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Abstract

This paper presents two hypergraph compositions which

preserve balancedness. Polynomial decomposition algorithms are

also presented. The hope is that such compositions will lead

to a polynomial algorithm for recognizing balanced hypergraphs.

The relationships between totally unimodular, balanced and

perfect matrices are also briefly discussed.



Introduction

Consider the integer linear program given below.

(IP) max ex

subject to Ax <_ b

x integer

where A is an m x n zero-one matrix, c is an n-vector of

integers, and b is an m-vector of integers. The linear program-

ming relaxation of IP is:

(LP) max

subject to

ex

Ax <̂

x >

b

0.

Currently, there is no polynomial algorithm for solving IP,

but there is a good algorithm for solving LP. The value of the

objective function for an optimal solution to LP is always greater

than or equal to the value of the objective function for an optimal

solution to IP, so a solution to LP provides an upper bound on

solutions to IP. We are interested in under what conditions on

A and b this bound is tight.

Definition; A 0,1,-1 matrix A is totally unimodular if the

determinant of every square submatrix is 0 or +1.

In 1956, Hoffman and Kruskal showed that a basic optimal

solution to LP is an optimal solution to IP for all b if and



only if A is totally unimodular. By restricting b to b = e,

a vector of ones, we get a more general class of matrices for which

a basic optimal solution to LP is also an optimal solution to IP.

Define IP1 to be the integer linear program below:

(IP1) max c'x1

subject to A'xf ^ e1

x1 integer

where A1 is a submatrix of A and e 1, c1 and x1 are the

compatibly dimensioned vectors. Let LP1 be the linear programming

relaxation of IP1.

Definition (Berge 1972) : Let A be any zero-one matrix. A is

balanced if a basic optimal solution to LP1 is also an optimal

solution IP1 for all submatrices A1 of A.

Since A being totally unimodular implies a basic optimal

solution to LP is an optimal solution to IP for any integer

vector b, a totally unimodular zero-one matrix is balanced.

There is a nice characterization of balanced matrices

due to Berge [1], and Fulkerson, Hoffman, and Oppenheim.

Theorem 1; Let A be any m x n matrix of zeroes and ones.

Then A is balanced if and only if A does not contain any odd

submatrices with row sums and column sums equal to two.



Although there is a nice characterization of balanced matrices,

there is no polynomial for determining whether an

arbitrary zero-one matrix is balanced• The remainder of this

paper is devoted to observing some properties of balanced matrices

which may help with this problem. Before examining balanced matrices

more closely, there is one more type of matrix the reader should

be familiar with. Again we require b = e and define IP and LP

as before.

Definition; Let A be any zero-one matrix. A is perfect if

a basic optimal solution to LP is also an optimal solution

to ip.

Since A being balanced implies a basic optimal solution

to LP1 is also an optimal solution to IP1 for all submatrices

A1 of A including, of course, A1 = A, a balanced matrix is

perfect.

If the reader is familiar with perfect graphs, he may be

wondering about the connection between perfect matrices and

perfect graphs. Any graph G can be described by a zero-one

matrix A = [a..] with the rows of A corresponding to the

cliques of G and the columns of A corresponding to the

vertices of G. a. . = 1 if clique i includes vertex j. An

augmented clique matrix is the clique matrix described above,

possibly augmented with some redundant rows corresponding to non-

maximal cliques.



Theorem 2; A is perfect if and only if A is an augmented

clique matrix of its derived graph and its derived graph is

perfect.

In a similar way, balanced matrices can be related to balanced

hypergraphs.



Background

The definitions and results of this section are due to Berge.

Definition: Given a finite set X = {x1#...,x } and a family

£ = (E.|i € I) of subsets of X, if £ satisfies:

(i) E ± * 0, i £ I,

(ii) U E. = X,
1

then H = (X,£) is called a hyper graph. The elements x-,x , ...,x

are called the vertices of H and the sets En,Eo,...,E are1 z n

called the edges of H. Two vertices x.fx. are adjacent if

[x. ,x.} 5 E for some k € I.
1 3 K

Write x. adj x. if x. is adjacent to x., and x. p&i x.

if x. is not adjacent to x..

Hypergraphs can be represented by drawing a point for each

vertex and a curve enclosing the vertices in E. for each edge

with JE.| > 2. If |E.| = 2, E. is drawn as a line segment

connecting the two vertices as in a graph. An edge with |E.I =1

is drawn as a loop. See Figure 1. A hypergraph with |E.| £ 2

for all i 6 I is a multigraph.

m

x = {1,2,3,4,5}

e = £U,2,3),£2,4#5),{3,5},UJJ

Figure 1. A hypergraph.



