NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

ON THE NUMBER OF HAMILTON CYCLES IN A RANDOM GRAPH

by
C. Cooper
Department of Computing, Mathematics and Statistics
Polytechnic of North London
Holloway Road
London N78DB
England
and
A. M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
Research Report No. 88-27 2

August 1988
On the number of hamilton cycles in a random graph
by
C. Cooper
Department of Computing, Mathematics and Statistics
Polytechnic of North London
Holloway Road
London N78DB
England
and
A.M. Frieze
Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213 USA

August 1988

Abstract

Let a random graph G be constructed by adding random edges one by one, starting with n isolated vertices. We show that with probability going to one as n goes to infinity, when G first has minimum degree two, it has at least $(\operatorname{logn})^{(1-\epsilon) n}$ distinct hamilton cycles for any fixed $\epsilon>0$.

§1. Introduction

Let $V_{n}=\{1,2, \ldots, n\}$ and consider the random graph process (Bollobás [3]) $G_{0}, G_{1}, \ldots, G_{v}, v=\binom{n}{2}$ where $G_{m}=\left(V_{n}, E_{m}\right), E_{0}=\phi$ and E_{m+1} is obtained from E_{m} by adding an edge e_{m+1} chosen randomly from $[n]^{(2)}-E_{m}$. Now let

$$
\mathrm{m}^{*}=\min \left\{\mathrm{m}: \delta\left(\mathrm{G}_{\mathrm{m}}\right) \geq 2\right\}
$$

Bollobás [2] (see also Ajtai, Komlos and Szemerédi [1]) showed that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{m *} \text { is hamiltonian }\right)=1
$$

which was claimed but not proved by Komlós and Szemerédi [7] when they first established the exact threshold for the existence of hamilton cycles in a random graph.

Knowing that $G_{m *}$ usually has at least one hamilton cycle raises the question of how many distinct hamilton cycles does it usually contain. We prove

Theorem

If $\epsilon>0$ is fixed then
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{m *}\right.$ has at least $(\operatorname{logn})^{(1-\epsilon) n}$ distinct hamilton cycles $)=1$.

Thus at m^{*} the number of hamilton cycles jumps dramatically from 0 to at least $(\operatorname{logn})^{n-o(n)}$. On the other hand the expected number of hamilton cycles at this point is $n!p^{n}=(\operatorname{logn})^{n} e^{-n+o(n)}$ and so the theorem gives the right order of magnitude for the number of hamilton cycles in $\mathrm{G}_{\mathrm{m}}{ }^{*}$

§2. Notation and preliminaries

We say that almost every (a.e.) graph process satisfies a certain property if this property holds with probability tending to 1 as n tends to ∞. Let $m_{1}=\left\lfloor\frac{1}{2} n(\log n+\log \log n-\log \log \log n)\right\rfloor$ and $m_{2}=\left\lceil\frac{1}{2} n(\log n+\right.$ $\log \log n-\log \log \log n)$ (. It follows from Erdös and Renyi [4] that $m_{1} \leq m^{*} \leq m_{2}$ in ace. graph process.

In what follows our inequalities need only be true for large enough n. It is always useful to bear in mind the relationship between G_{m} and G_{p}, $p=m / v, v=\binom{n}{2}$, the random graph in which each possible edge appears independently with probability p. Let E_{p} denote the edge set of G_{p}.

The properties we need are (see [2]): suppose A is some property of graphs then

$$
\begin{align*}
& \operatorname{Pr}\left(G_{m} \in \mathscr{A}\right) \leq 3 \sqrt{n} \operatorname{logn} \operatorname{Pr}\left(G_{p} \in A\right) \quad m_{1} \leq m \leq m_{2} \tag{2.1a}\\
& \text { a.e. } G_{p} \in A \text { and } A \text { is monotone implies a.e. } G_{m} \in A .
\end{align*}
$$

(2.1c) a.e. $G_{p} \in \mathscr{A}$ implies there exists $m^{\prime}, m-\sqrt{n} \operatorname{logn} \leq m^{\prime} \leq m$ such that ace. $G_{m} \in \mathscr{A}$.

Now let $\epsilon>0$ be fixed and small from now on and $V_{n}^{+}=V_{n}-V_{n_{\epsilon}}$ where $n_{\epsilon}=$ $\lfloor(1-\epsilon) n / 2\rfloor$,

$$
L_{m}=\left\{v \in V_{n}: d_{m}(v) \leq \log n / 10\right\}
$$

where $d_{m}(v)$ is the degree of v in G_{m} and

$$
L_{m}^{+}=\left\{v \in V_{n}: d_{m}^{+}(v) \leq \log n / 10\right\}
$$

where $d_{m}^{+}(v)$ is the number of neighbours of v in V_{n}^{+}. For $S \subseteq V_{n}$ let

$$
N_{m}(S)=\left\{w \in V_{n}-S: \exists v \in S \text { such that } v w \in E_{m}\right\}
$$

and let $N_{p}(S)$ be defined similarly.
For $S, T \subseteq V_{n}, S \cap T=\phi, e_{m}(S, T)=\left|\left\{v w \in E_{m}: v \in S, w \in T\right\}\right|$.
Let $N L=L_{m} \cup L_{m}^{+} \cup\left(N_{m}\left(L_{m} \cup L_{m}^{+}\right) \cap V_{n_{\epsilon}}\right)$.
We now describe the basic properties of $G_{m}, m_{1} \leq m \leq m_{2}$ which are needed for the paper.

Lemma 2.1
Almost every graph process is such that simultaneously for all $m_{1} \leq m \leq m_{2}, G_{m}$ satisfies

$$
\begin{equation*}
\Delta\left(\mathrm{G}_{\mathrm{m}}\right) \leq 3 \operatorname{logn} \tag{2.2a}
\end{equation*}
$$

(maximum degree)

$$
\begin{equation*}
\left|L_{m}\right| \leq n^{2 / 5},\left|L_{m}^{+}\right| \leq n^{4 / 5} \tag{2.2b}
\end{equation*}
$$

No pair of vertices $v, w \in L_{m}$ are within distance 4 of each other.
(2.2d) No pair of vertices $v, w \in V_{n}$ have 3 or more common neighbours
 3|TI edges.
(2.2f)

$$
\text { * * } \underline{S} C_{n} V_{n} L_{m} L_{m}, \quad|\underline{S}|<\wedge \text { implies } \quad|\wedge(S)|>{ }^{\wedge}|s| .
$$

$$
\begin{equation*}
\left.\wedge S C V_{n-L} ;,|S|_{-}<\wedge \text { implies } \operatorname{INJS}\right) f l V^{\wedge} L>\wedge|S| \tag{2.2~g}
\end{equation*}
$$

(2.2h)

$$
\begin{aligned}
& e_{m}(S, T) \geq \frac{n \log n}{2(\log \log n)^{6}} .
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}^{+} \text {contains at least } \underset{y}{1} \mathrm{n} \text { logn edges. } \tag{2.2i}
\end{equation*}
$$

Proof (Outline: details of similar results can be found in [2])
Let $\quad \mathrm{Pj}^{\prime}=n \mathrm{ji} / \mathrm{N}, \quad \mathrm{p}_{2}=\mathrm{m}_{2} / \mathrm{N}$.

