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1. INTRODUCTION. This paper is concerned with Lyusternik-Schnirelman type

principles for the determination of critical points of even functionals on

spheres. The actual motivation for this work is the study of isoperimetric

problems in the calculus of variations, in this paper however we deal only

with a finite dimensional analogue.

Let a be a smooth even function on the sphere S . By a

"Lyusternik-Schnirelman type principle" we mean a principle of one of the

forms

(1.1) v = min{max a(x):T(B) > n}f n = 1,2, . . . ,N+1,
n x€B

or

(1.2) i) = max{min a(x):T(B) > n}, n = 1,2,...,N+1.
n x€B

Here r should be an integer valued function whose domain is the class of

closed balanced subsets of S> , it should be non-decreasing with respect to set

inclusion and distinguish spheres of different dimensions (and fulfill some

additional more technical conditions). We define such a class of functions,

which we shall call "types", in such a way that for any type r the principles

(1.1) and (1.2) determine critical values of a. The best known and most

commonly used example of a "type" is the "genus" defined by

Krasnosel'skii,[7],[8]. Another is one whose definition is due to Yang,[12],

and whose use in the calculus of variations occurred first in [5] and later in

[3]; this appears at present to be the ideal choice. Contrary to what one

might first expect there are infinitely many "types" r which can serve in

(1.1) or (1.2) for the determination of critical values. In this paper we

shall study the entire class of these functions in some detail. To motivate



such a study after we have already tentatively identified an ideal one we

observe that such more detailed knowledge seems still to contribute to a more

complete understanding of the critical point problem, see for example Theorem

12.1. The attempt to fully understand the properties of the standard types,

such as Krasnosel'skii's genus, leads naturally to the notion of the "dual" of

a type which then enlarges the class of functions under consideration.

Finally, the more "types" one has at one's disposal the more tools one has for

the estimation of critical values, this is particularly relevant in the

infinite dimensional case. A similar point of view underlies much of the

work in [1].

Our study is directed primarily to the answering of three basic

questions. The first of these questions concerns the relation between

principles of the form (1.1) and principles of the form (1.2). Specifically,

when do a principle of the first sort and a principle of the second sort

determine the same critical values for an even function a on S» with only the

index order reversed? This question leads naturally to the notion of

"duality" of types, and it was in order that this duality could be defined

that a "type" had to be defined in a less restrictive way than might have been

suggested by the most commonly used examples. Thus a type may not take the

same value on two balanced sets even though there is an odd homeomorphism

between them; the type of a set being possibly also dependent on its relative

position in ST (a similar situation holds for Lyusternik-Schnirelman

category). Also, type is not necessarily preserved under an immersion

S C S + . This notion of duality was anticipated but not formally defined

or investigated in [4], see p. 432. Also relevant is the work of Heinz, [6],

who introduced a very similar notion for the Lyusternik-Schnirelman category.

The analogue of his idea in our context would lead to a "co-type" (analogous



to co-dimension) rather than a "dual type"; this was in fact necessary in his

infinite dimensional context. We have chosen to deal with "duality" instead

because of the resultant unification of the theory; for the infinite

dimensional theory these results can be translated into the language of

"co-type".

Our second question is suggested by one that is raised by Ambrosetti and

Rabinowitz in [1]. It is the very basic question, Supposing the even

functional a on S to have only isolated critical points, under what

conditions on r does (1.1) necessarily determine N+l distinct critical

values? We identify the condition on a type that is necessary and sufficient

in order that this be the case.

The last question concerns the correlation between the Morse index of a

critical point on a critical level determined by (1.1) and the index n (in

(1.1)) of the critical level on which it lies. Suppose a admits only

non-degenerate critical points and has exactly two on any critical level (any

C even functional can be approximated in the C -norm by such functions). As

shown in [3], if r is the Krasnosel'skii genus then a critical point on the

level a(x) = ]x has Morse index > n-1 while if it is the function mentioned

above that is due to Yang then a critical point on that level has Morse index

= n-1. A major aim when this research began was to determine whether the

strict inequality could hold for Krasnosel*skii's genus. The answer was found

to be in the affirmative, we in fact find necessary and sufficient conditions

both for the inequality and for equality. Here also the notion of duality

plays an important role. The question described in this paragraph has been

studied also by Bahri and Lions, [2].

Sections 2 through 7 deal with the basic theory of "types", sections 8

and 9 introduce particular properties which types can have and which are



especially relevant to our three main questions. Section 10 defines some

specific types in addition to the examples already given in section 3 and

proceeds to discuss (although not completely) the properties which these

individual types possess or don't possess. Section 11 gives the applications

of the preceding material to questions (specifically but not only the three

above) concerning critical points. Finally in section 12 we identify a

certain property, which can be regarded as a stability property, which

characterizes those critical values of an even function a on S which will be

determined by the principle (1.1) for some type T.

We emphasize the indebtedness of this work to the work of Conner and

Floyd, [4]. Many of the deeper and more interesting properties of some of the

particular examples of types, as listed in section 10, are from [4].

Specifically, the answer to our question concerning the Morse index inequality

when the Krasnosel 'skii genus is used in (1.1) depends on some results from

there. It is shown in [4] that each principle ideal domain L gives rise to a

type T, here we have only treated that associated with Z~ (which coincides

with the Yang function referred to earlier) and very briefly that associated

with Z. It might be interesting to pursue the question of what special

properties are possessed by types associated with other such rings.

