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§1. Introduction

The aim of this paper is to review what is currently known about large

matchings and cycles in random graphs, in particular perfect matchings and

Hamilton cycles. It may seen odd to treat these two subjects together, but we

will see in §2 that proofs of theorems on the two topics can be similar.

We will first discuss the two basic results concerning G . This graph
n, m

has vertex-set [n] = {l,2,...,n} and and edge-set E which is a random
3 n,m

m-subset of the N = (o) possbilities.

We start with perfect matchings and a theorem of Erdbs and Renyi [1966],

the "founding fathers" of the subject of random graphs.

Theorem 1.1

Let m = jr n(logn + c ). then
^ n

lim Pr(G has a perfect matching)

n even

= lim Pr(6(G ) > 1)

n even
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(When n is odd G has a matching of size \p/2\ with the same limiting

probability that there is at most one isolated vertex).



Their proof is complicated and based on Tutte's theorem [Tutte, 1947] for

the existence of perfect matchings. We give an outline of a relatively simple

proof in §2.

This theorem sets the scene nicely. A simple necessary condition (6 > 1)

is nearly always sufficient. One can guess that 6 ^ 2 is nearly always

sufficient for Hamilton cycles. In fact we have the following theorem of

Komlos and Szemeredi [1983].

Theorem 1.2

= ;r n (logn + loglogn + cLet m = ;r n (logn + loglogn + c ). then

lim Pr(G is Hamilton)

= lim Pr(6(Gn J > 2)
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Theorem 1.2 took somehwat longer to prove than Theorem 1.1. There were

several interim results showing that if m grows large enough then almost

every G is hamiltonian. Amongst these the most important is probably that

of Posa [1976] showing that m = Knlogn for sufficiently large K suffices.

The paper contains a result (see Lemma 2.2) which is the foundation for many

proofs of Hamiltonicity. Also Korsunov [1976] claimed a proof for c -* °° in

an extended abstract.

Erdbs and Renyi [1961] envisaged a graph process in which a random graph

grows one edge at a time, the additional edge being chosen randomly from the

edges remaining. Let r~3F^ , . . . ,F L denote the random sequence of



graphs produced. Let mT = min{m: 6{T ) > k}. Now clearly, r
m2-l

is not

Hamiltonian and it is rather nice that the following strengthening of Theorem

1.2 is possible:

Theorem 1.3

lim Pr(F is hamiltonian) = 1

This theorem was claimed in [Komlos and Szemeredi, 1983] without proof as

a reformulation of Theorem 1.2. This is not quite true and Bollobas gave a

complete proof in [Bollobas, 1984]. Subsequently, Ajtai, Komlos and

Szemeredi [1985] gave a different proof. If Theorem 1.3 is true one should

not be surprised with

Theorem 1.4

lim Pr(F has a perfect matching) = 1
n-*» m
n even

•

For a proof see Bollobas [1985] (Theorem VII.22).

In §2 we will give outline proofs of Theorem 1.1 and 1.2. They

demonstrate the general approach to this topic. In §3 we give generalizations

of these theorems. In §4-6 we discuss other models of random graphs, in §7 we

discuss random digraphs and in §8 we end with some open problems.



§2. "Proofs" of Theorems 1.1 and 1.2

We first consider Theorem 1.1. Suppose first that n is even, m = <r-

n(logn + c), and G has no perfect matching. Let X = {x: x is left
n , m

exposed by some maximum matching}. For x € X let Y(x) = {y: 3 a maximum

matching which leaves x and y exposed}.

For S C [n] let N(S) = {t € S: 3 s € S such that st € E }.

~~ n , m

Lenma 2.1

|N(Y(x))| < |Y(x)| for x € X.

Proof

Suppose x € X. Fix a maximum matching M leaving v exposed. Let S

be the remaining set of vertices left exposed by M. Then y € Y = Y(x) iff

there exists an even length alternating path P from s € S to y.

Suppose now that zy € E with y € Y, z € Y. The lemma follows from
xi , m

the claim that there exists y' € Y such that y'z € M. To see this note

that either z € P or P + yz + zy' is an even length alternating path,

where zy' is the edge of M covering z. D

Now clearly

(2.1) x € X, y € Y(x) implies xy £ E^ .
n, m

Now let a graph with vertex set [n] be in EX, if



SC[n], |S | < A - implies |N(S) J > k|S|

Now it is not difficult to show that a.e. G with 6 > 1 satisfies
n,m

(2.2) G - A € EX1 for all matchings A which avoid vertices of degree 1.
XI , 111 X

(The proof of this is through a somewhat tedious calculation where it is

useful to consider [n] partitioned into small vertices of degree at most

rr-Tr logn and large vertices - for details see similar calculations in

[Bollobas, Fenner and Frieze, 1987]). We exploit the existence of this "hole"

in G implied by (2.1) and (2.2).