Proof of (2.2a)

Hence (2.1b) implies $\operatorname{Pr}\left(A\left(G_{m}\right)>3 \operatorname{logn}\right)=O(1)$ and then the result follows

Proof of (2.2b)

$$
\begin{aligned}
E\left(\left|L_{p_{1}}\right|\right) & =n \underset{k \leq \frac{1}{10} \operatorname{logn}}{\sum}\binom{n-1}{k} p_{1}^{k}\left(1-p_{1}\right)^{n-1-k} \\
& =O\left(n^{0.34}\right)
\end{aligned}
$$

Now use the Markov inequality and proceed as in the proof of (2.2a). The proof of the upper bound for $\left|L_{m}^{+}\right|$is similar.

Proof of (2.2c)

$$
\begin{aligned}
\operatorname{Pr}\left((2.2 c) \text { fails in } G_{p_{1}}\right) \leq & n^{5} p_{1}^{4}\left(\underset{k \leq \frac{1}{10} \operatorname{logn}}{\sum}\binom{n-1}{k} p_{1}^{k}\left(1-p_{1}\right)^{n-1-k}\right)^{2} \\
& =o(1)
\end{aligned}
$$

Let now m^{\prime} be as in (2.1c). then
$\operatorname{Pr}\left((2.2 c)\right.$ fails from some $G_{m}, m^{\prime} \leq m \leq m_{2} \mid(2.2 a)-(2.2 c)$ holds in $\left.G_{m^{\prime}}\right)$
$\leq \operatorname{Pr}\left(\exists \mathrm{e}=\mathrm{uv} \in \mathrm{E}_{\mathrm{m}_{2}}-\mathrm{E}_{\mathrm{m}^{\prime}}\right.$ such that $\operatorname{dist}\left(\mathrm{u}, \mathrm{L}_{\mathrm{m}^{\prime}}\right), \operatorname{dist}\left(\mathrm{v}, \mathrm{L}_{m^{\prime}}\right) \leq 3$ in $\mathrm{G}_{m^{\prime}} \mid$
(2.2a) - (2.2c) holds in $\left.G_{m^{\prime}}\right)$)
$=O\left(n \log \log \log n\left(n^{2 / 5}(\log n)^{3}\right)^{2} / v\right) \quad\left[v=\binom{n}{2}\right.$
$=o(1)$.

Proof of (2.2d)

$\operatorname{Pr}\left(G_{p}\right.$ has 2 vertices with 3 or more common neighbours $) \leq\binom{ n}{2}\binom{n-2}{3} \mathrm{p}_{2}^{6}$

We can now use (2.1b) to 'extend' this to $G_{m_{2}}$. But if (2.2f) holds for $G_{m_{2}}$, it must also hold for $m \leq m_{2}$.

Proof of (2.2e)

Fix m and $p=\frac{m}{v}$. Then

$$
\begin{aligned}
\operatorname{Pr}\left((2.2 e) \text { fails in } G_{p}\right) & \leq \sum_{k=8}^{n /(\operatorname{logn})^{2}}\binom{n}{k}\left[\begin{array}{l}
\binom{k}{2} \\
3 k+1
\end{array}\right] p^{3 k+1} \\
& =0\left(n^{-16}\right) .
\end{aligned}
$$

Hence, by (2.1a),
$\operatorname{Pr}\left(\exists m, m_{1} \leq m \leq m_{2}\right.$ such that (2.2e) fails in $\left.G_{m}\right)=o(1)$.

Proof of (2.2f)
Now if (2.2e) holds then this on its own implies

$$
\left|N_{m}(S)\right| \geq \frac{\log n}{60}|S| \text { for } S \subseteq v_{n}-L_{m},|S| \leq \frac{n}{(\log n)^{4}}
$$

For larger S, we drop the condition $S \cap L_{m}=\phi$.

Suppose $S \subseteq V_{n} .|S| \leq \frac{n}{\log n}$. If $\quad v \in V_{n}-S$ then $\operatorname{Pr}\left(v \in N_{p}(S)\right)=$ $1-(1-p)^{|S|} \geq \frac{|S| p}{2}$. Hence

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists \mathrm{S} \subseteq \mathrm{~V}_{\mathrm{n}}: \frac{\mathrm{n}}{(\log n)^{4}} \leq \mathrm{S} \leq \frac{\mathrm{n}}{\log n} \text { and }\left|N_{p}(S)\right| \leq \frac{\operatorname{logn}}{60}|S|\right) \\
& \leq \sum_{\Sigma}^{\frac{n}{\log n}}=\frac{n}{(\log n)^{4}}\binom{n}{s} \operatorname{Pr}\left(B\left(n-s, \frac{s p}{2}\right) \leq \frac{s \operatorname{logn}}{60}\right) \\
& \leq \quad \sum \sum_{s} \quad\left(\frac{n e}{s}\right)^{s} e^{-\alpha n p s} \quad \text { for some constant } \alpha>0 \\
& =o\left(n^{-2}\right) .
\end{aligned}
$$

Proof of (2.2g)
Similar to that of (2.2f).

Proof of (2.2h)

Let $s=\left\lceil\frac{n}{(\log \log n)^{3}}\right\rceil$. Now $e_{p}(S, T)$ is distributed as the binomial random variable $B\left(s^{2}, p\right)$. But

$$
\operatorname{Pr}\left(B\left(s^{2}, p\right) \leq \frac{1}{2} s^{2} p\right) \leq e^{-\frac{1}{8} s^{2} p}
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}\left((2.2 h) \text { fails in } G_{p}\right) & \leq\binom{ n}{s}^{2} e^{-\frac{1}{8} s^{2} p} \\
& =o\left(n^{-2}\right)
\end{aligned}
$$

and the result follows in the usual manner.

Proof of (2.2i)

The number of edges of G_{p} which are contained in V_{n}^{+}dominates $B\left(\frac{1}{8} n^{2}, p\right)$.

Now let $\mathscr{G}_{\mathrm{m}}=\left\{\mathrm{G}_{\mathrm{m}}:(2.2)\right.$ holds and $\left.\delta\left(\mathrm{G}_{\mathrm{m}}\right) \geq 2\right\}$.

§3. Proof of the theorem

We now describe a way of choosing a large set H of subgraphs of $G_{m} \in \mathscr{G}_{m}$, most of which are hamiltonian and such that if C, C^{\prime} are hamilton cycles of distinct $H, H^{\prime} \in \mathscr{H}$ then $C \neq \mathrm{C}^{\prime}$.

