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Introduction

In [4] we introduced the combinators hereditarily of order one (HOO)
and showed that the word problem for HOO combinations is £og space complete
for polynomial time. In this note we shall introduce the combinators
hereditarily of order two (HOT). We shall show that every partial
recursive function is representable by a HOT combinator, although HOT
combinators form a hierarchy by definitional level (and consequently are

not combinatorially complete). In particular, the word problem for HOT

combinations has Turing degree O'.



W shall think of nmenbers of HOT as atons w th associated reduction
rules. Sone care will be needed since the resulting conversion relation
does not coincide with ]5 conversion of the corresponding X terns.
Consequently, for negative results we shall switch to the A calculus and
]3 conversion. HOT and — are defined simultaneously by induction as
fol | ows.

If 3C is aconbination of x's and y's then X defined by the
reduction rule Xxy -»9C belongs to HOTl. If 3C is a— nornal
conbi nation of nenbers of HOT, x's, and y's then X defined by reduction

rule Xxy -» 9C belongs to HOI. In each case we wite X = Xxy 3.

Exanpl es

L s Xxy x(yy)

U= Xxy y(xxy)
0 = Xxy y(xy)
Hos L

Hos Xxy  x(yL))

Hn+2 =Xy X(YHn+1)
Encodi ng Data Types in HOT
Bool eans:
T=K
F=K,
D= Axy xyT



Integers: Barendregt numerals

0= KK,
succ = Axy yFx
pred = (Axy yF)T

zero = (Axy yT)T
sg = (&xy yTO DT

sg = (A&xy yTl 0)T

A Hierachy

If X=Xy & set rnk(X) =1 + max{rnk(Y): Y appears in %}. So,
for example, rnk(Hn) =n + 1.

Below %,%,Z... range over arbitrary combinations of HOT
combinators and variables. sx}‘ is the A term which results from % by
repeatedly replacing HOT combinators by their A definitions and
T o=

We note here that —> 1is a regular left normal combinatory reduction
system ([3]) and consequently satisfies the Church-Rosser and standization
theorems.

We shall show that H:; does not B convert to an applicative

combination of HOIJ\ combinators of ranks { n. For this we need some

preliminaries.

Def2 M is head secure if for some A3y, Ixy = xX



Def® % unrolls to ¥ if there are HOT combinators Yl,..., Yn (n 2 0)

such that

a —? Yl(...(YnQJ)...)
(see [1] pg. 327)

Lemma:
Suppose that M 1is a head secure combination of HOT combinators of

rank { n and Mxy — %. Then X is a combination of y's, HOT
head

combinators of rank < n, and ¥ s.t. Mx unrolls to %.

Proof:

The conclusion is true of Mxy, so suppose that the conclusion is true

of 4. and A, —> A,.
1 lhead2

Case 1; QIE‘EI‘UI... @Im where Mx wunrolls to %. Since Mxy is

headsecure ¥ is not an atom. If % begins with a head redex, the

conclusion clearly holds for 952. The last remaining case is ¥ =Y ’;JO.

By definition Mx wunrolls to "yo. Moreover, if Z appears in the r.h.s.

of the defining reduction rule for Y, then rnk(Z) < n. Thus 12

satisfies the conclusion.



Case 2; 2')11 =Y ‘?Jl... @Im where rnk(Y) < n. As above, 12 satisfies the

conclusion.

Corollary:

If M 1is head secure then Mx has a normal form

Y, (o (Y X))

Proof:

If M is head secure then for some X 3y, Mxy — xX. Since Mx
head

does not unroll to x%X, Mx unrolls to x.

Proposition:

There is no combination M of HOT combinators of rank { n such that

2R

=@

Proof:
The proof is by induction on n. The basis case, when n =0 is

trivial. Suppose n > 0 and M)\ = H)\n Then My\xy —> x(y Hﬁ_l). By the
p B

standardization theorem there is a reduction

kay —> XX —> x(y%) - x(y Hz:_l)
B head B head B internal
reduction of
a



Thus we have

My —> xaCF - x(y Y.
head head
reduction of
ELCL

In particular, M is head secure so Mx has a normal form

Xl(...(me)...). Ve have then (%)

