NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



FULLY DISCRETE FINITE ELEMENT SCHEMES
FOR THE CAHN-HILLIARD EQUATION

by

Charles M. Elliott
School of Mathematical and Physical Sciences
University of Sussex
Brighton BN1 9QH, England
and
Donald A. French
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 88-34 2

September 1988



FULLY DISCRETE FINITE ELEMENT SCHEMES FOR THE CAHN-HILLIARD
EQUATION

Charles M. Elliott

School of Mathematical and Physical Sciences
University of Sussex

Brighton BNl 9QH, England

Donald A. French
Department of Mathematics
Carnegie-Mellon University
Pittsburgh

PA 15213, USA

Proceedings of "International Conference on Numerical Mathematics”,

National University of Singapore 31 May - 4 June 1988.



Introduction

We consider the nonlinear evolution equation

(1.1a) u, + D% = D%pw) , xe¢I=(OL),t>0
with boundary conditions

(1.1b) Du=D%u=0 at x=0,L

and initial condition

(1.1c) u(-,0) = u,

where D 23%- , Y is a prescribed positive constant and ¢ ¢ C!(IR) is a

prescribed function.

If

du) = u? - g%

then (1.1a) is the Cahn-Hilliard equation, see Cahn [1968), Novick-Cohen & Segel
(19841, Elliott & French [1987], and the references cited therein.

The Cahn-Hilliard genéralized diffusion equation has been proposed to model phase
separation in a binary mixture where u is a scaled concentration. The solution
u(x,t) exhibits pattern formation with interfaces separating regions where u is
nearly constant taking the phase values + B. Also in the time evolution the solution
reaches certain states and remains close to them for a long time before evolving
into different states of lower energy; this phenomenon is called metastability.

We assume that (1.1) has a unique solution for t ¢ [0,T]). Further we assume’
that the solution is sufficiently smooth and
(1.2) I u(-,t)Ilem < M VtelOT].

In the case of the Cahn-Hilliard equation global existence and boundedness
of u has been proved in Elliott & Zheng [1986].

A weak formulation for this problem is: (P) Find u(,t) ¢ HzB (I) for t e [0,T)
such that
1.3) (u,,v) + v(D2u,D?v) = (pu),D?v) V v ¢ Hé(l)
with u(,0) = u,
where

(v, W) = ]l vix)w(x)dx,

HEM={veH’D: Dv=0 at x=0 and x=1L}.



Throughout this note the norms in L®(), L2() and H®*() are denoted by
- . . - ‘
oo Il and [Illg. The semi-norm ID®vi, is denoted by Ivi_.
Numerical Method: Let S; be the piecewise polynomial spline space
= 2 . =
st = {x e CT2M : iy P_,0).j=1 .. N}
where r 2 3 is an integer;
0=x,< x1<...<xN=L
is a pertition of 1 = (0,L) with Ij = (xj_‘. x’). h= n;mx (xj-x’_i) and
Pr‘l(lj) denotes the set of all polynomial functions on lj of degree less than or
equal to r-1. Define
S = {x<S* : Dx=0 at x=0 and x=L}
h X Sh : Dy a
and let
. -1
a2h (m}n (x’ - x’_l))
where we assume that for a family of partitions o is fixed.
The approximation scheme using a Galerkin method in space and Crank-Nicolson

time discretization gives the following problem: (P, ). Find {U“}o‘ k<t Such
o al

that U™ « s; .

(1.4) U™y + y2U™"Z %) = (pU™?, D2y)
or 0 h

fora.llxesh and U =uy

where n:; is an approximation of u_ ,
avh= L vl v
and
umt? = 2wt e un.

