NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

* COMBINATORS AND THE THEORY OF PARTITIONS

by

Rick Statman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 88-31
2

March 1988

Combinators and the Theory of Partitions
by

Rick Statman

March 1988
Abstract
We show that the unification problem for untyped combinations of B and I under $\beta \eta$ (or just β) conversion is undecidable. The proof depends on a bijection between B, I combinations and integer partitions. The bijection yieldis as corollary an old counting result for integer partitions with "triangle number" m.

B, I Combinations

We shall consider combinations of B and I under $\beta \eta$ conversion. The use of η lends a certain elegance but is not essential. As noted by Curry ([3]) combinations form a monoid with identity element I and $x^{\circ} y \equiv B x y$.

clearly, $\mathrm{BI} \underset{\beta \eta}{=} \mathrm{I}$. Curry observed that $\beta \eta$
(1)

$$
\mathrm{B}(\mathrm{x} \circ \mathrm{y}) \underset{\beta}{=} \mathrm{Bx} \circ \mathrm{By}
$$

but these identities do not yield a complete set of combinatory axioms for β or $\beta \eta$ conversion. We have

$$
\begin{equation*}
B \circ B x \underset{\beta}{ }=B^{2} x \circ B \tag{2}
\end{equation*}
$$

It follows immediately that each B, I combinaition $\beta \eta$ converts to either I or a combination of the form

$$
B_{n_{k}}^{m_{k}} \circ \ldots \circ B_{n_{0}}^{m_{0}}
$$

where $n_{k}>\cdots>n_{0}>0$ and $m_{k}, \ldots, m_{0}>0$. Such a combination is said to be in partition normal form with $n=n_{0}+\cdots+n_{k}$ and $m=m_{0}+\cdots+m_{k}$ We shall presently prove that partition normal forms are unique, so (2) supplies the missing combinatory axiom.

$$
\begin{array}{lcc}
\beta \eta & \text { normal form } & \text { partition normal form } \\
\lambda x_{1} \ldots x_{n} y z . & x_{1} \ldots x_{n}(y z) & B_{n} \\
\lambda y z x_{1} \ldots x_{n} & y\left(z x_{1} \ldots x_{n}\right) & B^{n} \\
\lambda x_{1} \ldots x_{n} y z . & x_{1}\left(\ldots\left(x_{n}(y z)\right) \ldots\right) & B_{n} \circ B_{n-1} \circ \cdots \circ B_{1}
\end{array}
$$

We record here the following obvious facts ([4]). Every B,I combination $\beta \eta$ converts to a proper combinator without selective permutative or duplicative effect. Moreover, each such proper combinator $\beta \eta$ converts to a B, I combination. An algorithm for computing the partition normal form from the $\beta \eta$ normal form will be provided later.

Every B,I combination is obviously left $\beta \eta$ invertible. By Dezani's theorem ([3]) only I is right $\beta \eta$ invertible. Nevertheless, we shall later observe that the monoid satisfies the right cancellation law.

Proposition 1. Partition normal forms are unique.

Proof: Suppose $M \equiv B_{n_{k}}^{m_{k}} \ldots \ldots B_{n_{0}}^{m_{0}}$ and $N \equiv B_{p_{l}}^{q_{\ell}} \ldots \ldots \circ B_{p_{0}}^{q_{0}}$ are partition normal forms. Put $\# M=n_{0} m_{0}+\cdots+n_{k} m_{k}$ and $\# N=p_{0} q_{0}+\cdots+p_{p} q_{p}$.
Observe that $M \underset{\beta \eta}{\neq} \mathrm{I}$ since

$$
\begin{aligned}
& M \underset{n_{k}^{-1}}{I \ldots I} \overline{\beta \eta} B^{m / k} \\
& \text { M } \underset{n_{k}{ }^{n_{k}-1}}{\text { I } \ldots \text { I }} \underset{\beta \eta}{=} B_{m_{k}+1} \\
& \text { M } \underset{n_{k}-1}{\mathrm{I} \ldots \mathrm{I}} \underbrace{\mathrm{~B} \mathrm{I} \ldots \mathrm{I}}_{\mathrm{m}_{\mathrm{k}}} \underset{\beta \eta}{=} \underset{\beta \eta}{\neq \mathrm{I}} \text {. }
\end{aligned}
$$