Observe also that a.e. G has fewer than logn vertices of degree 1
n,m

and A < 3 logn. We can now finish the proof fairly quickly using an argument

based on that in Fenner and Frieze [1983]. Let ^(n.m) denote the set of all

n edge graphs on [n] and ^-(n.m) those which have 6 > 1, no perfect

matching, fewer than logn vertices of degree 1, A < 3 logn and satisfy

(2.2).Let G) = [logn] and A be a random co-subset of E . Let si be the

event {(i) A avoids at least one maximum matching of G , (ii) A avoids
n, m

vertices of degree 1 and (iii) A is a matching}. Then

Gn,m

(A simple calculation once one has fixed G € <§ (n,m). Hence

P r ( Gn,m

But



Pr(«O = 2 Pr(rf| G - A = H)Pr(Gn - A = H)
rl

£ 2 Pr(A fl F,, = * | G - A = H)Pr(G - A = H)
H€EX n*m nfin

where FH = {xy: x € X, y € Y(x)} for some sets X,Y(x), x € X defined in

terms of H only. A D FH = <f> follows from «f(i) and H € EX. follows from

sf(ii), sf(iii) and (2.2). But if H is fixed then A is a random u-subset of

E(H). Hence

PrOO < 2 (^f Pr(G - A = H)
1U n'm

and the theorem follows after tidying up.

Now let us turn to Theorem 1.2. We will see that in some sense we can

prove this theorem by replacing 1 by 2 in the relevant places. Suppose G =

G is not hamiltonian. Let X = {x: x is an endpoint of some longest path
xi * m

of G}. For each x € X choose some longest path P = (x = xn,x1 ,xQ,. . . ,x )
X U 1 Z p

with x as one endpoint. Suppose that the edge x x., i < p-2, exists. A

rotation with x as fixed endpoint creates the new longest path

(XQ,X.. , . . . ,x. ,x ,x - , . . . ,x.+1)> also having x as one endpoint. Let now

Y(x) be the set of vertices which are the endpoints other than x of those

longest paths which can be obtained from P by a sequence of rotations with

x as fixed endpoint.

In place of Lemma 2.1 we have



2.2 (Posa [1976])

|N(Y(x))| < 2|Y(x)| for x € X.

Proof

If z € N(Y(x)) then z is the neighbour, on P , of some vertex in

Y(x). •

Clearly |x| > |Y(x) | for all x € X and furthermore (2.1) holds if G

is connected (using the current definition for X,Y).

We replace (2.2) by a.e. G with 6 > 2 satisfies

(2.3) G - A € EX,, for all matchings A which avoid vertices of degree 2.
n, m ^i

Observe also that a.e. G is connected, has fewer than logn vertices
n,m &

of degree < 2 and A < 3 logn. We finish the proof as before. Now define

^(n.m) as those graphs in ^(n.m) which are connected, non-hamiltonian and

have 6 > 2, A < 3 logn and fewer than logn vertices of degree < 2. Now

define si as the event

{(i) A avoids at least one longest path of G, (ii) A avoids vertices of

degree 2, (iii) A is a matching.}

Then

Gn.m € V n ' m » > 5 and



8

by similar arguments to those for the previous theorem.

§3. Generalisations

Let a graph G have property sL if it contains |k/2J e d S e disjoint

Hamilton cycles and, if k is odd, a further edge disjoint matching of size

[n/2j, n = |V(G)|. Theorems 1.3, 1.4 can be generalised to

Theorem 3.1 (Bollobas and Frieze [1985])

lim Pr(r H € d.) = 1
n-*» m.

for fixed k. D

This is not too difficult to prove. One shows that in a.e. F , is such

that T ^ - A € EX, for all matchings A which avoid vertices of degree k.

If then for example we can only find t < =• k Hamilton cycles then removing

these cycles still leaves |N(S) | > (k - 2t) |S| > 2| S | for |s| < n/(k+2).

Posa's Theorem plus the colouring argument finishes the proof.

