NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

COMBINATORS HEREDITARILY OF ORDER TWO

by

Rick Statman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 88-33 2

August 1988

Combinators Hereditarily

 of Order Twoby

Rick Statman
August 1988

Introduction

In [4] we introduced the combinators hereditarily of order one (HOO) and showed that the word problem for $H O O$ combinations is $\ell 0 g$ space complete for polynomial time. In this note we shall introduce the combinators hereditarily of order two (HOT). We shall show that every partial recursive function is representable by a HOT combinator, al though HOT combinators form a hierarchy by definitional level (and consequently are not combinatorially complete). In particular, the word problem for HOT combinations has Turing degree 0^{\prime}.

We shall think of members of HOT as atoms with associated reduction rules. Some care will be needed since the resulting conversion relation does not coincide with 15 conversion of the corresponding x terms. Consequently, for negative results we shall switch to the A calculus and 13 conversion. HOT and \rightarrow are defined simultaneously by induction as follows.

If $3 C$ is a combination of x 's and $y^{\prime} s$ then x defined by the reduction rule $\mathrm{Xxy} \rightarrow 9 \mathrm{C}$ belongs to HOT. If 3 C is $\mathrm{a} \rightarrow$ normal combination of members of HOT, x 's, and $y^{\prime} s$ then x defined by reduction rule $X x y \rightarrow 9$ belongs to HOT. In each case we write $X \equiv X x y$ 3t.

Examples

$$
\begin{array}{cl}
\text { L s Xxy } & x(y y) \\
U & \equiv X x y \\
0 & Y(x x y) \\
H & \text { Sxy } \\
H^{\prime} & y(x y) \\
H_{x} s X x y & \left.x\left(y^{L}\right)\right) \\
H_{n+2} & \equiv \lambda x y \\
x\left(y H_{n+1}\right)
\end{array}
$$

Encoding Data Types in HOT
Booleans:

$$
\begin{aligned}
& \mathbf{T} \equiv \mathbf{K} \\
& \mathbf{F} \equiv \mathbf{K}_{*} \\
& \mathbf{D} \equiv \mathbf{A x y} \\
& \mathbf{x y T} \\
& \neg \equiv\left(\begin{array}{ll}
\lambda \times y & y F T
\end{array}\right) \mathrm{T}
\end{aligned}
$$

Integers: Barendregt numerals

$$
\begin{aligned}
& \underline{0} \equiv K_{*} K_{*} \\
& \text { succ } \equiv \lambda_{x y} \\
& \text { yFx } \\
& \text { pred } \equiv\left(\begin{array}{ll}
\lambda x y & y F
\end{array}\right) \mathrm{T} \\
& \text { zero } \equiv\left(\begin{array}{ll}
\lambda x y & y T
\end{array}\right) \mathrm{T} \\
& \text { sg } \equiv\left(\begin{array}{lll}
\lambda x y & y T \underline{1}
\end{array}\right) \mathrm{T} \\
& \overline{\operatorname{sg}} \equiv\left(\begin{array}{lll}
\lambda x y & y T \underline{1} & \underline{0}
\end{array}\right) \mathrm{T}
\end{aligned}
$$

A Hierachy
If $\mathrm{X} \equiv \lambda \mathrm{xy} \mathcal{X}$ set $\operatorname{rnk}(\mathrm{X})=1+\max \{\operatorname{rnk}(\mathrm{Y}): Y$ appears in $\mathscr{X}\}$. So, for example, $\operatorname{rnk}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+1$.

Below $\mathfrak{X}, \mathscr{Q}, \mathscr{Z} . .$. range over arbitrary combinations of HOT combinators and variables. x^{λ} is the λ term which results from x by repeatedly replacing HOT combinators by their λ definitions and $x^{\lambda C L} \equiv x$.

We note here that \rightarrow is a regular left normal combinatory reduction system ([3]) and consequently satisfies the Church-Rosser and standization theorems.

We shall show that H_{n}^{λ} does not β convert to an applicative combination of $\operatorname{HOT}^{\lambda}$ combinators of ranks $\leq n$. For this we need some preliminaries.

Defㄴ M is head secure if for some $\mathcal{X} \ni \mathrm{y}, \mathrm{Mxy} \rightarrow \mathrm{x} \boldsymbol{X}$

Def $-x$ unrolls to y if there are HOT combinators $Y_{1}, \ldots, Y_{n}(n \geq 0)$ such that
 $$
x \rightarrow Y_{1}\left(\ldots\left(Y_{n}{ }^{\text {Y }}\right) \ldots\right)
$$
 (see [1] pg. 327)

Lemma:
Suppose that M is a head secure combination of HOT combinators of rank $\leq n$ and $M x y \rightarrow X$. Then X is a combination of y 's, HOT head
combinators of $\operatorname{rank}<n$, and 9 s.t. Mx unrolls to 9.

