
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ON THE STRENGTH OF MECHANICAL AND
THERMAL DAMPING IN LINEAR MATERIALS

by

J. Bielak
Department of Civil Engineering

and
R. C. MacCamy

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 88-35^

September 1988



On the strength of mechanical and thermal
damping in linear materials

J. Bielak , Department of Civil Engineering
XX

acCamy , Department of Mat
Carnegie Mellon University

XX
R.C. MacCamy , Department of Mathematics

This author was partially supported by the National Science Foundation
under Grant ECE-8611060.
XX
This author was supported by the National Science Foundation under
Grant DMS 8601288.



1. Introduction:

The purpose of this paper is the study of a class of linear, dissipative

models for the elastic behavior of solids with emphasis on what we term strength

of damping. We study both mechanical and thermal damping. The former can be

discussed within the framework of fibers, while for the latter we need to

consider the one-dimensional motion of bars.

We consider several models of mechanical damping. The simplest example of

mechanical damping is a Kelvin-Voigt material (K) which has a viscous effect.

Our other mechanical models are all characterized by having the stress a as a

linear functional ? of the time history of strain e. They are integral

models. In this category is classical viscoelasticity (V) with smooth kernels.

We also consider two classes of models with singular kernels. The first

(R - H) , 0 < a < 2 was developed by Renardy and Hrusa, [5] and [7], and

involves kernels which have singularities of order -a. The second (V - K) ,

0 < a < 1 was introduced in [3] and also has singularities of order -a.

Formally one has (R - H ) a -» (V) and (V - K) -» (V) as a I 0 while

(V - K ) a -» (K) as a t I- (R - H) for 1 < a < 2 is similar to (V - K ) a for

0 < a < 1; and we will not consider it in detail here. We note that the limits

of (R - H) as a | 2 and (V - K) as a I 0 are not fully understood.

References [5] and [7] contain a discussion of two concepts, propagation

speed and smoothing of singularities for (R - H) . (K) has infinite propagation

speed and smooths singularities. (V) has finite propagation speed but does not

smooth. For a > 1 (R - H ) ^ is like (K) but for 0 < a < 1 (R - H ) a has

finite propagation speed and smooths. The models (V - H) are like (K) in this

regard. If we think of smoothing as corresponding to stronger damping it



follows that (K), (R - H ) a and (V - K ) a are all stronger than (V). The

propagation speed concept seems to indicate that (V - K) , 0 < a < 1 and

(R - H)^, 1 < a < 2 are in some sense stronger than (R - H) , 0 < a < 1. .

In this paper we consider a different characterization of damping. This is

somewhat more refined and distinguishes between the powers of a in the models.

Moreover, for mechanical effects, it applies to the motion of fibers. It is

suggested by observations in the survey article of Bert [1]. The idea is this.

If a dissipative model has input data which tend to a time periodic limit of

frequency w the solution will have a similar limit. It will then be possible

to define a steady-state power loss. This is a scalar function P(<o) of

frequency which measures the power that must be provided per cycle to maintain

the periodic motion and which can be determined experimentally.

It was observed in [1] that whereas for a Kelvin-Voigt material P(w) is

proportional to u, the power for many real materials exhibits a different

dependence on w. For the materials considered here we find that for higher

frequency, P(CJ) can be of 0(w ) for different a's and, in fact, can be

independent of GJ.

In section two we make the above ideas precise for fibers. We find the

following estimates for P(w) when w is large:

P(w) = O(o)) for (K), P(w) = 0(G) *) for (V)

P((o) = O((oa *) for (R - H ) a , 0 < a < 1 (1.1)

P(w) = 0(a>a) for (V - K ) a , 0 < a < 1



We take the exponent of w in the limit behavior of P(w) as a measure of

damping, larger exponent meaning stronger damping. (1.1) shows that we can get

all exponents between -1 and +1 and in particular exponent zero for

(R - H ) r

To study thermal effects we need to consider one-dimensional problems. In

section three we consider this first for mechanical damping. Then in section

four we consider a model in which the only damping is thermal (T). The

one-dimensional results are as follows for u large:

P(co) = O((o3/2) for (K), P(G)) = 0(w) for (V)

i
(w) = O(<o ) for (V - K ) 0 < a < 1

P((i)) ~ c G>, c -» « a s all for (R - H ) 0 < a < 1v J a a • v ' a

P(G)) = 0(G>) for (T).