Let $A_{m}=V_{n_{\epsilon}}-N L, B_{m}=V_{n}^{+}-N L$ and for $v \in A_{m}$ let
$W(v)=\left\{v w \in E_{m}: w \in B_{m}\right\}$.
Let $L_{0}=\lceil\operatorname{logn} / 10\rceil$ and r be a prime satisfying
$(\log \operatorname{logn})^{2} \leq r \leq 2(\log \log n)^{2}$, let $k=\left\lfloor\log _{r} L_{0}\right\rfloor$ and $L=r k$. We treat $\{1,2, \ldots, L\}$ as the points of the k-dimensional vector space over the field with r elements, $G F_{r}$. This space has $K=r^{k-1}\left(r^{k}-1\right) /(r-1)$ lines. Let the point sets for these lines be the r-subsets $X_{1}, X_{2}, \ldots, X_{K}$ of L. The only property of these sets used is $\left|X_{i} \cap X_{j}\right| \leq 1$ for $i \neq j$.

For each $v \in A_{m}$ we choose a random L-subset $W^{\prime}(v) \subseteq W(v)$ plus a random ordering $w_{1}, w_{2}, \ldots, w_{L}$ (of $\left.W^{\prime}(v)\right)$. We then define r-subsets $W(v, k) \subseteq W^{\prime}(v)$, $k=1,2, \ldots, K$ by letting $W(v, k)=\left\{w_{\mathbf{i}_{1}}, w_{\mathbf{i}_{2}}, \ldots, w_{i_{r}}\right\}$ when

$$
\begin{align*}
& X_{k}=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} . \\
& \quad \text { Now let } \Phi=\left\{f: A_{m} \rightarrow\{1,2, \ldots, K\}\right\} \text {. For each } f \in \Phi \text { we will define a } \\
& \text { subgraph } H_{f} \text { of } G_{m} \text { as follows: delete from } G_{m} \text { all edges incident with } \\
& A_{m} \text { other than } \underset{v \in A_{m}}{U} W(v, f(v)) \text {. Let now } H=\left\{H_{f}: f \in \Phi\right\} \text {. Observe } \\
& \qquad|\Phi| \geq K\left(n_{\epsilon}-n^{4 / 5}\right) \tag{3.1}\\
& \text { (3.1) } \\
& =(\operatorname{logn)}(1-\epsilon-o(1)) n \\
& \text { (3.2) If } C_{f}, C_{g} \text { are hamilton cycles of } H_{f}, H_{g}, f \neq g \text { then } C_{f} \neq C_{g} .
\end{align*}
$$

For if $f(v) \neq g(v)$ then C_{f} uses 2 edges of $W(v, f(v))$ and C_{g} can use at most one edge of $W(v, f(v))$.

Now let $Z_{m}=\mid\left\{f \in \Phi: H_{f}\right.$ is not hamiltonian $\} \mid$. We prove

$$
\begin{equation*}
E\left(Z_{m} \mid G \in \mathscr{C}_{m}\right) \leq|\Phi| / n^{3} \tag{3.3}
\end{equation*}
$$

and so

$$
\operatorname{Pr}\left(\left.Z_{m} \geq \frac{|\Phi|}{n} \right\rvert\, G \in \mathscr{\varphi}_{m}\right)=O\left(n^{-2}\right) .
$$

Thus
$\operatorname{Pr}\left(G_{m}\right.$ has fewer than $\left(1-\frac{1}{n}\right)(\operatorname{logn})^{(1-\epsilon-o(1)) n}$ hamilton cycles $\left.\mid G_{m} \in \mathscr{\varphi}_{m}\right)=O\left(n^{-2}\right)$.

The theorem follows immediately from (3.4).
We must now show that most H_{f} are hamiltonian.
Consider now a fixed $f \in \Phi$. To prove (3.3) we show

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{H}_{\mathrm{f}} \text { is not hamiltonian } \mid G \in \mathscr{\varphi}_{\mathrm{m}}\right)=0\left(\mathrm{n}^{-3}\right) . \tag{3.5}
\end{equation*}
$$

First of all consider the distribution of the edges in the sets $W(v, f(v))$.

Lemma 3.1
Conditional on the sub-graph induced by $V_{n}-A_{m}$, the sets $W(v, f(v))$ are an independent collection of random r-subsets of B_{m}.

Proof
Consider a fixed $G_{m}, v \in A_{m}$ and $W(v)=N_{m}(v) \cap B_{m}$. (We cannot assume $G_{m} \in \mathscr{C}_{m}$ here.) Replacing $W(v)$ by another subset of B_{m} of the same size does not change A_{m} or NL. We use here the fact that $w \in B_{m}$ has at least $\operatorname{logn} / 10$ neighbours in V_{n}^{+}and so changing the neighbours of $v \in A_{m}$ cannot place w in NL. It follows that the sets $W(v)$ are independent random subsets and the lemma follows as the $W(v, f(v))$ are random subsets of these.

Let now $X \subseteq E_{m}$ and $H_{f, X}=H_{f}-X$. We say that X is deletable if

$$
\begin{equation*}
\left|x^{+}\right|=n \text { where } X^{+}=\left\{e \in X: e \subseteq V_{n}^{+}\right\} \tag{3.6a}
\end{equation*}
$$

$$
\begin{equation*}
|X \cap W(v, f(v))|=3 \quad \text { for } \quad v \in A_{m} \tag{3.6b}
\end{equation*}
$$

(3.6c) X is not incident with any vertex in
 If $v \in B_{m}$ and $d^{+}(v)=[\operatorname{logn} / 10 j+k$ then v is incident with at most $\mathrm{k}-1$ edges in X .

$\left.M^{H}{ }_{f}\right)=X\left(H_{f}, \underline{x}\right)$ where X denotes the length of the longest path in the appropriate graph.

Observe that a calculation similar to that given for (2.2b) shows that $\hat{\mid}_{\mathrm{m}} \cdot{ }^{I}{ }_{-}<\mathrm{n}^{2 / 5}$ in a.e. G_{m}. We now incorporate this condition into the definition of $<S_{m}$.

Our next lemma deals with the number of neighbours of subsets of A.
 es \} .

Lemma 3.2
The following hold with probability $1-O\left(n^{-}\right)$. Here let $H=H_{f}$.
(i) $\mathrm{S} \underline{\mathrm{C}} \mathrm{A}_{\mathrm{m}}, 1 \leq|\mathrm{S}| \leq \wedge_{\mathrm{i}}^{\mathrm{i}}$ implies $\left|\mathrm{N}_{\mathrm{H}}(\mathrm{S})\right| \geq 80|\mathrm{~s}|$,
(ii) $\quad S C A, T C B,|S|=|T|=\frac{n}{>\operatorname{lloglogn}} 1$ implies that H
contains at least n loglogn edges joining S and T.
(iii) $T C B_{m},|T| 2^{\wedge}$ - fogn implies $\left|N_{H}(T) f 1 A j<3 r\right| T \mid$.