For v ¢ Hg M, let Pve g; be the unique solution of

(0%P,v - D%, D*) = 0 for all x ¢ 8¢
where (x,)) =0 and P, v = (0. If ¢" = P u.nk) - u(- k) then
s | (a—at)’ Py < Ch™ ; j=01; Os<nks<T

where

2 if r=3
r otherwise

T =

and C depends on ll(i)’ ullr ; see Elliott & Zheng [1986].
We will assume that
(1.6) ™~ uC, 0) |, < Ch"
o



where C is independent of h,k.
We also need the subspace inequality

0
a.n g, < S iy VxeS

h
where C depends on r and «a .

r
h

Error bounds for the continuous in time Galerkin approximation of the
Cahn-Hilliard equation based on the spaces (S’; were obtained in Elliott & Zheng
[1986]). Numerical experiments based on the Crank- Nicolson time discretization
(1.4) are reported on in Elliott & French [1987]. Also in this latter paper an error
analysis was carried out based on the assumptions that (A) (1.4) has a unique solution
for k sufficiently small and (B) lllnlom is uniformly bounded independently of h
and k. It is the purpose of this note to justify (B) and to show that (1.4) has a
unique solution in the ball B = {y « (S)t : lxlom < M+1} for h and k
sufficiently small. We also analyse an iterative method to solve (1.4) which is
similar but slightly different to that used in Elliott & French [19871.

Section 3 has the main Theorem of this note which is an optimal order error
estimate for the fully discrete Crank-Nicolson method (1.4) where the solution
is obtained at each time step by a fixed point iteration procedure. Section 2 has
several auxiliary results for (1.1) in the special case where ¢'is bounded. The
main idea here is that because we are interested in computing with unbounded
¢¢) the error analysis of (1.4) requires an L bound on U™ . Unfortunately it
is not clear how to obtain an a priori bound simply by studying (1.4). However
since (1.4) is a perturbation of (1.1), it is possible to use the boundedness of
u(x,t) to derive the fact that there is a unique solution U" ¢ B for
h and k sufficiently small.



2. Bounded ¢'()

In this section we study the fully discrete approximation of (1.1) under the assumption
that ¢ is bounded. These results are used in section 3 in the analysis of the
interesting case of (1.4) with ¢' unbounded.

Proposition 2.1. Let ¢(') be such that

2.1 ¢ e CYR ; sup lo(s) <2
se¢ IR

There exists a kg > 0, sufficiently small such that for

2.2) k < ko

there is a unique sequence {U™}

o0<nk<T solving (1.4) and

23) U™ - uC, ok, < Ow B + k?)

2.4) U™ - uC,nk)l, _< Cw®h™ "« k2/h).
o o
Furthermore for each n > 0 and u;‘ € S; the sequence {u“j}“;go defined by:

@8 @, 9+ 03U . D% = k(LU U™, D*) + Uy
- T @2, D% v x ¢ §
converges to U™ at the rate.

n 2 2 n ni2
(2.6) e - ut2 < (k 4&_)' up - um2
Y
and
2
@.7 Ut - u™? < cA (A2 VV2 jur o un? .

Proof: For fixed n 2 1, given U:)' € g; it is clear that (2.5) generates a well
defined sequence {l.l;‘} since the bilinear form (-,’) + I;- (D?- . D?) is strictly
coercive on S; . Set e = U';ﬂ - u'; . It follows by subtraction that for each

X € g; we have

@8 (e, 0+ 5L D% D% = kiletjwr. um!) - @ W + UMD



Taking Y = e in (2.8) yields

2 k 2 k ’ n 2
|e}o oIz_.le’lz - -2-('P (n,)e,_l . D e,)

kA
<5 Ie,_ll0 Iejl2
ka2 2 2
55 telo ¢ 3 ley12]
so that
2
2 k 2 kX 2
(2.9a) Iello + T—4 |ej|2 < . lej_llo
Y
2 K2\ 2
@b lef3 < | 1) Tl

Taking k sufficiently small, {U;‘} is a Cauchy sequence with limit U™ e g; and, by the
continuity of ¢ , passing to the limit in (2.5) yields (1.4). A similar argument yields
the uniqueness of U™ solving (1.4). Furthermore setting Ej = ll;' - U™ and
subtracting (1.4) from (2.5) we obtain the following analogue of (2.9)