2. RELATIVE TYPE. By R, we denote the class of closed balanced subsets of

S N C R N + 1 (B is balanced if x € B implies -x € B); E^ denotes the class of odd

homeomorphisms of Sr onto itself. By a standard imbedding i:Sn » S> we shall

understand the restriction to S n of an isometric linear transformation from

Rn+1 to RN+1, thus i(Sn) is the intersection of Sr with an (n+l)-dimensional

hyperplane through the origin in R

For B € BL, C € R,, U(B) denotes the set of balanced neighborhoods of B



in SN, and S(B,C) denotes the set of odd continous maps f :B » C.

Definition 2.1. A relative type is a non-negative integer-valued

00

function r that is defined on I L and satisfies, for B, C € B^
N=l 1N

1) T(B) < T(C) when B C C ;

2) if h € HN then T(h(B)) = T ( B ) ;

3) every B has a neighborhood U with 0 € BL and T(U) = T(B) ;

4) T(</>) = 0 and if i:Sn » S> is a standard imbedding then

(2.1) r(i(Sn)) = n + 1.

The set of all relative types will be denoted by T.

Remarks. 1. Condition 4) requires that a "type" distinguish spheres of

different dimension. The requirement (2.1) is a normalization,

some sources, e.g. [4],[12],[13],[14], that consider such functions use

instead of (2.1) the normalization T(i(S )) = n; we shall refer to this as the

"topologists normalization".

2. We emphasize that in the presence of a standard imbedding i:S »* S> we

need not have T(B) = T(i(B)) for B € B ^

3. When furnished with the Hausdorff metric, B^ becomes a compact metric

space, property 3) is equivalent, in the presence of property 1), to the upper

semi-continuity of r on this metric space.



4. Let P be a triangulation of S> that is invariant under the involution

x » -x (such triangulations will be referred to simply as symmetric

triangulations) and let p' ' denote the kt baricentric subdivision of P. It

follows from properties 1) and 3) that r is determined by its values on the

balanced complexes of P and all of the Pv J.

Definition 2.2. A topological type is a relative type which in place of

2) satisfies the stronger condition:

2') if B € B ^ C € BJJ and S(B,C) * <f> then T(B) < T(C).

The subset of T that consists of topological types will be denoted by T .

3. EXAMPLES. We begin by defining two examples of relative types. Let the

non-negative integer N be given and for 1 < n < N+l let i denote a standard

imbedding of S in S«. Then we define T- and Tp on R. by:

(3.1) T1(B) = min{n: V UCUfi^S
11""1)) 3 h€HN with h(B) C U},

(3.2) T2(B) = max{n: V U€U(B) 3 heR^ with h(in(S
n *)) C U},

it is clear that these definitions do not depend on the choices of i .

It is trivial to verify that T- and T~ satisfy conditions 1), 2), 3), of

Definition 2.1. To verify condition 4) it suffices to show that not every

n-1 k

balanced neighborhood of i (S ) contains an odd homeomorph of S if k > n-1.

To this end we first note that we can choose the balanced neighborhood U of

i (Sn~ ) so that i (Sn~ ) is a retract of U; it can be assumed that the

retraction mapping is odd. The assertion then follows from the Borsuk-Ulam



Theorem (which in fact is equivalent to the nonvacuity of T ) .

Two examples of topological types are:

n *(3.3) T3(B) = min{n:S(B,S

(3.4) T4(B) = max{n: V U€U(B), S(S
n

That (3.3) and (3.4) define types follows readily from the Borsuk-Ulam

Theorem; that they are topological is obvious; it is immediate that the

non-vacuity of T is equivalent to the Borsuk-Ulam Theorem.

Remarks. 1. T~ is the genus defined by Krasnosel'skii, [7], [8], T . is

suggested by the index defined in [4] (it is necessary to modify the

definition in [4] in order that 3) of Definition 2.1 hold for arbitrary

B € R T ) . Other examples can be found in [4]; with the "topologist's

normalization" used in [4] the type of a standardly imbedded sphere would

agree with its dimension; cf. (2.1).

2. It is fairly easy to see that for B € B o one has T 1 (B) = T O ( B ) , and thus

the restrictions to B~ of all types coincide. On B~ the situation is

different. Consider a set which is "linked" but not connected, for example,

out of (a standard imbedding of) S in S cut a balanced set consisting of two

short open arcs. Then construct a balanced set B by attaching at each cut one

of a pair of small linked circles to one component and the other to the other

component. Then T~(B) = 1 while T..(B) = 2 . On the other hand if the set

B € B^ is a simple closed curve with small overhand knots at each of a pair of

antipodal points then T2(B) = 1 while rJB) = 2. Further considerations of
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this sort, and with the introduction of many links or many knots, lead to the

conclusion that the set of restrictions of types to B~ is infinite. As we

shall see in section 10 the restrictions of the topological types T~ and r. to

B. do not coincide. This is the case also for B~; the components of the

"linked" set B described above must admit separation by a set C € B~ with

7*3(C) = 3 but such a set cannot have T4(C) = 3.

4. LATTICE STRUCTURE. The set T has a natural lattice structure with

(4.1) T > T' if and only if T(B) > T'(B) for every B € B^

and

TVT'(B) = max(r(B),T'(B)), TAT'(B) = min(r(B) ,r' (B)), B € B^.

Proposition 4.1 T i^a complete lattice with respect to the partial

ordering (4.1).

Proof. Let S C T , then TQ = inf{r:r € S} is given by

(4.2) T Q(B) = min{T(B):T € S}, B € B^;

note that the set {T(B):T € S} is finite for any given B. To see that (4.2)

indeed defines a relative type we need only verify 3) of Definition 2.1, as

the other conditions of that definition are obviously satisfied by TQ.

