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Abstract

Let a random graph G be constructed by adding random edges one by one,
starting with n isolated vertices. We show that with probability going to

one as n goes to infinity, when G first has minimum degree two, it has at

least (logn)(l-f;)n distinct hamilton cycles for any fixed e > O.



§1. Introduction

Let Vn = {1,2,...,n} and consider the random graph process {Bollobas
n - -
[31) GO'GI""’GD’ v = (2) where Gm = (Vn,Em), E0 = ¢ and Em+1 is obtained

from E by adding an edge e chosen randomly from [n](2) - Em. Now let

mt+1

m = min{m: 5(G) 2 2}.
Bollobas [2] (see also Ajtai, Komlos and Szemerédi [1]) showed that

lim Pr(G is hamiltonian) = 1
m
n—

vhich was claimed but not proved by Komlés and Szemerédi [7] when they first
established the exact threshold for the existence of hamilton cycles in a
random graph.

Knowing that Gm* usually has at least one hamilton cycle raises the
question of how many distinct hamilton cycles does it usually contain. We

prove

Theorem
If e >0 is fixed then
lim Pr(Gm* has at least (logn)(l_&)n distinct hamilton cycles) = 1.
n—w

o

Thus at m* the number of hamilton cycles jumps dramatically from O to

n—o(n).

at least (logn) On the other hand the expected number of hamilton

n_-n+o(n)

cycles at this point is n!p" = (logn)"e and so the theorem gives the

right order of magnitude for the number of hamilton cycles in G _.
m



32. Notation and preliminaries

We say that almost every (a.e.) graph process satisfies a certain
property if this property holds with probability tending to 1 as n tends
to «. Let m = [%-n(logn + loglogn - logloglogn)] and m, = [%-n(logn +
loglogn - logloglogn)]. It follows from Erdos and Renyi [4] that
m <{m ¢ m,, in a.e. graph process.

In what follows our inequalities need only be true for large enough n.
It is always useful to bear in mind the relationship between Gm and Gp,
p=n/v, v = (g), the random graph in which each possible edge appears
independently with probability p. Let Ep denote the edge set of Gp.

The properties we need are (see [2]): suppose o 1is some property of

graphs then
(2.1a) Pr(G_€ o) < 3dn logn Pr(Gp € o) m <m<mgy
(2.1b) a.e. Gp € o and A is monotone implies a.e. Gm € d.

(2.1c) a.e. Gp € o implies there exists m', m - Yn logn < m' < m

such that a.e. Gm' € d.

Now let € > O be fixed and small from now on and V; = Vn--Vn where n =
e

[(1-e)nr2],



Lm ={veE Vni dm(v) < logn/10}

where dm(v) is the degree of v in Gm and

+ Lot
Lm = {v € Vn- dm(v) < logn/10}
where d;(v) is the number of neighbours of v in V;.

For SCYV let
- 'n

N(S)={w€V -S:3veES such that vw € E }
m n m

and let Np(S) be defined similarly.
For S, TCV ,SNT=¢,e/(ST) = I{vweEm: v €S, weT).

let NL=L UL U(N (L uL)nv ).
m m m m m ne

We now describe the basic properties of Gm' m, {m¢( m,, which are needed for

the paper.

Lemma 2.1

Almost every graph process is such that simul taneously for all

m, <{m¢ m,. Gm satisfies

(2.2a) A(Gm) < 3 logn. (maximum degree)
(2.2b) IL | <o, ILf] ¢ o¥®

m m
(2.2¢c) No pair of vertices v,w € Lm are within distance 4

of each other.



(2.2d) No pair of vertices v,wé€ A have 3 or nore common nei ghbours
(2.2e) TCV, |T <—2— inplies that T contains at nost

- (1ogn)?

3| Tl edges.
(2.2f) * X S CVakkm IS <M qpplies \AMSV > A 5],
(2.29) ANSCV,-L;, ISL< " implies INJS fl VAL > ~ |S]
(2.2h) STCV,_SO0T=* |s| =|T =[—"—" inplies

. (laglagn)

e (5,T) y —DBlom

m 2(1 ogl ogn)
(2.2i) V; contains at |east ﬁ n logn edges.

Proof (Qutline: details of simlar results can be found in [2] )

Let Pj = nlJ/N p2=|:|\2/N.

