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Introduction

We consider the nonlinear evolution equation

(1.1a) u t • YD4U = D2<p(u) , x c I = (0,L), t > 0

with boundary conditions

(1.1b) Du = D3u = 0 at x = 0,L

and initial condition

(1.1c) u(-,0) = uQ

where D £ -~- , Y is a prescribed positive constant and 9 € C1(1R) is a

prescribed function.

If

<p(u) = u(u2 - p2)

then (1.1a) is the Cahn-Hilliard equation, see Cahn [1968], Novick-Cohen ft Segel

C19843, Elliott ft French [1987], and the references cited therein.

The Cahn-Hilliard generalized diffusion equation has been proposed to model phase

separation in a binary mixture where u is a scaled concentration. The solution

u(x,t) exhibits pattern formation with interfaces separating regions where u is

nearly constant taking the phase values + 0. Also in the time evolution the solution

reaches certain states and remains close to them for a long time before evolving

into different states of lower energy; this phenomenon is called metastabllitv.

We assume that (1.1) has a unique solution for t t [O,TL Further we assume

that the solution is sufficiently smooth and

(12) II u(-,t)ll * M V t c [0,T] .
L°°a)

In the case of the Cahn-Hilliard equation global existence and boundedness

of u has been proved in Elliott ft Zheng [1986].

A weak formulation for this problem is: (P) Find u(\t) c H2 (I) for t c [0,T]
c

V v € H2U)

such

(1.3)

with

where

that

u(-.O)

(ut,v) •

= U0

(v.w) s J v(x)w(x)dx,
I

H | (I) = { v c H2(I) : Dv = 0 at x = 0 and x



Throughout this note the norms in L°°(I), L2(I) and H*(I) are denoted by

| L , | L and ||-|L. The semi-norm ID*vL is denoted by Ivl .
Is, GO \J 5 \J ft

Numerical Method: Let S£ be the piecewise polynomial spline space

K • {x« c - 2 u>: x i ^ « p ^ (y . J - 1 . . . N }
where r * 3 is an integer;

0 = x Q < x f < ... < x N = L

is a partition of I s (0fL) with I = (x, 49 x,), h = maxlxj-x, J and
J J"*i I j J i""*

P _1d|) denotes the set of ail polynomial functions on I of degree less than or

equal to r-1. Define

S r = {x € S£ : Dx = 0 at x = 0 and x =

and let

a * h (min (x - xt J)"1

where we assume that for a family of partitions a is fixed.

The approximation scheme using a Galerkin method in space and Crank-Nicolson

time discretization gives the following problem: <Phk^ Find tU n } ( ) ^ n k i T such

that Un c Sr ,

(1.4) H (dlT.x) • Y<D2Un*1/2. D2
X) = (9<Un*1/2),

for all x € S^ and U° = u|j ;

where u^ is an approximation of uQ ,

avn= i (vn*x - vn)
and

For v c H2 (I)f let Puv e S [ be the unique solution of

(D2P. v - D2v, D2x) = 0 for all x
ti it

where (x.0 • 0 and »hv,l) = (v,l). If pn = Phu(\nk) - u( • ,nk) then

(1.5) II (£)J pnllo * Ch7 ; J = 0,1 ; O i n k i T

(2 if r=3
lr otherwise

dt

where

and C depends on ||(^)J u|l ; see Elliott & Zheng [19863.
dt r

We will assume that

(1.6) hP- u(\ 0) L i ChF



where C is independent of h,k .

We also need the subspace inequality

«-7> Wo*, * K l x l o v * < %
where C depends on r and a .

Error bounds for the continuous in time Galerkin approximation of the

Cahn-Hilliard equation based on the spaces S" were obtained in Elliott & Zheng
n

[19863. Numerical experiments based on the Crank- Nicolson time discretization

(1.4) are reported on in Elliott & French [19871. Also in this latter paper an error

analysis was carried out based on the assumptions that (A) (1.4) has a unique solution

for k sufficiently small and (B) |UnL is uniformly bounded independently of h
UVQO

and k. It is the purpose of this note to justify (B) and to show that (1.4) has a
o,

unique solution in the ball B = (x * S : Ixl * M+l} for h and k
r 0ta>

sufficiently small. We also analyse an iterative method to solve (1.4) which is

similar but slightly different to that used in Elliott & French [19873.