However for any given B € B^ there is a r € S such that T Q(B) = r(B) and for

that choice of T there is a U € U(B) with T(U) = r(B). With r and U so



chosen,

TQ(U) < T(U) = T(B) = TQ(B).

For S C T w e define rQ = SUP{T:T € S} by

Tn(B) = inf{max T(U) : U € U(B)}, B €
U
 T€S

Proposition 4.2 We have

(4.3) r = SUP{T:T € T}, T = inf{TiT € T}.

, is. a complete sub lattice of T and

(4.4) T 3 = sup{r:r € TJ, r^ = inf{nr € TJ.

Proof. It is clear from (3.1), (3.2) and Definition 2.1 that

if T € T then T2(B) < T(B) < r^B) for B € B^. The second assertion is

obvious and (4.4) is immediate from (3.3), (3.4) and 2f) of Definition 2.2.

5. DUALITY. Given a relative type r we define its dual T* by

(5.1) T*(B) = min{n: 3 CeBĵ  with r(C) = N-n+1 and ORB =

The following is a useful equivalent formulation of this definition.

Lemma 5.1 Let T € T and let T* be defined bjr (5.1), then for
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(5.2) max{T(C):C € ̂ , O B = *} = N + 1 - T*(B).

Proposition 5.2 The dual T* of. a relative type T isa relative type.

Proof. The dual of a relative type r obviously satisfies 1), 2) of Definition

2.1; 3) also is easily verified for if B € R- is given and C € R, with OTTB = </>

and T(C) + T*(B) = N + 1 then we need only choose the balanced neighborhood U

so that U C STAC in order that T*(U) = T*(B) . It remains to verify 4). Let

N,n be given and let i be as in 4), then it suffices to show that

(5.3) max{T(C):C € B^, OTI(i(Sn)) = $} = N - n.

It is clear that there is a standard imbedding j(J> n ) in S> that does not

intersect i(S ) and thus

(5.4) max{T(C):C € B^, CTI(i(Sn)) = *} > N - n.

With the standard imbedding i(Sn) given take j(S> n ) to be a standard

imbedding in S» that is orthogonal to i(S ). Any point z € S> can then be

represented in the form

(5.5) z = xcos 9 + ysin 9

with x € i(Sn), y € j ^ " 1 1 " 1 ) , 0 < 9 < TT/2; (here 9 is uniquely determined by

z, and x and y are uniquely determined except when 9 = 0 or TT/2) . If C € BL
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and i(Sn)nC = </> then there is a 6 > 0 such that for z € C we have TT/2 > 0 > 6

in the representation (5.5). It follows easily that if U is any neighborhood

of KŜ ""11"""1) then there is an h € ̂  such that h(C) C U. We conclude that

T(B) < N - n and thus the inequality opposite to (5.4) holds and (5.3) is

proved.

Proposition 5.3 For T € T,

(5.6) T** = T.

Proof. For B,C € R. with BDC = <f> it follows from (5.2) that

T*(C) < N + 1 - T(B).

If B € Bĵ  is given and U € U(B) is chosen so that T(U) = T(B) then

T(B) = max{T(B'):B' € B ^ B T

and thus r*(SN\U) = N + 1 - T(B) . It follows that

max{T*(C):C € B^9 OnB = * } = N + l - T ( B ) ,

and thus by Lemma 5.1, T**(B) = T(B) . Since N and B € R. were arbitrary,

(5.6) follows.

Proposition 5.4 Let T, T' € T. Then
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T > T' if_ and only if TK <

and

(TVT')* = T*AT'*, (TAT')* = T*VT'*.

Proposition 5.5 We have

= v

Proof. This follows from (4.3) and Proposition 5.4.

Remark, r^ and T^ are not duals of one another, what amounts to the same,

neither TV* nor TM is topological, as we shall see in section 10.

6. INJECTION. A standard imbedding i:S> » S induces a mapping

i:B^ -» B N + 1 which in turn induces a mapping i:T » T, the latter being defined

by

(iT)(B) = T(iB), for B ^ B ^

Obviously the induced map on T does not depend on the choice of the imbedding

i. We will say that a type r is stable under in.jection if

IT = T.

It is clear that topological types are stable under injection, we shall show

that the converse is also true.
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Theorem 6.1 For T € T the following are equivalent:

i) r € Tt,

ii) iT = T.

Proof. That i) implies ii) is obvious, so it only is required to show

that ii) implies i). Suppose that r is injection-stable and let the

non-negative integers N,M, the set B € R^ and f € S(B,S> ) be given. By

increasing M if necessary we can assume that f has an extension (not to be

distinguished notationally) f € S(S> ,S> ). As in the proof of Proposition 5.2

we take standard imbeddings i(S> ) and j(S>) in S> that are orthogonal to

one-another and represent a point z € S as

(6.1) z = xcos 9 + ysin 9

with x € i(^*), y € jfS11), 0 < 9 < ir/2. Consider now the sets

Be € W i def ined by

(6.2) B Q = {xcos 6 + f(x)sin 9:x € i(B)}, 0 < 6 < TT/2.

It is easy to see that for any two values 9,8' € (0,TT/2) there is an

h € H N + M + 1 such that h(BQ) = h(BQf) and thus T ( B Q ) is independent of 8 on

(0,7r/2). Moreover, if U is any neighborhood of B / 2 then there is a 6 > 0

such that B 0 C U for 0 < TT/2 - 8 < 6 and thus T(B Q ) < T ( B / 2 ) for

0 < 9 < ir/2.