Proof of (2.2a)

R(AG) >31logn) <n 2 (VAoUpp) il = o(]).
(A F,2) ogn) k>3loén { ,\p),\ (1)

Hence (2.1b) inplies Pr(A(G ) >3 logn) =o(l) and then the result follows
m2

from AW S\A%Gu_7).



Proof of (2.2b)

-1, k -1-k
E(lL, D=n 3 (" )pj(-p)"
1 K¢l
108"
- 0(n0'34).

Now use the Markov inequality and proceed as in the proof of (2.2a). The

proof of the upper bound for IL;l is similar.

Proof of (2.2c)

Pr((2.2c) fails in Gp ) < nspi( 3 (nil)pﬁ(l‘Pl)n-l—k)z
! kﬁf%logn

= of1)
Let now m’ be as in (2.1c). then
Pr((2.2c) fails from some Gm, m' {m{ m2| (2.2a) - (2.2c) holds in Gm,)

{Pr(3e=uve€ Em2—Em, such that dist(u.,L_,), dist(v.L ,) < 3 in Gm,l

(2.2a) - (2.2c) holds in Gm,))

O(n logloglogn(nZ/s(logn)3)2/v) [v = (g)

o(1).



Proof of (2.2d)

-2, 6
Pr(Gp has 2 vertices with 3 or more common neighbours) ¢ (g)(n3 )p2

A\

(logn)6/n.

I

We can now use (2.1b) to ’extend’ this to Gm . But if (2.2f) holds for Gm .
2 2

it must also hold for m ¢ mg, .

Proof of (2.2e)

Fix m and p = %u Then

2 k
n/(1
(2°g“) ™ (o) !

k

Pr((2.2e) fails in G ) ¢
P k=8 3k+1

-16

= O(Il ).

Hence, by (2.1a),

Pr(3m, m, { m m,, such that (2.2e) fails in Gm) = o(1).

1

Proof of (2.2f)

Now if (2.2e) holds then this on its own implies

logn - —n
|Nm(S)| 2 55— Isl for sc v.-L. Is] ¢ I
(logn)

For larger S, we drop the condition S N Lm = ¢.



Suppose SCV . |S| {==— If ve€V_ -S then Pr(v€N(S)) =
- n (o} n P
1 - (l—p)|S| 2 1%123 Hence

. 1
Pr(3SCV: ———(S¢ —Ilggand |Np(S)| <22 sl

(logn)4 = lo
n
logn
n —« SP s logn
CT QP Py <
S =
4
(logn)
< > (%?)s Tomps for some constant a > O
s > —2
= 4
(logn)
= o(n—z)

Proof of (2.2¢)

Similar to that of (2.2f).

Proof of (2.2h)

Let s = F——Jl——————q. Now e (S,T) is distributed as the binomial
(loglogn) P

random variable B(sz.p). But

1 2
gsP

1 2P)Se

Pr(B(sz,p) < 5 S

Hence



Pr((2.2h) fails in G ) < (M)%e

I
[=]
~
=’l
N
~

and the result follows in the usual manner.

Proof of (2.2i)

The number of edges of Gp which are contained in V; dominates
1 2
B(§-n ,P)- a

Now let @m = {Gm: (2.2) holds and G(Gm) 2 2}.

83. Proof of the theorem

We now describe a way of choosing a large set # of subgraphs of
Gm € gm' most of which are hamiltonian and such that if C,C' are hamilton
cycles of distinct H,H' € ¥ then C # C'.

Llet A =V -NL,B =V —-NL and for v € A let
m n m n m

€

W(v) = {vw € Em: w € Bm}.
Let Lo = [logn/lO] and r be a prime satisfying

(loglogn)2 <{r¢ 2(loglogn)2, let k = [logrLOJ and L = rk. We treat

{1,2,...,L} as the points of the k-dimensional vector space over the field
with r elements, GFr' This space has K = rk_l(rk—l)/(r—l) lines. Let the
point sets for these lines be the r-subsets XI’X2""’XK of L. The only

property of these sets used is IXi n le €1 for i #j.
For each v € Am we choose a random L-subset W'(v) C W(v) plus a random
ordering WieWos oo W (of W'(v)). We then define r-subsets W(v,k) C W'(v),

k=1,2,...,K by letting W(v,k) = {w, ,w. ,...,w, } when
o U] 'r
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xk = {il,i2,...,ir}.
Now let ¢ = {f: Am'e {1,2,...,K}}. For each f € & we will define a
subgraph Hf of Gm as follows: delete from Gm all edges incident with

Am other than U W(v,f(v)). Let now # = {H,:

¢ f € ¢}. Observe
v€Am

(n_ %)
(3.1) o] >k ©

_ (logn)(l—e—o(l))n

(3.2) If Cf,Cé are hamilton cycles of Hf'Hg' f # g then Cf # Cg'

For if f(v) # g(v) then Cf uses 2 edges of W(v,f(v)) and Cg can use at

most one edge of W(v,f(v)).

