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Abstract

We show that the unification problem for untyped combinations of B
and I under pBn or just pB) conversion is undecidable. The proof
depends on a bijecﬁﬁon between B,I combinations and integer partitions.
The bijection yieldﬁ as a corollary an old counting result for integer

partitions with "tpiangle number"” m.



B,I Combinations

We shall consider combinations of B and I under pn conversion.
The use of 1 lends a certain elegance but is not essential. As noted by
Curry ([3]) combinations form a monoid with identity element I and

xoy = Bxy.

n
B::E BnOooooB
m

clearly, BI = I. Curry observed that
Bn ‘

(1) B(x o y) = Bx o By
B

but these identities do not yield a complete set of combinatory axioms for

B or pPpn conversion. We have

(2) BoBx=BxoB

It follows immediately that each B,I combinaition pn converts to either

I or a combination of the form

B'nl{OOOOOB



where nk D eee > no >0 and mk,...,m0 > 0. Such a combination is said

to be in partition normal form with n = n, + eee + nk and

m=my+ e +m. "We shall presently prove that partition normal forms

are unique, so (2) 'supplies the missing combinatory axiom.

B normal form partition normal form
Axl...xnyz. xl...xn(yz) Bn
n
Ayle...xn y(le...xn) B
Rxl...xnyz. xl(...(xn(yz))...) Bn o Bn—l 0 ese © Bl

We record here the following obvious facts ([4]). Every B,I
combination pfn converts to a proper combinator without selective
permutative or duplicative effect. Moreover, each such proper combinator
pn converts to a B,I combination. An algorithm for computing the
partition normal form from the fn normal form will be provided later.

Every B,I combination is obviously left pn invertible. By
Dezani’s theorem ([3]) only I is right Ppn invertible. Nevertheless, we

shall later observe that the monoid satisfies the right cancellation law.

Proposition 1. Partition normal forms are unique.

"o 9
Proof: Suppose M =B = oe¢ee0 B and N=B ~ oe«¢e0 B are partition

N
Dy ) Py Po
normal forms. Put #HM = nomO + e + nkmk and #N=p0qO + o + ppqp.

Observe that M # I since
Bn



M I .1 =B
Bn
nk—l
M I...1 B=2B
n’c.—l Pn mk+1
M I...TI BI...I =B # I.
— - *pn  PBn
-1 ™

Now suppose that M = N. We prove by induction on #M + #N that

Bn
M=N. Let r be smallest such that n_ 22 and s smallest such that
" "r
p322; so 12r,s20. Then P =B _10 '°~0Bn_1 = MI = NI =
Pk r Bn Bn Bn
q, q
Bp 1% Bp 1= Q are in partition normal form. Thus by induction
< s

hypothesis, or the above remark, P = Q. In particular, k- =8 - s and

nK....,nrz 3 pe....,ps;mk,...,mr=qe,...,qs. Put t=nkmk+..+
nm_. We have B oM = MB = NB = B o N by (2).
TT nk+1+#M Bn nk+1 Bn nk+1 Bn nk+1+#N
Thus B = (B oM)I...I = (B oN)I...I =B )
1+$#M +1+#M +1+H#N 1+#N
Bn S o Bn 'k n, Bn

Hence #M = #N and #M - t = #N - t. This completes the proof.

Corollary: If MO and Ml are B,I combinations such that MO P M1

Bn

then there are B,I combinations Nl” "’Nn such that



for some 1i.
Consequently, a model of the B,I fragement of the A calculus
either contains the free model or has B = I. In the latter case,

application is associative and the model is just a monoid.