Next we want to exhibit an h € IL M . such that h(B0) = h(Bfi) for some

(small) 6 > 0. To this end we put
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Y(x,y,9) = llysin 6 + a(0)f(x)ll ^ysin 9 + a(0)f(x)),

where the continuous function a(0) remains to be determined, take

jLi(x,y,0) = sin 1(llysin 6 + a(9)f(x)ll),

and then define

h(z) = xcos JJ, + Ysin JLI,

for z given by (6.1) and with Y = Y(x,y,0), ji = jLi(x,y,0). We take

a(0) to be defined on [O,7r/2] and to be non-negative, identically zero

except in the neighborhood of 0 = 0 and to satisfy

|a(0) - a(0')| < |sin 0 - sin 0r|,

for 0,0' € [0,TT/2] unless 0 = 0'. It can then be verified that h is

continuous and injective and thus a homeomorphism of S> onto itself. We

thus have

h(B0) = h(B a ( Q )).

and since we can take a(0) > 0 we conclude that

However since r is injection-stable we have
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T(B) = T(BQ) and r(f(B)) =

and thus

T(B) < r(f(B)).

It follows that T is topological.

Remark. The contraction used in the above proof was suggested by the

so-called mapping cylinder, [11].

We remarked in section 3 that the non-vacuity of T implies the

Borsuk-Ulam theorem, we are now in a position to demonstrate this. The

following proposition is independent of the Borsuk-Ulam theorem.

Proposition 6.2 I£ T iŝ  non-empty then so is T .

Proof. Let T € T. If T is injection-stable then by Theorem 6.1 it is

topological and there is nothing to prove. Otherwise,

!. r.n .n+1 .n+2 . ,. . «f.n .n+1 .n+2 -»
lim sup{i T,I T,I T , . . . } , lim inf{i T,I T,I T , . . . } ,
n-*»

are injection-stable and hence topological.

Corollary 6.3. The non-vacuity o£ T implies the Borsuk-Ulam Theorem.

7. SUSPENSION. The Freudenthal suspension, [11], a:B^ » B^ + 1 determines a map

a:T H> T by (CTT)(B} = T(CTB)-1, BGBJ^; we say r is suspension-stable if err = T.
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The suspension a can be represented as follows. Let i:S *» S be s

standard imbedding and let yQ € S> be orthogonal to i(S ). The general

element z € S> then has the representation

(7.1) z = xcos 6 + yQsin 6, x € JLCs"). |e| < TT/2

and for B €

oB = {xcos 9 + yQsin 0 :x € i(B), |e| < TT/2}.

If B € B^, C € B^ and f € S(B,C) are given then f has a suspension

at € S(orB,oC). For z € i(B) and of the form (7.1)

(af)(z) = i'f(i 1(x))cos 0 + yQ'sin 6,

here i' is a standard imbedding of S in S» , and yn' € J> is orthogonal to

i'(S ). If h € IL then ah € HN • this latter fact is needed in the

verification that the suspension of a type is a type.

Proposition 7.1 For r € T we have

a(r*) = (IT)*.

Proof. First we note that if B,C € B^ with BTIC = 4> then

+ r(i(C)) < N + 2,
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which implies

(7.2) (<T(T*))(B) + (iT)(C) < N + 1, for B,C € B^ with BDC = *.

If B € R- is given then, by Lemma 5.1, there is a C € BL+1 such that

(orB)DC' = <f> and

(7.4) T*(OB) + T(C') = N + 2.

We can assume that C is of the form

(7.5) C = {xcos 0 + yQsin 9:x € Cj, |0| < ir/2-6}

where 0 < 6 < ir/2 and Cj C i(Sr). We then have C. C C and thus

T(C') = T ( C 1 ) .

(since given any U € V(C.) there is an h € IL. such that h(C') C U). If we

take C" = i~1(C1) € B^ then BHC" = <t> and

(a(T*))(B) + (ir)(C" ) = N + 1.

Combining this with (7.2) yields

max{(iT(C)):C € B^, BDC = *} = N + 1 - (CT(T*))(B),

and the assertion follows from Lemma 5.1.
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Proposition 7.1 implies the following result.

Theorem 7.2. Let r € T, then T* iĵ  suspension-stable i£ and only if r is

topological.

If B € B^ and SCB.S11"1) ̂  <f> then clearly S(aB.Sn) is also non-empty

since the suspension of a mapping in the former set belongs to the latter.

Thus we see that

(7.6) ar3 < T3,

and similarly,

(7-7)

it follows from results of [4] however that equality holds in neither case.

As in [4] we can form the stabilizations 2T~, 2r. as follows,

= lim CTnT«(B), 2T.(B) = lim o V f B ) , B € B^;

the duality (7.8) was also noted in [4].

Proposition 7.3 The types 2T^ and 2r. are respectively the greatest and

least elements in the set T fl(T )*. Moreover

(7.8) 2 T 4 = (2T3)*.

Proof. It is clear that a is order-preserving on T and also that

a(T ) C T Thus if T' € T fl(T ) * then by (4.4)
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c/V4 < r' < anT3, for n = 1,2,

and thus the first assertion follows. Given that, (7.8) follows readily from

Proposition 5.4.

8. MORE ON DUALITY. In this section we consider various properties which a

relative type might possess and establish what the duals of these properties

are. We understand by the dual (P*) of a property (P) a property that is

possessed by T* if and only if r has (P); as shown in section 7, suspension

stability and membership in T are dual properties. In this and the next

section we formulate several properties and their duals.

First there is the subadditive property:

(S) rCBjUBg) < TfB^+rCBg), for Bj.Bg € B^,

whose dual is the intersection property:

(S*) T C B ^ ) > T(B 1)+T(B 2)-N-1, for B ^ € J^.