 $M \equiv N$. Let r be smallest such that $n_{r} \geq 2$ and s smallest such that $p_{s} \geq 2$; so $1 \geq r, s \geq 0$. Then $P \equiv B_{n_{k}-1}^{m_{k}} \circ \cdots \circ \mathrm{~B}_{\mathrm{n}_{\mathrm{r}}-1}^{\mathrm{m}_{\mathrm{r}}} \underset{\beta \eta}{=} \mathrm{MI} \underset{\beta \eta}{=} \mathrm{NI} \underset{\beta \eta}{=}$ $\mathrm{B}_{\mathrm{p}_{\ell}-1}^{\mathrm{q}_{\ell}} \circ \cdots \circ \mathrm{B}_{\mathrm{p}_{\mathrm{s}}-1}^{\mathrm{q}_{\mathrm{s}}} \equiv \mathrm{Q}$ are in partition normal form. Thus by induction hypothesis, or the above remark, $\mathrm{P} \equiv \mathrm{Q}$. In particular, $\mathrm{k}-r=\boldsymbol{e}-\mathrm{s}$ and $n_{k}, \ldots, n_{r}=: \quad p_{e}, \ldots, p_{s} ; m_{k}, \ldots, m_{r}=q_{e}, \ldots, q_{s} . \quad$ Put $t=n_{k} m_{k}+\ldots+$ $n_{r} m_{r}$. We have $B_{n_{k}+1+\# M} \circ M \underset{\beta \eta}{=} M B_{n_{k}+1}=N_{\beta \eta} B_{n_{k}+1}^{\beta \eta}=B_{n_{k}+1+\# N} \circ N$ by (2). Thus $B_{1+\# M} \underset{\beta \eta}{=}\left(B_{n_{k}+1+\# M}{ }^{\circ} M_{n_{k}}^{I} \underset{\beta \eta}{I}=\left(B_{n_{k}}+1+\# N N^{\circ} N\right) \underset{n_{k}}{I \ldots I}=B_{1+\# N}\right.$. Hence $\# M=\# N$ and $\# M-t=\# N-t$. This completes the proof.

Corollary: If M_{0} and M_{1} are B, I combinations such that $M_{0} \underset{\beta \eta}{\neq} M_{1}$
then there are B, I combinations N_{1}, \ldots, N_{n} such that

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{i}} \mathrm{~N}_{1} \ldots \mathrm{~N}_{\mathrm{n}} \underset{\beta \eta}{=} \mathrm{B} \\
& \mathrm{M}_{1-\mathrm{i}} \mathrm{~N}_{1} \ldots \mathrm{~N}_{\mathrm{n}}^{\underset{\beta \eta}{=}}=\mathrm{I}
\end{aligned}
$$

for some i.
Consequently, a model of the B, I fragement of the λ calculus either contains the free model or has $B=I$. In the latter case, application is associative and the model is just a monoid.

Examples:

$$
\begin{aligned}
& \text { products } \\
& \text { partition normal forms } \\
& B_{p} \circ\left(B_{n_{k}}^{m_{k}} \circ \cdots \circ B_{n_{0}}^{m_{0}}\right) \\
& B_{n_{k}+1}^{m_{k}} \circ \cdots \circ B_{n_{r}+1}^{m_{r}} \circ B_{p} \circ B_{n_{r-1}}^{m_{r-1}} \circ \ldots \\
& \text { where } r \text { is smallest s.t. } \\
& n_{r}>p \\
& \left(B_{n_{k}}^{m_{k}} \circ \cdots \circ B_{n_{0}}^{m_{0}}\right) \circ B_{p} \\
& B_{n_{k}}^{m_{k}} \circ \ldots \circ B_{p+s} \circ B_{n_{r}}^{m_{r}} \circ \ldots \\
& \text { where } r \text { is largest such that } \\
& p+n_{0} m_{0}+\cdots+n_{r-1} m_{r-1}>n_{r} \text { and } \\
& s=n_{0} m_{0}+\cdots+n_{r} m_{r}
\end{aligned}
$$