Proof

(i)

We first consider $|S| \leq n / 3 r$ and show $\left|N_{H}(S)\right| \geq r|S| / 2$ with the required probability.
$\operatorname{Pr}\left(\exists S:|S| \leq n / 3 r\right.$ and $\left.\left|N_{H}(S)\right| \leq r|S| / 2\right) \leq \underset{s=1}{\frac{n}{3 r}}\left[\begin{array}{c}n_{\epsilon} \\ s\end{array}\right]\left[\begin{array}{c}n-n_{\epsilon} \\ r s / 2\end{array}\right]\left[\frac{\left[\begin{array}{c}r s / 2 \\ r\end{array}\right]}{\left[\begin{array}{c}n-n_{\epsilon} \\ r\end{array}\right]}\right]^{s}$

$$
\begin{aligned}
& \leq \quad \sum_{s=1}^{\frac{n}{3 r}}\left(\frac{n_{\epsilon} e}{s}\left(\frac{2\left(n-n_{\epsilon}\right) e}{r s}\right)^{r / 2}\left(\frac{r s}{2\left(n-n_{\epsilon}\right)}\right)^{r}\right)^{s} \\
& \leq \quad \sum_{s=1}^{\frac{n}{3 r}}\left(\frac{n e}{s}\left(\frac{e r s}{2\left(n-n_{\epsilon}\right)}\right)^{r / 2}\right)^{s} \\
& =o\left(n^{-3}\right) .
\end{aligned}
$$

Suppose now $n / 3 r<|S| \leq n / 600$. Let $S^{\prime} \subseteq S$ be of size $\lfloor n / 3 r\rfloor$. Then

$$
\left|N_{H}(S)\right| \geq\left|N_{H}\left(S^{\prime}\right)\right|
$$

$$
\begin{aligned}
& \geq r\lfloor n / 3 r\rfloor / 2 \\
& \geq n / 7
\end{aligned}
$$

$$
\geq 80|s| .
$$

(ii)

Consider the selection of the sets $W(v, f(v))$ for $v \in S$. This involves rs ($s=|S|$) choices of elements in B_{m} and each choice always has probability at least $\frac{s-r+1}{n-n_{\epsilon}}$ of being in T. Thus the number of choices, and hence edges in question, stochastically dominates the binomial $B\left(r s, \frac{s-r+1}{n-n_{\epsilon}}\right)$. Hence

$$
\operatorname{Pr}((\text { iii }) \text { fails }) \leq\left(\frac{n}{s}\right)^{2} \operatorname{Pr}\left(B\left(r s, \frac{s-r+1}{n-n_{\epsilon}}\right) \leq n \log \log n\right)
$$

and the result follows from the Chernoff bound (see for example [3]) for the tails of the binomial since $E\left(B\left(r s, \frac{s-r+1}{n-n_{\epsilon}}\right) \approx \frac{2 r s^{2}}{n(1+\epsilon)} \geq \frac{2 n \log \log n}{1+\epsilon}\right.$.

$$
\begin{equation*}
\text { Fix } T \subseteq B_{m}, \frac{n}{r \operatorname{logn}} \leq|T|=t \leq \frac{n}{6 r} \text { and } S \subseteq A_{m},|S|=3 r|T| \text {. Now if } \tag{iii}
\end{equation*}
$$ $\hat{n}=\left|B_{m}\right|$ then

$$
\begin{aligned}
\operatorname{Pr}(W(v, f(v)) \cap T \neq \phi \text { for all } v \in S) & =\left(1-\frac{\binom{\hat{n}-t}{r}}{\binom{\hat{n}}{r}}\right)^{3 r t} \\
& \leq\left(1-\left(1-\frac{t}{\hat{n}-r}\right)^{r}\right)^{3 r t} \\
& \leq\left(\frac{2 r t}{n}\right)^{3 r t} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}((\text { iii }) \text { fails }) & \leq \underset{t=n /(r \log n)}{\sum / 6 r}\binom{n}{t}\left[\begin{array}{l}
\frac{1}{2} n \\
3 r t
\end{array}\right]\left(\frac{2 r t}{n}\right)^{3 r t} \\
& \leq \sum_{t=n / r}^{\sum} \operatorname{logn}\left(\frac{n e}{t}\right)^{t}\left(\frac{e}{3}\right)^{3 r t} \\
& =o\left(n^{-3}\right) .
\end{aligned}
$$

Let ε_{f} be the event denoting the occurrence of the conditions in the above lemma.

Lemma 3.3

Suppose $G_{m} \in \mathscr{G}_{\mathrm{m}}, \mathbf{f} \in \Phi, \mathcal{E}_{\mathbf{f}}$ occurs, X is delectable and $\mathrm{H}=\mathrm{H}_{\mathrm{f}, \mathrm{X}}$. Then
(i) $S \subseteq V_{n},\left|N_{H}(S)\right|<2|S| \quad$ implies
(a) $|s| \geq \frac{\mathrm{n}}{600}$
(b) $\left|\left(S \cup N_{H}(S)\right) \cap\left(B_{m}\right)\right| \geq \frac{n}{2}+\frac{\epsilon n}{3}$.
(ii) H is connected.

Proof

Suppose $S \subseteq V_{n}$. Let $S_{0}=S \cap L_{m}, S_{1}=S \cap\left(L_{m}^{+}-L_{m}\right), S_{2}=S \cap A_{m}$ and $S_{3}=S-\left(S_{0} \cup S_{1} \cup S_{2}\right)$.

Assume first that $\left|s_{3}\right| \leq \frac{n}{\log n}$ and $\left|S_{2}\right| \leq \frac{n}{600}$.

Case 1: $\quad\left|s_{2}\right| \leq\left|S_{1} \cup S_{3}\right|$.
(a) $\left|\mathrm{S}-\mathrm{S}_{2}\right|<2|\mathrm{NL}|$.

Let S^{*} be the larger and \hat{S} the smaller of S_{1}, S_{3}. Then

$$
\begin{aligned}
&\left|N_{H}(S)\right| \geq\left|N_{m}\left(S_{0}\right)\right|+\left|N_{m}\left(S^{*}\right)\right|-\frac{2 \log n}{\log \log n}\left|S^{*}\right|-\left|s_{2} \cup \hat{S}\right| \\
&-\left|N_{m}\left(S^{*}\right) \cap\left(S_{0} \cup N_{m}\left(S_{0}\right)\right)\right| \\
& \geq 2\left|s_{0}\right|+\left(\frac{\log n}{60}-\frac{2 \log n}{\log \log n}\right)\left|S^{*}\right|-3\left|s^{*}\right|-\left|s^{*}\right| \\
& \geq 2|S|
\end{aligned}
$$

(after using (2.2c), (2.2f), (2.2g) and (3.6e) to obtain the second inequality).
(b) $\left|s-S_{2}\right| \geq 2|N L|$.

$$
\begin{aligned}
\left|N_{H}(S)\right| & \geq\left|N_{H}\left(S_{3}\right)\right|-\left|N L \cup S_{2}\right| \\
& \geq\left(\frac{\log n}{60}-\frac{2 \operatorname{logn}}{\log \log n}\right)\left|S_{3}\right|-|N L|-\left|s_{2}\right| \\
& \geq 2|S|
\end{aligned}
$$

(using $S_{0} \cup s_{1} \subseteq N L$ and $\left.\left|s_{2}\right| \leq\left|s_{3}\right|+|N L|\right)$.