It seems then that if we find that a random graph does not have property

si, then the most likely cause is a vertex of degree k-1 or less. But what

if we exclude this possibility by only considering graphs with minimum degree

at least k? Now let <^k^ = {G € <§ : 6(G) > k} and let G*k* be sampled
n,m * n,m v ' ~ J n,m

uniformly from this set. Bollobas and Frieze [1985] (k = 1) and Bollobas,

Fenner and Frieze [1988] questions to be answered are (i) how large should m

be so that the probability tends to a positive constant and (ii) what is the

most likely obstruction to the occurrence of si. ? The answer to (ii) is the
XV



existence of k+1 vertices of degree k having a common neighbour - a

k-spider. As for (i):

Theorem 3.2

Let m = | (j^p- + k logn + c j . Then

lira P r f G ^ €
n m

0

fk)
lim Pr(Gv ' has no k-spider) =

c -
nc -
n

c -
n

* c

00

00

e-(k+l)c
where 0(c,k) =

(k+l)!((k-l)!jk+1(k+l)k(k+1)

[There is a caveat here for the case c -*-<». We should not allow it to go

there too fast. For example if k = 1 and m = ~- n exactly then G^ ' is
z n,m

always a matching.]

The approach once again is to show that (in the key case, c -» c) a.e.

fkl fkl
Gv } is such that Gv J - A € EX, for matchings A that avoid vertices of
n,m n,m k °

degree k and to then apply the colouring argument. The first problem is

fk) fk}
quite difficult. It is hard to prove properties of Gv J since <SV J is a

^ K K n,m n,m

very small subset of ^
n,m

The k-core aT.(G) of a graph G is the largest vertex induced subgraph
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of G which has minimum degree at least k. Now it is not too difficult to

show that if a, (G ) has n' vertices and m' then it has the same
K n , m

fk)
distribution as Gv ,' ,. Now when m is as in Theorem 3.2, we find that in

n ,m

a.e. G we have n - nf = o(n), m - mf = o(n) and hence we obtain the

result of Luczak [1987a] as a corollary.

Corollary 3.3

Let m, 0(c,k) be as in Theorem 3.2. Then

lim Pr(a (G ) € sL) +
K n m K

0

e-e ( c

.1

k)

c -
n

c -
n

c -
n

* c

* +

00

00

Note that the number of edges required in Theorem 3.2 for property si.

is much less than that required in Theorem 3.1.

The next thing to look at would be <S* '. Here we find that only a
n,m

linear number of edges is needed, although the result is not yet as precise as

that in Theorem 3.2.

Theorem 3.4 (Bollobas, Cooper, Fenner and Frieze [1988])

There exist constants c, , k > 2 such that if m > c,n then

lim Pr(G(k+1) € sL ) = 1.
n-co ™ ^

Let us now for the moment turn to subgraphs of G . I n particular let
n , iTi
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m = i- en for some constant c > 1. Erdbs conjectured that there exists a

function a(c) > 0, a(c) -* 0 as c -» °° such that a.e. G contains a pathv ' v ' n,m

of length > (1 - a(c))n. Ajtai, Komlos and Szemeredi [1981] proved this for

C0
all c > 1 and independently de la Vega [1979] proved that a(c) < —- for

c

some small constant cn > 1. Ajtai, Komlos and Szemeredi showed that there

was a long line of descendants in a certain branching process and de la Vega

considered a simple depth-first-search for a long path. Bollobas [1982] was

able to show that <x(c) was much smaller, for large c, by showing that a.e.
24 -c/2G contained a large hamiltonian subgraph of size n(l - c e ). Then, m

proof that the subgraph is Hamiltonian is based on Posa's Theorem plus the

colouring argument. Looking for Hamiltonian subgraphs, at least for large c,

seems to be the correct approach. Bollobas, Fenner and Frieze [1984] showed
6 -c

a(c) < c e and in Frieze [1986a] we proved the following: let now k be

fixed and

a(k,c) = inf{a € R: a.e. G ^ contains a subgraph H €
n.^cn

with at least (l-a)n vertices}.

Theorem 3.5

k-1 t -c
<x(k,c) < (1 + e(k,c)) 2 ^ r f -

t=l Z'

where lim e(k,c) = 0.

This gives the correct order of magnitude for a(k,c) because a.e. G

n.gcn
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k-1 t -c
contains approximately n 2 ^—— vertices of degree k-1 or less. In

t=l t-

the proof we start with the k-core and remove a few extra vertices and show

that what is left has property si, with high probability. Theorem 3.5 is
xC

true if we allow c to grow with n and we can deduce Theorem 3.1 as a

corollary. Finally, for the case c close to 1, Suen [1985] managed to

improve the estimate of Ajtai, Komlos and Szemeredi for the length of the

longest path.