Proposition 2. $M \circ P=N \circ P \Rightarrow M=N$. $\beta \eta \quad \beta \eta$

Proof: The proposition is clear if anyone of the $3 \mathrm{M}, \mathrm{N}$, or P beta eta
converts to I. So we may assume that we have partition normal forms

$$
\begin{aligned}
& M \underset{\beta \eta}{=} B_{n_{k}} \circ \cdots \circ B_{n_{0}} \quad n_{k} \geq \cdots \geq n_{0} \geq 1 \\
& \mathrm{~N} \underset{\beta \eta}{=} \mathrm{B}_{\mathrm{m}_{\ell}} \circ \cdots \circ \mathrm{B}_{\mathrm{m}_{0}} \quad \mathrm{~m}_{\ell} \geq \cdots \geq \mathrm{m}_{0} \geq 1 \\
& P=B_{\beta \eta} r_{s} \circ \cdots \circ B_{r_{0}} \quad r_{s} \geq \cdots \geq r_{0} \geq 1 .
\end{aligned}
$$

Note immediately that $k=\ell$. The proof is by induction on s, and the induction step follows from associativity. Thus we may assume $s=0$. Let t be the largest t s.t. $B_{n_{t}} \neq B_{m_{t}}$. Suppose we have the partition normal forms

$$
\begin{aligned}
& M \circ B_{r_{0 ~ \beta ~}^{\beta \eta}}=B_{n_{k}} \circ \cdots \circ B_{n_{i}} \circ B_{r_{0}+i} \circ B_{n_{i-1}} \circ \cdots \circ B_{n_{0}} \\
& N \circ B_{r_{0 ~ \beta \eta}}^{=} B_{m_{k}} \circ \cdots \circ B_{m_{j}} \circ B_{r_{0}+j} \circ B_{m_{j-1}} \circ \cdots \circ B_{m_{0}}
\end{aligned}
$$

where $k+1 \geq i, j \geq 0$. Wlog we may assume $j>i$. Since $B_{r_{0}}+j \neq B_{m_{j-1}}$
we have $t=j$. In particular, $B_{n_{t}} \equiv B_{r_{0}+t}, B_{n_{t-1}} \equiv B_{m_{t}}$, ...
$B_{n_{i}} \equiv B_{m_{i+1}}, B_{r_{0}+i} \equiv B_{m_{i}}$. But since $t>i \quad r_{0}+i>m_{i}$. This is a contradiction and completes the proof.

Integer partitions

A binary tree Δ is said to be righteous if $\Delta=$ some Δ_{1}, Δ_{2}, and Δ_{3}. The $\beta \eta$ normal forms of B, I combinations and the
righteous binary trees are in obvious 1-1 correspondence. If δ is an internal node of Δ let $\# \delta=$ the number of leaves of Δ which lie properly to the left of $\delta . \# \Delta=\sum_{\delta \in \Delta} \# \delta$. Enumerate the internal nodes of Δ with nonzero \#: $\delta_{d} \cdot . \cdot \delta_{0}$ from right to left and bottom to top. Clearly, \# $\delta_{d} \geq \cdots{ }^{i} \geq \#_{0}$.

Example

Let $\Delta^{\beta \eta}$ be the $\beta \eta$ normal form corresponding to Δ.

Observation 1: $\quad B_{\# \delta_{d}} \circ \cdots \circ B_{\# \delta_{0}}=\Delta^{\beta \eta}$. Proposition 1 and Observation 1 establish a 1-1 correspondence between integer partitions and righteous binary trees. The correspondence amounts to computing partition normal forms from $\beta \eta$ normal forms and vice versa.

Sample Computations

$$
\text { BA }=A
$$

The correspondence between partitions and righteous binary trees with m internal nodes works out the following way. Define the triangle number of the partition $n_{k}+\cdots+n_{1}$ to be the least integer $k+\ell$ such that for $i=1 \ldots k \quad n_{i} \leq i+\ell$ where $\rho \geq 0$. The righteous binary trees with m internal nodes are in 1 - 1 correspondence with partitions with triangle number $m-1$. This can also be seen by the "walk above the diagonal" construction from elementary combinatorics, and appears to be due to L. Carlitz.

