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Abstract :•'

We show that the unification problem for untyped combinations of B

and I under /3T) (ior just P) conversion is undecidable. The proof

depends on a bijectHon between B,I combinations and integer partitions.

The bijection yielcfe as a corollary an old counting result for integer

partitions with "triangle number" m.



B,I Combinations

We shall consider combinations of B and I under |3T) conversion.

The use of 17 lends a certain elegance but is not essential. As noted by

Carry ([3]) combinations form a monoid with identity element I and

= Bxy.

Examples: B = B(...(BB)...)

n

B m = B o ••• o B
n * n iLx

clearly, BI = I. Curry observed that

(1) B(x o y ) = Bx o By
13

but these identities do not yield a complete set of combinatory axioms for

j5 or /3TJ conversion. We have

(2) B o Bx = B2x o B

It follows immediately that each B,I combinaition J3TJ converts to either

I or a combination of the form

m, mQ

B o ••• o B
°k no



where n, > ••• > riQ > 0 and m,,. . . ,mQ > 0. Such a combination is said

to be in partition normal form with n = n Q + • • • + n, and

m = m o + ••• + m, . We shall presently prove that partition normal forms

are unique, so (2) ̂ supplies the missing combinatory axiom.

j3if normal form partition normal form

n

Bn

Xxr..x nyz. Xl(...(xn(yz))...)

We record here the following obvious facts ([4]). Every B,I

combination /3T] converts to a proper combinator without selective

permutative or duplicative effect. Moreover, each such proper combinator

/3T] converts to a B,I combination. An algorithm for computing the

partition normal form from the /3T) normal form will be provided later.

Every B,I combination is obviously left |3T) invertible. By

Dezani's theorem ([3]) only I is right /3TJ invertible. Nevertheless, we

shall later observe that the monoid satisfies the right cancellation law.

Proposition 1. Partition normal forms are unique.

"^ m0 q£ %
Proof: Suppose M = B ©•••o B and N = B <>•••<> B are partition

"k n 0 p« p 0
normal forms. Put #M = nQm0 + ••• + n.m, and ttN^pQqQ + •• + p q .

Observe that M ^ I since
0T7



"•k
M T T T> ^

^ x Pi]
n,-l

M I . . . I B = B ,

' V / - en V1

M I . . . I B I . . . I = B * I .

Now suppose that M = N. We prove by induction on #M + #N that

Pv
M = N. Let r be smallest such that n > 2 and s smallest such that

m, m
p > 2 ; s o 1 > r , s > 0 . T h e n P = B K , o • • • o B r , = MI = NI =

s n , — 1 n - 1 r> r> o
Tc r /3T] /3i7 PT]

B - o ••• o B _ = Q are in partition normal form. Thus by induction

hypothesis, or the above remark, P = Q. In particular, k - r = £ - s and
nr = P5,....ps ;mk,...,mr = q^,...,qs. Put t =

n m . We have B ^^u ° M = MB . = NB t = B , 4¥N o N by ( 2 ) .
V 1 + # M Pr, V 1 Pv V 1 Pn V 1 + # N

B1+#M R= \ + M M ° M).X '" ^ = \ ° N ) 2 L = B

PV K - /3 ^
/3 ̂  Tk

Tk Tc

Hence #M = ttN and #M - t = #N - t . This completes the proof.

Corollary: If M n and M- are B,I combinations such that Mn ^ M1
U l Pi

then there are B,I combinations N-,. .. ,N such that
1 n



M.N, ... N = B
ll n „

M. .N, ... N = I
l—i 1 n o

for some i.

Consequently, a model of the B,I fragement of the X calculus

either contains the free model or has B = I. In the latter case,

application is associative and the model is just a monoid.

Examples:

products

""k n

B o f B o # # # < > B

partition normal forms

m,

B ,
V1

m
B r

i IV1
where r is smallest s.t.