Let us now return to the threshold for being Hamiltonian. A graph is

said to be pancyclic if it has cycles of all lengths between 3 and n.

Cooper and Frieze [1987] and Luczak [1987b] independently showed that the

threshold for being pancyclic was also that for minimum degree 2. In fact

Luczak showed that for large c, a.e. G . contains cycles of all lengths

n.^cn

between w(n) and the upper bound implied by Theorem 3.5. Here <o(n) is any

function tending "slowly" to infinity with n. In a twist on pancyclicity

Cooper [1988] has shown that when G is Hamiltonian it is almost always
n, m

possible to find a Hamilton cycle from which one can construct cycles of all

lengths by using 2 chords for each cycle.

In another variation we showed, Frieze [1988a], that for any fixed k,

the threshold for being Hamiltonian was also that for the existence of k

vertex disjoint cycles of sizes U-j and M which covered [n].

Another variation on Hamiltonicity is that of being Hamilton connected.

A graph is Hamilton connected if there is a Hamilton path joining each pair of

vertices. To be Hamilton connected a graph has to have minimum degree at

least 3 since the neighbours of a vertex of degree 2 cannot be connected by a

Hamilton path. One can guess that the threshold for being Hamilton connected

is the same as that for 6 > 3. This was proved in Bollobas, Fenner and
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Frieze [1987] and independently in Luczak [1988].

We ought to mention bipartite graphs. We showed in Frieze [1985], not

surprisingly, that if m = n(logn + loglogn + c ), then
n'

lim Pr(B is Hami 1 tonian) = lim Pr(6(Bn m ) > 2)

0 c -* -00

n
-2e"C

e c -» cn

1 c -* +«>
n

where B denotes a random bipartite graph with 2n vertices and m edges.
n , m

The proof of this result was actually a little trickier than that of Theorem

1.2. The problem is that (2.1) is of no help if the longest path is of odd

length. The trick used to deal with this was helpful in proving the next

result.

We end this section with a recent result of Cooper and Frieze [1988] on

the number of Hamilton cycles in a random graph. Theorem 1.3 states that

a.e. T ^ has a Hamilton cycle. This raises the question of how many? The

expected number in T is certainly at most
m 2

fo"1)* (logn + 0(loglogn))n = (logn)n"°^n^. What we show is that a.e. r
m2

has (logn) * ' distinct hami 1 ton cycles. (The o(n) terms in the result

and the expectation are quite different.) The idea behind the proof here is

roughly to find for (most) v < ~ n, a collection of k = [^(^g11) ]

(c constant, r = (loglogn)2) sets W ^ . w j ^ , . .. ,w£V^ of r edges satisfying
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[V* fl W ^ l < 1, i jt j. For each f: [| n - o(n)] -+ k we obtain a graph

H» by deleting all edges incident with v other than W~Y'*. We show that

almost all H. are Hamiltonian for a.e. F ^. If f * f' then a Hamilton

cycle in Hf is distinct from one in Hf, since |W^> fl wJy?J < 1 if

^n - o(n) _ , N
f(v) * f '(v). The number of different f is IT = (logn)n °lnJ.

§4. Regulax Graphs, k-out and Planar Maps

There are two other graph models which have received some attention from

the point of view fo Hamiltonicity. We first consider random regular graphs.

These are usually studied via the configuration model of Bollobas [1980].

Suppose r is constant and we wish to generate a random regular graph with

vertex set [n]. We let W = Wj U Wg U ...U Wn where the W^s are a disjoint

collection of r-sets. A configuration is a partition of W into m = =- rn

pairs. Associate with F the multigraph JLX(F) with vertex set [n] and an

edge xy whenever F contains a pair {f ,17} with f € W , 17 € W . If $ is
x y

the set of configurations and F is chosen randomly from $ then (i) each

simple regular graph has the same probability of occurrence as #(F) and
—fr -l)/4

(ii) Pr(tf>(F) is a simple graph ~ e v J Hence if r is constant it is

enough to show that a.e. <f>(F) is Hamiltonian in order to show that a.e.

r-regular graph is. This idea has been used to prove

Theorem 4.1

There exists a constant r~ > 3 such that if r > r~ is constant then

a.e. r-regular graph is Hamiltonian. Q

Bollobas [1983] showed rQ < 10 and independently Fenner and Frieze

[1984] showed rQ < 776. We gave an algorithmic proof that rQ < 85 in

[1988b ]. Robinson and Wormald have claimed a proof that rQ = 3, but as yet
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there is no paper. They have already proved that a.e. cubic bipartite graph

is Hamiltonian and that 98% of cubic graphs are too [Robinson and Wormald,

1984]. They use the Chebycheff inequality to prove both results; the second

result requires a clever argument relating cubic graphs and triangle free

graphs. It would appear that the proof of r~ = 3 is an extension of this

argument.

