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Abstract

Let a random graph G be constructed by adding random edges one by one,

starting with n isolated vertices. We show that with probability going to

one as n goes to infinity, when G first has minimum degree two, it has at

least (logn)^ * distinct hamilton cycles for any fixed e > 0.



§1, Introduction

Let V = {lf2,...,n} and consider the random graph process (Bollobas

[3]) G0,Gr ....G^, v = (£) where Gm = (Vn,Em), EQ = <p and E ^ is obtained

from E by adding an edge e . - chosen randomly from [n]' ' - E . Now let
m m+i m

m* = min{m: 6(G ) > 2}.

Bollobas [2] (see also Ajtai, Komlos and Szemeredi [1]) showed that

lim Pr(G_^ is hamiltonian) = 1

which was claimed but not proved by Komlos and Szemeredi [7] when they first

established the exact threshold for the existence of hamilton cycles in a

random graph.

Knowing that G _ usually has at least one hamilton cycle raises them*

question of how many distinct hamilton cycles does it usually contain. We

prove

Theorem

If e > 0 is fixed then

lim Pr(G has at least (logn)^ * distinct hamilton cycles) = 1.
n-*»

•

Thus at m the number of hamilton cycles jumps dramatically from 0 to

at least (logn)n °^n^. On the other hand the expected number of hamilton

cycles at this point is n!pn = (logn)rV~n+O'Ilj' and so the theorem gives the

right order of magnitude for the number of hamilton cycles in G ̂ .
m



§2. Notation and preliminaries

We say that almost every (a.e.) graph process satisfies a certain

property if this property holds with probability tending to 1 as n tends

to «>. Let m. = [^-n(logn + loglogn - logloglogn)] and m^ = [cj-n(logn +

loglogn - logloglogn)]. It follows from Erdbs and Renyi [4] that

m- < m < m~ in a.e. graph process.

In what follows our inequalities need only be true for large enough n.

It is always useful to bear in mind the relationship between G and G ,
m p

p = m/i), v = (p), the random graph in which each possible edge appears

independently with probability p. Let E denote the edge set of G .

The properties we need are (see [2])* suppose si is some property of

graphs then

(2.1a) Pr(G € si) < 3>GT logn Pr(G € d) m, < m < mo
m p JL £J

(2.1b) a.e. G € si and si is monotone implies a.e. G € sJ.
p m

(2.1c) a.e. G € si implies there exists m', m - >Tn logn < mr < m

such that a.e. G . £ si.
mr

Now let e > 0 be fixed and small from now on and V+ = V_-V where n

L(l-e)n/2j,

n n n e
e



= { v € Vn: dm(v) < logn/10}

where d (v) is the degree of v in G and
mv ° m

= {v € Vn: dm<v> * iogn/10}

where d (v) is the number of neighbours of v in V .
mv ** n

For S C V let
— n

N (S) = {w € V - S : 3 v € S such that vw € E }mv ' l n nr

and let N (S) be defined similarly.

For S , T C V n , S n T = f e
m^S 'T^ = ^ w € V v € s « * € T > l -

Let NL = L U L + U (H (L U L + ) fl V ) .
m m v m v m m̂  n '

We now describe the basic properties of G , m1 < m < mo which are needed for
m i . cL

the paper.

Lemma 2.1

Almost every graph process is such that simultaneously for all

m- £ m < mo, G satisfies
1 £ m

(2.2a) A(G ) < 3 logn. (maximum degree)

(2.2b) |LJ < n275. |Lj| 1 n475.

(2.2c) No pair of vertices v,w € L are within distance 4

of each other.



(2.2d) No pair of vertices v,w € V have 3 or more common neighbours

(2.2e) T C V , |T| < —~ implies that T contains at most
- n " (logn)2

3|TI edges.

(2.2f) * * S C Vn - Lm, |S| < ^ implies \^(S)\ >_ ^ |s|.n Lm

(2.2g) ^ S C V n - L ; , |S| < ^ implies INJS) fl V |̂ > ^ |S|

(2.2h) S,T C V . S 0 T = *, |s| = |T| = [ - ^\ implies
(loglogn)(loglogn)

e (S,T)
m 2(loglogn)

(2.2i) V contains at least <r n logn edges.

