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Abstract

In this study of the behavior for large times of a class of elastic-

plastic oscillators under conservative loading, conditions on the relative

stiffness of the oscillator and the loading agent are given that guarantee

that permanent displacements arising during a motion automatically are

removed in the limit of large times. When these conditions are not met, a

sharp bound independent of initial data is obtained on the magnitude of the

ultimate permanent displacement.
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1. Introduction

The research described in this article is part of an ongoing study in

mechanics that focuses on damping mechanisms that act intermittantly, in

particular, on the damping that occurs when elastic-plastic materials

undergo permanent deformation. In references [1979, 1], [1984, 1],

[1985, 1], [1987, 1], [1988, 1], and [1988, 2], various types of elastic-

plastic oscillators have been analyzed. These simple mechanical systems

are useful model systems for the ongoing study, because they are governed

by ordinary differential equations that mathematically are of independent

interest and they have solutions displaying a rich variety of physically

interesting characteristics. Knowledge of these systems provides a point

of reference for studying the partial differential equations that arise in

more detailed models of elastic-plastic behavior: the properties of

solutions that one deduces from the ordinary differential equations

governing elastic-plastic oscillators become conjectured properties of

solutions of the partial differential equations of plasticity. Moreover,

solutions of the ordinary differential equations describing coupled systems

of elastic-plastic oscillators are candidates for lumped approximations to

solutions of the partial differential equations. (In the lecture notes

[1985,1], MIYOSHI develops the idea of approximation in considerable detail

for one- and two-dimensional problems in plasticity.) In a different

setting, elastic-plastic oscillators also are useful tools in the design of

structures that must withstand large ground motions due to earthquakes,

because they are relatively simple to study numerically, and they display



some of the observed features of structures that are severely deformed.

(See the references in the article [1988,1] for further details.)

The focus of this paper is the description of the behavior for large

times of an elastie-perfectly plastic oscillator subject to a linear

restoring force. This mechanical system also has been studied,

particularly in the engineering literature, in an equivalent formulation as

an unforced bilinear elastic-plastic oscillator. From either point of

view, the principal issues that surround the long-range character of

motions of this system are, first of all, those associated with solutions

of every autonomous system of differential equations', simple stability,

asymptotic stability, and the limiting character of solution trajectories;

second of all, there are issues peculiar to elastic-plastic systems: the

extent to which the system can be permanently deformed, and the amount of

damping that can occur through permanent deformations. In this paper, we

establish for the unforced, bilinear elastic-plastic oscillator the simple

stability of equilibrium points, as well as their lack of asymptotic

stability, we characterize the limiting behavior of the oscillator for all

initial states, and we obtain detailed information about the permanent

deformation that can occur. The main results presented have

generalizations to cases when non-linear forces replace both the linearly

elastic component of the response of the oscillator and the linear

restoring force. We have attempted wherever possible to give proofs of

results for the bilinear oscillators that carry over without substantial

modification to the more general ones.



The most striking results that we obtain center on the discovery of a

critical parameter that separates the motions in which oscillations are

underdamped from those that are overdamped. Underdamped oscillations occur

when that parameter, the stiffness ratio of the oscillator, is one-half or

greater. The permanent deformations that arise during underdamped

oscillations have the curious property of being automatically removed in

the limit of large times, and we say that the oscillator is self-annealing

in such motions. Overdamped oscillation occur when the stiffness ratio is

less than one- half. In overdamped oscillations, permanent deformations

generally do not disappear for large times, but we obtain a sharp bound,

independent of the initial state, on the ultimate permanent deformation.

This paper contains, to a large extent, refinements and extensions of

the results in the Ph.D. Thesis [1984] of THOMAS. Some of these results

also are contained in the paper [1988, 1], where different, mathematically

less detailed methods were used to describe the phenomenon of

self-anneal ing in the context of earthquake engineering. In particular,

unlike the bound obtained in this article, the bound on permanent

deformations obtained in the paper [1988, 1] is not sharp.

While we were preparing this article for publication, we learned of

the lecture notes of MIYOSHI [1985, 1], in which both ordinary differential

equations and partial differential equations in the theory of plasticity

are formulated and analyzed. The discussion of Chapter 2 in [1985, 1]

covers the elastic-plastic oscillators discussed here in Sections 2-6 when

the external force b in MIYOSHI's model with kinematical hardening is put



equal to zero, and MIYOSHI's Theorems 2.3 and 2.9 are counterparts of our

Theorems 3.1 and 5.1. MIYOSHI does not give results corresponding to our

principal results, Theorems 6.1, 6.2 and the bound (6.9).

In Section 2, we formulate the autonomous systems of ordinary

3

differential equations in R that governs the motions of the unforced,

bilinear elastic-plastic oscillator, and in Section 3 we show that the

corresponding initial value problem is well posed. The main feature of

solution trajectories that emerges in Sections 2 and 3 is their piecewise

planar character, corresponding to the alternating elastic and plastic

character of deformations of the oscillator. In constrast with the

oscillators studied in [1978, 1] and [1987, 1], transition times that

separate elastic from plastic segments of a trajectory for the oscillators

studied here can accumulate only in the limit of large-times. In Sections

4, 5, and 6, the large-time behavior of unforced, bilinear elastic-plastic

oscillators is discussed in detail, culminating in Section 6 with the

principal results on self-anneal ing. In Section 7, we describe a more

general class of elastic-plastic oscillators for which generalizations of

the results in Sections 2-6 can be established.



2. Formulation of the Problem

The mechanical system that we study here consists of a rigid mass

supported by a thin rod and acted upon by a conservative restoring force.

We assume that the rod undergoes homogeneous, longitudinal motions and that

the restoring force is applied in the direction of motion of the rod, so

that the mass moves parallel to the longitudinal axis of the rod. In

Sections 2 through 6 we consider the case where the rod is comprised of a

linearly elastic-perfectly plastic material and where the restoring force

is linear. In Section 7 we discuss briefly more general cases that allow

for a non-linearly elastic-perfectly plastic material in the rod and a

non-linear restoring force.

Let X denote the position of a point in the rod in a reference

configuration, and let X and X~ denote the positions of the upper and

lower ends of the rod in that configuration. The lower endpoint is

attached to the rigid mass m, and the length Xp - X of the rod in the
Hf U

reference configuration is taken to be one. The restriction to homogeneous

deformations is obtained by considering only motions of the rod of the form

x(X,t) = X u + X(t)(X - X u ) , (2.1)

where x(X,t) is the position at time t of the point in the rod at X in

the reference configuration and X(t) is the deformation gradient in the

rod at time t. The velocity of the mass at time t is given by



= X(t) . (2.2)

where the superposed dot denotes differentiation with respect to time. We

assume that the conservative restoring force f(t) acting on the mass is

proportional to the displacement of the mass

u(t):=?x(Xrt) - X£ = X(t) - 1. (2.3)

so that there is a positive constant k such that

f(t) = -ku(t). (2.4)

The force cr(t) that the elastie-perfectly plastic rod exerts on the mass

cannot exceed a yield value a ,

k(t)l ioy. ' (2.5)

and is related to the motion of the lower endpoint of the bar through the

constitutive equation:



a(t) =

0, if |a(t)| = a y and

a(t)X(t) I 0

, otherwise

(2.6)

in which u is a positive number called the elastic modulus of the bar.