Case 2: $\quad\left|s_{2}\right|>\left|s_{1} \cup s_{3}\right|$.

$$
\left|N_{H}(s)\right| \geq 80\left|s_{2}\right|-3\left|s_{2}\right|+2\left|s_{0}\right|-\left|s_{1} \cup s_{3}\right| \geq 2|s|
$$

Suppose now that $\left|S_{2}\right| \leq \frac{n}{600}$ and $\frac{n}{\log n} \leq\left|S_{3}\right| \leq \frac{n}{600}$. Choose $S_{3}^{\prime} \leq S_{3}$ of size $\left\lfloor\frac{n}{\operatorname{logn}}\right\rfloor$ and let $S^{\prime}=\left(S-S_{3}\right) \cup S_{3}^{\prime}$. Then

$$
\begin{aligned}
\left|N_{H}(S)\right| & \geq\left|N_{H}\left(S^{\prime}\right)\right|-\left|s_{3}-S_{3}^{\prime}\right| \\
& \geq 2\left|s_{0}\right|+22\left|s_{2}\right|+\frac{\operatorname{logn}}{200}\left(\left|s_{1}\right|+\left|s_{3}^{\prime}\right|\right)-\left|s_{3}-s_{3}^{\prime}\right| \\
& \left.\geq 2\left|s_{0}\right|+22\left|s_{2}\right|+\frac{\operatorname{logn}}{200}\left|s_{1}\right|+\frac{n}{200}-\frac{\operatorname{logn}}{200}-\left|s_{3}\right|+\left\lvert\, \frac{n}{\operatorname{logn}}\right.\right] \\
& \geq 2|s| .
\end{aligned}
$$

We have thus proved (i), part (a).
For part (b), we know, from part (a), that $|S| \geq \frac{n}{600}$ and hence $\left|s_{2} \cup S_{3}\right| \geq \frac{n}{700}$.

Assume first that $\left|S_{3}\right| \geq \frac{n}{1400}$. Suppose $\left|\left(S_{3} \cup N_{H}\left(S_{3}\right)\right) \cap B_{m}\right|$ $<\frac{1}{2} n+\frac{\epsilon n}{3}$. Then there exists $T \subseteq B_{m}$ of size at least $\frac{\epsilon n}{7}$ such that $\mathrm{N}_{\mathrm{H}}\left(\mathrm{S}_{3}\right) \cap \mathrm{T}=\phi$. Now it follows from (2.2h) that G_{m} contains at least $\frac{n \log n}{2(\log \log n)^{6}}$ edges joining S_{3} and T. But X contains at most n edges joining S_{3} and T and so $N_{H}\left(S_{3}\right) \cap T \neq \phi$ - contradiction.

Assume next that $\left|S_{2}\right| \geq \frac{n}{1400}$. The proof here is similar to that above, but relying on Lemma 3.2 (ii) in place of (2.2h), and the fact that X contains only 3 edges incident with each $v \in A_{m}$. (ii)

Suppose H is not connected and there exists $S \subseteq V_{n},|S| \leq \frac{1}{2} n$ such that there are no S to $V_{n}-S$ edges in H. Now $\left|\left(V_{n}-S\right) \cap\left(B_{m}\right)\right| \geq \frac{\epsilon n}{3}$ and (i) implies $|S| \geq \frac{\mathrm{n}}{600}$. We obtain a contradiction using (2.2h) or Lemma $3.2(\mathrm{ii})$ as in (i)(b).

Suppose now that H_{f} is not hamiltonian and X is deletable. Let $P=\left(x_{0}, x_{1}, \ldots, x_{\lambda}\right)$ be a longest path of both H_{f} and $H=H_{f, X}$. If
$x_{i} x_{\lambda} \in E\left(H_{f}\right), i \neq 0$, then the associated rotation with x_{0} fixed and broken edge $x_{i} x_{i+1}$ yields a new longest path $\rho\left(P, x_{0}, x_{i}\right)=\left(x_{0}, x_{1}, \ldots, x_{i}, x_{\lambda}\right.$. $\left.x_{\lambda-1}, \ldots, x_{i+1}\right)$.

Let $\operatorname{END}\left(P, x_{0}\right)$ denote the set of other endpoints of longest paths which are obtainable in H from P by a sequence of rotations, with x_{0} fixed, and starting from P.

We will restrict our allowable rotations to those where the broken edge is an edge of the starting path P. We further restrict ourselves so that if P^{\prime} is obtained from P by a sequence of rotations through paths $P=P_{0}, P_{1}, \ldots, P_{k}=P^{\prime}$ then the paths $P_{1}, P_{2}, \ldots, P_{k}$ have distinct endpoints, other than x_{0}.

Suppose that the paths produced in the construction of $\operatorname{END}\left(P, x_{0}\right)$ are $\mathscr{P}=\left\{\mathrm{P}^{0}, \mathrm{P}^{1}, \mathrm{P}^{2}, \ldots\right\}$ where $\mathrm{P}^{0}=\mathrm{P}$ and $\mathrm{P}^{\mathrm{i}+1}$ is obtained from some P^{j}, $\mathrm{j} \leq$ i, by a single rotation.

Let $\operatorname{END}=\operatorname{END}\left(P, x_{0}\right) \cup\left\{x_{0}\right\}$ and for each $x \in \operatorname{END}$ let P_{x} denote the first path (in the above ordering) with endpoint x (so that $P_{x_{0}}=P$). For $x \neq x_{0}$ let $\operatorname{END}(x)=\operatorname{END}\left(P_{x}, x\right)$. Now a simple modification of the argument of Posa [6] shows that

$$
\left|\mathrm{N}_{\mathrm{H}}(\operatorname{END}(\mathrm{x}))\right|<2|\operatorname{END}(\mathrm{x})| .
$$

(Indeed, all we have to show is that if $v \in N_{H}(E N D)$ with neighbours w_{1}, w_{2} on P then $\left\{w_{1}, w_{2}\right\} \cap \operatorname{END} \neq \phi$. Suppose $w^{\prime} \in E N D$ and $w^{\prime} \in E(H)$. Consider the neighbours $w_{1}^{\prime}, w_{2}^{\prime}$ of v on $P_{w^{\prime}}$. If $\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}=\left\{w_{1}, w_{2}\right\}$ then some allowable rotation from $P_{w^{\prime}}$ shows one of w_{1}, w_{2} is in END. If say $w_{1} \notin\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$ then the sequence of rotations that created P_{w} deleted the edge $\quad \mathrm{vw}_{1}$ and so $w_{1} \in E N D$.)