Proof (Outline: details of similar results can be found in [2] )

Let Pj = nij/N, p2

Proof of (2.2a)

Pr(A(G ) > 3 logn) < n 2 (V^oU-Pp)11"1"1' = o(l).
P2 k>31ogn K ^ ^

Hence (2.1b) implies Pr(A(G ) > 3 logn) = o(l) and then the result follows
m2

from A(G ) < A(G ).v m' v nu7



Proof of (2.2b)

E(|L |) = n 2 (nr1)pk(l-p1)
n~1~k

Pl w l k 1 1

Now use the Markov inequality and proceed as in the proof of (2.2a). The

proof of the upper bound for |L | is similar.

Proof of (2.2c)

Pr((2.2c) fails in Gp ) < n
5p*( 2

k<

Let now m' be as in (2.1c). then

Pr((2.2c) fails from some G , m' < m < nu| (2.2a) - (2.2c) holds in G ,)
m £» iii

< Pr(3 e = uv € E -E , such that dist(u,L ,), dist(v,L r) < 3 in

(2.2a) - (2.2c) holds in G ,))

= 0(n logloglogn(n (logn) ) /v) [u =



Proof of (2.2d)

PrfG has 2 vertices with 3 or more common neighbours) < (o)( ~ )Pov p ^ o ^

< (logn) /n.

We can now use (2.1b) to 'extend' this to G . But if (2.2f) holds for G ,
m2 2

it must also hold for m < m~.

Proof of (2.2e)

mFix m and p = —. Then

n/(logn)

?)Pr((2.2e) fails in G ) < 2 (?)
P k=8 k 3k+l

3k+l

= 0(n-16).

Hence, by (2.1a),

Pr(3m, mx < m < m2 such that (2.2e) fails in G ) = o(l).

Proof of (2.2H

Now if (2.2e) holds then this on its own implies

(logn)

For larger S, we drop the condition SflL = *.
m
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Suppose S C Vn. |S| < j±

1 " (1-P)|S|

n.
If v € VR - S then Pr(v € N (S)) =

(1-P)|S| I J|^. Hence

Pr<3 S e Vn: -±-3 i S < ̂ -and |N (S) | < ̂  |S|)
(logn)

n
logn

i 2 O Pr(B(n-s, ffi) ̂ iiffi)

s = n
60

(logn)

^ rneAs —anps

N n
4

for some constant a > 0

= o(n }.

Proof of (2.

Similar to that of (2.2f).

Proof of f2.2h)

Let s = f ^\. Now e (S,T) is distributed as the binomial
(loglogn)-3 p

2
random variable B(s ,p). But

ft S

e

Hence



1 2
_ 9 " ft S P

Pr((2.2h) fails in G J < Q e
P S

= o(n

and the result follows in the usual manner.

Proof of (2.2i)

The number of edges of G which are contained in V dominates
P n

B(|n 2,p). D

Now let <S = {G : (2.2) holds and 6(G ) > 2}.mm v m

§3. Proof of the theorem

We now describe a way of choosing a large set % of subgraphs of

G € <S , most of which are hamiltonian and such that if C,C are hamiltonm m

cycles of distinct H,H' € # then C ^ C .

Let A = V - NL, B = V+ - NL and for v € A letm n m n m

W(v) = {vw € E : w € B }.

Let LQ = flogn/10] and r be a prime satisfying

(loglogn) < r < 2(loglogn) , let k = [log^J and L = r . We treat

{1,2,...,L} as the points of the k-dimensional vector space over the field

with r elements, GFr. This space has K = rk~1(rk-l)/(r-l) lines. Let the

point sets for these lines be the r-subsets X1 .X^, . . . ,X^ of L. The only

property of these sets used is |X. fl X.| < 1 for i £ j.
^ J

For each v € A we choose a random L-subset W'(v) C W(v) plus a randomm -~

ordering Wj.Wg.-.-.Wj^ (of W'(v)). We then define r-subsets W(v,k) CW'(v),

k = 1,2,...,K by letting W(v,k) = {w. ,w. , w. } when
11 X2 Xr
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Now let $ = {f: Am -» {1,2,... ,K}}. For each f € * we will define a

subgraph Hr of G as follows: delete from G all edges incident with
i m m

A other than U W(v,f(v)). Let now # = {H.: f € $}. Observe
m v€A *

m

(n -n )
(3.1) |*| >K e

(3.2) If Cf ,C are hamilton cycles of Hf ,H , f * g then Cf * C .