Example:

triangle number of $8+6+5+5+1=8$

Corollary. The number of partitions with trianble number m-1 is

$$
\frac{1}{m+1}\binom{\alpha n}{m}-\frac{1}{m}\binom{2 m-\alpha}{m-1}
$$

Unification

Let us put $\underline{0} \equiv I$ and $\underline{n} \equiv B^{n}$, and set Int $=\{\underline{n}: n \in \omega\}$

$$
\begin{equation*}
M \in \text { Int } \Leftrightarrow B \circ M \underset{\beta \eta}{=} M \circ B \tag{3}
\end{equation*}
$$

For, suppose $M \equiv B_{n_{k}}^{m_{k}} \circ \ldots \circ B_{n_{0}}^{m_{0}}$ is partition normal with $n_{k}>1$. Then $B \circ M \underset{\beta \eta}{=} B_{n_{k}}^{m_{k}}{ }^{m} \circ N$ for some N so $B \circ M \underset{\beta \eta}{\neq M} \circ B$. Let
$\operatorname{Parts}(x, y, z) \Leftrightarrow x=\operatorname{By} \circ z \wedge \operatorname{Int}(z)$ and $\operatorname{Conj}(x, y) \Leftrightarrow \exists z x=z \circ B \wedge$
$\operatorname{Parts}\left(z \circ \mathrm{~B}_{2}, \mathrm{y}, \mathrm{z}\right)$
(4)

$$
\operatorname{Conj}(\underline{\mathrm{n}}, \mathrm{M}) \Leftrightarrow \mathrm{M} \underset{\beta \eta}{=} \mathrm{B}_{\mathrm{n}}
$$

For, suppose $\underline{\underline{n}} \underset{\beta \eta}{=} N \circ B$. Then $N \underset{\beta \eta}{=} \underline{n-1}$ and $N \circ B_{2} \underset{\beta \eta}{=} B_{n+1}^{\circ} \underline{n-1}$.
Hence if $\operatorname{Parts}\left(N \circ B_{2}, P, Q\right)$ then $P \underset{\beta \eta}{=}=B_{n}$ and $Q \underset{\beta \eta}{=} \underline{n-1}$.
Define $\operatorname{ap}(x, y, z) \Leftrightarrow \exists u \operatorname{Conj}(B \cdot \bullet x, u) \wedge$

$$
\begin{aligned}
& z \circ u=u \circ z \wedge \\
& \exists v \operatorname{Conj}\left(B^{2} \circ x \circ y, v\right) \wedge \\
& z \circ B u=v \circ z
\end{aligned}
$$

(5)

$$
a p(\underline{m}, \underline{n}, M) \Leftrightarrow M \underset{\beta \eta}{=} B_{m+1}^{\mathrm{n}} \underset{\beta \eta}{=} \underline{m} \underline{n}
$$

For, suppose $\operatorname{Conj}\left(\underline{m+1}, N_{1}\right)$. Then by (4) $N_{1} \underset{\beta \eta}{=}{\underset{m+1}{ }}_{B_{m}}$. Similarly, if $\operatorname{Conj}\left(\underline{m+n+2}, N_{2}\right)$ then $N_{2} \underset{\beta \eta}{=} B_{m+n+3}$ which is absurd. Suppose that M has the partion normal form

$$
B_{n_{k}}^{m_{k}} \circ \ldots \circ B_{n_{0}}^{m_{0}}
$$

If $m+1<n_{k}$ then the ${\underset{1}{1}}_{1}^{a}$ rgest part in the partition normal form of $\mathrm{B}_{\mathrm{m}+1} \circ \mathrm{M}$ is $\mathrm{B}_{\mathrm{n}_{\mathrm{k}}+1}$ but the largest part in the partition normal form of
$M \circ B_{m+1}$ is either $B_{n_{k}}$ or B_{r} for some $r>n_{k}+1$. If $n_{0}<m+1$ then the largest part in the partition normal form of $M \circ B_{m+1}$ is B_{r} for some $r>m+1$ while the largest part in the partition normal form of $B_{m+1} \circ M$ is B_{m+1}. Hence $M \underset{\beta \eta}{=} B_{m+1}^{m_{k}}$. Now $M \circ B_{m+2} \underset{\beta \eta}{=} B_{m+2+m_{k}} \circ M$ so by right cancellation $B_{m+2+m_{k}}=B_{m+2+n}$ and $m_{k}=n$.