We deduce from Lemma 3.3 that
$\mid E N D(x L \mid>$ ^ for $\quad x \in E N D$
$|E N D| \geq g g y$
(3.7c) Each $P_{x}^{\prime}, x \in E N D$, contains at least $\underset{* 3}{2}$ en edges with both endpoints in B.
m

To see (3.7c) let $n ., i=0,1,2$ denote the number of edges of P with i vertices in B_{m}. Then $i^{\wedge}-n_{Q} 1\left(\left|V\left(P_{x}\right) f l B J-\left|V\left(P_{x}\right) f l\left(V_{n} U N L\right)\right|\right)-1\right.$. Since P_{x} is a longest path, it must contain $N_{r_{r}}$ (END(x)). But then Lemma 3.3 implies $\left|\left(\operatorname{END}(x) U N_{f 1}(\operatorname{END}(x))\right) D\left(B_{m}\right)\right|_{-}>\mid n+n_{-}$and so $n_{2}-n_{Q} \geq \left\lvert\, n+\frac{n^{2}}{3}\right.$
$-\left(\mid n-n^{-+}+(n)\right)-1$ and (3.7c) follows.
Given (3.7) we consider two possibilities.

Case 2: |END (x) $0 B \mathrm{~B}<r r^{\wedge} r$ for all $x \in$ END.

Case 1 is easier to deal with and is considered first. Without loss of generality assume $\left|E N D \operatorname{fl}_{\mathrm{m}}\right|>$ TSTIPT i.e. $\quad \mathrm{x}=\mathrm{x}_{\mathrm{n}}$ suffices above. Observe that because $\underset{t}{\mathrm{H}}$ is connected,

$$
\begin{equation*}
x \in E N D, y \in E N D(x) \quad \text { implies } x y \in E\left(H_{f}\right) \text {. } \tag{3.8}
\end{equation*}
$$

(We use the "colouring" argument of Fenner and Frieze [5] to show this is unlikely when a large number of $x \in B$. Since A contains no edges in H_{r}, m m
(3.8) does not help so much in Case 2 and we are in a similar situation to that encountered in the case of random bipartite graphs, Frieze [6]).

Suppose now that given $G_{m} \in \mathscr{G}_{m}$, we randomly pick $X \subseteq E_{m}$ satisfying (3.6a), (3.6b). We consider two events:
$\boldsymbol{\varepsilon}_{1}=\boldsymbol{\varepsilon}_{f} \cap\left\{G_{m} \in \mathscr{E}_{m}, H_{f}\right.$ is not hamiltonian, Case 1 occurs $\}$
$\varepsilon_{2}=\varepsilon_{1} \cap\{\mathrm{X}$ is deletable $\}$.
We show

$$
\begin{gather*}
\operatorname{Pr}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \geq \frac{1}{2}\left(1-\frac{2}{r}\right)^{n}{ }^{\boldsymbol{\epsilon}}\left(1-\frac{20}{\operatorname{logn}}\right)^{n} \tag{3.9a}\\
\operatorname{Pr}\left(\varepsilon_{2}\right) \leq c_{1}^{n} \quad \text { for some constant } \quad 0 \leq c_{1}<1 .
\end{gather*}
$$

We can then deduce

$$
\begin{equation*}
\operatorname{Pr}\left(\varepsilon_{1}\right) \leq\left(c_{1}+o(1)\right)^{n} \tag{3.10}
\end{equation*}
$$

Proof of (3.9a)

Fix $G \in \mathscr{G}_{m}$ and the choices $\mathbb{W}(v, f(v))$ for $v \in A_{m}$. Fix some longest path P of H_{f}. Consider first the edges of X that meet A_{m}. Each $W(v, f(v))$ contains at most 2 edges of P. This accounts for the term $\left(1-\frac{2}{r}\right)^{n^{n}}$. Now consider the remaining n edges of X. Now to avoid P and the edges incident with $N L, X$ must avoid at most $n+o(n)$ edges, given (2.2a), (2.2b). Using this and (2.2i) we obtain ($\left.1-\frac{20}{\log n}\right)^{n}$ as a lower bound for the probability of avoiding these edges. Given that these edges are not selected, the probability that (3.6d) or (3.6e) fails is o(1), which accounts
for the $\frac{1}{2}$.

Proof of (3.9b)

Consider fixed graphs \hat{G}, \hat{H}. We show

$$
\begin{equation*}
\operatorname{Pr}\left(\varepsilon_{2} \mid G_{m}-X=\hat{G}, H_{f, X}=\hat{H}\right) \leq c_{1}^{n} \tag{3.11}
\end{equation*}
$$

and (3.9b) follows.
Observe that $G_{m}-X, H_{f, X}$ together determine A_{m} by $v \in A_{m}$ iff $v \leq n_{\epsilon}$ and it loses edges in $H_{f, X}$. NL is then determined by $v \in N L$ iff $v \notin A_{m}$ and $d^{+}(v) \leq \frac{\log n}{10}$ or $v \in V_{n_{\epsilon}}$ and v is the neighbour of such a vertex.

If $\operatorname{Pr}\left(\boldsymbol{\varepsilon}_{2} \mid G_{m}-X=\hat{G}, H_{f, X}=\hat{H}\right)>0$ then there exists X such that $\boldsymbol{\varepsilon}_{2}$ occurs for $\hat{G}+X, \hat{H}+X$. Hence we may assume that (3.7) holds where $E N D$, $\operatorname{END}(x), x \in E N D$ are determined by \hat{H} only (and are independent of X). We may also assume Case 1 occurs in \hat{H}.

Furthermore the edges in X are required to conform to (3.8). Thus let $\hat{\varepsilon}_{2}$ denote the event $\{x \in \operatorname{END}, y \in \operatorname{END}(x)$ implies $x y \notin X\}$. Then

$$
\begin{equation*}
\operatorname{Pr}\left(\varepsilon_{2} \mid G_{m}-X=\hat{G}, H_{f, X}=\hat{H}\right) \leq \operatorname{Pr}\left(\hat{\varepsilon}_{2} \mid G_{m}-X=\hat{G}, H_{f, X}=\hat{H},(3.6 c),(3.6 d)\right) \tag{3.12}
\end{equation*}
$$

(For (3.12) use $\operatorname{Pr}(A \mid B C) \geq \operatorname{Pr}(A B \mid C)$ for events $A, B, C)$.
Let us now consider the distribution of X given $G_{m}-X, H_{f, X}$ and (3.6c), (3.6d). Let $X=X^{+} U\left(\underset{v \in A_{m}}{U} Y_{v}\right)$, where for $v \in A_{m}, Y_{v}=\{v w \in X\}$. We claim that
(3.13a) X^{+}is a random n-subset of $B_{m}^{(2)}-E(\hat{G})$,
(3.13b) For $v \in A_{m}, Y_{v}$ is a random 3-subset of $\left\{v w \notin E(\hat{G}): w \in B_{m}\right\}$ and these subsets are independent of each other.
(3.13a) follows from the fact that given (3.6c), (3.6d) holds for one X, the addition (and subsequent deletion) of any n-subset of $B_{m}^{(2)}-E(\hat{G})$ does not affect $H_{f, X}$ and (3.6c), (3.6d) will still hold. (3.13b) follows from Lemma 3.1 and its proof.