One curious point about random regular graphs is that knowing a.e.

r-regular graph is Hamiltonian does not imply a.e. (r+l)-regular graph is.

Thus Theorem 4.1 does not say anything about r(n)-regular graphs when

r(n) -» °°. However by comparing rates at which various probabilities go to

zero, one can show [Frieze, 1988c], that the result continues to hold for

r = 0(n ). The upper bound seems unnecessary but is there for the moment.

There is not much to say about perfect matchings in this case since the

existence question is covered by Hamiltonicity or r-connectivity.

Another model which has received some attention is G, . Here the
K-out

vertex set is [n] and each v € [n] independently chooses k neighbours.

(Equivalently, sample uniformly from the space of digraphs with vertex set [n]

and regular out degree k. Then ignore orientation). Observe that G-

is the graph induced by a random function and is well studied (see e.g.

Kolchin [1986]). We proved the following in [Frieze, 1986b]:

Theorem 4.2

a.e. G~ has a matching of size [n/2j. D

This implies the earlier result of Shamir and Upfal [1982] the a.e.

Gg_ has such a matching.
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Now it is easy to see that a.e. G- has no matching of this size

since it will contain a large number of degree one vertices with a common

neighbour. So how big is the largest matching in G, . Let u(n) denote

its expected size.

Theorem 4.3 (Meir and Moon [1974])

n

where p = .4328 is the unique solution to x = eX.

Actually, Meir and Moon proved this result for random labelled trees.

J.W. Moon pointed out to me that this implies the result for random amppings.

This becomes obvious once one considers Joyal's proof of Cayley's formula for

the number of spanning trees of K and the fact that a.e. G- ^ has 0(>Iii)

n 1-out v '
vertices on cycles. In the case of Hamilton cycles we have the following

Theorem 4.4

There exists a constant kQ > 3 such that if k > k~ then a.e. G.

is Hamiltonian. •

It was shown in Fenner and Frieze [1983] that kQ < 23 and it was here

that we first used the colouring argument of §2. We gave an algorithmic proof

in [Frieze, 1988b] that k Q < 10 but recently, in Luczak and Frieze [1988],

we have shown k~ < 5.

The idea of the last paper is simple enough to explain in a few

paragraphs. G-_ is (or contains) the union of 2 independent G~ 's plus
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a G^ . Take the 2 independent matchings from Theorem 4.2 and make up
1-out

2-factor which almost always has at most 2 logn cycles.

Now repeat the following procedure until a Hamilton cycle is constructed.

Since a.e. G. is connected there must be an edge joining 2 cycles.
4-out

Delete 2 edges to make a path through all the vertices of these cycles. Now

using only the G._ either extend the path to drag in another cycle and make

the path longer, or do rotations and use the independent G- to join 2

endpoints of one of the paths produced. Since G._ "expands" we can use

Posa's Theorem to show there is always a high probability of being able to do

this.

As a final model we consider planar maps and the result of Richmond,

Robinson and Wormald [1985]. Consider the set of unlabelled 3-connected cubic

planar maps with n vertices. They show that a.e. map contains a large

number of vertex induced copies of any fixed size map M. By choosing M to

be any 3-connected map which has no Hamilton path, they show that a.e. such

map in non-Hamiltonian. Their proof is based on a clever use of generating

functions.

§5. Algorithmic Aspects

The study of random graphs is by and large a study of the likely

existence of objects. Random graphs can also be used to analyse the expected

performance of algorithms that search for these objects. The Hamilton cycle

problem is interesting from this point of view in that while the problem of

finding a Hamilton cycle in a graph is NP-hard (see e.g. Garey and Johnson

[1978]) there exist polynomial time algorithms which succeeds in almost every

case. More precisely Bollobas, Fenner and Frieze [1987] devised a

(deterministic) algorithm HAM which runs in 0(n logn) time on an n vertex
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graph and satisfies

Theorem 5.1

t m = o" O0^1* + loglogn + c ) assuming c(i) Let m = o" O0^1* + loglogn + c ) assuming c -» ± «> or a constant

we have

lim Pr(HAM finds a Hamilton cycle in G ) = lim Pr(G is Hamiltonian)

(ii)

Pr(HAM fails to find a Hamilton cycle in G , | 6(G K) > 2) = o(2~
n). D

n,.o n,.o

The main point of (ii) is that if the input to HAM is equally likely to

be any graph with vertex set [n] then HAM fails so infrequently that these

cases can be handled by dynamic programming (Held and Karp [1962]) and we will

have a deterministic algorithm which correctly determines whether any graph is

Hamiltonian and runs in polynomial expected time.