We note that the range of exponents for a) is less for the bars than the

fibers. In particular the exponent above no longer distinguishes between the

(R - H) models, all giving the same exponent. The constant c is needed for

a more refined estimate. Note also that the exponent for (T) is the same as

that for (V) and we conclude that thermoelastic damping is weak. We will see in

the last section that for a thermally damped system one can find a viscoelastic

system with exactly the same asymptotic behavior for P(w).



2. Mechanical damping in fibers-

Suppose a unit mass is attached to an elastic fiber and is subjected to a

force f. The equation of motion of the mass is

D2e = -a + f (2.1)

where D denotes time differentiation, e is the strain and a the stress.

From (2.1) we have

fDe = D(|(De)2) + aDe = p[e] (2.2)

The left side of (2.2) gives the power that must be applied by the force f in

order to maintain the motion, and could be measured experimentally.

One obtains models by giving constitutive assumptions relating a and e.

The class we want to consider is to be dissipative. This means that such models

have an internal damping mechanism so that, roughly, if f (t) -» 0 as t-»«> so

does fc(t). Related to this is approach to steady-state. More precisely the

property we want is the following. Suppose

f (t) = *e(fne
lwt) + F(t) (2.3)

where F(t) -» 0 as t -» 0 in a sense to be made precise. Then we want to have

an e^(G)) such that



e(t) = ̂ e(eok
1G)T:) + e^t) , e^t) -» 0 as t -> » (I)

In these situations it will also be true that we will have ,

pt+2 TT/W 9

Urn \ p[e](T)dT -̂  P(w)|eor as t -» oo (II)

We term P(co) the steady-state power loss over a cycle. We will show that

the asymptotic behavior of P(w) for large o> enables us to distinguish between

types of models. We consider this behavior as a measure of the strength of

dissipation, larger P(o>) meaning greater damping. We observe that in all cases

P(w) = 0(w) for small <o; hence this behavior does not distinguish models.

The simplest model is Hooke's law o = Ee but this is not dissipative.

Our models all have the following form. Let e denote the strain history,

e (T) = e(t - T ) . Then we assume there is a linear functional $ such that

a(t) = »[>*] (2.4)

With the assumption (2.4), (2.2) requires the initial history e(t), t < 0 and

we assume throughout that this Is zero.

Let us describe the SF's for the models in the introduction. The first two

are the familiar Kelvin-Voigt and viscoelasticity:

If this were to be done experimentally, one would adjust the force amplitude to
keep the displacement amplitude constant.



*] = E € (t) + AD € (t) , E > 0, X > 0, (K)

f
J0

= a(0) € (t) + Da(T) € (t - T)C1T, (V)

where a is a smooth kernel. The other models involve singular kernels. For

0 < a < 2 put Ta(T) = T~
a. Then we have,

'O*] = M € (t) + f m (r)(e(t) - e(t - T))C1T, M > 0
'0

0 < a < 2, m (T) = T (T)m(T), m regular at 0,

?[eT] = M € (t) + D I b (T) € (t - T)dr, M > 0
Jo a

0 < a < 1, b (T) = (r(l - a)) XT (r)b(r), b regular at 0,

where F is the gamma function.

Remarks 2.1:

(i) For a > 1, m is not integrable. However, when r is small we have

e(t) - e(t - T ) D € (t)T so that (R - H) is meaningful for 1 < a < 2.

For 0 < a < 1 we assume m € L1(0,«>) and then (R - H ) ^ can be written

(V-K)o



}~\ = (M + ma(0)) € (t) - j mjr) € (t - T)dT

0 < a < 1, in (0) = m (T)<1T
a Jn a

(R-H)a

0

This is the only case we consider here except for a remark at the end of the

section.

(ii) We see that, formally, both (R - H) and (V - K) tend to (V) as a 1 0

for an appropriate a. We have, because of the gamma function,

€im f b (T) € (t - r)d = b(0) e (t)
afl J0 a

so that, formally (V - K) tends to (K) for appropriate E and X. On the

other hand the limit of (R - H) as a | 1 is complicated. (See Remark

(2.2).)

Before we give precise statements of results let us motivate them. We

treat (2.1) with f as in (2.3) by solving the complex problem,

F(t) (2.5)

and then taking e(t) = Ste £(t). For each of our functionals there will be a

Laplace transform ?(s) such that (for fc(t) = 0 in t < 0)
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y^ yv yv, ys

crfs) = tfr<7(*)1fs) = ?(s)^frfc Ifs) = ?fs)£fs) f2 6)

Transforming (2.5) yields,

= (s2 + y(s)) V n ( s - i«) * + F(s» (2.7)

We can then try to recover g(t) by the formula,

= (27ri) eS tg(s)ds (2.8)
c—i00

We want to use (2.8) for c = 0. This motivates the following definitions:

Definition^

(i) *£ = set of all functions ?(s) which are continuous in $e s > 0 and

analytic in 9fe s > 0.