Now for $w \in E N D \cap B_{m}$ let $\beta(w)=\left|\operatorname{END}(w) \cap B_{m}\right|$. The following 2 subcases cover all possibilities:

Case 1a: $\left|\left\{w: \beta(w)>\frac{n}{1200}\right\}\right| \geq \frac{n}{2400}$
Case 1b: $\left|\left\{w: \beta(w)<\frac{n}{1200}\right\}\right| \geq \frac{n}{2400}$.

It follows from (3.13a) that, where $v^{+}=\binom{n-n}{2}$ and $\hat{m} \leq m$,

$$
\begin{aligned}
\operatorname{Pr}\left(\hat{\varepsilon}_{2} \mid\right. \text { Case 1a) } & \leq\left[\begin{array}{c}
v^{+}-\hat{m}-3 n^{2} /\left(2(2400)^{2}\right) \\
n
\end{array}\right] /\binom{v^{+}-\hat{m}}{n} \\
& \leq\left(\frac{95999}{96000}\right)^{n}
\end{aligned}
$$

It follows from (3.13b) that

$$
\operatorname{Pr}\left(\hat{\varepsilon}_{2} \mid \text { Case } 1 \mathrm{~b}\right) \leq\left(1-\frac{3}{2400}\right)^{n / 1200}
$$

We have thus confirmed (3.9b).
Let us now consider Case 2. Let ε_{1} be as before, except that Case 2
replaces Case 1 and let ε_{2} now be defined with respect to the new $\boldsymbol{\varepsilon}_{1}$. (3.9a) continues to hold. We prove
(3.9b') $\quad \operatorname{Pr}\left(\varepsilon_{2} \mid G_{m}-X=\hat{G}, H_{f}, X=\hat{H}\right) \leq c_{2}^{n} \quad$ for some constant $0<c_{2}<=c_{2}(\epsilon)<1$
which combined with (3.9a) yields

$$
\begin{equation*}
\operatorname{Pr}\left(\varepsilon_{1}\right) \leq\left(c_{2}+o(1)\right)^{n} \tag{3.10'}
\end{equation*}
$$

From (3.10) and (3.10') and the fact that $\operatorname{Pr}\left(\mathcal{E}_{f} \mid G \in \mathscr{E}_{m}\right)=1-o\left(n^{-3}\right)$ we obtain (3.3) and the theorem.

We observe that (3.13) continues to hold. We can assume that \hat{H} contains a longest path P with endpoints x_{0}, x_{1} and $\frac{n}{1200}$ vertices END $\subseteq A_{m}$ and for each $x \in E N D$ there is a set of $\frac{n}{600}$ paths \mathscr{F}_{x} with distinct endpoints $(\operatorname{END}(x))$. These will have been constructed from a path P_{x} by rotations as in the discussion prior to (3.7).

We now consider in more detail the construction of $\operatorname{END}\left(P, x_{0}\right)$. Let $T=T\left(x_{0}\right)$ denote the tree with vertex set $\operatorname{END}\left(P, x_{0}\right)$, rooted at x_{1} and with an edge directed from x to y if P_{y} is obtained by a single rotation from P. Let \mathcal{J} be the set of possible trees that can be so constructed.

Consider the following condition:
A: there exists $T \in \mathscr{G}$ such that T contains a subtree T^{\prime}, rooted at x_{1}, which has (i) $\left|V\left(T^{\prime}\right) \cap A_{m}\right| \geq \frac{n}{1200}$ and (ii) $\left|V\left(T^{\prime}\right) \cap B_{m}\right| \leq \frac{n}{4800 r}$.

Suppose now that $\&$ holds. For each $v \in E N D^{\prime}=V\left(T^{\prime}\right) \cap A_{m}$ let $\phi(v)$ denote the neighbour of v on P_{v}.

Lemma 3.4
If A holds then $\mid \phi\left(\right.$ END $\left.^{\prime}\right) \left\lvert\, \geq \frac{\mathrm{n}}{9600}\right.$.

Proof
We show first

$$
\begin{equation*}
\mathrm{y} \in \phi\left(E \mathrm{ND}^{\prime}\right)-\mathrm{V}\left(\mathrm{~T}^{\prime}\right) \text { implies }\left|\phi^{-1}(\mathrm{y})\right| \leq 2 \tag{3.14}
\end{equation*}
$$

We do this by showing that if $y=\phi(x)$ then $x y$ is an edge of P. This is clearly true if $x=x_{1}$. If $x \neq x_{1}$ then y is adjacent to x on P_{x}. If $x y$ is not an edge of P then y is an ancestor of x in T^{\prime}, a contradiction, as $y \notin V\left(T^{\prime}\right)$.

Now (3.14) implies that

$$
\begin{equation*}
\left.\left\lvert\, \phi\left(\text { END }^{\prime}\right)\left|\geq \frac{1}{2}\right| \mathrm{END}^{\prime}-\phi^{-1}\left(\phi\left(\mathrm{END}^{\prime}\right) \cap \mathrm{V}\left(\mathrm{~T}^{\prime}\right)\right)\right. \right\rvert\, \tag{3.15}
\end{equation*}
$$

But since $\phi^{-1}\left(\phi\left(E N D^{\prime}\right) \cap V\left(T^{\prime}\right)\right) \subseteq \underset{H}{N_{h}}\left(B_{m}\right) \cap A_{m}$ we see from Lemma 3.3 and A(ii) that

$$
\mid \phi^{-1}\left(\phi\left(\text { END }^{\prime}\right) \cap \mathrm{V}\left(\mathrm{~T}^{\prime}\right)\right) \left\lvert\, \leq \frac{\mathrm{n}}{4800 \mathrm{r}} \cdot 3 \mathrm{r}\right.
$$

and the lemma follows from this and (3.15).

It is important to note that any path obtained from $P_{x}, x \in E N D$ by a sequence of rotations with x fixed has $\phi(x)$ as x 's neighbour.