Definition: In a hypergraph H = (X,e), a chain of length 3

is defined to be sequence (Xj,E1,x2,...,E ,x + 1) such that

(i) xlfx2/...fx are all distinct vertices of H,

(ii) E1,E2,../fE are all distinct edges of H,

(iii) x
k/

x
k + 1 £ E k for k = l,...,q.

If q > 1 and x g + 1 = x ^ then this chain is a cycle of length 3.

Definition; A hypergraph H is balanced if every odd cycle

(xlfEirx2#...fE2 lfx1) has an edge E. that contains at least

three vertices x. of the cycle.

The reader (hopefully) is now wondering about the connection

between balanced matrices and balanced hypergraphs. Well, we can

consider any zero-one matrix to be the edge-node incidence matrix

of a hypergraph. A matrix A is balanced if and only if it is

the incidence matrix of a balanced hypergraph.

The next section of this paper describes a method of decomposing

a balanced hypergraph into two smaller balanced hypergraphs. This

decomposition principle has been used extensively in efforts to

characterize perfect graphs. The decomposition discussed here

has been shown to preserve perfection when applied to perfect

graphs. Before going on, we need a few more definitions.

We can associate a graph G with each hypergraph H = (X,£)

by letting X be the vertices of G and two vertices xj/ x-; b e

joined by an edge if there is an E^ € £ with {xi#x. } 5 E^.



Definition: A hypergraph H = (X,£) is conformal if the set of

maximal cliques in G is equal to the set of maximal edges of H.

Berge has shown that balanced hypergraphs are conformal.

Definition: A partial hypergraph of H = (X,£) generated by a

family 3 c £ is defined to be the hypergraph (X ,3) where

X = U £„ E.. This corresponds to an edge-induced subgraph.
i

The subhypergraph of H = (X,£) generated by the set A c. X is

defined to be the hypergraph H = (A,£ ), where

£_ = [E. 0 A|E. € £, E. 0 A ^ 0}.
A. 1 1 1

This corresponds to a node-induced subgraph.

If H is a balanced hypergraph, then every partial hypergraph

and every subhypergraph are also balanced.

Definition: Given a hypergraph H = (X,£), a q-coloring of H

is defined to be a partition of X into q sets S ,S , ...,S ,

each corresponding to a color, with no edge E. fc £ contained in

S., j = 1,...,q.

Theorem 3 (Berge): A hypergraph H = (X,£) is balanced if and

only if for every S ^ X, the subhypergraph Hg is bicolorable.

Proof:

(«=) If every subhypergraph of H is bicolorable, then H

is balanced because otherwise there exists an odd cycle

( a ^ E ^ a2,. . . fE , a ) with no E. containing three of the a.

and S = {a1,a2,...#a } generates a subhypergraph H which is



not bicolorable.

(=0 Let H be a balanced hypergraph that is not bicolorable,

with minimum order n = |x|. We shall contradict the minimality

of n.

1) Show that each vertex x belongs to at least two

distinct edges of H with exactly two elements. The subhyper-

graph H Q generated by X - {x } is balanced (since H is

balanced) and has order n - 1. Since H is of minimum order,

H Q has a bicoloring (S-,S 2). If x Q did not belong to an edge

with exactly two elements, then (S1 U [xQ],S2) would be a bicoloring

of H. If x Q belongs to only one edge with two elements, and

if the edge's other endpoint lies in S.., then (S..,S2 U {xQ})

would be a bicoloring of H. Hence, x~ belongs to at least two

edges with two elements, say (xQ,y) and (xQ,z) with y ^ z.

2) Denote by Q the family of edges with exactly two

elements. Consider the partial hypergraph G = (X,Q). G is

balanced and since |G-| = 2 for all G. € Q, G is a multigraph.

Since G is balanced, G is bipartite. (No edge of G contains

three vertices, so G cannot have an odd cycle.) Consider a

connected component C of G. Since G has at least three

vertices (from 1 ) , there exists at least one vertex x- in C

which is not an articulation point-

3) Consider the subhypergraph H 1 generated by X - [ x ^ .