(B
m.
K

o ... o B u) o B
V P

m,

B o ••• o B
n P+s

m
r

where r is largest such that

p + n^nu + # # + n .m ^ > n andK 0 0 r-1 r-1 r

s = + • • • + n m
r r

Proposition 2.

Proof: The proposition is clear if anyone of the 3 M, N, or P beta eta



converts to I. So we may assume that we have partition normal forms

M

N

P

Pv
-
Pv
=
Pv

B o
"k

B o
mg

B o
rs

• • • o B
no

• •• o B
mo

•• • o B
ro

" k * '

m > -

T > «
S ~

... ^

... >

... >

no

m°
0
>

1

1

1.

Note immediately that k = £. The proof is by induction on s, and the

induction step follows from associativity. Thus we may assume s = 0. Let

t be the largest t s.t. B £ B . Suppose we have the partition

normal forms

M o

No

B
ro

Br Q

= B

= B
c

o

c

• • • o

• • • o

B
ni

B

o B o • •• o B
ro+i V i no

. o B ^
r 0 + J "J-l

where k + 1 > i,j > 0. W«og we may assume j > i. Since B r + . O m

we have t = j. In particular, B = B *.,B = B,. f . . . .
nt ro + t nt-i \

B = B^, , B . s Bfc. . But since t > i rrt + i > *}.. This is a
ni "\+l V 1 i °
contradiction and completes the proof.

Integer partitions

A binary tree A is said to be righteous if A = / \» for

some A-, A^, and A^. The PTJ normal forms of B,I combinations and the



righteous binary trees are in obvious 1 - 1 correspondence. If 6 is an

internal node of A let #6 = the number of leaves of A which lie

properly to the left of 6. #A = 2 #6. Enumerate the internal nodes of
6€A

A with nonzero #: 6, . . . 6Q from right to left and bottom to top.

Clearly, #Sd > •••'> #6Q.

Example

Let AT ' be the J3T] normal form corresponding to A.

Observation 1: B,.- o ••• o I* = A ^ . Proposition 1 and Observation 1

establish a 1 - 1 correspondence between integer partitions and righteous

binary trees. The correspondence amounts to computing partition normal

forms from )3T] normal forms and vice versa.



Sample Computations

BA =

The correspondence between partitions and righteous binary trees with

m internal nodes works out the following way. Define the triangle number

of the partition n. + ••• + n- to be the least integer k + £ such that

for i = l . . . k n. < i + € where p > 0. The righteous binary trees

with m internal nodes are in 1 - 1 correspondence with partitions with

triangle number m - 1. This can also be seen by the "walk above the

diagonal" construction from elementary combinatorics, and appears to be due

to L. Carlitz.



8

Example-

triangle number of

Corollary. The number of partitions with trianble number m - 1 is

m
1 .&TK _ K2m - aU
+ 1^ m * nr m - 1 '

Unification

Let us put 0 = 1 and n = B , and set Int = {n : n €

(3) M € Int « B o M =

m, m
For, suppose M = B o ... o B is partition normal with n, > 1. Then

"k n0 k

""k
B o M = B ., o N for some N so B o M jt M o B. Let



Parts(x.y.z) » x = By o z A Int(z) and Conj(x.y) « = » 3 z x = z < > B A

Parts(z o B 2,y,z)

(4) Conj(n.M) <=> M = B

fa n

For, suppose n = N o B. Then N = n - 1 and N o B o = B o n - 1,
fa fa 2PT, n+1

Hence if Parts(N o B~,P,Q) then P = B and Q = n - 1.
2 fa n fir.