Suppose now that $\&$ does not hold. We will obtain a contradiction. Let $T \in \mathscr{G}$. Since $\left|V(T) \cap A_{m}\right| \geq \frac{n}{1200}$ we must have $\left|V(T) \cap B_{m}\right|>\frac{n}{4800 r}$. Then T

```
contains a subtree \hat{T}}\mathbf{T
```



``` legitimately construct \(p\left(P_{v}, x_{o}, w\right)\) unless the associated broken edge \(w^{\prime} \in E(P) . \quad\) But this latter condition rules out at most \(2|V(T)| r o t a t i o n s:-\) (2 for each added edge of each \(P^{\wedge}, v \in V(T)\) ). The same \(w^{\prime}\) can be produced v
at most twice in this way. Thus there exists \(T \in \mathcal{J}\) which contains a subtree which is obtained from \(\hat{T}\) by adding at least \(\hat{\wedge}_{-}^{1}\left\{\wedge_{-}^{2}\left(\frac{n}{1_{1} \mathbf{2} 88^{+}}|N L|\right)\right) \geq\)
```



``` leaves are in \(B_{m}\). But this means Case 1 holds, a contradiction, Applying this argument for each \(x\) C END i.e. constructing a tree \(T(x)\) of paths starting with \(P_{X^{\prime}}\), we deduce, from Lemma 3.4 that the following is true:
```

Lemma 3.5
 $\frac{n}{9600}$ vertices $z_{1^{\mp}} z_{o_{z}} \ldots$ in B_{m} such that for each i there are $\frac{n}{1200}$ longest paths with one endpoint $\mathbf{Y}_{\mathbf{i}^{\prime}} \mathbf{z}_{\mathbf{i}}$ adjacent to $\mathbf{Y}_{\mathbf{i}}$ on each path and the other endpoints of each set of $\begin{gathered}\text { Tofrr } \\ \text { IZuu }\end{gathered}$ paths are distinct members of $A . \quad D$
 with one fixed endpoint $\mathbf{Y}_{\mathbf{i}}$.

We can now confirm (3.9b ${ }^{f}$). We must add random edges, as in (3.13), and show that with high probability these extra edges make the resulting graph hamiltonian or have a longer path than H.

We consider the edges in (3.13b) to be added randomly in 3 waves $X_{\mathbf{f}} X_{2>}$
$\mathrm{Kj} U \mathrm{X}^{+}$where $|\mathrm{Xj}|=1 \wedge 1=1 \wedge 1=\left|A_{\mathrm{A}}\right|$ and each $v \in \mathrm{~A}_{\mathrm{m}}$ is incident with one edge of each $\mathrm{X}_{\mathbf{t}^{\prime}} \mathrm{t}=1,2,3$.

Adding X_{1}

$$
\begin{aligned}
& \text { where } Y^{\prime}=\left\{Y \in Y: \delta(y) \geq \frac{n}{8(1200)^{2}}\right\} \text {. } \\
& \text { If } \mathbf{y} \in \mathbf{Y}^{\prime} \text { then independently of other members of } \mathbf{Y}^{\prime} \\
& \operatorname{Pr}\left(\text { for some } i, X_{i} \text { contains an edge } y z_{\dot{x}} \text { where } y \in Y_{\dot{x}}\right) \geq \frac{1}{4(1200)^{?}} \text {. }
\end{aligned}
$$

Hence there exist constants $0<\mathrm{f}_{1}, \mathrm{TO}_{1}<1$ such that

$$
\operatorname{Pr}\left(g_{3}^{-}\right) 11-T 7 ?
$$

where

$$
S_{0}=\left\{X_{i} \text { contains } f_{i} n \text { edges of the form } z_{i} y, y \in Y_{\dot{x}}\right\}
$$

Assume now that $\mathrm{S}_{\sim}^{\wedge}$ occurs.
We now have $f_{i} n$ cycles $C-{ }_{f} C_{p_{t}} \ldots$ say, plus an edge joining y_{i} to C_{i}. Applying (3.7c) we see that each C_{i} contains a set of vertices K_{i}, $\mid K$. I_> \mathcal{Z}_{z} ? en, where $v \in K$. implies v lies on an edge of C. with both endpoints in B_{m}.

Adding X_{2}
Now, independently, for each $i, \operatorname{Pr}\left(X_{\sim}^{\wedge}\right.$ contains an edge $Y_{i} u$ where
$\left.u \in K_{i}\right) \geq \epsilon$. By considering these cycles one by one, we see that there exist constants $0<\xi_{2}=\xi_{2}(\epsilon), \eta_{2}=\eta_{2}(\epsilon)<1$ such that

$$
\operatorname{Pr}\left(\varepsilon_{4} \mid \varepsilon_{3}\right)>1-\eta_{2}^{\mathrm{n}}
$$

where

$$
\begin{aligned}
& \varepsilon_{4}=\left\{X_{2} \text { contains } \xi_{2} n \text { edges of the form } y_{i} u_{i}, u_{i} \in K_{i}\right. \\
& \text { and the } B_{m} \text { neighbours } v_{1}, v_{2}, \ldots \text { of } u_{1}, u_{2}, \ldots \text { on } C_{1}, C_{2}, \ldots \\
& \text { are distinct }\} \text {. }
\end{aligned}
$$

Now each time X_{2} contains an edge $y_{i} u_{i}, u_{i} \in K_{i}$, we can obtain a longest path of $\hat{H}+\left(X_{1} \cup X_{2}\right)$ with one endpoint y_{i} and the other endpoint in B_{m} by using the edges $\left(C_{i} U\left\{y_{i} u_{i}\right\}\right)-\left\{u_{i} v_{i}\right\}$.

Assume that \boldsymbol{E}_{4} occurs.

Adding $\mathrm{X}_{3} \underline{\mathrm{UX}}^{+}$
We now have $\xi_{3} n$ longest paths Q_{1}, Q_{2}, \ldots of $\hat{H}+\left(X_{1} \cup X_{2}\right)$, each with a distinct endpoint $v_{i} \in B_{m}$. We are now essentially in a Case 1 situation. Take each Q_{i} and using v_{i} as a fixed endpoint generate $\geq \frac{n}{600}$ longest paths by rotations. Now throw in $X_{3} \cup X^{+}$. The probability that we fail to close one of these paths is exponentially small. (3.9b') follows and we are done.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, "First occurrence of hamilton cycles in random graphs", Annals of Discrete Mathematics 27 (1985) 173-178.
[2] B. Bollobás, "The evolution of sparse graphs", in Graph Theory and Combinatorics, Proceedings of Cambridge Combinatorial Conference in honour of Paul Erdös (B. Bollobás Ed.), Academic Press (1984) 35-57.
[3] B. Bollobás, Random Graphs, Academic Press, 1985.
[4] P. Erdös and A. Rényi, "On the strength of connectedness of a random graph", Acta Math. Acad. Sci. Hungar. 12 (1961) 261-267.
[5] T.I. Fenner and A.M. Frieze, "On the existence of hamilton cycles in a class of random graphs", Discrete Mathematics 45 (1983) 301-305.
[6] A.M. Frieze, "Limit distribution for the existence of hamilton cycles in a random bipartite graph", European Journal on Combinatorics 6 (1985) 327-334.
[7] J. Komlós and E. Szemerédi, "Limit distribution for the existence of hamilton cycles in random graphs", Discrete Mathematics 43 (1983) 55-63.
38482013561523