It is balanced and has order n - 1, Therefore HL admits a

bicoloring (S-,S 2), and all vertices adjacent to x- in G

have the same color. Let S- be the set of vertices with this



color. Thenf (S-,S« U [x }) is a bicoloring of H because each

edge of H with two elements is bicolored (since it is an edge

of G), and each edge of H with more than two elements is also

bicolored (because its intersection with X - [x } is bicolored),
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Decompositions

Given two graphs G- and G2, define the i-join composition

as follows:

For j = 1,2, consider a qligue of size i in G.

with vertices £v:J, •. . ,v? ] and let U. be the remaining

vertices in G.. Assume no vertex of U. is adjacent to

more than one vertex vP. The composed graph G- * G~ is

1 °
obtained by deleting v h and ^ for each h = l,...,i

1 2

and joining every neighbor of v, to every neighbor of v, .

It is known that when i = 1 or 2, the i-join composition

preserves perfection. (See, for example, Bixby [3], Cornuejols

and Cunningham [4].)

We can generalize this composition to hypergraphs as follows:

Let H- and H 2 be hypergraphs• For j = 1,2, consider

an edge E. in H. with |e.| = i and

e. = [v?,...,v?} and let U. be the remaining set of vertices

in H.. Assume no vertex of U. is adjacent to more than

one vertex vP. The composed hypergraph H- * H is obtained by
1 2 1

deleting v, and v, and for each pair of edges E, containing
1 2 2

v, and E, containing v, replacing them with the single edge
E - E i u Eh^h'vh>-

Lemma 1: Let H be obtained from the i-join of H1 and H .

Let K be a subhypergraph of H, but not a subhypergraph of H-

or H2. Then K = K- * K2 for some subhypergraph K- of H-

and K 2 of H2.
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Proof; Define

V(K1) = {V(K) Hvd^)} U {v*,...,v*3

V(K2) = [v(K) nv(H2)} u W*,...,v*3

where [v^,...,v-?3 are the vertices joined in the i-join of

H1 * H2. Let K. denote the subhypergraph of H. generated

by V(K.) , j = 1,2.

Claim: K = 1^ * K2«

Clearly, V(K) = V(K1 * K2>.

Let E be an edge of K. If E 5 V(K.) for some j = 1,2,

then E 6 £(K, * K 2 ) . Otherwise, partition E into two sets

E± = {E n Vd^) j c: V(EX) and E2 = {E H V(K2> } c V(H2> . E € e(K)

so E_c E1 € £(H) since K is a subhypergraph of H. An edge

of H contains vertices of H. and H2 only if there exist

edges EJ = [E1 flV(H1)] U [v^j and E'2 = [E' flV(H2)] U {v^j

for some h = l,...,i. Hence, E. U {v^} € £(K.), j = 1,2 and

E € £(1^ * K2) .

Now let E be an edge of *1 * K2. If E c v(K.) for some

j = 1,2, then E € G(K). Otherwise partition E into two sets

Ex = [EH V(K1) 3 c: V(H1) and E2 = {E fl V(K2) 3
 c V(H

2> •
 T h e n

there exist edges EJ e £(1^) containing E1 U [v^3 and E' € fc

containing E2 U {v,} for some h = l,...,i which implies

E € £(H); E € £(K) since K is a subhypergraph of H.

Theorem 4; Let two balanced hypergraphs H- and H~ be given.

For j = 1,2, consider a subset e. of an edge E. in H.

with |e.I = i and e. = {v^, ,v?} and let U. be the remaining
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set of vertices in H.. Assume no vertex of U. is adjacent

to more than one vertex v^* Let c(v^) denote the color of
n n

vertex vP in a bicoloring of H.. If H and H 2 admit bi-
1 2

colorings such that c(vu) ^ c^ vh^' then the hypergraph

H = H1 * H 2 formed by this i-join composition is balanced.

Before proving the theorem, let's think about the hypotheses,

At first they seem terribly restrictive, especially since there

is no easy way to find bicolorings of hypergraphs, but for

i = 1 or 2, the hypotheses always hold and for i = 3 there

is always a bicoloring for which they will hold. In other words,

this theorem says that for i = 1,2 the i-join preserves

balancedness and there is always a way to apply the 3-join so

it preserves balancedness. An interesting open question is

whether there is always a way to apply the 3-join to perfect

graphs so it preserves perfection.

There is also a class of hypergraphs, called unimodular

hypergraphs (their edge-node incidence matrices are unimodular) ,

which admit equitable bicolorings, i.e., the edges can be colored

with two colors in such a way that an even cardinality edge has

exactly the same number of vertices of each color and an odd

cardinality edge has one more vertex of one color than the other.