Proposition 8.1 If r is subadditive then r > T*.

If T and T' are subadditive so is. TVT' and TAT' has the intersection

property if_ both T and r1 do.

The following property is self-dual.

(F) I£ B,Q € B^, Q is finite and T(C) < T(B) whenever C € B^ and C C B\Q then

contained in every open set U with B\Q C U there iŝ  a D € R, with

r(D) =
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Proposition 8.2 Property (S) implies property (F) and if T is

topological and satisfies (F) then or < T.

9. COMPLEXES. Let P be a symmetric triangulation of S , we will denote the set

of balanced subcomplexes of P by R,(P).

A triangulation is to be understood here in the sense of [11,p. 113]. We will

make an additional assumption concerning the triangulations under

consideration. We assume that each simplex of P is the radial projection on

ST of the convex hull (in R ) of its vertices (so that 0 is implicitly

assumed not to belong to that convex hull). Alternatively we may deal

directly with the polyhedron whose simplices are the convex hulls of the

vertices of the simplices of P; the radial projection of this polyhedron onto

S is a homeomorphism. In particular we shall consider the formation of

convex combinations within the simplices of P to be well-defined.

By the dimension of a P-complex K (i.e. a subcomplex K of a triangulation

P of S> ) we understand the maximum of the dimensions of the simplices of K.

We will denote the k* baricentric subdivision of P by p' '. The relative

o
interior of a simplex a will be denoted by a.

Lemma 9.1. Let P be a symmetric triangulation of S> , and let K be a

subcomplex of P. Then there exists a unique maximal subcomplex K* o£ P^

such that KT1K* = <f>. For an£ r € T,

(9.1) T ( K ) + T*(K*) = N + 1.

If. an (N-n+l)-simplex of. K* has non-empty intersection with a simplex a of P

then it has non-empty intersection with a face of a o£ dimension < n-1.



21

Proof. The complex K* can be characterized as follows. If aj »(72> * * * >CTn

are simplices of P such that for k = 1 n-1, afc is a proper face of a k + 1

and a- is not a simplex of K then the baricenters of the {o^} are the vertices

of an (n-1)-simplex of K*, conversely any simplex of K* has such a

representation. Except for (9.1) the assertions of the lemma obviously follow

from this characterization.

In order to prove (9.1) we first observe that any point x of the

polyhedron P can be uniquely represented in the form

x = ty + (l-t)z, t € [0,1], y € K, z € K*.

with y and z belonging to the lowest dimensional simplex of P^ ' that contains

x. It follows that if B is a compact set, V is open and B C S> \K, & C V

then there is an h € KL which leaves K and K* pointwise fixed and maps B into

V, i.e. for which h(B) C V; a similar statement holds with the roles of K and

K* reversed. The assertion (9.1) clearly follows.

Proposition_9.2. Let P be a symmetric triangulation o£ S> . Let

K € B^P) and let. dim K = n. Then for any T € T, T(K) < n+1. If K i s the

n-skeleton of. P, i.e. the union of all the n-simplices of P then for any type

T, T(K) = n+1.

Proof. Let the symmetric triangulation P and T € T be given. We first

prove that if K is the n-skeleton of P then T(K) < n+1. It follows from

elementary linear algebra that there is an (N-n)-dimensional hyperplane

N+1
through the origin in R that does not intersect any of the n-simplices of

P. In other words there is a standard imbedding of S> ~n~~ in S» that does not



22

intersect the n-skeleton of P; the asserted inequality follows.

Now suppose that K is as above, i.e. the n-skeleton of P, then the

complex K* is a complex of dimension N-n. From what we have just proved we

must then have T*(K*) < N-n+1. It follows then from (9.1) that T(K) > n+1.

We return to the discussion of properties of types and their duals. We

consider the local dimension property.'

(D) lejt K € BjyfP) with r(K) = n, if a is a simplex of K o f dimension < n-1 and

o o
i£ not a proper face of any simplex of K then r(K\(oU-cr)) = T(K) ,

whose dual is:

(D*) if. K € B ^ P ) is. a simplicial complex with T(K) = n and K^"1"1^ denotes the

(m-1)-skeleton o£ K then r(K^m ') = m for m = 1,2.. . . ,n.

Proof g£ the duality of. (D) and (D*). We first show that r has property

(D) if r* has property (D*). Let K € Bu,(P) and let a be a simplex of K of

dimension < n-1 which is not a proper face of a simplex of K. Let

K' = K\(oU-a).

We shall show that if m = r(K') < n then T(K) < n. By (9.2) the complex Kf*

has T(K'*) = N-m+1. The assumption of (D*) for T * implies that the

(N-n+1 )-skeleton K" of K'* has T * ( K " ) = N-n+2. If K" fl K = <p

o o
we are finished. Otherwise K" PI K C (oU-a) and since dim a < n-1

there is an h 6 L, which agrees with the identity except on a neighborhood of
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K" fl K, such that K" (1 h(K) = <f>. This yields T(K) = r(h(K)) < n as was to be

proved.

Suppose now that r has property (D). Let K € B^fP) with T*(K) = n and

suppose that for some m, 1 < m < n, T*(IOm ') < m. Form the complex

K' € R,(P^) by deleting from K^™1"1^ (the relative interior of) every

simplex of dimension < N-m+1 that is not the face of an (N-m+1)-simplex of K*.