2 1k g 12 K2 2
(2102 [ElS+ LLIEL < - IE, I

2 k)?)’ 2
(2.10b) [E I s( o IE, 15

Note that (2.10b) proves (2.6).
In order to prove (2.7) note that taking x=1 in (1.4) and (2.5) yields
(E’.l) = 0 so that by the Poincare inequality
Vg € C (vl + ItvDD Vv e H'D,
the inequality
My < W2 W2 v v e H2D
and the Sobolev inequality

v, _ < Clvll, Vve H\D)

0,0
we obtain
v2 g1z |
I, < C IEJY2 IE[L?
applying (2.10) yields (2.7).
We now turn to the proof of (2.3) and (2.4) To prove (2.3) we use standard

techniques (see Thomet [1984]). For completeness, parts of the proof from Elliott

-5-



& French [1987] are included below.
= n - . 1
Let t =nk, P u” = P:(u t) andt o =gt st )
We use the standard error decomposition:
n - n _ n n _ . = on n
u” - ul- .tn) = [U Phu 1+ [Phu ul( .tn)] 0" + o
. Using (1.4) we have

(00™x) + v(D?6™*12, D%y) = (PU™V?) - plul-t ), D)

n+1/2

- n_ .oy - (p2da 1 .. - ul-
(2 Phu u, W - v(D E—2u( , t’ml) + 2u( . tn) u(,t
Setting x = 6™*1/2, the above becomes

2
n+1/2n'D x).

2.11) (06"0 ™*12) & y10™1V 213 < [le (U™V?) - plul-t )]

+
n+1/2"'0

OB U™ - u (e M psriut e ) Jubie) a1 6m R,

n+1/2 n+1/2 2

Using the Cauchy-Schwarz inequality, we obtain

n oan+l1/2 2
(2.12) (006™,0 ) - C“1“z*‘3’ ,

where the I's are the three terms in the first factor on the right-hand side of
(2.11). Estimate 13=

' tnet tne1/2 ) 2
13 =y f (s - tml/z)utt(-.s) ds - f (s -t n+l/2)ut,t.( ,s) ds
the1/2 tn o
: tnet \
- Yk% {J i ||utt(~.s)“% ds|.
\ /
t
n
Estimate l1 :
' n+1/2 . ‘ n+1/2 _
l1 = |'(n)[U - ul ,tnﬂ/,‘,)llo PR u(-, tmvz)l0 ,
cenem 72 1aonty aony g 100 e rut
< CI)® lo *aUe™ gl gthput, e )+ 2u( t-ut,e )

The last term in the above is estimated in the same way as 13.



= " Yul(. - ul-
Finally we consider lz' Let au(-.tn) = k™ (u( .tml) u( .tn)).

I, < | o Phu" - oul,t N +oul,t) - ulst 92

-1 n+l -1 - . - .
= klp -p"10¢|k e, t ) -uC,t)) - ul,t

1 n+l/ 2)i o

t o
< k7V2 (f nel lpt(-.s)lﬁ ds)u2
t

n
t t
-1 ne+l 2 _ [*netr2 . _ 2 .
sk ( -t ), (5 ds f s -t )u (s ds | )
tne1/2 tn o

n

¢ 3 e 72
k'Vz(f "o N cls)"2 . kz(f ™ ju (-.s)l3ds)l

ttt
t
t.n n

With these estimates (2.12) becomes

1, -1 1,2 n 2 +1/2)2
5k (1e™7g - 10 Iy < c(e™“l5 + w),

where
wn = 1o™U3 <163 + &3 ( f g 802 a3 ds) + 77 e a2 ds,
th th
which yields
™42 < F-&K16™ 2+ Ckw,.

Iterating this inequality, we have for ko <172 C

=1
lo™2 < C(T)(IO“I% NP> w,) :
J=0

Noting that
10°18 < 16°18 « 1U® - u |3 .
we obtain (2.3) by recalling the bounds (1. 5).
It remains to prove (2.4). We note that there exists
0
Ihu(',tn) € S; , an interpolant of u(',tn), which satisfies
. - ul- T
llhu( ,tn) ul-,t n) lom < C(wh
so that, using the inverse norm inequality (1.7),
a"- u('.t“)lo'm < Cu) « ut.t ) - l.l"lo'm
< Ch"+Ch™ 'l ul,¢t ) - U™
r -1 . - .
< C(wh" «Ch [IIhu( ,tn) u( ,tn)l0
+ JuC,t) - U” 1
n (o)

and so (2.4) now follows from (2.3).