The equation of motion of the mass

mv(t) = f(t) - a(t)

and the constitutive equation (2.6) now can be expressed in terms of the

displacement u(t) and the velocity v(t) = u(t) of the mass:

mv(t) = -ku(t) - a(t)

a(t) =

' 0, if |a(t)| = a and

a(t)v(t) I 0

uv(t), otherwise

It is useful to introduce the elastic displacement

(2.7)

(2.8)

ue(t):= (2.9)

and the plastic displacement

"p(t):= u(t) - ue(t) (2.10)



into the relations (2.5). (2.7) and (2.8) to obtain:
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(2.11)

mv(t) = -k(ue(t) + up(t)) - (2.12)

ue(t) =

0 , if |u (t)| = a and

Lv(t)

ue(t)v(t) I 0

otherwise

(2.13)

u (t) =

v(t), if |u (t)| = a and
e

0

ue(t)v(t) 1 0

otherwise

(2.14)

The positive number a:= a /\i is called the yield displacement. Relations

(2.12)-(2.14) are the basic governing equations of the linearly

elastic-perfectly plastic oscillator subject to a linear restoring force.

Together with the constraint (2.11), the governing equations determine the

evolution of the triple (vtu ,u ).
e p

Because the velocity v is the derivative of the displacement u of

the mass, specif ication of the displacement on a time interval in the

relations (2.13) and (2.14) along with the bound (2.11) leads to a system
of relations that should determine u and u as functionals of u.

e p

When the net force F:= (k + jx)u + ku is plotted in a u - F plane,

with u and u the functionals of u determined by (2.11), (2.13) and



(2.14), one obtains the characteristic force-displacement curves of a

bilinear hysteretic element. Therefore, a solution (v,u ,u ) of

(2.11)-(2.14) determines the displacement u = u + u of a freely

vibrating mass supported by a bilinear hysteretic element. It is in this

formulation that one finds studies of the system (2.ll)-(2.14) in the

engineering literature. (See the article [1988, 1] for an analysis of some

aspects of this system from the point of view of earthquake engineering.)

HP

The term "bilinear" follows from the fact that the slope -=— of the force-

displacement curve is given by:

dF
du

if |ue| = a

and u u > 0 (2.15)
e

k + \i , otherwise,

so that the force-displacement curve is comprised of line-segments of

slopes

kj:= k + JLX and k2:= k. * (2.16)

The stiffnesses k- and k^ and the yield strain a characterize the

bilinear, hysteretic element. As our discussion in Section 6 will reveal,

the stiffness ratio

(2.17)
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plays an important role in describing the long-term behavior of solutions

(v,ue,up) of (2.11)-(2.15).

We shall use either the phrase linearly elastie-perfectly plastic

oscillator under a linear restoring force or the shorter phrase unforced

bilinear elastic-plastic oscillator to describe the mechanical system

embodied in equations (2. ll)-(2.15). It is natural to try to decompose

locally in time each motion of that system into finitely many elastic

segments, i.e., segments on which u is constant, and finitely many

plastic segments, i.e., segments on which u is constant. On an elastic
e

segment the motion is governed by (2.11), (2.12), (2.13)2> and (2.14)2,

while on a plastic segment the motion is governed by (2.11), (2.12),

(2.13)- and (2.14)-. As natural as this decomposition appears, there are

examples of elastic-plastic systems where such a decomposition does not

exist. For example, the linearly elastic-perfectly plastic oscillators

under general forces studied in the article [1978, 1] can undergo motions

during which elastic segments and plastic segments alternate and accumulate

backwards in time to an initial time. The existence of such an initial

time precludes a local decomposition of the motion into finitely many

elastic and plastic segments; the mathematical consequence of this fact in

the analysis of general forces is the necessity of seeking solutions of the

governing equations that are not necessarily locally piecewise smooth.

Nevertheless, for the linear restoring force -k(u (t) + u (t)) studied

here, as well as for the more general conservative forces discussed in

Section 7, it will emerge that every motion can be decomposed locally in
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time into finitely many elastic and plastic segments, and this fact

underlies the choice of smoothness requirements that we make in Section 3

on solutions of (2. ll)-(2.14). These smoothness requirements translate

into the geometrical restriction that the solution trajectories of

(2.11)-(2.14) in v - u - u space locally be piecewise planar, i.e.,

each trajectory can be partitioned locally in time into finitely many

segments in planes u = constant or planes u = constant. The

possibility that these planar segments can accumulate as the time t tends

to +00 forms the central theme of our discussion in Sections 5 and 6.
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3. Qualitative Results for Initial Value Probl*

Our discussion in Section 2 leads us to formulate initial value

problems (IVP), (IVP)£, (IVP)+, and (IVP)_ associated with the unforced

bilinear elastic-plastic oscillator. In stating these problems below, we

let a.k.jx € K be given, and we use the following additional notation

and terminology-

y:= {(v.ue,up) €R3 | | u e U «}

• • • state space

:= {(v.u .u ) € K3 | u = a. v > 0}
6 D C

••• upper yield surface

:= {(v.ue,up) € K
3 | u e = -a, v £ 0}

••• lower yield surface

:= «+ U flf ••• space of plastic states

g:= y\« ••• space of elastic states

(IVP): For each xo € y\ find a continuous, locally pieceu>tse continuously

different table function x = (v.u ,u ) : [0,«>) -» ̂ such that, for every t

at itfitch x is differentiate, x satisfies (2.11)-(2.14), and x

satisfies the initial condition

x(0) = xo. (3.1)
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(IVP) ". For each xo € V and tQ € [0,<*>), find a continuously
3

differentiable function x = (v,ue,u ) : [to,«>) -* K that satisfies

(2.12), (2.13)2 and (2.14)2 at each t € [to,«>) and that satisfies the

initial condition

x(tQ) = xo. (3.2)

(IVP) : For each xo = (vo.uo.uo) € <S/~ with vo ̂  0, and for each

tQ € E0*00)* flnd t
1 > tg

 a n d a c o n t l n u o u s ly differentiabie function

x = (v,ue,u ) : [tQ.tj) -*«* that satisfies (2.12), (2.13)lf and (2

at each t € [tQ.t-) and that satisfies the initial condition (3.2).

To save space, we have combined the statements of (IVP) and (IVP)_

into one statement in which either only the plus signs should be read or

only the minus signs should be read. Note that the initial time is 0 for

(IVP), but it is an arbitrary non-negative number tQ for (IVP)g, (IVP)+f

and (IVP)_. Moreover, solutions of (IVP) are required only to be

continuous and locally piecewise continuously differentiable, i.e.,

continuous and, on every interval [0,T] with T > 0, piecewise continuously

differentiable, whereas solutions of the other initial value problems are

required to be continuously differentiable. Solutions of (IVP) and of

(IVP)g have domains an interval of the form [to,-n»)f with tQ 2 0, whereas

solutions of (IVP)+ and of (IVP)_ can have domains that are bounded

intervals. Finally, solutions of (IVP) take their values in the state

space y, solutions of (IVP)+ and (IVP)_ take their values in proper
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subsets of V and V , respectively, and solutions of (IVP)- can take

3

their values anywhere in IR .

Our goal in this section is to show that (IVP) is well-posed, and that

all solutions of (IVP) can be constructed by patching together solutions of

the problems (IVP)g, (IVP)+, and (IVP) . We use explicit properties of

solutions of the latter problems to show that the patching procedure never

breaks down, i.e., always yields a solution of (2.ll)-(2.14) that is

continuous and locally piecewise continuously differentiable on the entire

half-line [0,«>). We then use uniqueness of solutions of (IVP), established

by means of a simple energy inequality, to show that the patching procedure

yields all solutions of (IVP).