Now let Zm = |{f € ¢: Hf is not hamiltonian}|. We prove
3
(3.3) E(Z [ce€ %) < |#|/m
m m
and so
|¢| _ -2
Pr(Z 2 - Ic € $) =0(n").

Thus

(3.4) Pr(Gm has fewer than (1 - %) (logn)(l_e_o(l))n

hamilton cycles IGm € @m) = O(n_2).
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The theorem follows immediately from (3.4).
We must now show that most Hf are hamiltonian.

Consider now a fixed f € ¢. To prove (3.3) we show
(3.5) Pr(Hf is not hamiltonian|G € gm) = O(n—3).

First of all consider the distribution of the edges in the sets

W(v.£(v)).

Lemma 3.1

Conditional on the sub-graph induced by Vn - Am, the sets W(v,f(v)) are

an independent collection of random r-subsets of Bm.

Proof

Consider a fixed G, V€A and W(v) = Nm(v) NB . (We cannot assume
Gm € @m here.) Replacing W(v) by another subset of Bm of the same size
does not change Am or NL. We use here the fact that w € Bm has at least
logn/10 neighbours in V; and so changing the neighbours of v € Am cannot
place w in NL. It follows that the sets W(v) are independent random
subsets and the lemma follows as the W(v,f(v)) are random subsets of these.

o

Let now X C E, and He o = He - X. We say that X is deletable if

(3.6a) |X+| =n where X' = {e€eX:ecC V;} ,

(3.6b) X N W(v,.f(v))]| =3 for v € A
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(3.6¢) X is not incident with any vertex in

I':m =AVEY g v qg2E g ogAn'_}'

(3.6d) If v €B, and d*(v) = [logn/IG + k then v is incident

with at most k-1 edges in X

. . . . 2 0osn . +
(3.6e) No v € Bm Is incident with WIB@FN nmore edges in X'
(3.6f) MH:) = X(H ) where X denotes the length of the

| ongest path in the appropriate graph.

(nserve that a calculation simlar to that given for (2.2b) shows that

|ALm_I < 5 ina e. G. Ve nowincorporate this condition into the
definition of <Sm

Qur next lemma deals with the nunber of neighbours of subsets of A .

For S CV, and subgraph H of Gmlet NG ) ={w€S vw€ E(H) :‘nor sone v
es}.

Lenma 3.2
The following hold with probability 1 - o(n ). Here let H=H.
(i) SCAyw 15 |8 <" inplies |[N(S)| 280 |s],

(ii) SCA, TCB, |S§ =|T = f=—2——1 inplies that H
3 | ogl ogn
contains at least n loglogn edges joining S and T.

(iii) TCBm T 2°-f implies |N(T) fI A <3r |T].
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Proof
(i)
We first consider |[S| < n/3r and show INH(S)l > r|S|/2 with the

required probability.

N rs/2 s
3r n_ -n_ r ]
Pr(3s: |s| < n/3r and INH(S)l < rls|r2) ¢ sil [s ] [:5/2]

-n
€
r ]

n
) 3; (nee (2(n—ne)e)r/2 (___I_‘_S_)I')S
= s Ts 2(n-n )
s=1 (3
RN
3r
ne ers r/2.s
< b G (W) )
s=1 €

= o(n—s).
Suppose now n/3r < |S| { n/600. Let S' CS be of size [n/3r]. Then

INy(S) | 2 INg(s)|

A\

r [n/3r]/2

g

[\

80 |s].
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(ii)

Consider the selection of the sets W(v,f(v)) for v € S. This involves
rs (s = |S]) choices of elements in Bm and each choice always has
probability at least E;::Eﬁl of being in T. Thus the number of choices,