X (o X))y = - x(y7)
head head
reduction of
U

where 2)\ 4 HZ;__I. Now Z 1is combination of HOT combinators of
B

rank < n, y’s, and terms

Xi(...(me)...)
for i =1,..., m+ 1. Put N = [/x,/y]Z. Then as above

Nxy = x(yy) if n=1

Nxy —» xX, — x(y%,) where ‘!/7\-—)1-[7\ when n > 1.
1 1 1 B n-2

In either case N is head secure so Nx has a normal form
Yl(...(ka).. .). When n =1, since each HOT combinator in N appears

only in interated function position applied to Q, we have k = O and



Nx — x. This a contradiction. When n > 1, by similar reasoning

rnk(YJ.) <{n for j =1...k. By standarization there is a reduction

Yl(...(ka)...)y 4 x"ll1 4 x(y 21)
head head
reduction of
oul

where 271\ o 4 Hﬁ_z. This reproduces (%) at one lower rank.
B

Primative Recursive Functions

Put 51;\cc = Mxy(Auv  vFu)(xy) and
® = (Awv VOUUQ&y YT(K K, )(succ(x(yF))))Iv)T.

Then @® is a normal HOT combination and $7\ has a B normal form.

Moreover,

1

9oy YT(K,K,) (suce(x(pred ¥)))) n
¢

n T(KK,) (succ(®(pred n)))

succ(...(succ 0)...).

n
Thus



én m = succ(...(succ m)...) = n + m.

n

Put ® =Axy xyQUU(Awv VvI(KK)(succ(u(vF))))(xy)y

®
]]

(Awv  VOUU(Axy yT(KQ)(8(x(yF))))v)T

Then ® is a normal HOT combination and 8)\ has a [ normal form.

Moreover,
én = Oy YT(KO)(®(x(pred ¥)))) n
v
= nT(KQ) (®(¥(pred n)))
= &(...(® (K0))...)
. n
Thus

@nm= &(...(6(® (KO m)m)m)...)m = n-

n

Set pred = Axy xyT O(xyF)

(v vOUU(Axy  yTO(pred(x(yF))))v)T

(2]
n

Then 6 1is a normal HOT combination and 6}\ has a B normal form.



Moreover,

6n = 60y yTO(pred(x(pred ¥)))) n
X

= n T O(pred(x(pred n)))

= pred(...(pred 0)...)

n
Thus
6nm = pred(...(pred m)...) if m2n
n
o else
so 6npm=m-=n.

Using the above techniques and constructions one can find HOT
combinators sq, rt, A, quadres, P, and R, all of whose A have a

normal form s.t.

Anm=In-m
qur;=r_12
I‘tTl’_l:lfl’T_l
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quadres T n =n - [/sz

Pom=((n+m2+m>+n

RT n = quadres T(rt T n).
Note that RT(P nm) = m and quadres T(P n m) = n.
Suppose now that M and N are normal HOT combinations s.t. M)\,Nx
have B normal forms. Define
Sum(M,N) = (Ayx x0 &(x0 Mx)(x0 Nx))T
Comp(M,N) = (Ayx x0 M(x0 Nx))T

It(H) = (wx xQ WQwv vIO(y0 M(u(vF))))x)T

Then Sum(M,N), Comp(M,N), and It(M) are normal HOT combinations

whose A’s have B normal forms and

Sum(M,N)n

®(Mn) (Nn)
Comp(M,N)n = M(Nn)

It(M)n = M(...(M 0)...)

n

Thus by [2] pg. 93 we have proved the following.
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Proposition:
Every primitative recursive unary function is representable by a

normal HOT combination whose A has a B normal form.

Partial Recursive Functions
Let t be the characteristic function of Kleene’s T predicate i.e.
T(e.x,y) e« t(e,x,y) =0 and -T(e,x,y) «> t(e,x,y) = 1. Then by the

previous proposition for each Godel number the unary primitive recursive

function t(e.,x - lj§]2,l/§] = |J|]§J]2) is representable by a normal HOT
combination He s.t. HZ has a B normal form. By [2] pgs. 83 and 84

He(P nm) = t(e,n,m). Define G, =
(Avu. wOUU(Axy(yQ H y T)(yORy)(x(yQP(yOLy)

((yQ succ)(y O Ry))))(u Q PuQ))T
Then

Gen =6 (Ay(y0 H y T)(y O Ry)(x(yOP(yOLy))((y Q succ)(y Q Ry))) (P n Q)
r

=H(PRQTQ Or(Pnl) = ....

um t(e,n,m) = O.

Thus if F 1is a normal HOT combination representing Kleene’s result

extracting function with FA having a B normal form
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(Avx  XOF(xQ G_x))T

is a normal HOT combination whose A has a [ normal form which

represents the partial recursive function {e}. Thus we have proved the

following theorem.

Theorem:

Every partial recursive function is representable by a normal HOT

combination whose A has a f normal form.
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