Section 3 has the main Theorem of this note which is an optimal order error

estimate for the fully discrete Crank-Nicolson method (1.4) where the solution

is obtained at each time step by a fixed point iteration procedure. Section 2 has

several auxiliary results for (1.1) in the special case where <pv is bounded. The

main idea here is that because we are interested in computing with unbounded

<$k) the error analysis of (1.4) requires an L00 bound on Un . Unfortunately it

is not clear how to obtain an a priori bound simply by studying (1.4). However

since (1.4) is a perturbation of (1.1), it is possible to use the boundedness of

u(x,t) to derive the fact that there is a unique solution Un c B for

h and k sufficiently small.
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2. Bounded ?'(»)

In this section we study the fully discrete approximation of (1.1) under the assumption

that <pv is bounded. These results are used in section 3 in the analysis of the

interesting case of (1.4) with <pv unbounded.

Proposition 2.1. Let <p(*) be such that

(2.1) <p c C HtSO ; sup |<p'(s)| * X
sc 1R

There exists a ko > 0, sufficiently small such that for

(2.2) k < kQ

there is a unique sequence {Un} solving (1.4) and

(2.3) |Un - u(\ nk)|Q * Ou) (hf • k2)

(2.4) |Un - u(\nk)L * C(u)(h i r l • k2/h).

Furthermore for each n > 0 and l £ c S r the sequence {U11}00^ defined by:

(2.S) (Uj \ X> • ^ ( D 2 ^ . D2
X) = k(9(^(Ujl^Un"1))f D

2
X)

(D2Un^, D2
X)

2
converges to Un at the rate.

f k MV lUj - Un|
\ 4 Y /

(2.6)
J " \ 4 Y

and

V) 7\ 111 U I £ C -

O
iVoof; For fixed n * 1, given I F € S£ it is clear that (2.5) generates a well

defined sequence {Un} since the bilinear form (y) • &- (D2- . D2) is strictly

coercive on S!" . Set et » U" - - U? . It follows by subtraction that for each

X € >5 we have

(2.8) (eJt x)^ ^ - D2erD
2x) s k([<p(I(U^ U11"1)) - 9 ^ (UJli * u n

-4-



Taking x - e.in (2.8) yields

VI
Q le I l2 |ej-i'o | e

so that

(2.9a) |eJ2
JO

Taking k sufficiently small, {U"} is a Cauchy sequence with limit U n i S£ and, by the

continuity of <p , passing to the limit in (2.S) yields (1.4). A similar argument yields

the uniqueness of U n solving (1.4). Furthermore setting E « Un - U n and

subtracting U.4) from (2.5) we obtain the following analogue of (2.9)

(2.10a) IE I2 • l!L|E I2 * k*L \E\2

Note that (2.10b) proves (2.6).

In order to prove (2.7) note that taking x=l in (1. 4) and (2.S) yields

(E .1) = 0 so that bj the Poincare inequality

|v|o i C (Ivlj • |(v,l)|) V v € H^I)

the inequality

Ivl, < |v|* / 2 |v |J / 2 V v c H2(I)

and the Sobolev Inequality

IvL i C HvIL V v € H*a)
\I9CO 1

we obtain
^ f IE l1/2 IE l1/2 •I ^ f IE l IE l

applying (2.10) yields (2.7).

We now turn to the proof of (2.3) and (2.4) To prove (2.3) we use standard

techniques (see Thomefe [1984]). For completeness, parts of the proof from Elliott
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& French [19873 are included below.

Let t =nk, PKun * P?(u-,t ) and t w o -4<t +t ).
n h h n n+1/2 2 n n+1

We use the standard error decomposition:

Un -

Using (1.4) we have

Un - u( ,t ) = [Un - P^un3 • CPu11 - u(. .t )] = e n • pn
n h h n

, D 2 X ) = (-p(un + l / 2) - <p<u(-,tn+1/2)), D 2
X )

Setting x = ©n*1/2. the above becomes

(2.11) ( d O n*U2) • Yien" l / 2 l l * Cl<P (Un* l / 2) - ?<u(\t WJ)L

Using theCauchy-Schwarz inequality, we obtain

(2.12) (ee n , e n + l / 2 ) ^ cd^ig+ig)2 ,

where the Vs are the three terms in the first factor on the right-hand side of

(2.11). Estimate I_:

n*l/>tt(''S) d S

f lu C - . s ) l « d 8 \ .

t
n

Estimate I} :

The last term in the above is estimated in the same way as Io.
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Finally we consider Io. Let du(\t ) = k^(u(-,t ) - u(\t))
* 2 n n+i n

i2 * | a ph«» - *„<-. t j i 0+| du(,tn) - ut(-,
- u(-,tn)) - u t( .

(s - W\ t t<.,s) ds - J ^ 2 (s - Vl//uttt(.,s) ds

With these estimates (2.12) becomes

where

wn),

w n Pn+1l I <• I p"l o * k3 [ f n* Hut C-,s)tl| • I u.. t(- ,s) |g ds) + k"1 f n+ |o(-,s)| I ds,
n n

which yields

Iterating this inequality, we have for kQ < 1/2 C

I G ^ ^ c(T)/|en|g ^ ck1^1 w) •

Noting that

Me obtain (2.3) by recalling the bounds (1. 5).