So this theorem also states that as long as there is

an edge E. in H. of cardinality i for j = 1,2, there

is a way to apply the i-join to two unimodular hypergraphs

so that the resulting hypergraph will be balanced.
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Proof of Theorem 4: Consider the bicoloring of H.̂  and H2

and the family of edges 3-J = [EJ : v^ £ EJ, E^ * ivh^- For

all E Z £ 3{]/ E^\[v^3 contains a vertex whose color is not then n n n

color of vj*, h = l,...,i, j = 1,2. All new edges E formed

1 1 0 0
by the i-join contain E, \{v, 3 and E, \{v, } for some h = 1

Since c(v, ) # c(v, ) , E contains vertices of both colors, i.e.
n n

H admits a bicoloring.

To show H is balanced, we must also show that any sub-

hypergraph K of H admits a bicoloring. If K is a sub-

hypergraph of H. for some j = 1 or 2, K is balanced and

so K admits a bicoloring. Otherwise, by Lemma 1, K = K- * K^

for some subhypergraphs K- of H- and K2 of H2. K- and K

are balanced so we can apply the above argument to K = K- * K2

to show K admits a bicoloring.

Such a decomposition is useful in helping to identify

balanced hypergraphs only if there is a polynomial algorithm for

recognizing how to decompose a hypergraph into its smaller

components. The algorithms for decomposing graphs are given in

Cunningham [5] and Cornuejols and Cunningham [4]. The algorithms

given below and the proofs that they work are essentially those

given for graphs.

and

Consider the hypergraph H = (Xf£) with X = [x ,...,x }

£ = [E-,...,E ]. Assume for convenience that H is

connected. Given a partition of X into two sets (A-,A2),

let B^ = £u € A^ : u adj v for some v € A23 and similarly

for B2. We say (A^A^ is a (join) split of X if:
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(i) |A1I 2
 2 £ lA2l,

ii) u adj v wheneve

H has a join decomposition if and only if it admits a split

(ii) u adj v whenever u £ B-, v € B 2.

To find such a splitf fix an adjacent pair of nodes x,y

and fix z ^ x,y. We will now give an algorithm to find a split

(A^,A2> with x,z € A- and y € A2, or show no such split exists.

To find a join decomposition or show none exists, it is necessary

to apply this algorithm twice, once with the roles of x and y

interchanged, for each pair of adjacent nodes x,y. Thus,

Algorithm 1 is applied 2K times where K is the number of

pairs of adjacent nodes. Note, K <. (2) < n . Algorithm 1

starts with and maintains a partition (S,X^) with S 5 A-,

A2 5 x\s-

Algorithm 1:

Initialization: S = {x,z}, T = S.

While T # 0 do

Select u € T

T = T\{u]

For v € X\S

(1) If u adj y, x adj v, and u &&j v,

then S = S U [v], T = T U [v].

(2) if u adj v, x ̂ 5 v,

then S = S U [v], T = T U [vj.
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(3) If u adj v, u ^#5* y,

then S = S U [v], T = T U [vj.

End for

End while

Justification for Algorithm 1:

(1) Since u adj y and u £ S, u € B^. If v 6 A 2 then

since x adj v, v € B 2 and so u adj v by (ii); contradiction,

so v 6 Aj.

(2) Since x adj y, x £ B., and if v € A 2 then since

u adj v, v € B 2. If v fc A 2 then x adj v by (ii); contradiction,

so v € A-.

(3) Since u ^dj y, y € B 2 and u £ S, u € A-\B-. Since

u adj v, v € A-.

Proposition 1: Suppose Algorithm 1 is applied to H with S

initialized to {x,zj. If |x\g| :> 2, then A± = Sf A 2 = A s

is a split with [x,z] c A . , y € A 2. Otherwise, no such split

exists.

Proof: The second part of the proposition, that |X\s| < 2 implies

no such split exists follows immediately from the fact that

We must show A- = S, A o = X \ S satisfies (i) and (ii) . Of

course (i) is satisfied. Suppose u € B,, v £ B 2. By the

definition of B T # B 2 there exist p € A 1, q € A 2 with

u adj q and p adj v. Since (2) left v € X\S , x adj v

and since (3) left v € X\S , u adj y. Then since (1) left

2 — X ^ a n d ' A 2 ' — 2 f o r a n y S P 1 ^ * N o w suppose that | X\S I >_ 2.
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v € X ^ , u adj v. Thus (ii) holds, so (S,X\S) is a split.

2
Algorithm 1 can be implemented in 0(n ) time (see Cornuejols

and Cunningham [4]). Thus finding a join decomposition or showing

none exists can be done in 0(n K) time.