For if f(v) * g(v) then Cf uses 2 edges of W(v,f(v)) and C can use at

most one edge of W(v,f(v)).

Now let Zm = |{f € $: Hf is not hami 1 tonian} |. We prove

(3.3) E(ZjG €

and so

Pr(Z > J2-I-G € <$ ) = 0(n * ) .
v m ~ n •• mJ v '

Thus

(3.4) Pr(Gm has fewer than (1 - £) (logn)*1 e

m

hamilton cycles \G € <S ) = 0(n ).
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The theorem follows immediately from (3.4).

We must now show that most Hf are hamiltonian.

Consider now a fixed f e $ . To prove (3.3) we show

(3.5) Pr(Hf is not hamiltonian|G € ^ = 0(n 3 ) ,

First of all consider the distribution of the edges in the sets

W(v,f(v)).

Lemma 3.1

Conditional on the sub-graph induced by V - A , the sets W(v,f(v)) are

an independent collection of random r-subsets of B .

Proof

Consider a fixed G , v € A and W(v) = N (v) fl B . (We cannot assume
m m v ' mv ' m v

G € <§ here.) Replacing W(v) by another subset of B of the same sizem m ' v ' m

does not change A or NL. We use here the fact that w € B has at leastm m

logn/10 neighbours in V and so changing the neighbours of v € A cannot

place w in NL. It follows that the sets W(v) are independent random

subsets and the lemma follows as the W(v,f(v)) are random subsets of these.

D

Let now X C E and HL v = H. - X. We say that X is deletable if
— m i ,A 1

(3.6a) |X+| = n where X + = {e € X : e C V +} ,

(3.6b) |X n W(v,f(v))| = 3 for v € A ,
m
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(3.6c) X is not incident with any vertex in

L = {v € V : d (v) < ±2EL + ? ^ }m l n mv y - 10 loglogn'

(3.6d) If v € Bm and d+(v) = [logn/lOj + k then v is incident

with at most k-1 edges in X.

(3.6e) No v € B is incident with ,2 j o s n or more edges in X+.v ' m loglogn &

(3.6f) M H
f ) = X(Hf x) where X denotes the length of the

longest path in the appropriate graph.

Observe that a calculation similar to that given for (2.2b) shows that

|L I < n in a.e. G . We now incorporate this condition into the

definition of <S .m

Our next lemma deals with the number of neighbours of subsets of A .
m

For S C V and subgraph H of G let N ^ S ) = {w € S: vw € E(H) for some v-~ n m rl

es}.

Lemma 3.2

The following hold with probability 1 - o(n ). Here let H = Hf.

(i) S C Am, 1 < |S| < ^~ implies |NH(S) | > 80 |s|,

(ii) S C A , T C B , |S| = |T| = f n 1 implies that H
>l loglogn

contains at least n loglogn edges joining S and T.

(iii) TCB m, |T| 2^-f—; implies |NH(T) fl Aj < 3r |T|.
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Proof

(i)

We first consider |s| < n/3r and show |Nfl(S)| > r|s|/2 with the

required probability.

Pr(3S: |S| < n/3r and |s|/2)

n
3r
2
s=l

rrs/2[rs/z yr J

n
3r
2
s=l

n
3r
2
s=l

n e 2(n-n )e
1 s l

rs
l2(n-n

,ne_ , ers -.r/2-.s
1 s l2(n-n ) ; *

= o ( n 3 ) .