Proof:
The conclusion is true of $M x y$, so suppose that the conclusion is true of x_{1} and $x_{1} \rightarrow x_{2}$.

Case 1; $x_{1} \equiv$ 9y $g_{1} \ldots g_{m}$ where $M x$ unrolls to \mathscr{y}^{2}. Since $M x y$ is headsecure of is not an atom. If gy begins with a head redex, the conclusion clearly holds for x_{2}. The last remaining case is $y_{y} \equiv \mathrm{Y} \mathrm{g}_{0}$. By definition $M x$ unrolls to $\mathscr{y y}_{0}$. Moreover, if Z appears in the r.h.s. of the defining reduction rule for Y, then $\operatorname{rnk}(Z)<n$. Thus x_{2} satisfies the conclusion.

Case 2; $x_{1} \equiv Y \mathscr{O}_{1} \ldots$ og $_{m}$ where $\operatorname{rnk}(Y)<n$. As above, x_{2} satisfies the conclusion.

Corollary:

If M is head secure then $M x$ has a normal form

$$
Y_{1}\left(\ldots\left(Y_{n} x\right) \ldots\right)
$$

Proof:
If M is head secure then for some $X \ni y, M x y \underset{\text { head }}{\rightarrow} x$. Since $M x$ does not unroll to $x \mathscr{X}, M x$ unrolls to x.

Proposition:

There is no combination M of HOT combinators of rank $\leq n$ such that

$$
M^{\lambda}=\underset{\beta}{=} H_{n}^{\lambda}
$$

Proof:

The proof is by induction on n. The basis case, when $n=0$ is trivial. Suppose $n>0$ and $M^{\lambda}=H_{\beta}^{\lambda}$. Then $M^{\lambda} x y \rightarrow \underset{\beta}{\rightarrow} x\left(y H_{n-1}^{\lambda}\right)$. By the standardization theorem there is a reduction

Thus we have

$$
\text { Mxy } \underset{\text { head }}{\rightarrow} x x^{C L} \underset{\begin{array}{c}
\text { head } \\
\text { reduction of } \\
x^{C L}
\end{array}}{\rightarrow x\left(y \text { oy }{ }^{C L}\right) .}
$$

In particular, M is head secure so $M x$ has a normal form $X_{1}\left(\ldots\left(X_{m} x\right) \ldots\right)$. We have then (*)

$$
\mathrm{x}_{1}\left(\ldots\left(\mathrm{X}_{\mathrm{m}} \mathrm{x}\right) \ldots\right) \mathrm{y} \underset{\text { head }}{\rightarrow} \mathrm{x} \underset{\begin{array}{c}
\text { head } \\
\text { reduction of } \\
\text { थl }
\end{array}}{\rightarrow} \mathrm{x}(\mathrm{yZ})
$$

where $\underset{\beta}{\mathscr{Z}^{\lambda}} \rightarrow H_{n-1}^{\lambda}$. Now \mathscr{Z} is combination of HOT combinators of rank < n, y 's, and terms

$$
x_{i}\left(\ldots\left(x_{m} x\right) \ldots\right)
$$

for $i=1, \ldots, m+1$. Put $N \equiv[\Omega / x, \Omega / y] \mathscr{L}$. Then as above

$$
\begin{gathered}
N x y \rightarrow x(y y) \text { if } n=1 \\
N x y \rightarrow x x_{1} \rightarrow x\left(y^{a y}\right) \text { where }{ }_{1}{ }_{1}^{\lambda} \xrightarrow[\beta]{\rightarrow} H_{n-2}^{\lambda} \text { when } n>1 .
\end{gathered}
$$

In either case N is head secure so $N x$ has a normal form $Y_{1}\left(\ldots\left(Y_{k} x\right) \ldots\right)$. When $n=1$, since each HOT combinator in N appears only in interated function position applied to Ω, we have $k=0$ and
$\mathrm{Nx} \rightarrow \mathrm{x}$. This a contradiction. When $\mathrm{n}>1$, by similar reasoning $\operatorname{rnk}\left(Y_{j}\right)<n$ for $j=1 \ldots k$. By standarization there is a reduction

$$
Y_{1}\left(\ldots\left(Y_{k} x\right) \ldots\right) y \underset{\text { head }}{\rightarrow} x{\vartheta_{1}}_{\substack{\text { head } \\ \text { reduction of } \\ \text { थ }_{1}}}^{\rightarrow} x\left(y \mathscr{Z}_{1}\right)
$$

where $\mathscr{Z}_{1}^{\lambda} \rightarrow \underset{\beta}{\rightarrow} \mathrm{H}_{\mathrm{n}-2}^{\lambda}$. This reproduces $(*)$ at one lower rank.