Define $\operatorname{Ap}(x, y, z) \Leftrightarrow \exists$ abłuv Parts (x, a, b)

$$
\begin{aligned}
& \wedge \operatorname{Parts}(\mathrm{y}, \mathrm{u}, \mathrm{v}) \\
& \exists \mathrm{w}_{1} \mathrm{w}_{2} \operatorname{ap}\left(\mathrm{~b}, \mathrm{v}, \mathrm{w}_{1}\right) \wedge \\
& \mathrm{b} \circ \mathrm{Bu}=\mathrm{w}_{2} \circ \mathrm{~b} \wedge \\
& \mathrm{z}=\mathrm{x} \circ \mathrm{w}_{2} \circ \mathrm{w}_{1}
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Ap}(M, N, P) \Leftrightarrow P \underset{\beta \eta}{=} M N . \tag{6}
\end{equation*}
$$

First note that if $M \underset{\beta \eta}{=} \mathrm{BM}_{\mathrm{O}} \circ \underline{m}$ and $\mathrm{N} \underset{\beta \eta}{=} \mathrm{BN}_{\mathrm{O}}{ }^{\circ} \underline{\mathrm{n}}$ then $M N \underset{\beta \eta}{=} M_{0} \circ \underline{m}\left(\mathrm{BN}_{\mathrm{O}}\right) \circ \underline{m} \underline{n}$. Moreover, $\underline{m} \circ \mathrm{BN}_{0} \underset{\beta \eta}{=} \underline{m}\left(\mathrm{BN}_{\mathrm{O}}\right) \circ \underline{m}$ so $\mathrm{Ap}(\mathrm{M}, \mathrm{N}, \mathrm{MN})$. Conversely, if $\operatorname{Parts}\left(M, M_{0}, M_{1}\right)$, $\operatorname{Parts}\left(N, N_{0}, N_{1}\right)$ and $\operatorname{ap}\left(M_{1}, N_{1}, P\right)$, then by (3), $\mathrm{M}_{1} \underset{\beta \eta}{=} \underline{m}$ and $\mathrm{N}_{1} \underset{\beta \eta}{=} \underline{\mathrm{n}}$ for some m and n , and $\mathrm{P} \underset{\beta \eta}{=} \underline{m} \underline{n}$ by (5). In addition, if $\underline{m} \circ \mathrm{BN}_{\mathrm{O}}^{\underset{\beta \eta}{=}} \mathrm{Q} \circ \underline{m}$ then $\mathrm{Q} \underset{\beta \eta}{=} \underline{m}\left(\mathrm{BN}_{\mathrm{O}}\right)$. For, if $\mathrm{N}_{\mathrm{O}} \underset{\beta \eta}{=} \mathrm{I}$ then this is the case. Otherwise N_{O} has a partition normal
form $B_{n_{k}}^{m_{k}} \circ \ldots \circ B_{n_{0}}^{m_{0}}$ so $m \circ \mathrm{BN}_{0} \underset{\beta \eta}{=} B_{n_{k}+1+m}^{m_{k}} \circ \cdots \circ B_{n_{0}+1+m}^{m_{0}} \circ \underline{m} \underset{\beta \eta}{=}$
$\mathrm{m}\left(\mathrm{BN}_{\mathrm{O}}\right) \circ \mathrm{m}$ and $\mathrm{Q} \underset{\beta \eta}{=} \underline{m}\left(\mathrm{BN}_{\mathrm{O}}\right)$ by right cancellation. Thus $\mathrm{P} \underset{\beta \eta}{=} \mathrm{MN}$.