Suppose now n/3r < |s| i n/600. Let S ' C S be of size \p/3r\. Then

|NH(S)| > |NH(S')|

> r[n/3rJ/2

> n/7

> 80 |S|.
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(ii)

Consider the selection of the sets W(v,f(v)) for v € S. This involves

rs (s = |s|) choices of elements in B and each choice always has

s ~~ r+1
probability at least of being in T. Thus the number of choices,

e

and hence edges in question, stochastically dominates the binomial
n, s - r+lA „
Birs, }. Hencev n - n *

Pr((iii) fails) < Q) Pr(B(rs, °n _ ̂  ) $ n loglogn)

and the result follows from the Chernoff bound (see for example [3]) for the

tails of the binomial since E(B(rs, s n"^
1)) z g f ^ y >

(iii)

F i x T ^ V r f e < |T| = t < | : and S C Am, | s | = 3r|T|. NOW if

n = |B | then

f

Pr(W(v,f(v)) O T ^ for all v € S) = (1 £o
)

i (1 - (1 ~ ^~)
n-r

n

Hence
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Pr((iii) fails) < ^ (»)(ln

t=n/(r logn) [3 rt/(r logn) [3

n/6r

t=n/r logn

= o(n"3). •

Let fif be the event denoting the occurrence of the conditions in the above

lemma.

Lemma 3.3

Suppose G € <§ , f € $, Sr occurs, X is deletable and H = Hr v. Thenm m t i, A

(i) S C V , |NU(S)| < 2|S| implies
— n n

(a) |S| > ^

(b) |(SUNH(S)) 0 (Bm)| > | + x •

(ii) H is connected.

Proof

Suppose S C V . Let Sn = S fi L , S, = S fi (L+ - L ) , S o = S n A and— n u m l m m z m

s3 = s- (s 0u S lus 2).

Assume first that |S3| i j^— and |S2| < ^.

Case l: |S2| < |SX U S3|.

(a) |S - S2| < 2|NL|.

Let S be the larger and S the smaller of S-.S^ Then
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|NH(S)| 2 |Nm(S0)| + |Nm(S^)| - fJgEL- |S*| - | S 2 U S |

2 |S | ,

(after using (2.2c), (2.2f), (2.2g) and (3.6e) to obtain the second

inequality).

(b) |S - S 2 | 2 2|NL|.

|NH(S)| > |NH(S3)| - |NLUS 2 |

| s 3 | - |NL| - | s2 |

2|S|,

(using SQ U Sj C NL and |S 2 | i | S 3 | + |NL|).

Case 2: |S 2 | > |Sj U S 3 | .

|NH(S)| > 80|S2| - 3|S2| + 2|SQ| - |Sj U S3| > 2|s|.

Suppose now that |SO| £ ̂ r and -r2— £ |SO| < ̂ r . Choose S' C S« of

size [yS—̂ J and let S' = (S-S^) U S'.
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|NR(S)| > |NR(S')| - |S3 - S^

, 2|S0| + 22|S2| * jgL ISJ + & - |§f - |S3| +

> 2|S|.

We have thus proved (i), part (a).

For part (b), we know, from part (a), that |s| > QQQ and hence

I S U S I ̂
Assume first that |S3| > j^. Suppose |(S3 U NR(S3)) H

< r n + -̂ -. Then there exists T C B of size at least -=- such that
JL o — m i

NH(S3) f1T = f Now it follows from (2.2h) that Gffl contains at least

™—j^- edges joining S~ and T. But X contains at most n edges
2(loglogn)b *

joining S3 and T and so NH(S3) n T * $ - contradiction.

Assume next that |SO| > ,.Ann. The proof here is similar to that above,

but relying on Lemma 3.2(ii) in place of (2.2h), and the fact that X

contains only 3 edges incident with each v € A .
m

(ii)

Suppose H is not connected and there exists S C V , |s| < ~- n such
— n £a

that there are no S to V - S edges in H. Now |(V -S) (1 {B ) I > ̂  and
n l v n ' v m / l ~ 3

(i) implies | s | > jgQQ. We obtain a contradiction using (2.2h) or Lemma

3.2(i i ) as in ( i )(b) . •

Suppose now that H- is not hamiltonian and X is deletable. Let

P = (XQ.XJ, . . . ,x^) be a longest path of both H« and H = Hf „. If
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x.x. € E(KL), i ̂  0, then the associated rotation with xo fixed and broken

edge ^ixi+1 yields a new longest path p(P,xo,x.) = (XQ.X. x.,x.,

Let END(P,XQ) denote the set of other endpoints of longest paths which

are obtainable in H from P by a sequence of rotations, with xQ fixed,

and starting from P.