Before we discuss the details of the method of patching, we record the

energy inequality for solutions x = (v,u ,u ) and x = (v,u ,u ) of

(2.11)-(2.14) that implies uniqueness and continuous dependence of

solutions of (IVP) on initial data:

£m (v - v) 2
 + Ik (ue + up - ue - u p )

2
 + |u (ue - u e )

2

(m + X] [km <V " V> 2 + l k <Ue + Up " Ue " U

This inequality is obtained by using the relations (2. ll)-(2.14) at times

when both x and x are differentiable. Similarly, one obtains for a

single solution x = (v,u ,u ) of (IVP):
e p

% mv2 + Ik (u + u ) 2 + I jiu2]' < 0. (3.4)
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and this inequality shows that the trajectory of each solution x lies in

the compact subset of R consisting of all points (v,ue»u ) whose total

energy

, V u p ) : = | m v
2 + | k (uft + u p )

2 + \ M u
2 (3.5)

does not exceed the total energy $(vo,uo,uo) associated with the initial

point (vo.uo.uo) = x(0).
e p

The initial value problem (IVP). has a unique solution x = (v,u ,u )

satisfying the linear system for (v,u )

mv = -fk + u)u - kuo
e P

u e = v (3.6)

so that x is periodic of period
k + y

m

ellipse

1/2
and has trajectory the

centered at the point (0, -5-5—uo.uo) and lying in the plane u = u<>.

Figure 1 depicts such an oriented trajectory in relation to the sets
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y , and V when uo is positive. We refer to such trajectories as

elastic trajectories, and to the portions of such trajectories in ^ as

elastic segments. The initial value problem (IVP) has a unique,

graph-maximal solution x = (v,u ,u ) satisfying the linear system for
e p

mv = -(k + \i)a - ku

(3.8)

so that x has trajectory a portion of the half-ellipse

1 2 1

2 mV + i

(k + M)a]2, (3.9)

v > 0,

centered at (0,a, -•*—ir ^ a n d l y i n g i n t h e ^L^"P^ane *+- Figure 2

depicts such a trajectory. Similarly, (IVP)_ has a unique graph maximal

solution x = (v,u ,u ) satisfying

mv = +(k + \i)a - ku

(3.10)
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so that x has trajectory in the half-ellipse

2 m v

!<n(v°)2 + ^[kuo - (k + u)af. (3.11)

0,

k + u —

centered at (0,-a,—r—*-a ) and lying in the half-plane <S/ , as depicted in

Figure 3. We refer to trajectories for solutions of (IVP)+ or of (IVP)_ as

plastic segments.

We describe now a procedure for patching together elastic and plastic

segments to obtain solutions of (IVP). Consider first initial data x°

for (IVP) lying in the set £ of elastic states. Because £ does not

contain points of * or of * and because of the orientation of elastic
trajectories, we may follow the solution x(0^ = (v^°^u^°\u^0^) of (IVP)g

satisfying x^ ^(0) = xo on a non-trivial time interval [0,T 1) until the

trajectory of x^ ^ leaves the state-space ^ by passing through <5/ or

V at time T- > 0. Suppose for definiteness that this occurs through

ty , so that v^ (T-) > 0 and u^ (T1 ) = a. In order to continue along a

X ex
solution of (IVP), i.e., in order that a continuation of x^ ' remain in

Sf. we put xo:= ( v ^ T ^ . a . u * 0 ^ ) ) and tQ:= Tj in (IVP)+ and follow

the graph maximal solution x ^ = (v^^.u^1^ .u^1^) of (IVP)+ until it

reaches the line v = 0 in V at a time To > Ti- I n d o i nS so» w e
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followed the elastic segment determined by x*- ' with the plastic segment

determined by x^ '. The form of the plastic segment tells us that

T O ) = 0 and

-(k + lOu^Vg) - kup
1}(T2) < 0. (3.12)

If we put tQ:= T 2 and xo:= ( g ^ ^ ^ ^

in (IVP),, then we may follow the solution x^2^ = ( v ^ . u ^ , u^2^) of
6 e p

(IVP). and find that its trajectory remains in the state-space 9 during

a non-trivial time interval [T 2 >T^] with T_ > r*. In fact, we have from

(2.12) and (3.12),

0,

and v' '(T O) = v' '(T O) = 0, so that u^ ' = v^ ' is negative on an
£ £ e

interval of the form [T_,T_] with T~ > r~- Therefore, because

(T O) = U ( T O ) = a, we find that | u ^ | < a on [T O,T»], i.e., thee £ e ^ e £ **>

trajectory of xv * remains in ^ during [T^.T^].

This discussion shows how initial data x<> in the set £ of elastic

states leads to a path consisting of an elastic, a plastic, and, again an

elastic segment; the path starts at x<> and lies in y. The assumption

that the first elastic segment ends in V was not crucial for the
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construction of this path. Consequently, we have shown that every elastic

trajectory that leaves \f can be cut off at <8/ or at * to form an

elastic segment that can be followed by a plastic segment and then another

elastic segment. This fact forms the basis of a recursive definition of a

mapping x : [0,t ) -» </\ with t > 0, that is continuous, locally

piecewise continuously differentiable, satisfies (2.11) and, at its points

of differentiability, (2.12)-(2.14), and obeys the initial condition

x(0) = xo € 6. We remark without proof that such a function x also can

be constructed when the initial data x<> is in y\£ = *.

We wish to indicate here why the function x constructed above is a

solution of (IVP). It is clear that we need only show that t^ = +00, or,

in other words, that the times separating successive elastic and plastic

segments in the trajectory of x cannot accumulate at a finite time. We

do so by considering only intermediate elastic segments of x, i.e., only

those elastic segments that occur between plastic segments. (If there are

no intermediate segments, then it is easy to show that the trajectory of x

ultimately is an elastic trajectory lying entirely within y, so that the

recursive construction of x terminates at a finite state.) Each

intermediate elastic segment has associated with it a traversal time, and

we give now a geometrical argument that indicates why there is a positive

number 6, depending only upon a, k, jx, m and the initial data xo for

x, such that every traversal time is no less than 6. In fact, the

inequality (3.4) tells us that the trajectory of x and, in particular, u

is bounded. Therefore, all the intermediate elastic segments and all the
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centers of intermediate elastic segments lie in a bounded set. It is clear

that an intermediate elastic segment must start in the plane v = 0 at <8/

or at V and must end at V or at V , respectively, so that each

intermediate elastic segment must span the thickness 2a of the

state-space V and must have it and its center lying in a predetermined

bounded set. It follows that each angle subtended at its center by an

intermediate elastic segment is bounded below by a positive number

depending only upon a, k, JLI, m and the initial data x<>. Because every

1/2
elastic trajectory is periodic with period ((k + \i)/m) , it follows that

the traversal times of the elastic segments are also bounded below by a

positive number depending only upon the same quantities.

The arguments given in this section can be used to produce a formal

proof of the following result.

Theorem 3.1. The initial value problem (IVP) for the unforced, bilinear

elastic-plastic oscillator is well posed, and every solution of (IVP) can

be obtained by patching together elastic and plastic segments.

In closing this section, we emphasize the fact that the trajectories

of solutions of (IVP) are piecewise planar; each planar segment forms a

portion of an ellipse in a plane u = const., u = a or u = -a. The
p e e

center of the ellipses in a plane u = uo is the point v = 0,

u e = - k T 7 u $ - I f l - k T H u £ l ia' i e - i f | U P ' ^ H ^ * - t hen t h e

point (0, -r-r—uo,u°) is an equilibrium state for the system

(2.11)-(2.15), i.e., the constant function with value (0, -jr+—uo.uo) is
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a solution of (IVP) with x© = (°» ~ k + „
 up'up)' I n fact- a l 1 the

equtllbrtum states of (2.11)-(2.15) are of the form

(3.13)

Thus, the equilibrium states form a line segment in the plane v = 0. The

endpoint (0,a, T ^ a ) = (°«a« ™ ) o f tllis l i n e segment is the center of

the plastic segments in the half-plane % , and the endpoint

(0,-a,—r-^a ) = (0,-a,—) is the center of the plastic segments in the

half-plane «". Here, K is the stiffness ratio defined in (2.17).

Another feature associated with the piecewise planar character of

solutions (IVP) was already employed tacitly in the arguments leading to

Theorem 3.1 and is recorded here for future use.