To find a 2-join decomposition, we need to find a (2-join)

split satisfying:

(if) |AXI > 3 ± |A2I

(ii1) There exists a partition [B.^B.J of B., i = 1,2,

such that if u € B . , v € B2,, then u adj v if and only if

j = k.

The algorithm for finding a 2-join split is an extension of

Algorithm 1. Start with 4 distinct vertices x-\ 'X2'^i '^2 w^-th

x- adj y-, x 2 adj y2, x- ^0?$ y^, and x 2 a#5 Y2*
 W e l° o k f o r a

split (AlfA2) for which x. €B-., y. € B 2 > / j = 1,2. Choose

z # x-fx ,y ,y2# Algorithm 2 below finds a partition with

x-fx2,z € A 1 and Y-i'Y2
 € A 2 # A 9 a i n w e need to apply the

algorithm with the roles of x. and y. interchanged, i = 1,2

and for all possible choices of x ,x2,y-,y2. Algorithm 2 also

starts with and maintains S 5 A-, A 2 c: x\3.

Algorithm 2;

Initialization: S = [ x ^ x ^ z ] , T = S.

While T ± 0 do

Select u € T

T = T\{u]

For v € X\S
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(I1) If u p*3$ v and for some i u adj y. ,

x. adj v,

then S = S U [v], T = T U [v].

(21) If u adj v and x. ^dj v, i = 1,2,

then S = S U [vj, T = T U [vj.

(31) If u adj v and u ̂ d^ y^, i = 1,2,

then S = S U [v], T = T U [v].

(41) If x1 adj v and x 2 adj v,

then S = S U [v], T = T U {v}.

(51) If u adj y- and u adj y2,

then stop.

End for

End while

Justification for Algorithm 2;

(l 1)-^ 1) are justified similarly to (l)-(3) in Algorithm 1.

(41) Since x- adj v, v £ B 2 1 and since x 2 adj v, v € B 2 2

but B ^ H B . 2 = 0, so v € A 1 #

(51) Since u adj y-, u € B.,- and since u adj y2, u £ Bi?

but Bi;L fl B i 2 = 0, so there is no 2-join split.

Proposition 2: Suppose Algorithm 2 is applied to H with S

initialized to [ x ^ x ^ z ] . If |X\g| >_ 3, then A1 = S, A = X\S

is a 2-join split with x-,x2,z € A- and y*,Y0 £ A2. Otherwise,

no such split exists.

The proof of Proposition 2 is similar to the proof of
2

Proposition 1. Algorithm 2 can also be implemented in 0(n )
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2
time. There are K possibilities for xi'x2'yi'y2 so we h a v e

2 2
an 0(n K ) algorithm for the recognition of the 2-join decomposition.

Note* the time bounds given here are given only to show that

the algorithms are polynomial. They are not necessarily optimal bounds,

Applying the 1 or 2-join decomposition to an arbitrary

hypergraph reduces it to two smaller hypergraphs. If these hyper-

graphs are balanced, the original hypergraph is also balanced.

Otherwise, it is not. Presumably, it is easier to determine whether

or not these smaller hypergraphs are balanced than to determine whether

the original hypergraph is balanced. Ideally, a class of

irreducible hypergraphs will be identified for which it is easy

to determine whether or not they are balanced. Then to determine

whether an arbitrary hypergraph is balanced, one would apply the

decompositions necessary to reduce the hypergraph to its irreducible

components and check whether these irreducible components are

balanced.
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Conclusion

This paper presented two compositions which preserve balanced-

ness. It is hoped that they will lead to a method of recognizing

balanced hypergraphs and so balanced matrices. Both compositions

also preserve perfection. There are several other compositions

which are known to preserve perfection, but which do not preserve

balancedness, e.g., clique identification, complementation,

substitution. There is a lot of on-going work in discovering

new compositions which preserve perfection, but not a whole lot

in discovering new compositions which preserve balancedness.

Since balanced matrices are perfect, compositions which preserve

balancedness may also preserve perfection.

There are other ways to approach the problem of determining

when an arbitrary matrix A is balanced. One way would be to

define a minimally unbalanced matrix analogously to a minimally

imperfect matrix and attempt to characterize minimally unbalanced

matrices. (A matrix is minimally imperfect if A is not perfect,

but every column-induced submatrix of A is perfect.) Another

approach is to attempt to develop an algorithm directly from the

fact that any balanced hypergraph can be bicolored.

One would also hope that a method for identifying balanced

matrices could be generalized to recognizing perfect or unimodular

matrices. The decomposition approach and the minimally unbalanced

approach have potential for being extended if they are successful.

The bicoloring approach does not have as much potential.
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