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Introduction

In [4] we introduced the combinators hereditarily of order one (H00)

and showed that the word problem for H00 combinations is £og space complete

for polynomial time. In this note we shall introduce the combinators

hereditarily of order two (HOT). We shall show that every partial

recursive function is representable by a HOT combinator, although HOT

combinators form a hierarchy by definitional level (and consequently are

not combinatorial ly complete). In particular, the word problem for HOT

combinations has Turing degree 0r.



HOT

We shall think of members of HOT as atoms with associated reduction

rules. Some care will be needed since the resulting conversion relation

does not coincide with ]5 conversion of the corresponding X terms.

Consequently, for negative results we shall switch to the A calculus and

]3 conversion. HOT and —> are defined simultaneously by induction as

follows.

If 3C is a combination of x's and y's then X defined by the

reduction rule Xxy -» 9C belongs to HOT. If 3C is a —> normal

combination of members of HOT, x's, and y's then X defined by reduction

rule Xxy -» 9C belongs to HOT. In each case we write X = Xxy 3t.

Examples

L s Xxy x(yy)

U = Xxy y(xxy)

0 = Xxy y(xy)

Ho s L

Hx s Xxy x(yL))

x(yHn+1)

Encoding Data Types in HOT

Boo leans:

T = K

D = Axy xyT

yFT)T



Integers: Barendregt numerals

a s K*K*
succ = Xxy yFx

pred s (Xxy yF)T

zero = (Xxy yT)T

sg = (Xxy yTO 1JT

i£ = (Xxy yTI 0)T

A Hierachy

If X = Xxy a set rnk(X) = 1 + max{rnk(Y): Y appears in «}. So,

for example, rnk(H ) = n + 1.

Below ff.^.Z. . . range over arbitrary combinations of HOT

combinators and variables, a is the X term which results from 3C by

repeatedly replacing HOT combinators by their X definitions and

We note here that —> is a regular left normal combinatory reduction

system ([3]) and consequently satisfies the Church-Rosser and standization

theorems.

We shall show that ff^ does not j5 convert to an applicative

combination of HOTi combinators of ranks < n. For this we need some

preliminaries.

Def— M is head secure if for some 3C3 y, Mxy —> x3C



Def- K unrolls to V if there are HOT combinators Yj,. .., Y (n * 0)

such that

(see [1] pg. 327)

Lemma"

Suppose that M is a head secure combination of HOT combinators of

rank < n and Mxy —> 3C. Then a is a combination of yfs, HOT
head

combinators of rank < n, and <8/ s.t. Mx unrolls to $/.

Proof:

The conclusion is true of Mxy, so suppose that the conclusion is true

of 9L and 3L —> 3t~.
head

Case 1; 3L = « « , . . . « where Mx unrolls to <». Since Mxy is1 1 m

headsecure <?/ is not an atom. If *8/ begins with a head redex, the

conclusion clearly holds for 9L. The last remaining case is V = Y <8/Q.

By definition Mx unrolls to 'SL. Moreover, if Z appears in the r.h.s.

of the defining reduction rule for Y, then rnk(Z) < n. Thus 3t2

satisfies the conclusion.



Case 2; 3L = Y 9L . . . * where rnk(Y) < n. As above, 9L satisfies the
l l m ^

conclusion.

Corollary:

If M is head secure then Mx has a normal form

Proof:

If M is head secure then for some 3C S y, Mxy —> x3t. Since Mx
head

does not unroll to x3C, Mx unrolls to x.

Proposition^

There is no combination M of HOT combinators of rank < n such that

P

Proof:

The proof is by induction on n. The basis case, when n = 0 is

trivial. Suppose n > 0 and M^ = H \ Then M*xy —> x(y H^ - ) . By the

|3 n )3 n l

standardization theorem there is a reduction

x(y<2/) -* x(y &
head )3 head j5 internal n

reduction of

a



Thus we have

Mxy -> ySp^ -» x(y
head head

reduction of

In particular, M is head secure so Mx has a normal form

Xj(...(Xmx)...). We have then (*)

x(yZ)
head head

reduction of

where z —> Iî  1 . Now % is combination of HOT combinators of

rank < n, y's, and terms

for i = 1,..., m + 1. Put N = [n/x,f2/y]Z. Then as above

Nxy —» x(yy) if n = 1

Nxy —> x9L —> xfySL ) where ^ —* n o when n > 1.
l i R n~z

In either case N is head secure so Nx has a normal form

Y-(. . .(Y,x). . . ) . When n = 1, since each HOT combinator in N appears

only in interated function position applied to fi, we have k = 0 and



Nx —•» x. This a contradiction. When n > 1, by similar reasoning

rnk(Y.) < n for j = l...k. By standarization there is a reduction
J

j
head head

reduction of

where Zy —> n _o. This reproduces (*) at one lower rank.
1 p nz

Primative Recursive Functions

Put succ = Axy(Xuv vFu)(xy) and

8 == (Xuv vOUU(Xxy yT(K^)(su"cc(x(yF))))v)T.