Renark 3.1: Each intermediate elastic segment of a solution of (IVP)

starts and ends in different yield planes. In other words, successiue

plastic segments alternate betiaeen ^ and W .
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4. Stability of Equilibrium States

The equilibrium states for the mechanical system under consideration

here are of interest because they represent solutions of the initial value

problem (IVP) which do not evolve in time. Knowledge of the location of

the equilibrium states also helps to characterize the behavior of the

solutions which do evolve in time. As mentioned at the end of Section 3,

the equilibrium state in each plane u = const, is the center of the

ellipses that contain the trajectories of the solutions of (IVP)-.

Similarly, the equilibrium state (0,a, -—) (resp. (0,-a,—)) is the center
ic ic

of the ellipses that contain the trajectories of the solutions of (IVP)

(resp. of (IVP)). (Here, as above, K is the stiffness ratio T — — . )

One issue of fundamental significance regarding the equilibrium states

of the unforced bilinear elastic-plastic oscillator is the question of

stability. We can ensure stability of the equilibrium states if we can

construct an appropriate Liapunov function for each equilibrium state.

Letting (O,u°,uC) be an equilibrium state of the system (2. ll)-(2.14), we
e p

consider

:= | mv2 + | n (ue - u°)2 + | k [ ( u e + up) - (u° + u p ] 2 (4.1)

as a possible Liapunov function for this equilibrium state. This function

has a strict minimum at (O,uC,uC) and has the required smoothness. It

remains to ensure that $ is non-increasing on solutions. To confirm

this, we first differentiate $ along a solution x = (v,u ,u ) to obtain
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Z' = mv^ + n(ue - u^)ue + k[(ue + up) - (u° + v£)](ue + u p). (4.2)

Since we are considering the rate of change of $ along solutions, we may

use equation (2.12) to substitute for mv in equation (4.2):

$ = vf—kfu + u i — ixu J + M-Cu — u )u
e p e e e e

+ k[(u + u ) - (uc + uC)](u + u ). (4.3)LV e p e p / J V e p

F u r t h e r m o r e , s i n c e v = u = ( u + u ) , e q u a t i o n ( 4 . 3 ) b e c o m e s
e p

= v[-k(ue + up) -

k[(ue + up) - (u°e • up]v, (4.4)

or, equivalently,

(4.5)

Since K = r — — , we may eliminate u from equation (4.5) using (3.13) to
K "T ]X p

obtain

u ]

which becomes after rearrangement



24

=n(u e - v)(ue - u°J. (4.7)

When the solution is undergoing an elastic segment, we have from equation

(2.13) u = v, so that the right-hand side of equation (4.7) is identically
e

zero on elastic segments. When the solution is undergoing a plastic

segment in <J/ , we have from equation (2.13), u = 0, so that equation

(4.7) becomes

** = -nv(ue - u°). (4.8)

Since the solution lies in <!/ , u = +a, so that equation (4.8) reduces to

$* = -|iiv(a - u c ) . (4.9)
e

Since the solution is undergoing a plastic segment in V , we have v 2 0.

Furthermore, because we are considering an equilibrium state

(v.u ,u ) = (0,u ,u ) of the initial value problem with governing equations

(2.12)-(2.14) and constraint (2.11), we have |uC| < a. Thus, we may

e

conclude from (4.9) that * £ 0 on solutions undergoing a plastic segment

+ *9

in V . The proof that * < 0 on solutions undergoing a plastic segment
__ ^

in V is similar. Therefore, we may conclude that $ is non-increasing

on solutions. Thus, * is a suitable Liapunov function for the equilibrium

state, and we have

Theorem 4-1. The equilibrium states of an unforced bilinear elastic-

plastic oscillator are stable.
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Note that since * is constant on elastic segments of solutions, we

cannot claim asymptotic stability. In fact, recalling from Section 3 that

the elastic trajectories of (IVP)- in the plane u = u are ellipses

centers at (O,uC,uC), we may conclude that when |uC| < a, the equilibrium

state is a center for (IVPK.

To make one additional observation, let us consider a plane u = u
P P

with |u | < —. In each such plane of constant plastic displacement, there

are ellipses of the form (3.7) centered at the equilibrium state

(0,-KU ,u ) that do not intersect the planes |u | = a, so that the

solutions whose trajectories are contained in these ellipses remain elastic

for all time. These equilibrium states therefore are isolated from one

another in their respective planes of constant plastic displacement.
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5. General Behavior of Solutions for Large Times

In this section we obtain a result which gives a characterization of

the asymptotic behavior of solutions of the unforced bilinear elastic-

plastic oscillator. Of particular interest is the behavior of solutions

which undergo an infinite number of plastic segments. The general

framework provided in this section will be needed in the discussion of

self-anneal ing in Section 6. We begin with some standard terminology.

Definition 5.1: Let xo € tf be given, and let x = (v,u fu ) be the

corresponding solution of (IVP). The curve t »* x(t) is called the

positive half-trajectory through xo and is denoted by C (x<>). The

a)-li»it set L(C+(xo)) of C+(xo) is the set of ail points x € y such

that there is a sequence {t } with limit +«> for which x(t ) -» x as

n -» ».

We need some preliminary results to obtain our characterization of

G>-limit sets.

Reaark 5.1. A necessary and sufficient condition that a solution which has

undergone a plastic segment in V (resp. V ) will haue a subsequent

plastic segment in V (resp. V ) after an intervening elastic segment is

u > 0 (resp. u < 0), where u is the uaiue of the plastic

displacement as the solution departs * (resp. V ).
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Proof: Let a solution which has undergone a plastic segment in ^ be

given, and let u denote the value of the plastic displacement as theu

solution departs V . Then the solution departs * from the point

(O,a,u ). Since, by (3.7), during the elastic segment the velocity v
pl

and elastic displacement u satisfy
e

2 k ( k + ^ ) ( a " Ue ) up ] > ( 5e)up

the elastic segment reaches the line u = -a to the left of the point
e

(O,-a,u ) and thereby undergoes a segment in V if and only if

i-mv2 = 2kau > 0. (5.2)
Z Pl

(The possibility that the solution might cross the line v = 0 above the

point (0,-a.u ) and subsequently enter V with v > 0 is ruled out by

the fact that the elastic unloading segment is contained in an ellipse

symmetric about the line v = 0.) The proof of the analogous statement for

a solution which has departed V is similar. D

The next result shows that the magnitude of the resultant plastic

displacements are decreasing:
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Remark 5.2. Let a solution undergo a plastic segment in <& (resp. W )

and, after an intervening elastic segment, a plastic segment in V (resp.

V ), subsequently departing that plastic segment as loell. Let u denote
pl

the plastic displacement as the solution departs V (resp. <!/ ), and let

u denote the plastic displacement as the solution departs V (resp.
P2

<!/+). There then holds |u | < |u |.
V Pl

+ 1 2
Proof: When the solution departs V , the total energy is =• pa +
1 2 —
s- k(a + u ) . When the solution departs V , the total energy is
z Pj

1 2 1 2
^ pa + g- k(-a + u ) . Since the total energy is constant on the

z z p 2

intermediate elastic segment and since the change in total energy for a

nontrivial plastic segment is negative (Remark 5.3), we have

I pa2 + I k(a + up )
2 > I M « 2 + | k(-a + up )

2 . (5.3)

By Remark 5.1, u > 0. Since u = v < 0 while the solution lies in <Sf
pl p

with v # 0, u > u . If u £ 0, then the conclusion is immediate.
pl P2 P2

Otherwise, u < 0, in which case inequality (5.3) gives
P2

a + u > +a - u . Since lu I = -u and lu I = u , the desired
pl p2 p2 p2 pl pl

result follows. The proof with V and «"" switched in the statement is

analogous. D
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The following estimate on the energy of solutions also will be useful:

Renark 5.3: If a solution of (IVP) enters a plastic segment in <S/ (resp.

in V~) at time tQ, and subsequently departs the plastic segment in <$

(resp. in V ) at time t-, with t- > t~, then the net decrease in total

energy $ experienced during the segment is

*(x(tl)) - *(x(tQ)) = -wi^itj - up(tQ)) < 0 (5.4)

(resp. $(x(t1)) - $(x(tQ)) = Ma(up(tj) - up(tQ)) < 0). (5.5)

1 2 1 2Proof: Recall from equation (3.5) that *(v,u vu ) = 5- mv +;rjiu +
e p <b ^ e

1 2 + -
7? k(u + u ) . Thus, during a plastic segment in V (resp. V ), we have
^ e p

= m w + Liu u + k(u + u )(u + u )
^ e e v e pyv e pJ

= m w + k(a + u )v (5-6)

(resp. * = m w + k(-a + u )v.) (5.7)

Substitution of equation (2.12) into equation (5.6) with u = +a (resp.
e

into equation (5.7) with u = -a) yields
e

(resp. * = +juav.) (5.9)
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Putting v = u into equations (5.8) and (5.9) and integrating yields

- •(x(tQ)) = -naCUpCtj) - up(tQ)) (5.10)

(resp. 4>(x(tx)) - *(x(tQ)) = ̂ ( u ^ ) - up(tQ)). (5.11)

Since v > 0 (resp. v < 0) while the solution has v * 0 and remains in

* (resp. * ), the function t » u (t) is strictly increasing (resp.

decreasing) during such a plastic segment and the energy difference

*(x(tj)) - *(x(tQ)) is negative. D

Note that equations (5.10) and (5.11) may be consolidated so that the

net decrease W in energy experienced during a plastic segment can be

written as

W = pa\hi |, (5.12)

where Au is the net change in plastic displacement experienced during

the segment.

We can now prove the main result of this section:

Theorea 5-1: (Characterization of wlimit sets). Let xo € V be giuen.

For the initial value problem corresponding to the unforced bilinear

elastic-plastic oscillator, the delimit set L(C+(xo)) of C+(xo) consists
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of a single -point in V (an equilibrium state) or an ellipse idxich lies in

a plane u = const. Furthermore, if xo € </> is such that the resulting

solution undergoes an infinite number of plastic segments, then the

v-limit set of C+(xQ) is the ellipse in the plane u = 0 gluen by

| mv2 + |0i + k)u2 = |0i + k)a2. (5.13)

Proof: Suppose first that xo € </> is such that the resulting solution

undergoes no nontrivial plastic segments. Then $(x(t)) = $(xo) and

u (t) = uo, for all t C [0,«>). The curves $(x) = const, in the plane

u = uo consist of a singleton (an equilibrium state) and ellipses. Hence

the solution either is constant, in which case the singleton xo is the

w-limit set, or the solution is elastic and periodic, and the corresponding

ellipse

1 2 1 2 1 W

2 m V + 2 ^ Ue + 2 k ( u

= I mvo2 + I ̂ (uo)2 + i k(u| + uo)2 (5.14)

is the o-limit set.

Now suppose that xo € y is such that the resulting solution

undergoes one or more plastic segments, the number of such segments being

finite. During its final plastic segment, the solution trajectory is

contained in a half-ellipse of the type given by equation (3.7). One can
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explicitly solve the equations governing the evolution of the solution

during the plastic segments, and using the point at which the solution

entered <8/ as initial data, an explicit formula for the time required to

traverse the plastic segment can be obtained. This formula confirms that

the final plastic segment is departed in finite time, and the plastic

displacement thereafter remains constant. Let u denote the ultimate

plastic displacement, and suppose that the final plastic segment occurred

in « + (resp. «"). Then by Remark 5.1, u < 0 (resp. u > 0), and for

all subsequent time the solution remains in the ellipse given by

1 9 1 2 1 9

i mv2 + I m* * I k(u + u )
22 "" 2 »* e 2 ~v e p

f

|k(a + u p )
2 (5.15)

(resp. the ellipse given by

1 2 1 2 1 . , , A .2
2 ^ *2lMe + 2 k ( ( u e + upf^

(5.16)

Since there are no additional plastic segments, this ellipse touches

« + (resp. V~) at the single point (0,a,u ) (resp. (0,-a,u )), and does
Pf Pf
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not intersect the line u = -a (resp. the line u = +a) in the plane
e e

u = u . Hence, subsequent to departing its final plastic segment the
P Pf

solution is elastic and periodic, and the elliptical orbit in which it lies

for all times thereafter is the w-limit set of C (xo).

Finally, let xo € </> be such that the resulting solution undergoes an

infinite number of plastic segments. Let W. be the net decrease in $

associated with the i plastic segment. Then Remark 5.3 and equation

(5.12) imply that

W. =|ia|(Au ) 1 | . (5.17)

where (Au ). is the net change in plastic displacement for the i

plastic segment. Now let ($) be the value of $ as the solution departs

the n plastic segment. Then ($) is given by

=4>(xo)- 2 uo|(Au ) |. (5.18)
n i l P *

Since *(x) > 0 for all x € <f, equation (5.18) implies that the series

00

2 }ia|(Au ) . | consists of positive terms and its partial sums are bounded

above by *(x<>), so that the series is convergent. We have

n
(u ) n = uo + 2 (Au ).. By Remark 3.1, the plastic segments alternate

between the yield surfaces <0+ and V". By Remark 5.1, the (u ) 's must

then alternate in sign, and therefore, (u ) -» 0 as n -* ».
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Suppose for definiteness that the first plastic segment occurs in 3/

(the proof if the first plastic segment occurs in # is analogous to what

follows). Then the subsequence {(u )~ i}. n = 1,2,... corresponds to the
p ^n ±

resultant plastic displacements as the solution departs plastic segments in

* , and the subsequence {(u )<^}. n = 1,2,... corresponds to the resultant

plastic displacements as the solution departs plastic segments in V .

When the solution has departed (O,a,(u )2n_i)
 a^ t e r a plastic segment

in % , then during the subsequent elastic segment the solution lies in the

ellipse given by

(5.19)

Similarly, when a solution has departed (O,-a,(u )„ ) after a plastic

segment in V , then during the subsequent elastic segment the solution

lies in the ellipse given by

1 2 1 2 1
2 w + 2 ^Ue + 2

= I m
2
 + I k(-a + (Up)^)

2. (5.20)

As a result of Remarks 5.1 and 5.2, the planes u = const, on which these

elastic unloading segments are located approach the plane u = 0 in the

following manner: the planes u = (u ) O T W 1 approach monotonically from
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the u > 0 direction, and the planes u = (u ) o approach monotonically
p P P ̂ **

from the u < 0 direction. Finally, because (Au ) -» 0 as n -» « the

curves containing the plastic segments in the half-planes <% and V

shrink down respectively to the points (0,a,0) and (0,-a,0).

Our final task is to confirm that the ellipse given by equation (5.13)

is the G)-limit set of C (xo) for each x<> € V whose solution undergoes

an infinite number of plastic segments. Let t^_. be the time at which

the solution occupies the point (O,a,(u ) o 1) (i.e., the time when the
p £̂n x

solution departs the (2n - 1) plastic segment). Note that the sequence

{(O,a,(u )OTW.1} of points monotonically approaches the point (0,a,0) as
P £E\. X

n -» <». Moreover, from the discussion preceding Theorem 3.1. t~ _--»+» as

n -* ». Thus, (0,a,0) € L(C+(xo)) by the definition of w-limit set.

