiK^ where Kx = {(xyt) : x G K and 0 < t < f(x)}. Some non-

concave functions that do not vary very rapidly may also be integrated by

sampling values at random points (using our random walk to choose the

points).

Remark 5 It would be interesting to show that the random walk over

cubes that intersect any well-rounded convex body K is rapidly mixing. This

would simplify our algorithm by avoiding the use of K{a).

Remark 6 We suspect the following result is true. If so, it would give

us the required isoperimetric inequality more readily without having to look

at the boundary of the set T2.

Suppose K is any convex body in R n and S is some measurable subset of

it. (It may or may not be necessary to assume any other properties of S like

smoothness or connectedness.) If the volume of S is at most half the volume

of K, is it true that the "exposed surface area of S", i.e. the (ra — 1) volume

of dS \ dK is at least the n volume of K divided by a fixed polynomial in

n,d(K) ? (Here d(K) is the diameter of K.) It is also possible that such a

result may hold for nonconvex K as well, where now the denominator is also

a function of the least (Ricci) curvature of the surface of K.

Remark 7 The random walk enables us to generate a random point in a

polytope with nearly uniform distribution. Of some interest, for example, is

the following polytope P in Rn2 where the variables are {xij, 1 < i,j < n}
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and P = {x : 0 < X{j < 1 , x^ + xjk < xik Vi, j}. The points of P for

example give us "costs" on the edges of a graph on n vertices which satisfy

the triangle inequality. We expect that the random generation aspect of our

result will have other applications.

Remark 8 As we remarked immediately after the algorithm, we con-

jecture that the bound of 0(n19) can be improved. Here we discuss some

limits on the improvements. The diameter of the Markov chain we have is

O(r/6) which is O(n4). By working carefully through the proof of Lemmas

1 and 2, and taking note of Theorem 2, we see that the dependence of our

upper bounds on the number of steps for rapid mixing on the diameter of

the Markov chain is the fourth power of the diameter. (The $ 2 of Theorem

2 contributes a 2 and Lemmas 1 and 2 already have a 2 in them.) By well-

known results, (see Aldous [1981-1982], example 5.7), the dependence cannot

be improved below the square of the diameter, even in the simple case that

the convex body is a cube. (In fact, for the 1-dimensional random walk with

2 reflecting boundaries, after t steps, we are expected to be only at distance

y/i from the starting point.) Thus, with our random walk, the best bound

on the number of steps needed for rapid mixing is ft(n8). Thus, we must re-

duce the diameter of the Markov chain for more improvements. If the result

stated in Remark 5 is true, then there is no need for going to K(a). Then

going through our arguments carefully, it can be seen that 8 = 1/O(n3/2)

will work, whence the diameter will be O(n3).
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