Then © is a normal HOT combination and 8 has a p normal form.

Moreover,

©n = 0(Xxy yT(K^)(succ(x(pred y)))) n

= Q T(K̂ Kx)(succ(<f>(pred n)))

= succ(...(succ 0)...).

n

Thus



8

®n m = succ(... (succ m)... ) = n + m.

n

Put 9 s Axy xyOUU(Xuv vT(KxK^)(su"cc(u(vF))))(xy)y

® = (Xuv vOUU(Axy yT(KO)(®(x(yF))))v)T

Then ® is a normal HOT combination and ® has a (5 normal form.

Moreover,

®n = e(Xxy yT(KO)(e(x(pred y)))) n

= nT(KQ)(0(#(pred n)))

n

Thus

m = ©( ... (ffi(® (KO m)m)m) ... )m = n*m

n

Set pred = Xxy xyT O(xyF)

6 = (Xuv vOUU(Axy yTO(pred(x(yF))))v)T

Then 9 is a normal HOT combination and 0 has a |3 normal form.



Moreover,

Bn = 9(Xxy yTQ(pred(x(pred y)))) n
mmm f ..... - ^.

K

= n T O(pred(>((pred n)))

= pred(...(pred 0)...)

n

Thus

0n m = pred(...(pred m)...) if m > n

n

else

so 6n m = m - n.

Using the above techniques and constructions one can find HOT

combinators sq, rt, A, quadres, P, and R, all of whose X have a j5

normal form s.t.

An m = |n - ml

sq T n = n

rt T n = |/nj
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quadres T n = n - |/nj

2 2
P n m = ffn + m) + m) + n

RTn = quadres T(rt T n).

Note that RT(P n m) = m and quadres T(P n m) = n.

Suppose now that M and N are normal HOT combinations s.t. M ,N

have p normal forms. Define

Sum(M.N) = (Xyx xO ©(xO Mx)(xO Nx))T

Comp(M.N) s (Xyx xO M(xO Nx))T

It(M) = (Xyx xO UU(Xuv vTO(yO M(u(vF))))x)T

Then Sum(M,N), Comp(M.N), and It(M) are normal HOT combinations

whose X's have |5 normal forms and

Sum(M,N)n = e(Mn)(Nn)

Ck>mp(M,N)n = M(Nn)

It(M)n = M(...(M 0)...)

n

Thus by [2] pg. 93 we have proved the following.
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Proposition:

Every primitative recursive unary function is representable by a

normal HOT combination whose X has a p normal form.

Partial Recursive Functions

Let t be the characteristic function of Kleene's T predicate i.e.

T(e,x,y) «-» t(e,x,y) = 0 and -.T(e.x.y) «-* t(e,x,y) = 1. Then by the

previous proposition for each Godel number the unary primitive recursive

|2function t(e,x - [/xJ » l/*J ~ H 1/xJJ ) *s representable by a normal HOT

combination H s.t. n has a /3 normal form. By [2] pgs. 83 and 84
e e

H (P n m) = tfe.n.m). Define G =ev ' —*—l—'—u e

(Xvu. uOUU(Xxy(yg H y T}(ygRy)(x(yOP(ygLy)
ee

((yO succ)(y 0 Ry))))(u 0 PuO))T

Then

G n = 9 (Axy(yO H y T)(y 0 Ry)(x(ygP(ygLy))((y 0 succ)(y 0 Ry))) (P n 0)
* • - • A

r

= H (P n 0)T 0 (6r(P n D) =
e

urn tfe.n.m) = 0.

Thus if F is a normal HOT combination representing Kleene's result

extracting function with t having a P normal form
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(Xyx xQF(xOGex))T

is a normal HOT combination whose X has a |3 normal form which

represents the partial recursive function {e}. Thus we have proved the

following theorem.

Theorem:

Every partial recursive function is representable by a normal HOT

combination whose X has a /5 normal form.
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