It remains to prove (2.4). We note that there exists
o r

I, u( ,t ) e ST , an interpolant of u(\t ), which satisfiesn u n n

|I.u(-,t ) - u(,t ) I. i C(u)hT
n n n u.oo

so that, using the inverse norm inequality (1.7),

C(u)hr+Ch"1|I,u(-,t ) - UnL
n n \J

c(u)hr - o r 1 [|ihu(- ,tn) - u(-, tn> io

|u(-,tn)-U»l03
and so (2.4) now follows from (2.3).



Corollary 2.1: There exists constants h > 0 and E > 0 independent of h and

k such that If h i hQ . k2 /h £ zQ and

(2.13) |U"L * K
vr MmGO

for some constant K > 0

Proof.

(2.7)

•«r ' o - ' M *

From the estimate

IU"L *
O.oo

gives

for 0

then

• 1 for

and

(2.4) and

i n k i T

0 *

j =

the

M + C(u)

nk £

1. 2, .

given

T

bound (1.2) on u we have

lUf L * lUnL * (ck)1/2 |U" - UnL
j O.CJO O.OD O O

ft • (ck)1 /2 ) |UnL * (ck)1 /2 |U"L
Ovao O O.a

(ck)1/2) + (ck)1/2 K.

Clearly for E and h sufficiently small the right hand side is less than

M + 1.
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3 Unbounded <>' ( )

We now consider (1.1) and (1.4) without requiring that cp' (») be bounded;

this is the case for the Cahn-Hilliard equation where

cp (u) = 3 u2 - &2 .

In order to obtain error bounds for this case we analyse problem (I* ) which

has <p replaced by <p € C1(IR) such that

(3.1a) <p (s) = cp (s) for Is U M i 1

and

(3.1b) Sup l<pf (s )l * X
s c IR

In this case we know that, because of the assumptions (1.2) , the

initial boundary-value problem (1.1) has the same unique solution when cp is

replaced by <f> .

Theorem 3.1: There exist positive constants hQ and eQ such that for h * h

and k £ e h :

(i) (1*4) has a unique solution U^ in the ball

n
(ii) For every U € B the fixed point iteration (2.S) converges to

(iii) The error bound

III" - u( • , t )l ^ C(u)(hr • k )
B n 0 V }

holds.
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Proofi Let Un and U" denote solutions of ( ? n k ) and

(2.5) for fixed n with <p replaced by <p . Proposition 2.1 applies and we know

that Un is unique and is the limit as j -> 00 of the well defined sequence {Un}.

Furthermore it follows from the Proposition and Corollary 2.1 that Un c B

and U n € B for each n * 1 and j = 0,1,2... . Since <p is

identical to 9 on the ball B , Theorem 3.1 is an immediate consequence of

section 2 with

Remark: Suitable choices for U" c B are

a) Un = U n - 1 b) Un = 2Un~1 - Un~2

o o
In case b) the fact that U n € B is a consequence of the fact that

2U11"1 - lT~ 2 approximates 2u(-,t J - u(,t ) in L°° and the latter

approximates u(-,t ) to order k2 .

Remark: We considered other fully discrete numerical methods for problem (1.1).

The backward Euler method for (1.1), "time-lagging" the nonlinear term, is given

by the problem : Find <Un)Oinka,T siu* that Un * s£

(3.2) ( a U n j ) + Y (D2 U11*1
 f D2

 X ) = (<p(Un) , D2
 X )

O QO Q h

for all x € S£ ^^d U o = ^o * A n ° P t i m a i order linearized

Crank-Nicholson method is defined as above with (3.2) replaced by the

expression below

(3.3) (dUn . X ) • Y (D2 U n + 1 / 2 .D 2
 X ) - W | U " --J U""1) , D2

 X ) .

Again the nonlinear term is "time lagged" . A Crank-Nicholson predictor-corrector

method has two steps. The prediction function is found by (3.3). Labelling this

solution W11*1 the correction function is found by the expression

-10-



(3.4)

as above.

On each time step all the methods discussed above define a unique .

selection U114* given Un We can prove there exist constants C, e and h

such that

(i) If (Un) is given by the backward Euler method (3.2), h * hQ and k £ eQh then

(3.5) III -u(-,t )L * C (h 7 * k )
> n 'U

(U) If {Un} is given by either of the Crank-Nicholson methods,

h i h f l and k £ Ve^Fthen

(3.6) | u n -u ( - , t n ) | o * C(h? + k2 ) .
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