Finally, define $\operatorname{Mult}(x, y, z) \Leftrightarrow \exists u \exists v \exists w \operatorname{Conj}(z, u) \wedge \operatorname{Conj}(y, w) \wedge u \circ v$ $=y v \circ w \wedge v \circ B u=x u \circ v \wedge$ Int (z)

$$
\begin{equation*}
\text { If } m \geq n \geq 2 \text { then } \operatorname{Mult}(\underline{m}, \underline{n}, M) \Leftrightarrow M \underset{\beta \eta}{=} \underline{m} \cdot n \text {. } \tag{7}
\end{equation*}
$$

Suppose $m \geq n \geq 2$. Put $v:=B_{n(m-1)} \circ \cdots \circ B_{n}$. Then $B_{n m} \circ \mathbf{v}=$ $B^{n} v \circ B_{n}$ and $v \circ B_{n m+1} \underset{\beta \eta}{=} B_{n m+m} \circ v \underset{\beta \eta}{=} B_{m_{n m}}{ }_{n} v$. Conversly, suppose B_{k} $\circ N \underset{\beta \eta}{=} B^{n} N \circ B_{n}$ and $N \circ B_{k+1}=B_{\beta \eta}^{m_{B}}{ }^{n} \circ N$. Since $m \geq 2 N \underset{\beta \eta}{\neq I}$. Thus N has a partition normal form

$$
\mathrm{B}_{\mathrm{n}_{\ell}}^{\mathrm{m}_{\ell}} \cdot \cdots \cdot \mathrm{B}_{\mathrm{n}_{0}}^{\mathrm{m}_{0}}
$$

The largest part in the partition normal form of $B^{n} N \circ B_{n}$ is $B_{n_{\ell}+n}$ so, since $n \geq 2, k=n p+n$. In particular, $B_{n_{\ell}+n} \circ B_{n_{\ell}}^{m_{\ell}} \circ \ldots \circ B_{n_{0}}^{m_{0}}$ $\equiv \mathrm{B}_{\mathrm{n}_{\ell}+\mathrm{n}}^{\mathrm{m}_{\ell}} \circ \cdots \circ \mathrm{B}_{\mathrm{n}_{0}+\mathrm{n}}^{\mathrm{m}_{0}} \circ \mathrm{~B}_{\mathrm{n}}$. Hence $\mathrm{N} \underset{\beta \eta}{=} \mathrm{B}_{\mathrm{n} \ell} \circ \mathrm{B}_{\mathrm{n}(\ell-1)} \circ \cdots \circ \mathrm{B}_{\mathrm{n}} . \quad$ Now $N \circ \mathrm{~B}_{\mathrm{k}+1} \underset{\beta \eta}{=} \mathrm{B}_{\mathrm{k}+1+\ell} \circ \mathrm{N}$ so by right cancellation $\ell=\mathrm{m}-1$. Thus $\mathrm{k}=\mathrm{n} \bullet \mathrm{m}$ as desired.

Suppose $x_{1} y_{1}, \ldots, x_{n}, y_{n}$ are combination of B, I, and $x_{1} \ldots x_{m}$. The corresponding unification problem is the problem of determining if there are B, I combinations M_{1}, \ldots, M_{m} s.t. for $\theta=\left[M_{1} / x_{1}, \ldots, M_{m} / x_{m}\right]$

$$
\begin{gathered}
\theta x_{1} \underset{\beta \eta}{=}=\theta y_{1} \\
\vdots \\
\bullet x_{\mathrm{n}} \\
=\theta{ }_{\beta \eta}^{=} y_{\mathrm{n}}
\end{gathered}
$$

By (3) (4) and (7) 'Hilbert's 10th problem can be encoded as a unification problem.

\#

Theorem 1. Unification is undecidable.(5) and (6) give a stronger result.
We can require that each x_{i} or y_{i} has the form

$$
\mathscr{X}_{1} \circ \cdots \circ \mathscr{X}_{k}
$$

where each \mathscr{Z}_{ℓ} is either a B,I combination or of the form

$$
\mathrm{B}^{\mathrm{r}} \mathrm{x}_{\mathrm{s}}
$$

We leave the decision problem for monoid equations open.

References

[1] George Andrews, Theory of Partitions, Encyclopedia of Mathematics, Vol. 2, Addison-Wesley, 1976.
[2] Henk Barendregt, The Lambda Calculus, North Holland, 1984.
[3] Curry \& Feys, Combinatory Logic, Vol. 1, North Holland, 1968.
[4] Statman, On translating combinators into lambda terms, Proceedings Symposium on Logic in Computer Science, IEEE, 1986.