Primative Recursive Functions

$$
\text { Put } \begin{aligned}
\hat{\text { succ }} & \equiv \lambda x y(\lambda u v \quad v F u)(x y) \text { and } \\
\oplus & \equiv\left(\begin{array}{lll}
\lambda u v & \operatorname{voUU}(\lambda x y & \left.\left.y T\left(K_{*} K_{*}\right)(\operatorname{succ}(x(y F)))\right) v\right) T .
\end{array}\right.
\end{aligned}
$$

Then \oplus is a normal HOT combination and $\oplus^{\boldsymbol{\lambda}}$ has a β normal form. Moreover,

$$
\begin{aligned}
\oplus \underline{\mathrm{n}} & =\frac{\oplus\left(\lambda x y \operatorname{yT}\left(\mathrm{~K}_{*} \mathrm{~K}_{*}\right)(\hat{\operatorname{succ}(x(\operatorname{pred} y))))}\right.}{\Phi} \underline{\mathrm{n}} \\
& =\underline{\mathrm{n}} \mathrm{~T}\left(\mathrm{~K}_{*} \mathrm{~K}_{*}\right)(\hat{\operatorname{succ}(\Phi(\operatorname{pred} \underline{\mathrm{n}})))} \\
& =\frac{\hat{\operatorname{succ}}(\ldots(\operatorname{succ} \underline{0}) \ldots) .}{\mathrm{n}} .
\end{aligned}
$$

Thus

$$
\oplus \underline{\mathrm{n}} \underline{m}=\frac{\operatorname{succ}(\ldots(\operatorname{succ} \underline{m}) \ldots) \equiv \underline{n+m}}{\mathrm{n}}
$$

Put $\left.\hat{\boldsymbol{\theta}} \equiv \lambda x \mathrm{x} \quad \mathrm{xyOUU}\left(\lambda u \mathrm{u} \quad \operatorname{vT}^{\left(K_{*} K_{*}\right.}\right)(\hat{\operatorname{succ}}(\mathrm{u}(\mathrm{vF})))\right)(\mathrm{xy}) \mathrm{y}$

$$
\otimes \equiv(\lambda u v \quad \operatorname{vOUU}(\lambda x y \quad y T(K \underline{O})(\hat{\oplus}(x(y F)))) v) T
$$

Then \otimes is a normal HOT combination and \otimes^{λ} has a β normal form. Moreover,

$$
\begin{aligned}
\otimes \underline{n} & =\frac{\theta(\lambda x y \operatorname{yT}(K \underline{O})(\hat{\oplus}(x(\text { pred } y)))) \underline{\mathbf{n}}}{\Psi} \\
& =\underline{n T}(K \underline{O})(\hat{\oplus}(\Psi(\text { pred } \underline{n}))) \\
& \left.\left.=\frac{\hat{\oplus}(\ldots(\hat{\oplus}}{n}(K \underline{O})\right) \ldots\right)
\end{aligned}
$$

Thus

$$
\otimes \underline{n} \underline{m}=\frac{\oplus(\ldots(\oplus(\oplus(K \underline{O} \underline{m}) \underline{m}) \underline{m}) \ldots) \underline{m}=\underline{n} \cdot \underline{m}}{n}
$$

$$
\text { Set } \hat{\text { pred }} \equiv \lambda x y \quad x y T \quad \underline{o}(x y F)
$$

$$
\theta \equiv(\lambda u v \quad \operatorname{voUU}(\lambda x y \quad y T \underline{O}(\hat{\operatorname{pred}}(x(y F)))) v) T
$$

Then θ is a normal HOT combination and θ^{λ} has a β normal form.

Moreover,

$$
\begin{aligned}
\hat{\theta} \underline{n} & =\frac{\theta(\lambda x y \quad \operatorname{yTO} \underline{\underline{p r e d}}(x(\operatorname{pred} y)))) \underline{\underline{n}}}{x} \\
& =\underline{\mathrm{n}} \operatorname{T} \underline{0}(\hat{\operatorname{pred}}(x(\operatorname{pred} \underline{\mathrm{n}}))) \\
& =\frac{\hat{\operatorname{pred}}(\ldots(\hat{\operatorname{pred}} \underline{0}) \ldots)}{\mathrm{n}}
\end{aligned}
$$