In view of our assumption concerning K* ' it follows from (9.1) that

(m-l) p r o p e r t y p ) f T(K^) > N-m+1. It

follows from the last assertion of Lemma 9.1 and the construction of K' that
m

if K' has non-empty intersection with K then it also has non-empty
m

intersection with K^ ' which is a contradiction. Thus we must have

Corollary 9.3 Suppose that T € T has property (D) and let B € R, with

T(B) = n. Let x € B have a neighborhood V such that V fl B is a

CT-hypersurface of dimension < n-1. Then for any sufficiently small

neighborhood V of x, T ( B \ ( V U -V) = n.

Proof. The proof is similar to the first part of that of the duality

assertion above.

Lemma 9.4 The properties (D) and (D*) are preserved under injection and

suspension.

Lemma 9.5. If r has property (F) then can (D ) bê  formulated; if_

K € B^(P) and T(K) = n then T ^ 1 1 " 1 ^ ) = n.
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Proof. It suffices to show that, given (F), for any K € Bwj(P) we have

(9.2) r(K ( m )) < T C K ^ " " 1 ) ) + 1, m = 1.....N.

To verify this we apply the definition of (F) with B = K^™', Q the set that

consists of the baricenters of the m-dimensional simplices of IOm' and with

U = S \K* ' . Using the homeomorphism that occurs in the proof of Lemma 9.1

we see that if C € B^ and C C U then T ( C ) < r(K^m^). The inequality

(9.2) readily follows.

10. PROPERTIES OF PARTICULAR TYPES. We next consider some of the particular

types introduced earlier as well as some new ones and indicate which of the

above properties they possess or don't possess.

In [4] Conner and Floyd introduced a cohomology co-index, in fact, given

any principal ideal domain L, their construction gives rise to a function

which, after an additive renormalization i.e. addition of 1, becomes a

topological type. The types that result in this way are all subadditive. We

will be interested in particular in those that result when L = Z and when L =

Z-, we shall denote these by TV and rfi respectively. We list several of the

fundamental properties of TV and Tfi that are proved in [4]; these results are

reformulated in the terminology and with the normalization used here.

Proposition 10.1 The topological type TV (which results from adding 1 to

the Z-cohomology co-index defined in [4]) is, subadditive and

suspension-stab 1 e. If. K € Bw.(P), where P is. some triangulation of. S> , and

T3(K) = 3 then T5(K) = 3.

The topological type Tfi (which results from adding 1 to the Z^-cohomology
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co-index) is. subadditive, suspension-stable and self-dual, i.e. Tg* = Tg.

See [4], pp. 426-432, specifically p. 430 for the equality T3(K) = T5(K)

when T~(K) = 3, see also p. 433.

Remark. T~ (with the topologist's normalization) was defined and its

fundamental properties determined already by C.-T. Yang,[12],[14].

Proposition 10.2. The type Tfi has property (D), hence also (D*).

See [3] for a proof.

We next list some results from [4] concerning T~ and T..

Proposition 10.3. Neither T~ nor T. iŝ  suspension-stab 1 e. However if

K € Bfl is. a balanced complex with T3(K) = 1+dim K then (crr3)(K) = T3(K).

See [4], pp. 433-434; note that a finite simplicial complex with fixed

point free simplicial involution can always be assumed to be a subcomplex of

some (triangulated) S> . A simple example showing that T 4 is not suspension

stable follows from consideration of the set B considered in the remarks at

the end of section 3. It can be shown that there does not exist an odd

2 * ~
continuous map of S into the complement of that set, consequently, T.(B) = 2

and hence T.* is not topological and r. is not suspension-stable.

Corollary 10.4 The type T~ (Krasnosel'skii genus) has properties (S) and

(D) but does not have property (D*); r. does not have property (F).

Proof. For proofs that T 3 has (S) and (D) see [10] and [3]

respectively..

To see that T~ does not have property (D*) observe that by Proposition
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10.3 there are complexes K such that (OT 3)(K) < T3(K), while if n = T3(K) =

T ^ K ^ 1 1 - 1 ) ) then (OT 3)(K) = (ar3) (tS
11'1^ ) = n. Thus there must be complexes K

with n = T3(K) > T3(K^
n-1^), i.e. T 3 fails to have property (D*).

By Proposition 8.2 a topological type r with property (F) must have

or < T. Thus in view of (7.7) T. would have to be suspension-stable if it had

property (F). We conclude therefore from Proposition 10.3 that r. does not

have property (F).

Proposition 10.5 r^ has (D*) but neither (S) no£ (S*). TV does not have

(S*) (and thus is not self-dual). 2r~ has (D) and 2 T 4 has (D*).

Proof. For a balanced complex K, r4(K) can be defined as in [4] by

r4(K) =

since an element of the set S(S ,K) can be assumed to be simplicial with

respect to some symmetric triangulation of S it readily follows that T. has

(D*). Since (F) is self-dual either (S) or (S*) implies (F), thus r. can have

neither.

To prove the assertion concerning TV we note that there is an example due

4
to Yang, [13], of a set which can be realized as a complex K~ in S and such

that T3(KQ) = 3 while T6(KQ) = 2 . We have then 3 = T6(KQ*) < T3(KQ*) and

thus the existence of a balanced subcomplex Kr of KQ* such that K' f) KQ = ^

and T3(K') = 3. By Proposition 10.1, T5(KQ) = T &(K') = 3 and thus T & does not

have (S*).

Finally, since r3 has (D) it follows from Lemma 9.4 that 2 T 3 has (D) as

well; the assertion concerning 2 T 4 then follows from the duality (7.8).
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Remark. It is clear from the above results that T3'T4»T5»T6 a r e

distinct. We know (Proposition 7.3) that T ^ < 2 T 3 however we do not have a

proof that the latter two types are distinct.