les:
products partition normal forms
m m m
Bo(Bkao0ooBO) Bmk Oo-ooBr o B oBr_la .
P Py %o o+l n+lopom o
where r is smallest s.t.
n_ >p
m m
(Blnk O eee O Bno) o B B'nl( O eee O B o Bnr O eoeoe
e 0 p Dy pts T

where r is largest such that

p+mnymy+ s +n _.m > n_ and
S = Doy + ccc +nm

Proposition 2. Mo P = No P=>M = N.
Bn Bn

Proof: The proposition is clear if anyone of the 3 M, N, or P beta eta



converts to I. So we may assume that we have partition normal forms

M - B O eee O B 2 oo 2 n 2 1
Bn n, n, Ny 0

N = B O eee O B m 2 LR ) 2 m 2 1
Bn ™2 my 2 0

P - Br O eee O Br rs 2 LN 2 ro 2 1
Pn s 0

Note immediately that k

€. The proof is by induction on s, and the
induction step follows from associativity. Thus we may assume s = 0. Let

t be the largest t s.t. Bn # Bm . Suppose we have the partition
t t

normal forms

MoB = B 0 eee 0 B oB oB 0o eee 0 B

ro Bn nk ni r0+i ni_1 no
NoB = B 0 eee 0 B o B .o B o..oBm
Y0 pn ™k mip Toth M b
where k+ 1 2 i,j 2 0. Weog we may assume j > i. Since B . #B
PO+J ”3—1
we have t = j. In particular, B =B ., B =B, , . - .,
n r0+t n_, h%
Bni = Bmi+1, Br0+i = B"‘:' But since t > i Ty * i > ‘Mi. This is a

contradiction and completes the proof.

Integer partitions

A binary tree A is said to be righteous if A = K///&\\ for
1N
2A3

some Al’ A2, and A3. The PBn normal forms of B,I combinations and the



righteous binary trees are in obvious 1 - 1 correspondence. If & is an
internal node of A let #5 = the number of leaves of A which lie

properly to the left of &. #A = X #5. Enumerate the internal nodes of
6€A

A with nonzero #: Gd e 60 from right to left and bottom to top.

Clearly, #5; 2 cee’> #6

1

o

Example

Let Aﬁn be the pn normal form corresponding to A.

Observation 1: B#G 0 see © B#G = ABn. Proposition 1 and Observation 1

d 0 Bn
establish a 1 - 1 correspondence between integer partitions and righteous

binary trees. The correspondence amounts to computing partition normal

forms from Pn normal forms and vice versa.



Sample Computations

BA =
Bn/f

1
v 1 = o B
Bn 3
2 3 2

The correspondence between partitions and righteous binary trees with

m internal nodes works out the following way. Define the triangle number

of the partition n + s +n  to be the least integer k + £ such that

1
for i =1 ...k n, i+ & where p 2 0. The righteous binary trees
with m internal nodes are in 1 - 1 correspondence with partitions with
triangle number m - 1. This can also be seen by the "walk above the

diagonal” construction from elementary combinatorics, and appears to be due

to L. Carlitz.



Example:

triangle number of 8+ 6 +5 +5 + 1 = §

Corollary. The number of partitions with trianble number m - 1 is

1 .am 1,2m - &
m+1lm) —-ﬁ(m—l)
Unification
n

Let us put 0O=I and n=B, and set Int = {n : n € w}

(3) M€ Int &BoM = MoB
Bn
— ok "o . o .
For, suppose M =B =~ o0 «.e OBn is partition normal with nk> 1. Then
0
"k
BoM =B +1ON for some N so BoM # Mo B. Let

Bn B Bn



Parts(x,y,z) & x = By © z A Int(z) and Conj(x,y) & 3z x =z © B A

Parts(z © B,.y.z)

(4) Conj(n,M) © M = B
n
Bn
For, suppose n = NoB. Then N = n-1 and No B, = B on-1.
—_— 2 n+l
pn pn Pn
Hence if Parts(N o B2,P.Q) then P =B and Q = n - 1.
n
Bn Bn