Thus

$$
\begin{array}{cc}
\theta \underline{n} \underline{m}=\frac{\operatorname{pred}(\ldots(\operatorname{pred} \underline{m}) \ldots)}{n} & \text { if } m \geq n \\
\underline{0} & \text { else }
\end{array}
$$

so $\quad \theta \underline{n} \underline{m}=m \dot{n}$.
Using the above techniques and constructions one can find HOT combinators $s q, r t, \Delta$, quadres, P, and R, all of whose λ have a β normal form s.t.

$$
\begin{aligned}
& \Delta \underline{n} \underline{m}=\lfloor\underline{n}-m\rfloor \\
& \text { sq } T \underline{n}=\underline{n}^{2} \\
& \text { rt T } \underline{n}=\lfloor\sqrt{n}\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadres } T \underline{n}=\underline{n}-\lfloor\sqrt{n}\rfloor^{2} \\
& P \underline{n} \underline{m}=\left((n+m)^{2}+m\right)^{2}+n \\
& \text { RT } \underline{n}=\text { quadres } T(r t T \underline{n}) .
\end{aligned}
$$

Note that $\operatorname{RT}(P \underline{n} \underline{m})=\underline{m}$ and quadres $T(P \underline{n} \underline{m})=\underline{n}$.
Suppose now that M and N are normal HOT combinations s.t. M^{λ}, N^{λ} have β normal forms. Define

$$
\begin{aligned}
& \operatorname{Sum}(M, N) \equiv\left(\begin{array}{ll}
\lambda y x & x \underline{0} \oplus(x \underline{0} M x)(x \underline{0} N x)) T \\
\operatorname{Comp}(M, N) & \equiv(\lambda y x \quad x \underline{0} M(x \underline{0} N x)) T \\
I t(M) & \equiv(\lambda y x \quad x \underline{0} U U(\lambda u v \quad v T \underline{O}(y \underline{0} M(u(v F)))) x) T
\end{array}\right. \\
&
\end{aligned}
$$

Then $\operatorname{Sum}(M, N), \operatorname{Comp}(M, N)$, and $I t(M)$ are normal HOT combinations whose λ 's have β normal forms and

$$
\begin{aligned}
\operatorname{Sum}(M, N) \underline{n} & =\oplus(\underline{M} \underline{n})(N \underline{n}) \\
\operatorname{Comp}(M, N) \underline{n} & =M(\underline{N} \underline{)} \\
\operatorname{It}(M) \underline{n} & =\frac{M(\ldots(M \underline{0}) \ldots)}{n}
\end{aligned}
$$

Thus by [2] pg. 93 we have proved the following.

Proposition:
Every primitative recursive unary function is representable by a normal HOT combination whose λ has a β normal form.

Partial Recursive Functions

Let t be the characteristic function of Kleene's T predicate i.e. $T(e, x, y) \leftrightarrow t(e, x, y)=0$ and $\neg T(e, x, y) \leftrightarrow t(e, x, y)=1$. Then by the previous proposition for each Gödel number the unary primitive recursive function $t\left(e, x-\lfloor\sqrt{x}\rfloor^{2},\lfloor\sqrt{x}\rfloor-\lfloor\sqrt{\lfloor\sqrt{x}\rfloor}\rfloor^{2}\right)$ is representable by a normal HOT combination H_{e} s.t. H_{e}^{λ} has a β normal form. By [2] pgs. 83 and 84 $H_{e}(P \underline{n} \underline{m})=t(e, n, m)$. Define $G_{e} \equiv$

$$
((\mathrm{y} \underline{0} \operatorname{succ})(\mathrm{y} \underline{0} \mathrm{Ry}))))(\mathrm{u} \underline{0} \mathrm{Pu} \underline{0})) \mathrm{T}
$$

Then

$$
\begin{aligned}
& =H_{e}(\mathrm{P} \underline{\mathrm{n}} \underline{0}) \mathrm{T} \underline{0}(\theta \Gamma(\mathrm{P} \underline{\mathrm{n}} \underline{1}))=\ldots . \\
& \mu \mathrm{m} t(\mathrm{e}, \mathrm{n}, \mathrm{~m})=0 .
\end{aligned}
$$

Thus if F is a normal HOT combination representing Kleene's result extracting function with F^{λ} having a β normal form

$\left(\lambda y x \quad x \underline{O}\left(x \underline{O} G e^{x}\right)\right) T$

is a normal HOT combination whose λ has a β normal form which represents the partial recursive function $\{e\}$. Thus we have proved the following theorem.

Theorem:

Every partial recursive function is representable by a normal HOT combination whose λ has a β normal form.

References

[1] Barendregt, The Lambda Calculus, North Holland, 1984.
[2] Peter, Recursive Functions, Academic Press, 1967.
[3] Klop, Combinatory Reduction Systems, Math. Centrum, Amsterdam, 1980.
[4] Statman, Combinators hereditarily of order one, Manuscript, July 1988.