Similarly, it follows that (0,-a,0) € L(C+(xo)). Thus, the ellipse E in

(5.13) has two of its points in L(C (xo)) and is itself the trajectory of

the solution of (IVP) starting at (0,a,0). Well known properties of

delimit sets (see, [1980,1], Theorem 8.1, p. 47) then tell us that

L(C+(xo)) includes the ellipse E in (5.13). To show that L(C*(xo))

equals E, we first note from earlier arguments that L(C (xo)) is included

in the plane u = 0. Let (v,u ,0) be given in the exterior of E (with

respect to the plane u = 0 ) . The trajectory of the solution of (IVP)

with xo = (v,u ,0) must contain a non-trivial plastic segment and, hence,

points with u ? 0. Because L(C (xo)) is an invariant set for

(2.12)-(2.15) and u = 0 at each point of L(C+(xo)), it follows that

(v,ue,0) is not in L(C+(xo)). Let a point (v.u ,0) be given that is in

the interior of E (with respect to the plane u = 0 ) . The form of the
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elastic segments of C (x<>) through the points (O,a,(u )~ -) and the form

of the elastic segments of C (xo) through the points (O,-a,(u )~ ), for

n = 1,2,3,•••, tell us that these segments, when projected on the plane

u = 0, lie in the exterior of E. It follows that no point (v,u ,0)

interior to E can be in L(C+(xo)). Thus, L(C+(xo)) - E. D
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6. Conditions for Self-Anneal ing

In this section we find non-trivial subsets of the state space ^

with the property that all initial data in a given subset lead to solution

trajectories of (IVP) with the same character for large times. We already

know that when the initial data is close to an equilibrium state other than

the two endpoints of the line of equilibrium states, the solution remains

elastic and periodic for all time. Here, we shall delimit sets of initial

data for which the resulting solutions undergo infinitely many plastic

segments. From Theorem 5.1, we know that the plastic displacement

associated with each such solution satisfies u (t) -» 0 as t -» <», and

that the solution has the ellipse

\ mv 2 + |<jLi + k)u2 = |(n + k)a2 (5.13)

as its u-limit set. Specifically, we delimit here the data in the plane

u = 0 that produce such solutions. In doing so, we find that the

k 1

stiffness ratio K = r—-— is a critical parameter: when =r £ *c < 1,

solutions of the (IVP) with an infinite number of plastic segments do

indeed exist, and the choices of initial data whose solutions have this

property can be completely characterized; on the other hand, when

0 < K < ^, solutions of (IVP) can have at most finitely many plastic

segments. (See the thesis [1984, 1] for a detailed partition of initial

data with u rf 0 according to the long-term behavior of u .)

Let xo € y in the plane u = 0 lie outside of the ellipse given by

equation (5.13). As we show below, when ^ £ K < 1, the solution of (IVP)
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starting at x<> must undergo an infinite number of plastic segments.

Furthermore, the plastic displacement of the solution satisfies

u (t) = 0 . Although the initial point xo in the plane u = 0 can
P P

be chosen so that the plastic displacement at the end of the first plastic

segment has a magnitude that is arbitrarily large, the system nevertheless

completely removes that plastic displacement from the solution in the limit

of large times. We call this behavior self-annealing, or mechanical

self'annealing to emphasize the absence of thermal devices to effect the

removal of plastic displacements. The behavior of the unforced bilinear

elastic-plastic oscillator when =• £ K < 1 also can be considered to be a

type of underdanvped oscillation. Indeed, the solution of (IVP) for initial

xo € y in the plane u = 0 and outside the ellipse (5.13) has plastic

displacements at the end of the plastic segments that alternate in sign and

decrease monotonically in magnitude to zero. This behavior is analogous to

the behavior of the displacements of a linear spring with linear viscosity

in the underdamped case.

As mentioned above, we shall show that when 0 < ic < ?r, all solutions

of (IVP) have only a finite number of plastic segments. Moreover, if x°

is in the plane u = 0 and lies outside the ellipse (5.13), then the

final plastic displacement is not necessarily zero, and that displacement

is achieved in finite time. We also shall give a sharp bound, independent

of the choice of initial data, on the magnitude of the final plastic

displacement. The portion of Theorem 5.1 applicable to solutions with a

finite number of plastic segments governs this case, so that we may

conclude that after its final plastic segment, the solution remains in an
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elastic orbit contained in an ellipse which touches the yield surface in

which the solution had its final plastic segment. Here again, until the

final plastic segment is attained, the plastic displacements at the end of

the plastic segments change sign and decrease monotonically in magnitude.

Thus, for \x and k such that 0 < K < TJ-, the unforced bilinear elastic-

plastic oscillator acts as if it were overdamped, because it allows only a

finite number of plastic segments and, hence, only a finite number of

oscillations in the sign of the resultant plastic displacements. Moreover,

the value K = ^ is a critical stiffness ratio, because it separates the

underdamped and overdamped cases.

For the analysis that supports these results, two pairs of curves will

be particularly useful: (1) the plastic segment in ^ that passes

through (0,a,0) and its counterpart in V which passes through (0,-a,0),

and (2) the locus of points (v,a,u ) with u < 0 (resp. (-v,-a,u ) with

u > 0) where the elastic segment through (0,-a,u ) (resp. (O.a.u )) enters

« + (resp. «").

The single curve, obtained from the pair of curves in (1) by joining

at the origin (0,0) the projection on u = 0 of the curve in <% to the

projection on u = 0 of its counterpart in *Tf will be denoted by #Q.

The portion of 9Q with u I 0 is the half-ellipse
Mr

| m v 2 + |k(-a + u p )
2 - Mmip = | k a

2 , v < 0, (6.1)

while the portion of 9Q with u < 0 is the half-ellipse
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| mv2 + | k (a + u p ) 2 + va*p = | ka2 , v > 0. (6.2)

Thus, on 9L with u > 0, the kinetic energy i s given in terms of u by

rewriting (6.1) in the form

1 2 1 2 1 2
g- mv = g- ka + jxau - -̂k (-a + u ) , (6.3)

with a similar equation on #Q holding when u < 0. We note that the

curve # 0 is symmetric with respect to the origin in the plane u = 0.

The curve 9 . in the plane u = 0 is defined to be the union of
entry e

the projections on u = 0 of the pair of curves in (2). For u > 0, it

is the half-parabola

2 1 W A >2 1 2
mv + ̂ k (-a + up) + ̂  pa

|k(a + u p )
2 + | pa2, v < 0,

(6.4)

or

|mv 2 = 2kaup . v i 0, (6.5)

and for u < 0, 9 . is the half-parabola
p ~ entry

| mv2 = -2kou . v i 0. (6.6)
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The curve # is also symmetric with respect to the origin in the
entry

plane u = 0 . Representative curves # Q and # e n t r v
 a r e shown in

Figures 4 and 5. Subtracting the right hand side of the equation in (6.3)

from the right hand side of the equation in (6.5) gives after some

simplification

l m Gentry " ̂ ' <k " " > % + I

In (6.7) we have written v . and v~ for the values of v on #
v ' entry 0 entry

and on SL corresponding to a given u .

Suppose a solution has just departed a plastic segment in V (resp.

<tT) with resultant plastic strain u € R. If u < 0 (resp. u > 0),

then Remark 5.1 ensures that no further plastic segments occur. If

u > 0, then Remark 5.1 guarantees that a subsequent plastic segment

occurs in * (resp. * ) after an intermediate elastic segment. Knowledge

of the curves flL and # . enables one to determine whether there
0 entry

occurs yet another plastic segment in V (resp. V ). For example, a

subsequent plastic segment will not take place if the point (v,u ) on

9 lies on 9n or in the interior of the region bounded by the curve
entry \j

# 0 and the line v = 0; otherwise, a subsequent plastic segment will take

place.