Define ap(x,y,z) & 3Ju Conj(Bex,u) A
Zou=uozA
Iv Conj(B2 °oxoy,v)A

Z 0o Bu=voz

n
(5) ap(m.n,M) &M =B , =mn

Bn Bn

For, suppose Conj(m + 1,N.). Then by (4) N, = B . Similarly, if
/"1 1 Bn m+1

B which is absurd. Suppose that M

Conj(m + n + 2,N2) then N2 nt3

pn
has the partion normal form

[y
If m+ 1K< n then the lrgest part in the partition normal form of
A

Bm+1 oM is Bnk+1 but the largest part in the partition normal form of



10

M'-’»B“H_1 is either B or Br for some r)nk+1. If no<m+1

then the largest part in the partition normal form of M o Bm+1 is Br

for some r > W + 1 while the largest part in the partition normal form of

i
B oM is B ... Hence M = B .. Now Mo B = B oM so
+1 1 m+2 m+2+
L2 h+1 B hyt Bn m
by right cancellation Bnri'2+mk = Bm+2+n and m = n.
: Pn
Define Ap(x,y,z) & Jabduv Parts(x,a,b)
A Parts(y,u,v)
3w1w2 ap(b,v,vg) A
b o Bu = w, © b A
Z =X20° Wy ° Wl
(6) Ap(M,N,P) & P = MN.
pn
First note that if M = BMO omand N = BN0 on then
Pn Bn
MN = MO’ m(BNO) °mn. Moreover, m ©° BNO = r_rl(BNo) °m so AF(M,N,MN).
Pn Bn
Conversly, if Parts(M.Mo.Ml), Parts(N,No,Nl) and ap(Ml,Nl.P), then by
(3),1411 = m and N1 = n for some m and n, and P = mn by (5).
Bn Bn Bn
In addition, if m o BN0 = Qom then Q = E(BNO)- For, if
Bn Bn
NO = 1 then this is the case. Otherwise No has a partition normal
Bn
m m
form B~ o seec 0 Bn0 SO m ° BN0 = Bmk_kl_'_m O ses 0 Bno+1+m om =
o Bn "k 0 Bn

m(BNO) om and Q = r_n_(BNO) by right cancellation. Thus P = MN.
pn Bn
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Finally, define Mult(x,y.z) < 3u 3v 3w Conj(z.u) A Conj(y.w) Auov

=yvowAvoBu=xuovAInt (z)

(7) If m2n22 then Mult(m,nM) &M = m_ - n.
pn

Suppose m 2 n > 2. Put v:=

B 0 eee 0B . Then B o v =
n{m-1) n nm Bn

B% o Bn and v o Bnm+1 = Bnm+m ov B=n BmBnmo v. Conversly, suppose Bk

Bn

oN = B“Nan and NoB =B“‘BkoN. Since m>2 N # I. Thus
Bn Bn Bn

N has a partition normal form

Bne . L ALK ) L] Bno
e 0

The largest part in the partition normal form of BN o Bn is B

ny+n
m, ™,
so,since n 2 2) k =np + n. In particular, Bn +n ° Bn O eee O Bn
e 2 0
e "o
=B 0 «++ 0 B oB. Hence N =B ,0B 0 e+s 0 B . Now
n,+n nytn n Bn nd n(£-1) n

No Bk+1 ;,-, Bk+1+8 © N so by right cancellation € =m - 1. Thus k = n°m

as desired.

Suppose %1"!11, “en .an,".'ln are combination of B,I, and L SEERE S The

corresponding unification problem is the problem of determining if there

are B,I combinations M,,....M s.t. for 6 = [M./x.,... .M /x ]
1 m 1 m m

1:.
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By (3) (4) and (7)‘Hilbert’s 10th problem can be encoded as a unification

problem.

H*

Theorem 1. Unification is undecidable,.(5) and (6) give a stronger result.

We can require that each %i or Wi has the form

Zyom o

where each 28 is either a B,I combination or of the form

We leave the decision problem for monoid equations open.

References

[1] George Andrews, Theory of Partitions, Encyclopedia of
Mathematics, Vol. 2, Addison-Wesley, 1976.

[2] Henk Barendregt, The Lambda Calculus, North Holland, 1984.
[3] Curry & Fg,s, Combinatory Logic, Vol. 1, North Holland, 1968.

[4] Statman, On translating combinators into lambda terms,
Proceedings Symposium on Logic in Computer Science, IEEE, 1986.



n H | “ﬂimmlm in["iliil“]immmmﬂiﬂiﬁm' " ||

3 8482 01356 1Lk48