(ii) J i s a dissipative functional if ? € <£ and

s2 + £(s) ̂ 0 in &e s > 0 (2.9)

Suppose we have F € ̂  and ? is dissipative then from (2.7) g(s) will be

regular in ike s > 0 except for a simple pole at s = iw and this, with (2.8),

will produce (I).

Our first condition guarantees that F € tf and is*



DjF € C[0,«>) 0 L^O-") j =0,1,2 ; F(0) = 0** (F)

Note that (F) implies DJF(t) -» 0 as t -* « for j = 0,1.

Let us suppose that we know that 9 € if. Then we can give a simple

condition which guarantees (2.9).

Proposition 2.1:

If y € ££ then 9 is dtssipattue if

?(0) ̂  0 and #e(?(iT])/iT7) jf 0 for 17 ̂  0

2 ^
Proof: The first condition guarantees that s + ?(s) is non-zero for s

small. We write s + ?(s) = s\(s), x(s) = (s + ?(s)/s). The second condition

guarantees that \(iT]) ̂  0 and then, by the maximum principle x(s) ̂ 0 in

#e s > 0, sj^O.

Let us list the ?'s for our models:

?(s) = E + As for (K)

£(s) = sa(s) for (V)

(2.10)

?(s) = M + ma(0) - ma(s), 0 < a < 1 for (R - H)

?(s) = M + sba(s) for (V - K)

See Remark A.I in the appendix.
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It is clear that 9 is dissipative for (K) but for the others we need some

hypotheses. We will also need the behavior of ?(s) for large s. We list the

hypotheses we require. For any k we write k for the function t -» tk(t).

For (V): a € C ^ [ 0 . ~ ) , a(0) > 0, Da(0) < 0

a(t) = a w + A(t), a w > 0, D
JA € 1^(0,«>), j < 3, A1 € 1^(0,«>)

Ste A(itj) > 0 -«> < 77 < o°.

For (R - H) :<x

1m and m € Lj(O,<»); sgn r\ &m m (it7) < 0 for

m (s) = (r(l - a)A sa l + 0(sa 2 ) as s

For (V - K):

and b^ € L^O.w), 9te b(i?7) > 0 for T7 jt 0

b (s) = A sa l + 0(sa 2 ) as s -* <»
or ' a v '

Remark 2.3 contains some observations about these conditions. We have the

following results when (2.3), (F) and these conditions hold.
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Lemma 2.1:

The functionals % are ail dlsslpatlue.

Theorem 2.1'

There exists a unique solution of (2.1) which satisfies (I) with,

(2.11)

Theorem 2.2:

Condition (II) Is satisfied with,

P(w) = TT ̂fn £(iw) (2.12)

Theorem 2.3:

For large a) we have

P(«) ~ irAw for (K), P(w) 7rDa(0)w 1 for (V)

P(u) ~ (-Trr(l - a)A sin £ (1 - «))«" X for (R - H) (2.13)
(X ^ CX

P((o) ~ (irA sin ^)coa for (V - K)



12

Proof of Lemma 2.1:

We see that our conditions guarantee that ? € <& and then Lemma 2.1

follows from Proposition 2.1.

The complete proof of Theorem 2.1 is a little technical and we give it in

the appendix. We sketch the proof of Theorem 2.2. We write for the complex

solution of (2.5), £(t) = ^ oe
1 < U t + £j(t). We will see in the proof of Theorem

2.1 that gj(t) and D8-(t) -» 0 as t -» <» and then it can be verified that as

t -* °°,

(2.14)

It follows that the limit of the integral in (II) is obtained by replacing e

by 9fe £oe
1<Ot in the right side of (2.2) and integrating. This yields,

p[e](r)dT ~ (!*e a e lwT)D 9Je(e e lwT)dT

= i SSe J
t+2ir/w

which i s (2 .12) . The estimates (2.13) then follow from (2.12), (2.10) ,

(C™) and the following consequence of (C ) :

sa(s) = a(0) + Da(0)s X + 0(s 2 ) (2.15)

that for (V) ? € *£ only if a ? 0.
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Remark 2.2:

Note that as a -» 1 T(l - a) sin | (1 - a) -» TT/2 S O that if A a has a

limit at a = 1, (2.13) shows that in the limit a f l p(co) is independent of

a) for (R - H ) . We are not sure about the limit as a i 0 of (V - K) .