€

and hence edges in question, stochastically dominates the binomial

B(rs, Hence

s - r+1)
n-n
€

Pr((ii1) fails) < (0)® Pr(B(rs, =—2*1) ¢ n loglogn)

n
€

and the result follows from the Chernoff bound (see for example [3]) for the

s — r+l 2r52 2n loglogn

tails of the binomial since E(B(rs, — ne)) X n(ive) 2 Tre

(iii)

Fix TCB, ——— ¢ |T] =t ¢ and SCA , |S| =3r|T|. Now if
= m’ r logn - m

!
g1z

n=|B | then
m

”~

n-t
Pr(W(v.f(v)) NT # ¢ for all v €8) = (1 - ——)°Tt
)
<(1-(1- zE__)r)Brt
n-r
< (gEE)Brt_

Hence
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n/6r ~ ol
Pr((iii) fails) ¢ 3 (2)[12n ] (g§£)3rt
t=n/(r logn) 3rt
n/6r
<z &
t=n/T logn
= o(n J). o

Let Ef be the event denoting the occurrence of the conditions in the above

lemma.

Lemma 3.3

Suppose Gm € @m. f €9, Gf occurs, X is deletable and H = Hf,X' Then
(i) scv. INH(S)| < 2|s| implies

(@) Isl 2 g5

() (S UNs)) N (B)]

(ii) H is connected.

[\
NIs

en
+ = .
3

Proof

Suppose S C vV, Let S

+
SNL .S =SN (L -L) S=SNA_ and

0
S3 =S - (SO U S1 U 82)’
. n n
Assume first that ISBI < -135 and |S2| < 600"
Case 1: |82| < lsl U s3|.
(a) |s - s2| < 2|NL].
Let S* be the larger and g the smaller of S.,S Then

1°73°



: % 21 3 ~
INg )| 2 IN (Sp) | + IN (S| - Tooioes IST] - Isy Us]

€
- IN_(8¥) n (s, U N_(S,))]

1 21 % 3 %
2 21851 + (g8 - Togregd IS | - 3187 - I

> 2|s],

(after using (2.2c), (2.2f), (2.2g) and (3.6e) to obtain the second
inequality).
() Is-s,|»2n.

INgS)| 2 INg(S5)| - INL U s, |

logn 2 logn _ _
> (A - Zlomny | | - |w] - [s,|

> 2|s].

(using S;US; CNL and |s2| < |s3| + |NL]).

Case 2: |32| > |s1 U Ssl'
INy(S)| 2 80Isy| - 3, | + 2S5l - Is; U s,| 2 2]s].

Is;| < g5G- Choose S} CS; of

n
Suppose now that 132| $ 505 2nd 505 4

n
logn <

size [lf)‘—gn—j and let §' = (S-S;) U SS. Then

16
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INg(S) | 2 INg(s™) | - sy - s3]

> 215, + 221s,| + 3282 (Is, | + Isy]) - Isy - syl

1
2 218, + 2218, | + 322 Is; | + 505 - 508 = IS5 + lyosmd
> 2|s].

We have thus proved (i), part (a).

For part (b), we know, from part (a), that |S| 2 % and hence

ls UEN | > 5= 700
Assume first that [S;]| 2 775=- Suppose [(S3 U Ny(S3)) NB |
< é n + EBI—‘ Then there exists T C Bm of size at least ‘—:‘72 such that
NH(S3) NT-=¢. Now it follows from (2.2h) that Gm contains at least
2(—111%% edges joining 83 and T. But X contains at most n edges
oglogn
joining S3 and T and so NH(S3) NT # ¢ — contradiction.

Assume next that |S | > —4==. The proof here is similar to that above,
but relying on Lemma 3.2(ii) in place of (2.2h), and the fact that X
contains only 3 edges incident with each v € Am.
(i1)

Suppose H is not connected and there exists S C Vn, |S| %n such
that there are no S to Vn - S edges in H. Now |(Vn-S) n (Bm)l 2 % and

(i) implies |S| 2 6—36 We obtain a contradiction using (2.2h) or Lemma

3.2(ii) as in (i)(b). 0

Suppose now that l-If is not hamiltonian and X 1is deletable. Let

P=(x ’Xl""’x')\) be a longest path of both Hf and H = Hf,X' If
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XXy € E(Hf), i # 0, then the associated rotation with x. fixed and broken

0
edge XX yields a new longest path p(P,x ,xi) = (x ' STERRTS FPE
x7\—1""'xi+1)'

Let END(P,xO) denote the set of other endpoints of longest paths which

are obtainable in H from P by a sequence of rotations, with x, fixed,

0
and starting from P.