The algorithm uses the rotations discussed in §2. It runs in stages. At

the start of stage k there is a path P of length k. If either endpoint

of P is adjacent to a vertex not in P we extend the path and the stage

ends. Otherwise we construct all paths obtainable by a single rotation and

see if any of these can be extended. We continue this "breadth-first"

construction of paths to depth approximately T = -; , , unless we find a

path that we can extend. We show that in a.e. G , m = -̂ (logn + loglogn +
n t m /-i

c), the number of paths grows by a factor of at least a logn, a > 0

2
constant. Thus at depth T we have approximately /3n paths and we use the

colouring argument to show that with probability 1 - o(l) one of these paths

has adjacent endpoints. Since a.e. G will be connected we find that
J * n,m

either we have a Hamilton cycle we can find a longer path.
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If we allow randomized algorithms then we have

Theorem 5.2 (Gurevich and Shelah [1987], Thomason [1987])

There exist linear expected time randomized algorithms for deciding graph

Hamiltonicity for input distribution G , p constant.

-1/3
(Actually Thomason's paper treats p > n ). D

Neither of the 2 algorithms mentioned in this theorem have good expected

performance at the threshold. On the other hand they can be modified to solve

the Hamilton cycle problem on digraphs (see §6).

Earlier results for this problem were obtained by Angluin and Valiant

2

[1979] who gave an O(n(logn) ) randomized algorithm that finds a Hamilton

cycle in a.e. G ^ , for large K. Shamir [1983] gave an algorithm for m

slightly above the threshold.

Before moving on to sparse graphs we mention the result of Gimbel, Katz,

Lesniak, Scheinermann and Weirman [1987]. It is well known that the graph

G = xy is Hamiltonian if and only if G is Hamiltonian whenever, dp(x) +

d
G(y) > |V(G) | (Bondy and Chvatal [1976]). By adding all such edges, we

2 3 *
obtain c(G). We can repeat this and compute c (G),c (G),...,c (G), the

closure of G. Gimbel et al proved

Theorem 5.3

In the following p is a constant, 0 < p < 1 and the statements hold

with probability 1 - o(l):

(a) p < Q- implies c(G ) = G

£ n, p n, p
(b) P = h implies c2(G 1) * c3(G ) = c*(G .) = K

ntc> i i n
2 n,̂  n>2

(c) p > i implies c(G) = K .
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Let us now consider G , m = ~r en where c > 1 is constant. Karp and
n,m 2

Sipser [1981] discuss a simple algorithm for finding a large matching in such

a graph. Their algorithm is as follows: Suppose the input graph is G;

begin

H: = G - {isolated vertices}; M := 0

repeat

if 5(H) = 1 then randomly choose an edge u incident with a vertex

of degree 1 else randomly choose any edge u;

M := M + u; remove u and all edges indicdent with u; remove all

isolated vertices

until H has no vertices

output M

end

They prove

Theorem 5.4

With probability 1 - o(l)

(i) The matching produced by M is within o(n) in size of a largest

matching.

(ii) If c < e (= basis of natural logarithms) then for a.e. G we find
n , m

6(H) = 1 throughout the algorithm, otherwise there are phases in which

6(H) = 2. •

For the problem of finding a long path or cycle we essentially have de la

Vega's algorithm which for large c finds a path with in 0(—) of the maximum
c

and that in Frieze (1988b) which finds one within 0(n e(c)e~"C) of the
maximum, where lim e(c) = 0. Both algorithms are polynomial, the latter

CHCO

being a modification of HAM of Bollobas, Fenner and Frieze [1987]. This
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latter algorithm can also be used on random regular graphs.

Let us end this section with a discussion of parallel algorithms. Using

the algorithm of Thomason [1987] to construct small cycles and then doing some

patching we constructed an O((loglogn) ) expected time parallel algorithm for

deciding graph or digraph Hamiltonicity on a CRCW PRAM (Frieze [1987a]). The

model of random input is G , p constant.