Remark 2.3'-

Prototype kernels for (R - H) and (V - K ) ^ are,

m (t) = tfV^.b (t) = (r(l - ajrVV17*,!) > 0 (2.16)
av ' a

These yield,

= M + T(l - a)(r]a X - (s + r))a l) for (R -

?(s) = M + s(s + TJ) f o r (v - K )

and conditions (Cpu) and (CU^) can be verified directly.

Remark 2.4:

Biot [2] has proposed a model with the same frequency independent behavior

at high frequencies as (R - H)-. In fact it can be shown that the Biot model is

the same as (R - H). with m1 given by (2.16) and that P(OJ) = tan((o/r)) in

which T], the constant appearing in (2.16), is the relaxation frequency. Thus,

P((o) becomes practically independent of frequency even for small CJ, provided 17

is small.
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Remark 2.5:

The transform conditions on the kernels are familiar in the study of

viscoelasticity see [5]. The following facts are known. Suppose

DJk € C[0,«>) 0 1^(0,«>). Then:

(-l)JDJk > 0 j = 0,1,2 =»flte k(iT]) > 0

(2.17)

(-l)JDJk > 0 j = 0,1 => sgn T7 3>m k(iTj) < 0.

However there are kernels k which are oscillatory and still satisfy one of

—lit ^

these conditions. For instance, if k(t) = e ̂  cosTt, #e k(ii7) > 0 and if

k(t) = e ̂  sin -yt then sgn Tjk(irj) < 0. This remark can be applied directly

to yield sufficient conditions for (CL). It was observed in [3] that a class of

kernels satisfyin (Cy^) can be generated by putting

b (t) = (P(l - a))- 1 I* (t - T)~ae"/3(t""T)k(t)dr (2.18)
J 0

where 17 and nr are positive and DJk € C[0,«>) (1 L (0,«>) with (-l)JDJk(t) > 0.

One can show that the same formula with the same conditions on k but without

the factor (F(l - a)) will generate a class of kernels satisfying

Remark 2.6:

We comment on (R - H ) ' for a > 1. It is noted in [4] that the quantity

?(s) is still meaningful in this case but that it needs to be interpreted as
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? ( s ) = M + m ( t ) ( l - e S t ) d t . If o n e a g a i n c h o o s e s m ( t ) = t a e 1 7 , T } > 0
Jo
 a a

this quantity will behave like sa as s -» ». This means that P(w) will be

of order <o so that this model behaves the same way as (VK) _-. However,

the limit as a | 2 will not exist.
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3. Mechanical damping in bars:

We consider one-dimensional longitudinal motion of a homogeneous bar of

uniform cross section. Let x be a position in the unstretched configuration

and u(x,t) be displacement with 0 < x < L. Assume the bar has unit density

and there are no body forces. Then the equation of motion is,

utt(x,t) =a x(x,t) (3.1)

where a is the stress.

We suppose the bar is initially at rest, is damped at x = 0, and subject

to a prescribed displacement <p(t) at x = L. Thus

u(x,0) = ut(x,0) = 0 0 < x < L , t < 0

(3.2)

u(0,t) = 0 , u(L,t) = <p(t) t > 0

We use the same models for stress-strain relations as in Section two but in

the present situation we have e(x,t) = u (x,t). There is an analog of the
.x

power loss idea here. We have, by (3.1),

= a(L,t)ut(L,t)

(3.3)

= I u (x,t)u (x.t)dx + ff(x,t)e(x,t)dx = p[u](t)
Jo « *• J0
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Once again the left side is the power that must be applied and is again capable

of measurement.

We again assume <p has the form (2.3) (<p(t) = #e(<f>oe
1G)t) + F(t)) and make

the same assumptions about the functionals % as in Section two. Then we

obtain analogous results. We define the function nr(s) by

and the function P(w) by,

(3.4)

t+2TT/0)
P[u](T)dT -> P(co) \<p r as t -^ co (3.5)

J t

Theorem 3 . 1 :

There exists a unique solution u of (3.1), (3.2) with,

u(x,t) = 9fce(u°(x,G))eiwt) + u^x.t) (I)

where u (x,t) -» 0 as t -* «> and

u°(x,w) = fQ (sinh T(i(o)x)/sinh T(id))L (3.6)
Q

Theorem 3.2:

P(w) exists and
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P(w) = ^m(iw4^(iw) ctnh -r(iw)L) \<pQ\2 (3.7)

Theorem 3.3:

As « -* °° vae have,

P(u) = 0 (« 3 / 2 ) for (K)

P(«) = 0(w) for (V)

-1+-
P(w) = 0(w 2 ) for (V - K)

1 — n

(w) - (M + T(l - a)mA a)w for (R - H)

Note that the coefficient in (R - H) tends to infinity as a | 1.