We will restrict our allowable rotations to those where the broken edge

is an edge of the starting path P. We further restrict ourselves so that if

P' is obtained from P by a sequence of rotations through paths

P = P0,Plf...,Pk = P
r then the paths P ^ P ^ . . . ^ have distinct endpoints,

other than x~.

Suppose that the paths produced in the construction of END(P,xo) are

& = {P0,?1,?2 } where P° = P and P1+1 is obtained from some PJ, j <

i, by a single rotation.

Let END = END(P,xQ) U {xQ} and for each x € END let Px denote the

first path (in the above ordering) with endpoint x (so that P = P). For
X0

x j6 xQ let END(x) = END(P ,x). Now a simple modification of the argument of

Posa [6] shows that

|NH(END(x))| < 2|END(x)|.

(Indeed, all we have to show is that if v € NH(END) with neighbours ^,w 2

on P then {Wj.Wg} fl END * <f>. Suppose w' € END and vw' € E(H). Consider

the neighbours w|,w' of v on P ,. If {w' wi} = {w^.w^} then some

allowable rotation from P , shows one of w1two is in END. If say
W A £

wi ^ (wi»wo} then the sequence of rotations that created P , deleted the

;e vw- and so w- € END.)
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We deduce from Lemma 3.3 that

(3.7a) |END(x)|>^ for x € END

(3.7b) |END| > ggy

2
(3.7c) Each P , x € END, contains at least zr en edges

X *3

with both endpoints in B .
m

To see (3.7c) let n., i = 0,1,2 denote the number of edges of P with i
i x

vertices in Bm. Then i^ - nQ 1 ( |V(Px) fl BJ - |V(Px) fl (Vn U NL)|) - 1.

Since P is a longest path, it must contain N,,(END(x)). But then Lemma 3.3

implies |(END(x) U Nfl(END(x))) D (Bm) | > | n + ^- and so n2 - nQ > | n +

- (|n - ̂ - + o(n)) - 1 and (3.7c) follows.

Given (3.7) we consider two possibilities.

Case l: there exists x € END such that |END(x) fl B | I S
m

Case 2: |END(x) 0 B I < rr^r for all x € END.

en

Case 1 is easier to deal with and is considered first. Without loss of

generality assume |END fl B | > TSTTPT i.e. x = xn suffices above. Observe|
m

that because H» is connected,

(3.8) x € END, y € END(x) implies xy € E(Hf).

(We use the "colouring" argument of Fenner and Frieze [5] to show this is

unlikely when a large number of x € B . Since A contains no edges in Hr,
m m i
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(3.8) does not help so much in Case 2 and we are in a similar situation to

that encountered in the case of random bipartite graphs, Frieze [6]).

Suppose now that given G € <§ , we randomly pick X C E satisfying

mm — m
(3.6a), (3.6b). We consider two events:

«1 = &r fl {G € <g , Hr i s not hamiltonian, Case 1 occurs}l t m m i

$2 = gj fl {X i s deletable}.

We show

(3.9a)

(3.9b) P r( g2^ ~ CT for SOme constant

We can then deduce

(3.10) Pr(51)

Proof of (3.9a)

Fix G € <§ and the choices W(v,f(v)) for v € A . Fix some longest

path P of Hf. Consider first the edges of X that meet Am. Each

W(v,f(v)) contains at most 2 edges of P. This accounts for the term

2 ne
(1 ) . Now consider the remaining n edges of X. Now to avoid P and

the edges incident with NL, X must avoid at most n + o(n) edges, given

(2.2a), (2.2b). Using this and (2.2i) we obtain (1 - jf^-)n as a lower bound

for the probability of avoiding these edges. Given that these edges are not

selected, the probability that (3.6d) or (3.6e) fails is o(l), which accounts
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for the g-

Proof of f3.9b)

Consider fixed graphs G, H. We show

(3.11) PrCfi2lGm - X = G. H f X = H) < cj

and (3.9b) follows.