To illustrate more fully how the curves SL and 9 ^ can be used
J 0 entry

to determine whether subsequent plastic segments occur, let

yo = (vo.a.uo) £ <V be given such that vo > 0 and uo > 0. The solution
P P
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of (IVP) for this initial data undergoes an initial plastic segment. The

fact that t •* u (t) is strictly increasing on solutions in <8/ ensures

that the solution departs V with positive resultant plastic

displacement. The solution then undergoes an intermediate elastic segment.

Since the resultant plastic displacement at the end of the first plastic

segment is positive, by Remark 5.1 the solution will undergo a subsequent

plastic segment. If we let u = u denote the resultant plastic strain

at the end of the first plastic segment, then the intersection of the line

u = u with the curve £ . in Figure 4 indicates where the solution
p p entry

enters the yield surface <ST. For the case indicated in Figure 4, the

point of intersection lies between the curve 9L and the line v = 0.

This ensures that the plastic strain at the end of the resulting plastic

segment in V is positive. We may then use Remark 5.1 to conclude that

no further plastic segments occur.

Now consider Figure 5, where the same initial data are used, but the

curves 9L and # are different. Once again, the solution undergoes
KJ en u ry

an initial plastic segment with positive resultant plastic displacement

u > 0. After an intermediate elastic segment, the solution enters * at

the intersection of the line u = u with the curve # ^ . For the

p p entry

case indicated in Figure 5, the intersection point lies outside the region

between # n and v = 0. This ensures that the plastic strain at the end

of the subsequent plastic segment in * is negative. We may then

conclude by Remark 5.1 that the solution will undergo a subsequent plastic

segment in V .

It is now possible to use these observations to draw some conclusions

about the asymptotic behavior of solutions for particular choices of \i
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and k. Consider first an unforced bilinear elastic-plastic oscillator for

which k I JI, or, equivalently, ^ < — j p ^ = K < 1. Notice that this

condition on k and ji ensures that the right hand side of equation (6.7)

is strictly positive for all u > 0. Hence, we may conclude that for all

u not equal to zero, the curve 9L lies in the interior of the region

bounded by the curve 9 _ and the line v = 0. With this in mind,J entry

consider xo = (vo,uo,0) € y, i.e., consider an initial condition in ^
e

with zero initial plastic displacement. For a choice of xo on or in the

interior of the ellipse given by equation (5.13), the solution remains

elastic and periodic for all time. Consider instead an xo = (v°,u<>,0) € y

with vo > 0 which lies in the plane u = 0 but in the exterior of the

above ellipse. Since the initial elastic trajectory for xo eventually

reaches V , the trajectory undergoes an initial plastic segment in <S/ .

Since the plastic displacement is strictly increasing along plastic

segments in V , the trajectory for xo emerges from $ with positive

resultant plastic displacement. By Remark 5.1, there will be a subsequent

plastic segment in V . The above remark in the case -~ < K < 1

concerning the curves # n and 9 ensures that the resultant plastic
\j en t ry

displacement at the end of this plastic segment in V" is negative. Again

by Remark 5.1, the trajectory has another plastic segment in #+, and the

same remark about £ Q and &^ implies that the resultant plastic

displacement at the end of the segment is positive. Let us define a

plastic cycle to be a process in which a solution with elastic and plastic

segments departs V , undergoes an elastic segment and then a subsequent

plastic segment in V , followed by another elastic segment and then a



44

subsequent plastic segment in $/ . Then for xo € & as given, the

following statement has been demonstrated:

(1) The solution undergoes a plastic cycle, and the resultant plastic

displacement upon completion of this cycle is positive.

Label additional statements as follows:

(n) The solution undergoes n plastic cycles, and the resultant plastic

displacement upon completion of cycle n is positive.

(n + 1) The solution undergoes n + 1 plastic cycles, and the resultant

plastic displacement upon completion of cycle n + 1 is

positive.

The arguments used to prove that the solution corresponding to x° as

given satisfies statement (1) may also be used to show that if statement

(n) is assumed, then statement (n + 1) follows. Thus, it follows by

induction that each xo = (vo.uo.O) € y with v<> > 0 which lies in the
e

exterior of the ellipse given by equation (5.13) has a solution which

undergoes an infinite number of plastic segments. The proof for
xo = (vo.uo.O) € y with vo < 0 lying in the exterior of the above

e

ellipse is completely analogous. Thus, invoking Theorem 5.1, we have

Theorem 6.1. Let h £ K < 1, and let x© = (vo.uo.O) € if be giuen such
£ e

that xo lies in the exterior of the ellipse given by
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I mv2 + ̂  + k)ue
2 = gOx + k)a2. (5.13)

The solution t » (v(t),u (t),u (t)) then undergoes an infinite number of

-plastic segments, u (t) -» 0 as t -» », and the w-itmit set of C (xo) is

the ellipse giuen by the equation (5.13).

One may analyze similarly the asymptotic behavior of solutions for

initial data lying in planes u = const., but u ^ 0. It turns out that

in addition to the regions which correspond to solutions that remain

elastic for all time, and the regions which correspond to solutions that

undergo an infinite number of plastic segments, there is a third type of

region when sr £ ic < 1. For the third region, the solution undergoes

exactly one plastic segment, after which it is elastic and periodic for all

time. The region lying in the half-planes * and V bounded by the

curve # Q and the line v = 0 is an example of such a region.

We consider one additional case in this section. Suppose now that the

unforced bilinear elastic-plastic oscillator is such that 0 < k < fi, which

means that 0 < K < IT. The right hand side of equation (6.7) then is

negative for every positive but sufficiently small plastic displacement.

Thus, for u positive and sufficiently small, points (v,u ) on 9

lie in the interior of the region enclosed by # Q and the line v = 0.

However, as u is increased, the curves intersect, and for u
P P

sufficiently large, (v,u ) in # e n t r lies outside that region. The

equations of the curves for 9* and 0 are for u > 0 respectively
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and

1 2 k, a.2 k,cu2 lc o.
2-mv + 5 < u p - - ) - ^ (6.8)

1 2
5" mv = 2kau . (6.5)z p

Notice from equation (6.8) that the portion of # 0 contained in the

projection of V into the plane u = 0 is a half-ellipse centered at

(0,—), and that this half-ellipse crosses the line v = 0 at u = 2 — .
K. P fC

On the other hand, as mentioned earlier, equation (6.5) describes the half-

parabola representing that portion of 9 contained in the projection

of V into the plane u = 0. This half-parabola is tangent to the line

v = 0. The two curves described above intersect (in the projection of 3/ )

at the point (-2aj2^ ~ k>, 2 ^ ~ k> a ).

Let us again examine the asymptotic behavior of a solution with

initial data xo = (vo,uof0) € y, i.e., an initial condition in ^ with

zero initial plastic displacement. Once again, if x<> lies on or in the

interior of the ellipse given by equation (5.13), the solution remains

elastic and periodic for all time. Now consider x° = (vo.uo.O) £ ^ that

lies in the exterior of this ellipse. Since the initial elastic trajectory

for xo eventually reaches V , it will undergo an initial plastic segment

in V . Since the plastic displacement is strictly increasing along

plastic segments in V , the trajectory will emerge from * with positive

resultant plastic displacement. By Remark 5.1, the solution will have a

subsequent plastic segment in V . There is a special segment of an

ellipse ^ i n * (see Figure 6) which represents a plastic solution

segment. It is that segment of an ellipse which crosses the line v = 0
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at exactly the value of u at which # Q and ^ e n t r y intersect. The

solution corresponding to this curve will undergo an intermediate elastic

segment, enter V , and undergo a plastic segment in * contained in the

9Q curve. Thus, this solution departs its second plastic segment with

zero resultant plastic displacement, and thereupon enters the ellipse given

by equation (5.13) and remains elastic and periodic for all subsequent

time. For x<> = (vo.uo.O) € </> with v<> > 0 in the exterior of the
.

ellipse given by equation (5.13) whose solution enters * between (0,a,0)

and the point at which 9L crosses the line u = 0 , the corresponding

solution undergoes plastic segment in ^ , an intermediate elastic segment,

and then a plastic segment in V . Since this solution enters * along

& t at a point in the interior of 9L, it emerges from its plastic

segment in <8/ with positive resultant plastic displacement, and by Remark

5.1 then can undergo no further plastic segments. Thus, when 0 < K < ^,

there is a region of the portion of V in the plane u = 0 with v > 0

such that if xo lies in this region, then the corresponding solution

undergoes exactly two plastic segments, and the solution is subsequently

elastic and periodic in a plane u = const. £ 0.