Define ap(x.y.z) «=» 3u Conj(B-x.u) A

3v Conj(B2 o x o y,v) A

z o Bu = v o z

(5) ap(m,n,M) «=* M = B " A = m n

fa m+1 fa

For, suppose Con.ifm + l.N^. Then by (4) Nt = B ... Similarly, if
1 i

 /3T)
 m X

Con.ifm + n + 2,N<j) then N- = B + 3 which is absurd. Suppose that M

fa
has the partion normal form

m, mQ
B o ... o B
"k n0

a
If m + 1 < n, then the lrgest part in the partition normal form of

K A
B . o M is B , - but the largest part in the partition normal form of
m+i n,+1
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M o Bm¥l is either B or B r for some r > i^ + 1. If n Q < m + 1

then the largest part in the partition normal form of M o B m + 1 is B^

for some r > ty + 1 while the largest part in the partition normal form of

B, , o M is B i - . Hence M = B * Now M o B .« = B .9. o M so¥#•1 fe,+l fy*l m+2 g m+2+n^

by right cancellation B ~^ = B o and m. = n.

m+2+m, o m+2+n k

Define Ap(x,y,z) «=* 3ab3uv Parts(x,a,b)

A Parts(y,u,v)

3WjW2 ap(b,v.w) A

b o Bu = w^ o b A

z = x o w^ o w.

(6) Ap(M,N,P) <=> P = MN.

First note that if M = BM n o 55 and N = B N n o n then

Pn PT,
 U

MN = M0*m(BN0) o m n. Moreover, m o BNQ = m(BN0) o m so Ap(M,N,MN).
Pv Pi?

Conversly, if PartsCM.MQ.Mj), Parts(N,NQ,N1) and apCM-.N-.P). then by

( 3 ) , M- = m a n d N1 = n f o r some m a n d n , a n d P = m n b y ( 5 ) .
PT? Pr? PT?

In addi t ion , i f m o BNn = Q o m then Q = m(BNn). For, i f
Pr] PT]

 U

N Q = I then this is the case. Otherwise N o has a partition normal

Pn
m, mQ m, mQ

form B o ••• o B so mo BN^ = B - o ••• o B - o m =
^ n0 " °pr? V

1 + m V 1 + m 'ft
m(BN 0) o m and Q = m(BN 0) by right cancellation. Thus P = MN.

P17 /3
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Finally, define Mult(x,y,z) «=» 3u 3v 3w Conj(z,u) A Conj(y.w) A u o v

o w A v < > B u = x u o v A Int (z)

(7) If m > n > 2 then Mult(m,n,M) <=> M = m » n.

Suppose m > n > 2 . Put v : = B , . . o • • • o B . Then B o v =
"" n(m—1J n nm ~

n v o B and v B m i 1 = B _ ^ v = B ^ o
n nm+1 o nm+m o nv*t

Bnv o B and v o B m i 1 = B _ ^ o v = B 1 ^ o v . C o n v e r s l y , suppose B,
n nm+1 o nm+m o nv*t k

o N = B ^ o f i and N o R - = B'X O N. Since m > 2 N * I. Thus
P T ? /5TJ /3T7

N has a p a r t i t i o n normal form

B B
n n 0

The largest part in the partition normal form of BnN o B is B

me mo
so since n £ 2 , k = n p + n. In particular, B < > B o ••• o B

) ) *~ n^+n n^ nQ

m mQ

= \+n ° — ° BnQ+n °
 Bn' Hence N ̂  Bn^ ° Bn(^-1) ° — ° Bn' NoW

N o R = R o N so by right cancellation * = m - 1. Thus k = n^

as desired.

Suppose 3L3L 3t ,V are combination of B, I, and x-.. .x . The
1* 1 n n 1 m

corresponding unification problem is the problem of determining if there

are B,I combinations Mi , . . . ,M s. t. for G = [M1/x1 M /x ]
1 m 1 1 mm
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1 Pn

eat = ey
n o n

By (3) (4) and (7)Gilbert's 10th problem can be encoded as a unification

problem.

Theorem 1. Unification is undecidable.(5) and (6) give a stronger result.

We can require that each 3t. or <8/. has the form

L o ••• o v

where each %p is either a B,I combination or of the form

Brx .s

We leave the decision problem for monoid equations open.
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