Observe that G - X, Hr v together determine A by v € A iff
m i ,X m m

v < n and it loses edges in Hr v. NL is then determined by v € NL iff

v € A and d (v) < ĝ or v € V and v is the neighbour of such a
e

vertex.

If Pr(£o|G - X = G, HL v = H) > 0 then there exists X such that £o^ m i, A £

occurs for G + X, H + X. Hence we may assume that (3.7) holds where END,

END(x), x € END are determined by H only (and are independent of X). We

may also assume Case 1 occurs in H.

Furthermore the edges in X are required to conform to (3.8). Thus let

&~ denote the event {x € END, y € END(x) implies xy € X}. Then

(3.12) Pr(g2|Gm-X = G, Hf x = H) < Pr(92|Gm-X = G, Hf x = H, (3.6c), (3.6d)).

(For (3.12) use Pr(A|BC) > Pr(AB|C) for events A,B,C).

Let us now consider the distribution of X given G -X, Hf v and
m i ,A

(3.6c), (3.6d). Let X = X+ U ( U Y ), where for v € A , Y = {vw € X}. We
v€A V m V

m
claim that
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(3.13a) X+ is a random n-subset of B w - E(G),

(3.13b) For v € Am> Yv is a random 3-subset of {vw € E(G): w € B }

and these subsets are independent of each other.

(3.13a) follows from the fact that given (3.6c), (3.6d) holds for one X, the

addition (and subsequent deletion) of any n-subset of B ^ ' - E(G) does not

affect H- Y and (3.6c), (3.6d) will still hold. (3.13b) follows from Lemma

3.1 and its proof.

Now for w € END 0 B let 0(w) = |END(w) O B |. The following 2

subcases cover all possibilities:

Case la: |{w: P ( w ) > J ^ } | > ^

Caselb: |{ w: P(w)<

+ n" n
eIt follows from (3.13a) that, where n = ( „ ) and m < m,

rv+ - m - 3n2/(2(2400)2h +_-
Pr(«2lease la) < [ n j/(U

n
 m)

r95999.n

It follows from (3.13b) that

1b)

We have thus confirmed (3.9b).

Let us now consider Case 2. Let £<. be as before, except that Case 2
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replaces Case 1 and let £~ now be defined with respect to the new £j.

(3.9a) continues to hold. We prove

(3.9b') Pr(S2|Gm-X = G, Hf x = H) < c* for some constant

0 < c2 < = c2(e) < 1

which combined with (3.9a) yields

(3.10') PrCfij) < (c
2

From (3.10) and (3.10r) and the fact that Pr(fif |G
 e \) = * ~ °(n~3)

obtain (3.3) and the theorem.

We observe that (3.13) continues to hold. We can assume that H

contains a longest path P with endpoints xn,x1 and ^ ^ vertices

END C Am and for each x € END there is a set of g^j paths #x with

distinct endpoints (END(x)). These will have been constructed from a path P

by rotations as in the discussion prior to (3.7).

We now consider in more detail the construction of END(P,xn). Let

T = T(xQ) denote the tree with vertex set END(P,x0), rooted at x. and with

an edge directed from x to y if P is obtained by a single rotation from

P. Let y be the set of possible trees that can be so constructed.

Consider the following condition:

d: there exists T € y such that T contains a subtree T', rooted at x-,

which has (i) |V(T') n A l > 4 r and (ii) |V(T') fl BJ < -7§
m1 ~ 4800r"

Suppose now that si holds. For each v € END' = V(T') fl A let

denote the neighbour of v on P .
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Lemma 3.4

If d holds then |«(ENDf)| > ^
9600'

Proof

We show first

(3.14) y € *(END') - V(T') implies |#"1(y) | < 2.

We do this by showing that if y = <f>(x) then xy is an edge of P. This is

clearly true if x = x- . If x * x1 then y is adjacent to x on P . If

xy is not an edge of P then y is an ancestor of x in T'.a

contradiction, as y € V(T').

Now (3.14) implies that

(3.15) |«(END')| > i|END' - •~1

But since * ^(END') fl V(T')) C N^(B ) fl A we see from Lemma 3.3 and
H

sf(ii) that

fl V(T'))| < i g ^ f • 3r

and the lemma follows from this and (3.15). •

It is important to note that any path obtained from P , x € END' by a

sequence of rotations with x fixed has •(x) as x's neighbour.