We will restrict our allowable rotations to those where the broken edge
is an edge of the starting path P. We further restrict ourselves so that if
P’ 1is obtained from P by a sequence of rotations through paths
P = PO’ 1,...,Pk = P' then the paths PI'P P, have distinct endpoints,

2’k

other than XO'

Suppose that the paths produced in the construction of END(P,xO) are
P = {PO,PI,Pz,...} where PO = P and Pi+1 is obtained from some PJ, j<
i, by a single rotation.

Let END = END(P,XO) U {xo} and for each x € END let Px denote the

first path (in the above ordering) with endpoint x (so that Px = P). For
0

X # X, let END(x) = END(Px,x). Now a simple modification of the argument of

Posa [6] shows that
N (END(x)) | < 2|END(x) |

(Indeed, all we have to show is that if v € NH(END) with neighbours w,,w,

on P then {wl. 2} N END # ¢. Suppose w' € END and vw' € E(H). Consider
. ’ —

the neighbours wi,wé of v on Pw" If {wi, 2} = {wl.wz} then some

allowable rotation from Pw' shows one of WieWy is in END. If say

v, ¢ {wi,wé} then the sequence of rotations that created Pw' deleted the

edge VW, and so v € END.)
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V¢ deduce fromLemma 3.3 that

(3.73a) | END( x)L]| >”" for x € END
(3.7b) |[END > ggy
2
(3.7¢) Each P, x € END, contains at least zr en edges
X 3
with both endpoints in B .
m

To see (3.7¢c) let n., i =0,1,2 denote the nunber of edges of P with i

vertices in Bpn Theln i"-nol (|MP) fl Bl - [VPR) flI (Vq UI\);_)|) - 1.
€

Since Px is alongest path, it nust contain N,r,l(ENXx)). But then Lemma 3.3

inplies |(END(xX) UN;(END(x))) D (By |.>] n+ 7~ and so n; - ng>| n +%ﬂ

- (In- "~ +o0(n)) - 1 and (3.7c) foll ows.

Gven (3.7) we consider two possibilities.

Case |: there exists x € END such that |ENO(x) fl B | I-i§-0~5.

m
Case 22 |BENO(x) OB | <rr~r for all x € END.

Case 1 is easier to deal with and is considered first. Wthout |oss of
generality assune |B\D fl Bm|| > TSTPT i.e. X =X, suffices above. bserve

that because I—bt> i s connect ed,
(3.8) x € END, v € END(x) inplies xy € E(H).

(VW use the "col ouring" argunent of Fenner and Frieze [5] to showthis is

unlikely when a large nunber of x € B. Snce A contains no edges in H,,
mm i
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(3.8) does not help so much in Case 2 and we are in a similar situation to
that encountered in the case of random bipartite graphs, Frieze [6]).
Suppose now that given Gm € @m, we randomly pick X C Em satisfying

(3.6a), (3.6b). We consider two events:

81 = Gf n {Gm € @m, Hf is not hamiltonian, Case 1 occurs}
82 = 81 N {X 1is deletable}.
We show
1 2."e 20 .n

(3.9a) Pr&yle)) 2501 -9~ (1 - 153
(3.9b) Pr(82) < c? for some constant O ¢ c <1.

We can then deduce
(3.10) Pr(&,) < (c; + o(1))".

Proof of (3.9a)

Fix G € @m and the choices W(v,f(v)) for v € Am. Fix some longest

path P of H Consider first the edges of X that meet Am' Each

£
¥W(v.f(v)) contains at most 2 edges of P. This accounts for the term

2."%
(1 - ;9 . Now consider the remaining n edges of X. Now to avoid P and
the edges incident with NL, X must avoid at most n + o(n) edges, given
20 \n

1 )" as a lower bound
ogn

for the probability of avoiding these edges. Given that these edges are not

(2.2a), (2.2b). Using this and (2.2i) we obtain (1 -

selected, the probability that (3.6d) or (3.6e) fails is o(1), which accounts
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for the

D=

Proof of (3.9b)

Consider fixed graphs G, H. We show

N A n
(3.11) Pr(82|Gm -X =G, H y = H) < ¢

and (3.9b) follows.
Observe that G_ - X, H together determine A by v € A iff
m f.,X m m

v £ n_ and it loses edges in Hf X’ NL is then determined by v € NL iff

v € Am and d+(v) < l%%ﬂ or v € Vn and v is the neighbour of such a
3

vertex.