There is an additional special segment of an ellipse 9L in V (see

Figure 6) which represents a plastic solution segment. A solution

contained in that segment undergoes an initial plastic segment in ^ ,

followed by an intermediate elastic segment, followed by a plastic segment

in V such that, after the solution departs that plastic segment and

undergoes an additional intermediate elastic segment, the solution reenters
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* at exactly the point where # 0 and 9 intersect in V . This

solution will then be contained in a portion of 3L, and will subsequently

emerge from its third and final plastic segment with zero resultant plastic

displacement. It will subsequently remain in the ellipse given by equation

(5.13) for all time, and the solution is then elastic and periodic. For

each xo = (vo.uo.O) € ^ with v<> > 0 whose solution enters its initial
e '

plastic segment in V between the points at which 9L and 9L cross the

line u = 0 , the solution undergoes a plastic segment in V , an

intermediate elastic segment, a plastic segment in * , an additional

intermediate elastic segment, and then a plastic segment in V with a

resultant plastic displacement that is negative, so that by Remark 5.1, it

cannot undergo a further plastic segment in V . Thus, when 0 < fc < ̂-,

there is a region of the portion of y in the plane u = 0 with v = 0

such that if xo lies in this region, then the corresponding solution

undergoes exactly three plastic segments, and the solution is subsequently

elastic and periodic in a plane u = const. < 0.

It is clear that one can continue to construct such special elliptical

segments forming regions of V such that solutions corresponding to

initial data in one region undergo one more plastic segment than those for

the previous region. The portion of V in the plane u = 0 lying in

v < 0 can be analyzed in a similar manner. Thus, one has the result:

Theorea 6.2. Let 0 < K < 5-, and let x<> = (vo.uo.O) € V be given such
£ e

that xo lies in the exterior of the ellipse given by
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| mv2 + i<n + k)u2 = |(n + k)a2. (5.13)i<n + k)u

For each natural number n, there exists a region 9) in the exterior of

the ellipse such that if x<> € 2) , then the solution undergoes exactly n

plastic segments, and is subsequently elastic and -periodic. If v<> > 0

(resp. vo < 0) and xo € 2) , and if n is euen, the solution undergoes its

final plastic segment in V (resp. * ) and the final resultant plastic

strain is nonnegative (resp. nonpositiue); on the other hand, if n is odd

the solution undergoes its final plastic segment in * (resp. in <H ) and

the final resultant plastic strain is nonpositiue (resp. nonnegative).

We note finally, when 0 < K < ̂ -, there is an explicit bound for the

maximum possible final resultant plastic displacement u . A solution

which yields the extremal value is one whose final plastic segment lies in

the region formed by 9 and the line v = 0 and is tangent to

9 at exactly one point. The maximum possible value of u is found
entry p.

by determining the smaller value at which the ellipse containing the final

plastic segment intersects the line v = 0. The calculations to determine

the point of tangency yield the bound

It should be observed that this estimate is sharp, and that it is

independent of xo.
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7. Generalizations of the Main Results

We consider now elastic-plastic oscillators for which the dependence

of the force a upon the elastic displacement u and the dependence of

the restoring force f upon the total displacement u = u + u both cam

be non-linear. Specifically, we replace the dynamical equation (2.12) by

the relation

mv(t) = - *'(ue(t) + up(t)) - 2'(ue(t)). (7.1)

where ^ and 2 are smooth functions with further properties to be

specified below, and where ' denotes differentiation. Of course, when

2 and Z(u)=ijiu2 (7.2)

we obtain again (2.12), so that (7.1) together with (2.11), (2.13) and

(2.14) does include the system (2.11)-(2.14) studied in Sections 2

through 6.

In this section we give further conditions on the potentials ^ and

2 that imply conclusions similar to those obtained when ^ and 2 are

quadratic. Specifically, the following conditions on <f> and 2 yield

generalizations of the main results in Sections 3, 5, and 6:

(^(R.R), (7.3)
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= 0 . 2(0) = 0 (7.4)

2(-u) - 2(u) = *(-u) - *(u) = 0 for all u € R, (7.5)

*'(u) > 0 for all u > 0. (7.6)

€im *(u) = + ». (7.7)
|U|HO.

2" (u) > 0 for all u € R\{0}, (7.8)

4>" (u) > 0 for all u € R and <fr'(a) I 2'(a) (7.9a)

or

4>" (u) £ 0 for all u > a and sup 4>'(u) < 2'(a). (7.9b)
u€R

When ^ and 2 are the quadratics in (7.2), then conditions (7.3)-(7.8)

are satisfied; if k > jx, then condition (7.9a) also holds. Examples of

other functions that satisfy (7.3)-(7.9a) are the functions

2 4
= au + bu

2(u) = cu4

(7.10)

with a.b.c positive and 2aa + 4(b - c)a positive. Examples of

functions that satisfy (7.3)-(7.8). (7.9b) are the functions
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irfu - a)
1 + sin * ̂  L , 0 < u < a

2a " ""

1 + gj (u - a) , a < u (7.11)

•(-u) , u < 0

2(u) = cu ,

with c > ir/8a4.

The distinction between the conditions (7.9a) and (7.9b) lies chiefly

in the relative strengths of the restoring forces ^r and 2'. In fact,

when $ and 2 satisfy (7.2)-(7.8) and (7.9a), one can show that an

analogue of Theorem 6.1 holds, so that all initial data in the plane

u = 0 produce positive half-trajectories whose co-limit sets are elastic

tractories in the plane u = 0. Thus, condition (7.9a), in which the

restoring force f = $' is stronger than the force a = 2', leads to self-

annealing for all initial data in the plane u = 0. In particular, if a

solution of (2.11), (7.1), (2.13) and (2.14) with uo = 0 undergoes at

least one plastic segment, it undergoes infinitely many plastic segments

and u tends to zero in the limit of large times. On the other hand,

when 4> and 2 satisfy (7.2)-(7.8), and (7.9b), then one can show that

every solution of (2.11), (7.1), (2.13), and (2.14) undergoes at most two

plastic segments, and, only for exceptional initial data is it true that

u has limit zero for large times. Thus, condition (7.9b), in which the

restoring force f = $' is weaker than a = 2', leads to self-anneal ing

only in exceptional circumstances.
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The methods used to obtain generalizations of the results of Sections

3, 5, and 6 to the case of non-quadratic potentials follow closely these

presented in those sections for the case of quadratic potentials. Details

can be found in the special case when the potential 2 is quadratic in the

Ph.D. thesis of THOMAS, [1984,1]. It should be noted that, when <f> is not

quadratic, there also are generalizations of Theorem 4.1 on stability of

equilibrium states (see [1984, 1], Theorem 4.2), but the proofs of these

generalizations are different from our proof of Theorem 4.1, because we

have been unable to find Liapunov functions when the potential <f> is not

quadratic.
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Figure 1: An elastic trajectory
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Figure 2: A plastic segment in



Figure 3: A plastic segment in V"
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Figure 4: Special curves in V U V for overdamped notions
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figure 5: Special curves in V U V" for underdaraped motiohs



Figure 6: Separating trajectories JL and jL
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