Once again some details of the proofs are postponed until the appendix but

we can describe the essential ideas which are the same as in Section two.

We seek a complex solution U for <p = <pne + F and then take the real

part. Transforming with respect to time gives

.s) = £(s)U (x,s) 0 < x < L

(3.8)

U(O,s) = 0, U(L,s) = f(s)

Then, by (3.4) , we have,
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U(x,s) = <p(s)(sinh T(s)x)/sinh T ( S ) L (3.9)

Once again we recover U from the formula,

U(x,t) = (2iri) x | e S t U(x,s)ds (3.10)
-ioo

The analog of dissipativity here is the statement that sinh T ( S ) L ̂ 0 in

9fe s > 0. Thus if f is continuous in $e s > 0 and analytic in # s > 0 the

same will be true of U. In our case f(s) has a pole at s = iw hence so will
/\
U and its residue will be the term in (3.6).

It will again be true that we can find the limit of the integral in (3.5)

placing u by its limit value $e(une )

using the left side of (3.3). We have, by (I),

by replacing u by its limit value $e(une ). We compute this integral by

cr(L,t) = & ^ o

(3.11)

°0 =

and Ity(t) ~ $e io)e1(l)t. Hence

pt+^TT/6) .. ptTZTT/OJ
p[u](r)dr~ |9te (-!«/ ̂  )dr

Jt Jt

(3.12)

= IT ̂ m(CT^<p^} = IT
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3/2
TT(J\ COS TT/4)G)

Now by (3.4) $(iu)-r(iw) = iw>l̂ (i(j) and hence (3.12) yields (II).

We investigate the asymptotic limits of P(co) as <o -* «.

For (K):

Here ?(ico) = E + Aid). Hence

For (V):

From (2.15) r

= s(sa/(s))

_ 1 Da(0)

(3.13)

Thus

Also

Hence,

ctnh -r(iw)L

sinh 2 6L - i sin

cosh 25L - cos 2uL

P(w) ~ Wa(0)<o sinh 26L

cosh 26L -cos
(3.14)
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For (V - K) (C^) yields

i ^ fZt ̂ ^-1/2 rv A a,-l/2 A-l/2 2TT(S) = s(?(s)) ~ s[M + A s ] ~ A s

r—— 1/2 o"
It follows that ctnh nr(iw)L -» 1 as w -» « and iw\/?(iw) ~ A (i«) hence

sin

For (R - H) (2.18) yields,

-r(s) = s{M + T(l - a)(T7a X - (s

Thus T(S) ^ ps + qs + 0(s ) for some constants p and q so that

ctnh T(S)L -» 1 as s -» <x>. Also

(M
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4. Thermal damping in bars:

We consider again the one dimensional bar with displacement u(x,t) on

(0,L). We include thermal effects with temperature 0(x,t), internal energy

e(x,t) and heat flux q(x,t). We assume the bar is at rest initially with

initial temperature zero. Both ends are insulated, x = 0 is clamped and x = L

has prescribed displacement </>(t).

The balance laws (with unit density) are, with e = u

utt(x,t) =a x(x.t) . (4.1)

et(x,t) = -q^x.t) + a(x,t)et(x,t) , (4.2)

the second being conservation of energy. Let T)(x,t) be specific entropy and

let >/>(x,t) = e(x,t) - 6(x,t)T)(x, t) be specific free energy. Put g(x,t) =

9 (x,t), the temperature gradient. We assume constitutive relations of the

form,

a = a(e,9,g), g = -k(e,6)g, T) = ^(e,9,g), * = J(e.9,g). (4.3)

For any process the second law of thermodynamics in the form of the

Clausius-Duhem inequality,

9tT? + a e t

must hold. It can be shown [4] that this implies the following relations:
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k > 0, * g = ryg = 0, v//e = -77, ^ = a (4.4)

We substitute (4.3) and (4.4) into (4.2) and obtain,

0 = J t + 9tT7 + 6^t - (kg)x - aet = J e e t - ae t +

+ ftjt - (kg)x = - e ( j 0 ) t - (kg)x

or

-Q+aae<. = (k 9 ) + W n £ . ( 4 - 5 )
r90 t v xyx e6 t v '