Suppose now that si does not hold. We will obtain a contradiction. Let

T € y. Since |V(T) fl A j > ̂ ^ we must have |V(T) PI Bm| > 35^7. Then T
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contains a subtree T with |V(T) D B m| = l̂ gQOi-J a n d s i n c e ** d o e s n o t h o l d

m

|V(T) n A I < Y ^ T . Let S = V(T) O B . It follows from (2.2h) that |N^
in i^uu m IT

fl B h ̂ . Now if v € S, w € N^(S) OB and vw € E(H) then we can
mo Tj m

legitimately construct p(P ,xo,w) unless the associated broken edge

ww' € E(P). But this latter condition rules out at most 2|V(T)| rotations: -

(2 for each added edge of each P^, v € V(T)). The same w' can be produced
v

at most twice in this way. Thus there exists T € J which contains a

1200
subtree which is obtained from T by adding at least ^ { ^ - 2(1200

 +

7? leaves. Since si does not occur, at least 7? - 1 o r^ > 3- of these new
• 1 l^UU o
leaves are in B . But this means Case 1 holds, a contradiction,

m

Applying this argument for each x C END i.e. constructing a tree T(x)

of paths starting with P , we deduce, from Lemma 3.4 that the following is

true:

Lemma 3.5

In H there are ^^ vertices y^yo,... in END fl A and a set of
youu 1 z m

vertices z1fzo>... in B such that for each i there are
1 z m

longest paths with one endpoint y.,z. adjacent to y. on each path and the

other endpoints of each set of ToTvT paths are distinct members of A . D
IZuu m

Let Y.t i = l,2,..., Qpryr) denote the set of other endpoints of the paths

with one fixed endpoint y..

We can now confirm (3.9bf). We must add random edges, as in (3.13), and

show that with high probability these extra edges make the resulting graph

ss.

hamiltonian or have a longer path than H.

We consider the edges in (3.13b) to be added randomly in 3 waves X-f X 2 >
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Kj U X+ where |Xj | = l^l = l^l = |Am| and each v € Am is incident with

one edge of each X , t = 1,2,3.

Adding

For y € Y = U Y± let 6(y) = |{i: y € Y±)\. Clearly |Y' | I ̂

where Y' = {y € Y:
8(1200)

If y € Y' then independently of other members of Y'

Pr(for some i, X.. contains an edge yz. where y € Y.) >
X X jt f ̂  r\/4(1200)'

Hence there exist constants 0 < f 1 ,TJ1 < 1 such that

Pr(g-) 1 1 - T7?

where

So = {X.. contains f-n edges of the form z.y, y € Y.}.

Assume now that S^ occurs.

We now have f.n cycles C-fCpt... say, plus an edge joining y. to

C.. Applying (3.7c) we see that each C. contains a set of vertices K.,

|K. I > z? en, where v € K. implies v lies on an edge of C. with both
X «3 X X

endpoints in B .

Adding

Now, independently, for each i, Pr(X^ contains an edge y.u where
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u € K.) > e. By considering these cycles one by one, we see that there exist

constants 0 < f 2 = ? 2(
e)' ^2 = ^ 2 ^ * 1 S U c h t h a t

Pr(g4|53) > 1 - T£

where

contains f~n edges of the form y.u., u. € K.

and the B neighbours v-,vo,... of u1 ,uo,... on C. ,CO,.. .m l z I z l z

are distinct).

Now each time X~ contains an edge y.u., u. € K., we can obtain a longest

path of H + (X- U X,̂ ) with one endpoint y. and the other endpoint in B
X Z 1 ill

by using the edges (C^ U {Yi
u
i}) " ^

uivi^#

Assume that S. occurs.

Adding X 3 U X*

We now have f3n longest paths Q-.Qg,.. . of H + (Xj U X 2 ) , each with a

distinct endpoint v. € B . We are now essentially in a Case 1 situation.

Take each Q. and using v. as a fixed endpoint generate > g^r longest

paths by rotations. Now throw in L U X . The probability that we fail to

close one of these paths is exponentially small. (3.9br) follows and we are

done.
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