For sparse random graphs with Kn logn edges, K sufficiently large,

2
Coppersmith, Rhagavan and Tompa [1987] have constructed an O((logn) )

parallel algorithm that constructs a Hamilton cycle with probability

1 - o(l). Finally, in Frieze and Tygar [1988] we have been considering the

problem of finding a maximum matching in a random graph. The algorithm is

deterministic and purely graph theoretic in nature. It is to be contrasted

with the randomized NC algorithms of Karp, Upfal and Wigderson [1986] or

Mulmuley, Vazirani and Yazirani [1987] which work on all inputs and rely on

evaluating determinants.

Weighted Problc

If we assign weights to the edgs of graphs then we can study the problems

of finding minimum (total) wieght perfect matchings and minimum weight

Hamilton cycles (the travelling salesman problem). We first consider weighted

perfect matchings in the complete bipartite graph K (the assignment
xi, n

problem). The most efficient algorithms for this problem run in 0(n )

2
worst-case time but Karp [1980] describes an algorithm with 0(n logn)

expected running time assuming the weights are i.i.d. random variables.

Suppose next that W is the (random minimum weight of a perfect

matching in K when the edge weights are independent uniform [0,1] random
n, n

variables. Walkup [1979] proved the surprising result that E(W ) < 3,

always. In the proof Walkup replaces each edge by a pair of edges, one blue
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and one red say. Each edge is given a weight which is a random variable with

1/3
distribution function F(x) = 1 - (1-x) so that the minimum of the red

weight and the blue weight is uniform. Now consider the random bipartite

graph where one half of the vertex partition chooses the two least weight red

edges incident with each vertex and the other half uses blue edges. This

graph is like a bipartite 2-out and Walkup [1980] shows it has a matching with

probability 1 - o(l). (compare with Theorem 4.2). The expected length of

3
each edge in this matching is at most — and Walkupfs result follows, modulo

some technical tidying up.

Subsequently Karp [1987], showed E(W ) < 2 (see also Dyer, Frieze and

McDiarmid [1986]). It is known that E(W ) > 1 + e"1 and the exact limiting

value of E(W ) is unknown.

Now consider the Travelling Salesman Problem (TSP). It was shown by

Beardwood, Hal ton and Hammersley [1959] that if X^Xg.-.-.X are

2
independetly chosen randomly from within the unit square [0,1] then

L
Pr(-z

4

where L is the length of the shortest "tour" through the n points and j3

is constant whose precise value is not known. Karp [1977] in a very

influential paper constructed an 0(n logn) algorithm which computes a tour

which, with probability 1 - o(l), is very close to optimum.

Karp also considered the asymmetric TSP. Let the arcs of the complete

3
digraph be given independent uniform [0,1] lengths. Karp [1979] gave an 0(n )

algorithm which, with probability 1 - o(l), computes a tour which is very

close to optimum. Later Karp and Steele [1985] and Dyer and Frieze [1988]

3
further improved these results. The basic idea is to compute in 0(n ) time a
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minimum weight set of vertex disjoint directed cycles which together cover all

vertices. [The optimisation problem here is, essentially, the assignment

problem mentioned previously]. A tour is then obtained by "patching" together

the cycles. Dyer and Frieze show that this can usually be done at an extra

c o s t o f 0

The above algorithms for the travelling salesman problem are

approximation algorithms. They do not aim to solve the problem exactly. In

Frieze [1987b] we consider the symmetric TSP where the costs are independent

3
random integers in the range [0,B]. We described an 0(n logn) randomized

algorithm TSPSOLVE which satisfies the following: assume

B = B(n) = oU—y ). Then
v ' Uoglogn'

(5.1) lim Pr(TSPSOLVE finds an optimum solution) = 1.
n-*»

The idea is to identify a set X~ of "troublesome vertices" and construct a

set of vertex disjoint paths 3> which contain Xn as interior points. #> is

to have minimum total edge weight among all such sets of paths. Having done

this we use zero length edges to construct a Hamilton cycle containing the

eges of #>. The algorithm used for finding such a cycle is related to that in

Frieze (1988b).

§6. Digraphs

Many of the theorems on Hamilton cycles in random graphs have natural

analogues in digraphs, most of which have not been proved yet. However the

directed analogues of Theorems 1.2, 1.3, 2.1 have been proved in Frieze
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[1988d]. Thus for example if D is a random digraph with vertex set [n]

2
and m edges chosen randomly from [n] then we have

Theorem 6.1

Let m = n logn + c n. Then

lim Pr(D is Hamiltonian) =
n,m

0 c
n

-2e"C
c -» c
n
c
n

•

1 5The proof is via the analysis of an 0(n * ) time algorithm.