We substitute in (4.1) and obtain,

u _ = yp e + >// n9 (4.6)
tt ee x e8 x v y

We now linearize about the equilibrium state 0 = 9 and e = 0. This

yields,

u = Eu + aQ , 0 = K0 + j3u ̂  (4.7)
tt xx x t xx K xt v 7

where,

= Jfce(o.eo), a =

K = -
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For real materials \//nQ < 0 and >// > 0 and we will assume k > 0. \f> fl can
6.6.

be positive or negative but we observe that the constants a and |3 always

have the same sign and hence (by scaling) we can assume they are the same so

that

u = Eu + aQ , G = KB + cat (4.8)
tt XX X t XX Xt '

We note that if a = 0 (4.8) reduces to Hooke's law. Hence whatever

damping there is must come from the thermal effects. It is convenient to

introduce v(x,t) = 8 (x,t) so that the problem we solve is:

u = E u + a v , v = K v + a u
tt xx t xx xxt

u(x,0) = ut(x,0) = v(x,0) = 0 (4.9)

u(0,t) = v(0,t) = v(L,t) = 0, u(L,t) = <p(t)

The power loss calculation of section three holds here also with p[u](t)

as in (3.3). In this case, however, we must remember that

a(x,t) = Eu (x,t) + aO where 0 = v.

Our results are the same as in the earlier section with <p as in (2.3).

Theorem 4.1:

There exists a unique solution (u,v) of (4.9).
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Theorem 4.2:

There exists a function u (x,<o) such that

u(x,t) = &e(uO(x,w)eiGJt) + u^x.t) (I)

u (x, t) -» 0 as t -» «>.

Theorem 4.3:

P(w) defined by

J a(L,T)EKp(r)dT ̂  P(G)) |<f>0T as t -̂  « (II)

t

exists and P(w) = 0(a)) as CJ

The ideas are the same as before but the computations are more complicated.

po eWe let U and V be complex solutions for <p(t) = <pne
1W + F(t). We transform

and find

s^J = EU + aV, sV = KV + asU
XX XX XX

(4.10)

U(0,s) = V(0,s) = V(L,s) = 0, U(L,s) = f(s)

We write the equation as

or * = A If (4.11)
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U

sa

0 1
k J '

-a

s

so that

A =

s
E
3s a

KF.

a
E

2sa
KE

, s
1 K

(4.12)

2 2
We diagonal ize. Let (A(s)) and (JLL(S)) be the eigen-values of A with

eigen-vectors,

e(s) =

s(») =

-1

Le(s) J

e(s)

(4.13)

Now put,

-1 -1

e(s) g(s) .

1
e(s) - g(s) I -e(s) -1

(4.14)
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u
= I(s)

H

V
(4.15)

we have,

M =
xx , N =

XX

f M(0) "1 f 0 ] f M(L) ]
U o ) J = L o J- [N(L) J=

(4.16)

We obtain then,

U

V
= T(s)

sinh Xx
sinh XL

0

0

sinh yix
sinh JLCL

[s) (4.17)

From (4.17) we have,

Ux(L,s)

Vx(L.s)
= T(s)

1
e - g

X ctnh XL

p. ctnh JJL 'Hoi
-Xg ctnh XL + fie ctnh JJL

egX ctnh XL - egjn ctnh JJL
<p(s)

(4.18)

In the appendix we outline a proof that the above calculations are

meaningful in the same sense as in the previous section. This means the
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following. If <p(s) is continuous in #e s > 0 and analytic in S&e s > 0 then

so are U and V. In the present case, however, <p(s) will have a pole at

s = id) with residue fo. It will follow then that U and V will have a pole

at s = id) with residues u (X,CJ) and v (x,co) given by the right side of

(4.17) with f replaced by fQ and s set equal to iw. This will yield the

relation (I).

We can use (4.18) to obtain the result (II) but we have to be a little

careful. Recall that our original energy balance law was

9 ^ = k 0 + cai = kv + < x u . Transforming we obtain 0 = (kv )/s + ecu .
t xx xt x xt ° v x' x

Recall that a is given by a = E u + ad hence we obtain

•v 2 *> k ^

a = (E + a )u + a — )v or in the complex form
v̂ S J\.

a = (E + a2)U + a- V (4.19)
X. S X

The formula (4.19) and our remarks above shows that

a(L,s) = an(L,w)(s - ico) + regular terms and this corresponds to,

a(L,t) = ao(L,a))e
AWl- + ••• (4.20)

where the dots indicate terms going to zero as t -» °>. This is the same

situation as in (3.11) and we obtain in the same way

p[u](T)dT - ir ̂ m ao(L,(j)<po (4.21)
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We will have, from (4.18) and (4.19)

,W) = (E + a
2)Ux(L,ic) - ̂ -Vx(L,ia)) (4.22)

where the terms on the right of (4.22) are computed, as above, by putting

<P = <f0 and s = iw in (4.18). Clearly this will yield (II) but the estimate

for P(GJ) requires a very careful computation.

