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Abstract

It is desired to control a two-dimensional Brownian motion by adding a
(possibly singularly) continuous process to it so as to minimize an expected
infinite-horizon discounted running cost. The Hamilton-Jacobi-Bellman
characterization of the value function V is a variational inequality which
has a unique twice continuously differentiable solution. The optimal control
process is constructed by solving the Skorohod problem of reflecting the

two-dimensional Brownian motion along a free boundary in the -vV direction.

Key words: Singular stochastic control, variational inequality, free boundary
problem, Skorohod problem.
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1.1

1. Introduction.

We study regularity of the solution of the variational inequality
associated with a two-dimensional singular stochastic control problem with a
convex running cost. The solution u of this variational inequality, which
is the value function for the control problem, is shown to be of class C2.
We also study the regularity of the free boundary in Rz which divides the
region where u satisfies a second order elliptic equation from the region
where it does not. The free boundary is shown to be smooth, and this fact is
instrumental in our construction of the optimal process for the stochastic
control problem.

Previous work on the regularity of the value function in singular
stochastic control has focussed on one-dimensional problems. Benes, Shepp &
VWitsenhausen (1980) suggested that the value function for these problems
should be of class C2 and used this so-called "principle of smooth fit" to
determine some otherwise free parameters which arose in the solution of their
problems. It has been used in the same way by Harrison (1985), Harrison &
Taylor (1978), Harrison & Taksar (1983), Karatzas (1981, 1983), Lehoczky &
Shreve (1986), Shreve, Lehoczky & Gaver (1984) and Taksar (1985). See also
Chow, Menaldi & Robin (1985). An important question is whether the principle
of smooth fit can be expected to apply to multi-dimensional singular control
problems, or is it strictly a one-dimensional phenomenon. The paper Karatzas
& Shreve (1986) suggests that it might apply in higher dimensions. These
authors study the singular control of a one-dimensional Brownian motion under
a constraint on the total variation of the control process (a "finite-fuel”
constraint). The fuel remaining constitutes a second state variable, and the
value function for this problem was found to be of class C2 jointly in both

state variables. One should observe, however, that the second state variable
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observe, however, that the second state variable in this problemis not a

di ffusion; indeed, the fuel remaining is constant until control is exercised
at which time it decreases an amount equal to the displacenment caused by the
control

The present paper concerns the control of a two-dinensional Brownian
notion, and control can cau§e di spl acenent in any direction. Thus, the
di scovery of a C% val ue function provides strong support for belief in a
wi dely applicable principle of smoboth fit. Nonetheless, the argunent of this
paper depends heavily on the fact that only two di mensions are involved (see
Remark 6.2), and we have not found a way to obtain a simlar result in higher
di nensi ons.

Thi s paper is organized as follows. Section 2 defines the underlying
stochastic control problem and Section 3 relates it to a free boundary
problem the so-called Hanilton-Jacobi-Bellman (HIB) equation. Section 4
constructs a Cl'l, nonnegative convex solution u to the HIB equation and
proves its uniqueness. Sections 5-10 upgrade the regularity of u to <$2.
The key idea here is to use the gradient flowof u to change to a nore
convenient pair of coordinates. This is a generalization of the device used
by nany authors in one-dinmensional problens of differentiating the Bell man
equation so as to obtain a nore standard free boundary problem In Section 11
the free boundary is shown to be of class C?’a for any a € (0,1). In
Section 12 we return to the stochastic control problem which now reduces to
the Skorohod problem of finding a Brownian notion reflected along the free
boundary in the - vu direction. The established regularity of u and the
free boundary allow us to assert the exi stence and uni queness of a solution to
the Skorohod problemand finally conplete the proof begun in Section 3 that u

is the value function for the stochastic control problemof Section 2.
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2. The singular stochastic control problem

Let {Wt, Fos

0 { t  ®} be a standard, two-dimensional Brownian motion
defined on a complete probability space (2, ¥, P), and let {?t} be the
augmentation of the filtration generated by W (see Karatzas & Shreve (1987,

p. 89). The state process for our control problem is

t

(2.1) X, &x+ 2 W, + J

N dC.. 0t < =,
o S s

where x € R2 is the initial condition and the control process pair

{(Nt' (t); 0 <t<®} is {3t}—adapted and satisfies the conditions:
(2.2) IN|] =1, VO<Ct<®» a.s.,
where |<| denotes the Euclidean norm, and

(2.3) C 1is nondecreasing, left-continuous, and CO =0 a.s.

The process N gives the direction and { gives the intensity of the "push”

applied by the controller to the state X.

Given control processes N and (, we define the corresponding cost

(2.4) Vi () 8 gX J; ™" [h(X,)dt + dC,].

2 . .
vhere h: R® - R is a strictly convex function satisfying, for appropriate

positive constants CO’ co and q:
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(2.5) h € C%;,i (®).
(2.6) 0 < h(x) € Cy(1 + [x|%) V x € B2,
(2.7) lvh(x) | < Cy(1 + h(x)) V x € R,

(2.8) cO|y|2 < Dzh(x)y +y ¥« Co|y|2(1 + h(x)) Vx € lR2 y € IR2.

Without loss of generality, we also assume that
2

(2.9) 0=h(0) {h(x) Vxe€R".