There is not much else to say about random digraphs except that there is

an analogous result to (5.1) for the asymmetric TSP with B = 0(j^—).

We end this section with a remarkable inequality due to McDiarmid [1981]

which gives a result close to Theorem 6.1.

Let G , (resp. D ) denote a random graph (resp. digraph) in which

each possible edge is independently included with probability p.

Theorem 6.2

Pr(D is Hamiltonian) > Pr(G is Hamiltonian).

Proof

Let e1,eo>...,eN be any enumeration of the edges of the complete graph

K . We consider a sequence of random digraphs H- .HL.H^, . . . .IL, = Dn i ^ / o n n , p

To construct H. we do the following: if j < i and e. = uv then we
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independently add arc uv with probability p and arc vu with probability

p. If j > i then we either add both uv and vu with probability p or

add neither. Thus IL is G with each undirected edge replaced by a pair
1 n,p

of poositely oriented edges. Thus

Pr(H1 is Hamiltonian} = Pr(Gn is Hamiltonian)

We show

Pr(Hi+1 is Hamiltonian) > Pr(Ht is Hamiltonian), 1 < i < N

and the theorem follows. In fact let <o represent the outcome of our

experiment with edges e., j ̂  i+1. We have
J

(6.1) Pr(Hi+1 is Hamiltonian | w) 2 Pr{H± is Hamiltonian |w)

remembering that edges e., j # i+1 are treated the same in H. and H. - .

Let D denote the digraph with edges made from the outcomes of experiments

with edges e., j ? i.

Now let e. 1 = uv, then there are 5 cases:

(i) D has a Hamilton cycle.
(0

(ii) D has no Hamilton cycle but has Hamilton paths from u to v and from

v to u.

(iii) D has no Hamilton cycle and no Hamilton path from u to v but has

one from v to u.

(iv) D has no Hamilton cycle and no Hamilton path from v to n but has

one from u to v.

(v) D has no Hamilton cycle and no Hamilton path from u to v or from

v to u.
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Consider the following table in which position (k,i+9) gives Pr(H. Q is

Hamiltonian | (case (k)):

( i )

(ii)

(iii)

(iv)

(v)

i

1

P

P

P

0

2p-p2

P

P

0

It is clear tht we have proved (6.1) and the theorem. D

Observe that Theorems 1.2 and 6.2 imply the result in Theorem 6.1 for

c - loglogn -» ». (It is straightforward to translate such results for D
n nt p

to D - see Theorem II.2 of Bollobas [1985]).
n,m L J'

§7. Open Problc

1. Can Theorem 3.1 be generalized to

lim Pr(rm € si ., m = 1,2,. . . ,N) = 1?

2. Are the following true (see Theorem 3.4)?

(a) c > 1 implies a.e. G^ ' has a matching of size
n, en

3 (3)
(b) c 2 cjr implies a.e. Gv J is Hamiltonian.

3. Determine e(k,c) of Theorem 3.5 to within o(l), (as n
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4. Show that if m = £ (logn + loglogn + c) and 5(G ) > 2 then with

probability tending to 1 either

(a) 3 a Hamilton cycle H such that cycles of all lengths can be

obtained by adding 1 chord

or

(b) (a) is false.

(Cooper [1988] has shown that 2 chords are enough).

5. Determine the threshold for being able to partition the vertices of G
n,m

into k = k(n) cycles of roughly equal size, (k constant is dealt with

in Frieze [1988a]). The problem gets harder as k grows faster.

6. Show that a.e. r(n)-regular graph is Hamiltonian where r(n) -» °°. The

case r = 0(n ) is treated in Frieze [1988c] (it is not clear at

present whether showing a.e. cubic graph is Hamiltonian is open).

7. Show that a.e. Go ^ is Hamiltonian.
3-out

8. Find polynomial time algorithms for finding, with probability 1 - o(l)

Hamilton cycles in (i) random cubic graphs, (ii) G

9. Find polynomial time algorithms for solving random travelling salesman

problems exactly, with probability 1 - o(l).
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10. (a) Show that there exists a constant rQ > 2 such that if r > rQ then

a.e. r-regular digraph is Hamiltonian. (By r-regular we mean both the

indegree and outdegree of every vertex is r).

(b) Show that there exists a constant kQ > 2 such that if k > kQ then

a-e- Gk-in,k-out ^ Hamiltonian. ( ^ ^ ^ ^ is a digraph with

vertex set [n] in which each v € [n] independently chooses k

in-neighbours and k out-neighbours. See Fenner and Frieze [1982]).
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