2 2
We begin with the observation that X (iw) and \i (iw) are the roots of the

equation

2 . . 2 •* .3

^j E K KE K

Hence we have ,

X 2 ( u ) 2 . 2

2 ~ E K
. 2
ia a)2 , ~ E K K E

JLi (W)

i t T ~ 3 o . 2 3 2 4 ^ , 2 2a? 2ifa) _ 2 i a a) _ w a o _ 2a a>

E 2 ffi KE2 K2

If we expand for large w we find,

(W) = ̂  + 0(1)

2 2
-£- + -]Qg- + 0(1).



30

so that

= J x + 0(1)> ctnh

io> . * . 1 "= — + 6 , o = ~-

sinh 26L - i sin —

ctnh pL ^ - (4.23)
cosh 26L - cos 2 —

•(«) = ̂ M r + ̂  + o(i). «(«) = ̂  + o(i)

2
(a))-g(W) = ^ + 0(0)).

When these formulas are substituted into (4.21) one finds

cosh 26L - cos
(4-24)

/E

Remark 4.1 •'

By comparing (4.24) with (3.14) we see that the asymptotic power loss due

to thermal damping is of the same form as that for a viscoelastic material.

Thus it is possible to specify a viscoelastic material which, for high

frequencies, will have the same power loss as that due to thermal damping.
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From(3.13), (3.14), (4.23), and (4.24) it follows that this equivalence will

hold provided a(0) = E and Da(O) = -aT/K. For the original formulation

(4.7) and a bar with mass density p the expression for Da(O) becomes

Da(O) = -a/JE/pK. For the prototype viscoelastic kernel this leads to

77 = a/3/pK.
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Appendix Proofs

Proof of Theorem 2.1:

We write R(s) = (s + ̂ (s)) . Then we decompose formula (2.7) as

= R(s){fo(s - iw) + F(s)}

= eQ(s - iw)

/N. XN.

We substitute (A.I) into (2.8) and obtain,

Lemma A.1:

(A.I)

= R(i«)f0

(A.2)

= R(s)F(s) + {R(s) - R(iw)}(s - iu)"1

-1 fC+i0° st-
i) l eStg (s)ds (A.4)

The. integral in. (A.4) is tridependent of c for c > 0 and defines a

Q, D5
1(0) = -iweQ.function gj € C^2^(0,«>) fl C^^O.oo) with gjfO) = -eQ, D5
1(0) = -iweQ.

Jlforeouer DJS1(t) -» 0 as t -» » for j = 0,1.
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Proof:
/s.

Condition (F) and the dissipativity of ? shows that S € <£ except for

possible trouble at s = iw. Our moment conditions on a,b and m guarantee

that ?(s) is differentiable at s = i<j so that the singularity in S- at

s = id) is removable. We have to analyze the behavior of ^(s) for large s.

Note first that by (F), we have, in analogy to (2.15),

F(s) = 0(s 2 ) as s -> «>. (A.5)

We see from our large s assumptions and (2.15) that in all cases we have

R(s) = s" + 0(s" ) for large s. Also (s - iw)"" = s~" + iws - w s"

+ 0(s ). Thus by (A.5) we have

^(s) = rlS
 X + r2s

 2 + r3s
 3 + 0(|s| 4 ) ,

(A.6)

r1 = -R(i<j)f0, r2 = -i(i)R(iw)f0 , as s -* »

Let <f>.(t) = (tJ"1e"t)/(j!) so that <p .(s) = (s + 1)~ J. Then we can find
J J

z such that,

= r ^ C s ) + (r2 + r1)<p2(s) + Z<P3(S) + p(s) (A.7)

|where p(s) = 0(|s| ). We can write, then,
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(r2 + r j ^ t ) + z«P3(t) + p(t)

(A.8)

p(t) = (2TT)"1 J e1T]t p(iT])dr]

Since p(irj) = 0(T] 4 ) we see that p(t) is twice differentiable on [O,«>)

and DJp € 1^(0,°°) for j = 0,1,2 hence DJp(t) -» 0 as t -» » for j = 0,1.