If Pr(82|Gm -X =G, Hf,X = H) > O then there exists X such that 82
occurs for G + X, H + X. Hence we may assume that (3.7) holds where END,
END(x). x € END are determined by _H only (and are independent of X). We

N

may also assume Case 1 occurs in H.
Furthermore the edges in X are required to conform to (3.8). Thus let
82 denote the event ({x € END, y € END(x) implies xy € X}. Then

(3.12) Pr(gzlcm—x =G, Hp y = H) ¢ Pr(ézle—X =G, H, , = H, (3.6¢c),(3.6d)).

f.X
(For (3.12) use Pr(A|BC) > Pr(AB|C) for events A,B,C).
Let us now consider the distribution of X given Gm—X, Hf X and

(3.6c), (3.6d). Let X=X U (U Y), where for v€A ., Y = {vw € X}. We
veA \'4 m v
m

claim that
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(3.13a) X" is a random n-subset of Bm(z) - E(G).

(3.13b) For v € Am' Yv is a random 3-subset of {vw € E(G): w € Bm}

and these subsets are independent of each other.

(3.13a) follows from the fact that given (3.6c), (3.6d) holds for one X, the
addition (and subsequent deletion) of any n-subset of Bm(z) - E(a) does not
affect Hf,X and (3.6c), (3.6d) will still hold. (3.13b) follows from Lemma
3.1 and its proof.

Now for w € END N B_let B(w) = |END(w) N Bm|. The following 2

subcases cover all possibilities:

- . n
Case 1a:  |{w: B(w) > 35} | 2 355

- . n
Case 1b:  |{w: B(w) < T35} | 2 3355-

n-n ~
It follows from (3.13a) that, where » = ( 5 6) and m { m,

Yoo h - 302/(2(2400)%),  +

~ D
D -m
Pr(82|Case la) £ [ n ]/( n )
95999, n
< (56000)
It follows from (3.13b) that
S 3 /1200
Pr(8zlcase 1b) < (1 - 5355 .

Ve have thus confirmed (3.9b).

Let us now consider Case 2. Let 81 be as before, except that Case 2



replaces Case 1 and let 82 now be defined with respect to the new 81.

(3.92) continues to hold. We prove

(3.9b') Pr(ezlcm—x =G, H, ,=H) <c

for some constant
f.X

0« <5 < = c2(e) <1

which combined with (3.9a) yields
(3.10") Pr(&;) < (cy + o(1))".

From (3.10) and (3.10') and the fact that Pr(gfIG € @m) =1 - o(n—3) we
obtain (3.3) and the theorem.

We observe that (3.13) continues to hold. We can assume that ﬁ
contains a longest path P with endpoints X9+ %X and T§66 vertices
END C A~ and for each x € END there is a set of 6%6' paths ?x with
distinct endpoints (END(x)). These will have been constructed from a path Px
by rotations as in the discussion prior to (3.7).

¥e now consider in more detail the construction of END(P,XO).
T = T(xo) denote the tree with vertex set END(P,XO), rooted at Xy and with

Let

an edge directed from x to y if Py is obtained by a single rotation from
P. Let J be the set of possible trees that can be so constructed.

Consider the following condition:
od: there exists T € J such that T contains a subtree T', rooted at Xqe
which has (i) [V(T') N A | 2 '1‘121706 and (ii) [V(T') N B_| < %ﬁ.
Suppose now that o holds. For each v € END' = V(T') N Am let ¢(v)

denote the neighbour of v on Pv'
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Lemma 3.4

If o holds then [¢(END')]| > 71}96@_

Proof

We show first
(3.14) y € $(END') - V(T') implies |¢ 1(y)] < 2.

We do this by showing that if y = ¢(x) then xy 1is an edge of P. This is
clearly true if x = X - If x # Xy then y is adjacent to x on Px' If
Xy 1is not an edge of P then y 1is an ancestor of x in T',a

contradiction, as y € V(T').

Now (3.14) implies that
(3.15) le(END) | > ZIEND' - 71 (e(END') N V(T'))].

But since ¢—1(¢(END') nyv(T')) c NA(Bm) n Am we see from Lemma 3.3 and
H

d(ii) that

-1 ' ' .
l¢7"(#(END') N V(T'))| < gg507 * 3r

and the lemma follows from this and (3.15). o

It is important to note that any path obtained from Px' x € END' by a
sequence of rotations with x fixed has ¢(x) as x’s neighbour.