11, CRITICAL POINTS. A^ denotes the set of even <J functions on S> with only

00 00

isolated critical points; A« denotes the subset consisting of C functions

with just one pair of antipodal critical points, and those non-degenerate, on

each critical level. We observe that CT even functions on S> can be

approximated uniformly, along with their derivatives up to order k, by
00

functions in Aj., [9], see also [3]. For a € A« let

(11.1) fi = min{max a(x) :B€B^,T(B)>n}, n = l , 2 , N+l,
n x€B 1N

(11.2) v = max{min a(x) :B€BN,T(B)>n}, n = 1,2, . . . ,N+1;
n x€B

{fi. } and {v } will be called the T-min-max and T-max-min values of a. It is

immediate from the definitions (11.1) and (11.2) that

(11-3)

and

(11-4)

Theorem 11.1. Let T € T and let a € A~ then the T-min-max and T*-max-min

values of a are critical values of a and are related by

(11-5)
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Proof. The fact that (11.1) and (11.2) define critical values of a

follows from standard results as are found e.g. in [10], although the theorem

proved there is for a particular type it is quite clear that the same proof

applies for any type T. The proof makes use of the existence, which we shall

require below, of a "push-down" operator for a, i.e. a g 6 L such that

a(g(x)) < a(x) with equality only if x is a critical point of a in which case

g(x) = x.

To prove (11.5) suppose that B € R,, T(B) > n and max a(x) = JJ, ,
x€B n

then for any C € B^ with T*(C) = N - n + 2 we have B fl C ^ 0 and thus

UN-^4-O ^ m i n a( x) ^ ̂  • O*1 t h e other hand, if n > 0 then T{x:a(x) < JLI -e} =
x€B n n

m < n and there exists C with T*(C) = N - m + l > N - n + 2 with min a(x) >
x€C

jL̂ -e and thus jĵ -e < »N_m+1 <
 u

N^ n + 2 ^ *V S i n c e e > 0 is arbitrary (11.5)

follows.

Theorem 11.2. Let T,T' € T. Then r < r' i£ and only if_ for every N and

every a 6 L the T-min-max values {JLA } and the T'-min-max values {}if} of a

satisfy JLI > JLI' , for n = 1,2,...,N+1.n n

Proof. The "only if" part is obvious. To prove the converse suppose

that for some N there is a set B € R, such that n = T(B) > T ' ( B ) . Then one

can construct an a € A^ with T-min-max value ]i and T({x:a(x) < ji }) < n (see

the example in section 4 of [3]) so that ju < ji' .

Theorem 11.3. If, r € T has property (F) then it. has property (D) if. and

00

only if for every N and every a € AN the (two non-degenerate) critical

points on the level {x^a(x) = JLI } have Morse index > n-1 for n = 1,2, ... ,N+1.
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Proof. The sufficiency of (D) for the indicated Morse index inequality

was proved in [3], (we must take into account Corollary 9.3).

To verify the necessity, suppose that r does not have property (D). Then

T * fails to have (D*) so in view of Lemma 9.5 there exist integers N,n, 0 < n

< N, and for some symmetric triangulation P of S» a complex K € B-.(P) such

that T*(K) = n while T*(IOn~ ') < n. We can assume further that there is a

o o
simplex a of K of dimension m > n such that r*(K') < n, where K' = K\(oU-a).

Let C € R. be such that K' C int(C) and T*(C) = T * ( K ' ) . Let a Q e A N be chosen

so that aQ(x) > 0 for x € K, aQ(x) > 0 on a and aQ(x) < 0 for x € CUcr. Next

let {y} be a local coordinate system centered at some point p in the relative

interior of a and let (Ay,y) be a non-degenerate quadratic form of index N - m

which is non-negative on a. Let V,V be a neighborhoods of p such that V C V

o
C C and V fl K C a. Construct a smooth even function a that agrees with a~

outside of V and with (Ay,y) in V , has a(x) < 0 for x £ C U a and a(x) > 0

for x € K with the equality holding on K only at p,-p. Finally, after another

alteration which does not affect a on V and which we do not distinguish

CO

notationally, we can assume that in addition a € AN.

Next we show that v = 0 . Indeed if B € Rj and min a(x) > 0
x€B

then B C (CUcr)\{p,-p} and thus T*(B) < n; consequently v = 0 as asserted.

The Morse index of the corresponding critical points p,-p agrees with the

index of (Ay,y), i.e. N - m. By Theorem 11.1 the (N - n - 2 } n d T-min-max

value JLU, = 0 and since the corresponding critical points p,-p have Morse
11 n z

index N - m < N - n < ( N - n + 2 ) - l the necessity is proved.

Theorem 11.4. Let T € T. Then r has property (F) if_ and only if_ for

every N and every a € A^ the T-min-max values of, a satisfy \i < JLI_ . ̂  for

n = 1,...,N.
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Proof. First we suppose that r is given and has property (F) and show

that the T-min-max values must all be distinct for any a € AN. Let a and n be

given and let g be a "push-down" operator for a. Consider the set U = {x:

a(g(x)) < H n + 1 ) -
 u i s open and U C {x: a(x) < JLX +1}\Q where Q denotes the

set of critical points of a on the level a(x) = \i - (we assume, as we may,

that T({X: a(x) < ^ n + 1>) = n+1). It follows that there is a set B € BL with

B C U and T ( B ) = n. If Bj = g(B) then TfBj) = n and max{a(x): x € B^ < jzn+1

from which it follows that \x < \i ^.