Moreover, the Paley-Wiener theorem gives p(t) = 0 in p < 0. In particular

DJp(O) = 0 j = 0,1 hence £A0) = r = -R(iw)f0 and

= -r1 + ro - r1 = ro = -i(oR(iw). But we have £ne
1(° L_ n = R(

iw)fn and

— T /" iT? f "1 / 1 ̂  f

t=0 " v ; 0"
DeQe

We conclude from Lemma (A.I) that (A.3) defines a twice continuously

differentiable function on t > 0 with g(0) = DS(O) = 0.

Remark A. 1

We extend & to t < 0 by making it identically zero. The resulting

function will have a discontinuity in its second derivative at t = 0. If we

want to overcome this, we need only require that F(0) = -Rf0 in (F).

It remains to show that we really have a solution of (2.2). We sketch the

argument for (V - K). We calculate as follows, using g(0) = 0 on t < 0:
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= M£(t) + I b (r)DS(t - T)<JT
J o «

_ 1 r rC+i00 ^ r ft _ •]
= (2Tri) X< e s t g(s) M + s b (T)e STd-r ds}

Wc-i<»
 L J 0 a J

(A.9)

-1 ff st
(27Ti) < e s t «(s)(M + sb (s))ds

J a

- J ° ^ p(s) J" ba(r)e
s(t T)dr]ds}

We claim that the last term in (A.9) is zero. To see this observe that the

integrand in the s integral is an analytic function of s in Sfe s > 0 and

vanishes as s -» ». Hence we can close the contour to the right and conclude

that the term is zero. Now (M + sb (s))g(s) = -s S(s) + f(s) and s g(s) is the

transform of D g so we see that (A.3) satisfies (V - K). The other models

have similar treatments and we have proved Theorem 2.1.

Proof of Theorem 3.1«

We have to show that the formula (3.9) is meaningful for #e > 0.

Lemma A.2'

The quantity sinh T(S)L does not vanish in 2fce s > 0.
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Proof:

We show that it cannot vanish on #e s = 0 and then it will follow that it

cannot vanish in 9te s > 0. Suppose it is zero for s = iw. Then the function

\p(x) = sinh T(i<o)x solves the problem,

-u% = £(iw)v//" 0 < x < L x//(0) = v//(L) = 0 (A. 10)

Hence

2
—w

\ W2dx + y(i«) I |* '(x) |2dx = 0 (A.11)
Jo Jo

Thus we would have to have,

3>m ?( iw) = 0 (A. 12)

For (K) y(iw) = E + iXcj and (A.9) can hold only if co = 0 and then (A.8) would

give ^'(x) = 0 and hence v//(x) = 0 . For (V - K) itn ?(iw) = ̂ m(id)b (iw))

= wSie b (iw) which is non-zero for u ̂  0. We have ?(0) = M so (A.8) for

(0 = 0 would again imply ^ = 0. For (R - H) 4m ?(iw) ĵ  0 for w ̂  0 and
w ys, yv

?(0) > 0. For (V) we have ,S*m y(iw) = 3>m io>a(iw) = w 9te(i<o) j£ 0 for w ^ 0

and ? (0 ) = a<x).

We see then that (3.9) is well defined. We can then argue (pointwise

in x) as we did for the fiber case that the formula (3.10) indeed yields a

solution. The details are tedious and essentially as before thus we omit them.



37

Proof of Theorem 4.1*

The key again is to make sure that the formula (4.17) is meaningful in

9fce s > 0. It is clear that this formula will be valid unless the homogeneous

problem (4.10) has a non-trivial solution. Again we show that this cannot

happen.

Lemma A.3'

Let \p,x be a solution of (4.10) with *p = 0 in #e s > 0. Then \fj = 0,

X = 0.

Proof:

One can again show it suffices to verify the result for s = iw. Let \JJ,

be such a solution for some <o. We have then,

2
- t o I M 2 d * + E I |*r |2dx = a f

Jo Jo Jo

| | x | 2 + K I |x ' |2dx = -a | ^
Jo JQ J 0

I yfr + E I >//'x'dx = a j |>(|2dx
J o Jo J 0

I x ^ x + K I x ' ^ 'dx + E |x//
Jo JQ J0

' |2dx =dx = 0
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From these formulas we draw the following conclusions:

>O//dx = -4m
J 0 J 0

>o//dx = -4m v//)(dx = 0

4m x//'>('dx = -4m >//'x'dx = 0
J 0 J 0

|\|dx = 0
0

Hence for u ^ 0 x(x) = 0. But then ai<jv//" (x) = 0 with \//(0) = >P(L) = 0; so

\p(x) = 0. The case s = 0 i s immediate.

The remainder of the proof of Theorem 4.1 is again the same type of

calculations as in the other theorems.
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