Corollary 2.1: There exists constants ho >0 and eo> 0 independent of h and
k such that if h< h  .k?/h<e, and

(2.13) luglo'w < K for 0 <nk<T
for some constant K > 0 then
|u;‘|om < M+1 for 0<nk<T
and j =1, 2, ...

Proof:

From the estimate (2.4) and the given bound (1.2) on u we have

", < M+ cw &t K5

(2.7) gives

P, < WPy o+ (V2 ug - ut

< @+ V) Uy . V2 gl
< (M+ Clw) (™! . !}:—2» 1+ Y2 + (V2 K

Clearly for ¢
M+1

° and ho sufficiently small the right hand side is less than



3 Unbounded ¢' ()
We now consider (1.1) and (1.4) without requiring that ¢' () be bounded;
this is the case for the Cahn-Hilliard equation where
e =3 u’ - 62 .

In order to obtain error bounds for this case we analyse problem (ﬁh k) which
has ¢ replaced by ¢ ¢ CHIR) such that

(3.1a) ¢ (s) = ¢ (s) for Isi <M + 1
and
(3.1b) Sup lp’ (s )l < X

s ile‘P

In this case we know that, because of the assumptions (1.2) , the
initial boundary-value problem (1.1} has the same unique solution when ¢ is
replaced by ®

Theorem 3.1: There exist positive constants h o @and e such that for h < h

(4] (0]
and kZSth:

(1) (1.4) has a unique solution U; in the ball

B={xes"; :leom:M+l} .

n
(i) For every uo ¢ B the fixed point iteration (2.5) converges to U; .

(iii) The error bound

U - uf TRPRe! )(hF K )
| -ul *, t } < u +
B R o

holds.



Proof: Let U™ and ll'; denote solutions of (?n.k) and

(2.5) for fixed n with ¢ replaced by ¢ . Proposition 2.1 applies and we know
that U™ is unique and is the limit as j ->  of the well defined sequence {G;’}.
Furthermore it follows from the Proposition and Corollary 2.1 that U™ ¢ B

and ﬁ’" ¢B foreachnz221 and j =012... Since ¢ is

identical to ¢ on the ball B , Theorem 3.1 is an immediate consequence of

section 2 with

Remark: Suitable choices for Uj ¢ B are

a ug=u"' b up-=2u™t-un?

In case b) the fact that UO" ¢« B is a consequence of the fact that
2u™! - U™2 approximates 2utt ) - utt din LY and the latter

approximates u(-t ) to order k2

Remark: We considered other fully discrete numerical methods for problem (1.1).

The backward Euler method for (1.1), "time-lagging” the nonlinear term, is given

n n_ &
by the problem : Find {U7) _ nk<T such that U ¢ S,

(3.2) (dumx)+ y(D2u™ ,p%*y) = (etu™, D? )

0
for all yx « S; and ug = U: . An optimal order linearized
Crank-Nicholson method is defined as above with (3.2) replaced by the

expression below

(3.3) (ou™ . x) + v (0?2 u™¥2p? y) = (o %u" -1 un) oy )

Again the nonlinear term is "time lagged” . A Crank-Nicholson predictor-corrector
method has two steps. The prediction function is found by (3.3). Labelling this
solution W™ the correction function is found by the expression

-10-



(3.4) (dum, x)+ v (D2 u™V2D%) = (cp(-% (W™ u") , p%)

as above.

On each time step all the methods discussed above define a unique
selection U™! given U™ We can prove there exist constants C, € and ho
such that

( If (U™ is given by the backward Euler method (3.2), h<h, and k<e oh
3.5) U -ute)], <c@f+k)
n'lo

() If (U™ is given by either of the Crank-Nicholson methods,
h < h0 and k < Jeohthen

(3.6) ju® -ute )|, < ch® + k)

n 10
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