Suppose now that o does not hold. We will obtain a contradiction. Let

n n
T€JF. Since |V(T)N Aml > {555 We must have [v(T) n Bml > 2500 Then T
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contains a subtree T wth

|V(T) DB | - 1..”5@.:\] and since * % does not hol d
mm ’

VT nA ] <YAT. Let S=V(T) OB. It follows from (2.2h) that |N\(S)
n I “uu m IJ

fl IEFSD‘h_’\I.1 Nowif v€S we€ Tlj\l"(S) (Bm and vw € E(I:\|) then we can
Iy

legitimatel y construct

p( PV’XO’ w) unless the associ ated broken edge
w € E(P). But this latter condition rules out at nost 2|V(T)| rotations: -
(2 for each added edge of each P v € V(T)). The sane wW can be produced
%
at nost

twice in this way. Thus there exists T € J which contains a

subtree which is obtained from T by adding at |east ’\1{ A 2@%@@-* |NL|))
?’? | eaves. Since si does not occur,

2
at | east
| eaves are in

?? - TanT“-> §' of these new
1 I"WJ o
this means Case 1 hol ds,

a contradiction,
Appl yi ng this argunent

B . But
m

for each x CEND i.e. constructing a tree
of paths starting with Py,

T(x)

we deduce, fromLemma 3.4 that the following is

true:

Lenma 3.5

In H there are “2—vertices y")io,
uu z

o ti inB
%m vertl ces Z:H.fzoi... I N m

| ongest paths with one endpoi nt

in ENDfI Am and a set of
such that for each i there are 2

1200

on each path and the

T pat hs are distinct nenbers of
| Zuu

Yoy 2y adj acent to Yy
ot her endpoints of each set of A . D

m
Let Y':If i =1,2,...

, eriyf) denote the set of other endpoints of the paths
Yy

W can now confirm (3. 9b").

with one fixed endpoint

We nust add random edges, as in (3.13), and
show that with high probability these extra edges nake the resulting graph
ham | toni an or have a |onger

ss.

path than H.
We consider the edges in (3.13b) to be added randomy in 3 waves Xif X2>
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Kj UX where |X | =1~ =12 = |A] and each v € A, is incident with

one edge of each Xt, t =1,2,3.

Addi ng Xl

For yE€Y=UY. let 6(y) = [{it y €Y)\. Qearly |Y | I %55
i
where Y = {y €Y. &(y) 2“—2}.
8( 1200)

If y €Y then independently of other nmenbers of Y

Pr(for some i, X, contains an edge yz, where y €Y.) > L—

! <7 ue1200) %

Hence there exist constants 0 < f;,TJ; < 1 such that

Pr(g3) 11-1

&

wher e

Sg = {Xl cont ai ns fin edges of the form z.y, Yy € Y'1}'

Assunme now that S occurs.
V¢ now have f.ln cycl es C—lprt. .. say, plus an edge joining Y to
C,. Applying (3.7c) we see that each C;1 contains a set of vertices 'Kl,

1

| K | _> %2 en, where v €K inplies v lies onan edge of C.with both
X «3 X X
endpoints in Bm.

Addi ng X

Now, independently, for each i, Pr(X* contains an edge y,u wher e
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u € Ki) > €. By considering these cycles one by one, we see that there exist
constants O < §2 = §2(e). Ny = nz(e) <1 such that

n
Pr(84|83) > 1 -,

where

84 = {X2 contains §2n edges of the form Yiuye Yy € Ki
and the Bm neighbours Vi:Vgr--- of u;,.uy,... on Cl’C2""

are distinct}.

Now each time X2 contains an edge yiug e 4y € Ki’ we can obtain a longest
path of H + (X1 U X2) with one endpoint Y and the other endpoint in Bm
by using the edges (Ci U {yiui}) - {uivi}.

Assume that &, occurs.

4

Adding X; U X"

We now have §3n longest paths QI’Q2"" of H + (X1 V) X2), each with a
distinct endpoint vy € Bm. We are now essentially in a Case 1 situation.
Take each Qi and using v, asa fixed endpoint generate » 6%6 longest
paths by rotations. Now throw in X3 U X+. The probability that we fail to

close one of these paths is exponentially small. (3.9b') follows and we are

done.
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