Now suppose that T fails to have property (F). Specifically, suppose for

some N there exist B,Q € BL with Q finite, Q < B, T ( B ) = n+1 and there

exists a balanced open set U such that U D B\Q and T ( C ) < n for any C € BL

with C C U; we can and shall assume QT1U = ^.

We proceed to construct a n a C L for which \i = jx - . We do the

construction first under the assumption that B is "locally homogeneous" at

points of Q. That is to say we assume that at each point q € Q there is a

neighborhood V of q, a local Euclidean coordinate system {y} on V = V with

origin at q and a real number r = r such that a point y of V with llyll < r

belongs to B if and only if ty € B for 0 < t < r/llyll. Let W be an open set

with Q C W and such that for each q, when represented in terms of the given

local coordinates, W PI V is contained in the ball of radius r /2. We can

q q

construct a function a^ € A^ such that: a. < 0 on B\W, a. > 0 on S \(UUW) and

a~ has no critical points on the level a^(x) = 0. Given q € Q we now alter a~

on V as follows. Let r' = r ' = 3r /4 and let 6 € C*(R) be chosen with 9(t)

= 0 for t < 0, 8(t) = 1 for t > r' and 9'(t) > 0 for 0 < t < r'. In terms of

the local coordinates on V we put

(11.6) a(y) = 9(llyll)ao(r'y/llyll), for llyll < r'.
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We can assume that a Q has no critical points on llyll = r' and that where it

vanishes on that sphere the gradient is not normal to the sphere. The

function defined locally by (11.6) then has no critical points in the ball

(11.7) Pq = {y: llyll < r'}.

(r' = r ') except at y = 0, i.e. x = q. The function that results when a Q is

(symmetrically) so altered in each V will be denoted by a; clearly a € AN.

From the construction we have a(x) < 0 for x € B\Q and a(q) = 0 for q € Q.

Suppose that C € R, and a(x) < 0 on C. Clearly then we must have

C C U U W and if C fl Q * <t> then max{a(x) :x€C} = 0. If on the other hand

C fl Q = <j> then there is an h 6 L which agrees with the identity outside of

U{|3 :q€Q}, is a q-centered radial pushback in each of these balls and for

which we have h(C) C U, (we have used here the fact that a(x) < 0 on C). In

the latter case then we must have T ( C ) < n. It follows that JLI = p. - = 0.

Finally we justify the "local homogeniety" assumption concerning B.

Suppose that, except for the local homogeniety of B at points of Q, N and the

sets B,Q and U are otherwise as above. For simplicity we can assume that Q is

a doubleton {q,~q}. Let V and the coordinate system {y} be as above (in

particular the origin of the latter is at q). It is easily seen that we can

assume that there are positive real numbers r,r' such that

(*) for r < llyll < r ' , y € B i f £ t y € B f o r r < lltyll < r' .

We can assume that (*) holds also for U. Let B' € B^ be the set that is

determined by the conditions: B'\(/3 U/3_ ) = B\(j3 U/?_ ) and a point y € /3

with y * 0 belongs to Br if and only if r'y/llyll € Bf ; let the balanced open
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set U' with {q,-q} £ U' be constructed similarly. Choose W € R, to contain a

neighborhood of {q,-q} and so that T(B') = T(B'UW). There is an h € L that

agrees with the identity outside of j3 Uj3_ and is a q-centered radial pushdown

in p with h(B) C B'UW so that T(B') = T(B'UW) > T(B) = n+1. The set B'

clearly has the local homogeniety property assumed in the above construction,

it remains only to show that for any C € R, with C C U ' we have r(C) < n. But

if such a C is given then there is a h € L which agrees with the identity

outside of /3 U/3_ , is a q-centered radial pushback in each of these balls and

for which we have h(C) C U, and thus T(C) < n.

12. ESSENTIAL CRITICAL VALUES. In this section we characterize those

critical values of a function a € A« which are T-min-max values of a for some

T € T or Tt.

Definition 12.1. A critical value \i of a € A-, will be called

ftopologicallyi essential if there does not exist an h € EL [h € S({x:a(x)<

ji},{x:a(x) < \i })] with h({x.a(x)< p)) C {x:a(x)< \i).

Theorem 12.2. A critical value ^ o£ a € A^ is rtopologicallyi essential jjF

and only if. li is_ a T-min-max value of a for some r € T [T ].
______ -j-

Proof. The "if" assertion is obvious. We prove the "only if" statement

for the case of an essential critical value. Let N and a € A-, be given and

1 2let {ii } and {fi } denote respectively the T- and TU-min-max values of a.

Assume that ji is an essential critical value of a that does not coincide with

any of the T 1 or ro-min-max values.

Let B = {x:a(x) < JLX> and suppose that T ^ B ) = n SO that }i^ < \x. It follows
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from (3.2) that given n > 0 there exists a standard imbedding i^ and an

h € HN such that h(in(S
n~1)) C (x:a(x) < ̂ + n > = U£. Since r^B) = n it

follows from (3.1) that there exists anh' € HN with h'(B) C h" (U^) and

(hh')(B) C {x:a(x) < \?+e}. Since \x is essential and e is arbitrary it then

o
follows that \± < JLI and T O ( B ) < n. Put

n £

I(B) = {0eB^:T2(C)^n and V U€U(C) 3 hei^ with h(B) C U},

and define T € T by:

(12.1) T(C) = n if C € I(B) and T(C) = T2(C) otherwise.

It is easy to verify that (12.1) defines a type. It is immediate from the

essential property of \JL that if C € I(B) then max{a(x) :x€C} > ]i , and this is

also the case if T^(C) = n. Thus

\i = min{max a(x) :C€B|vr,T(C)>n} .
x€C W
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