For x € IR2, we define the value function

A
2.10 V(x) € inf V .
(2.10) %) 2 Inf Yy (9
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3. The Hamil ton—-Jacobi-Bellman equation

We shall show that the value function V of (2.10) is characterized by

the Hamilton-Jacobi-Bellman (HJB) equation

(3.1) max{u - Au - h, |vu|2 - 1} = 0.

The following theorem gives a partial description of the relationship between
V and the HJB equation. More definitive results are proved in Section 12.
. p2 C2 .
3.1 Theorem. Let u : R - R be a convex, solution of (3.1). Then
u V. For agiven x € Rz, suppose there exists a control process pair (N,{)

such that VN c(x) { ® and the corresponding state process (2.1) satisfies

(3.2) u(X,) - Au(X,) - h(X,) =0 V t € (0,%), a.s.,
t

(3.3) Io I(Ns _ vu(Xs)}dcs =C, Vte[o.),as.,

(3.4) u(X,) -u(X,) =C,-C V te[0®),as.

Then

u(x) = V(x) = VN,Q(X)’

i.e., (N,{) is optimal at x.
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Proof: Let x € R2 and any control process pair (N,{) be given. Applying
Itd’s rule for semi-martingales (Meyer (1976), pp. 278, 301) to e—tu(Xt),
adjusting the result to account for the fact that { is left-continuous

rather than right-continuous, and observing that Ivul {1 so
t

E I e_svu(X )dW_ = O, we obtain for t > O:
0 s’ s

t
(3.5) u(x) = E e—tu(Xt) +E J;e_s[u(xs) - Au(X.) - h(X )1ds

t t
+E J;e—sh(xs)ds +E J;[—e—svu(xs) - N_Jdg_

*E 0$§<te_s[u(xs) - u(XS+) * vu(Xs) : Ns(cs+ B cs)]'

The second and fifth terms on the right-hand side of (3.5) are nonpositive
because of (3.1) and the convexity of u, respectively. Because |wvu| <1,

t
the fourth term is dominated by E J e—sdfs, and thus we have
0

t
(3.6) u(x) <Ee u(X) +E J e °[h(X_)ds + & ].
0

We wish to let t - ® in (3.6) to obtain

(3.7) u(x) < E J; e"s[h(xs)ds +d]= VN’c(x).



3.3

o«

Assume E J e-sh(Xs) ¢ ®, for otherwise (3.7) is obviously true. This implies
0

that

Lim E e ‘h(X,) = 0.
-0

Now (2.8), (2.9) and the inequality |wvu| < 1 (from (3.1)) imply that

Vy¢€ Rz.

(3.8)  u(y) <u(0) + |yl <u(@) + 1+ |yl <u@) +1+ %h(y).
SO

Lim E e “u(X,) = 0.
t-0

We may therefore pass to the limit in (3.6) along a sequence {tn}:_1 such
-t

that E e n'u(Xt ) 20 as t 2 and (3.7) follows. Since (N,{) is an
n

arbitrary control process pair, we have u(x) < V(x).

If (3.2)-(3.4) are satisfied, then the second and fifth terms on the

t
right-hand side of (3.5) are zero, and the fourth term is E J e—sdgs. It
o

follows that equality holds in (3.6), and hence also in (3.7), i.e.,

u(x) € V(x) ¢ V(N’c)(x) = u(x). o
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3.2 Remark. Equation (3.1) is similar but not equivalent to a problem arising
in elastic-plastic torsion (Ting (1966, 1967), Duvant & Lanchon (1967), Brezis

& Sibony (1971)). The elastic—plastic problem is posed on a bounded domain

n . e e .
NCR, and is to minimize

J(v) éf 1 |vv|2+%v2-vh
Q

over K 4 {v € Hé(Q); fivvll , < 1}. Equivalently, one seeks u € K satisfying
J\(h - u)(v - u) - J\vu * (ww-wvu) <O VveK.
If u solves the elastic-plastic torsion problem, then
(u - Au - h)(|wu| - 1) =0,
but u - Au - h may be positive. In the special case that h is a
nonnegative constant function, a solution to the elastic-plastic problem also

satisfies (3.1) (see Evans (1979), Section 6), but such an h is not

interesting in the control problem.
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4, Sol ution of the Hamilton-Jacobi-Bell nan _equati on

The existence of a V\i;g; solution to the HIB equation (3.1) follows from
a nodi fication of Evans (1979) (see also Ishii and Koi ke (1983)), who treated
a bounded domai n and general h and space dinension. W need to refer to
this construction in the next section, so we provide it here.

Let j3: R-*R bea C° function satisfying

(4.10) J3(r) =0V r € (-0 0],
(4.1ii) I2(r) >0 V r € (0, <,
(4.1iii) 13(r) =r - 1 Vr €[2«),
(4.1iv) j3(r) =0, P(r) >0 Vr €R

For each e > 0, we formthe penalization function
(4.2) i3(r) & P(r;—l) Vr €R

and we consider the penalized equation

(4.3) u® - Au® + Pe(|vu®|? = h.

The following lemma is proved in the appendi x.

4.1 lemmm. For every e € (0,1), there exists a nonnegative, convex, <J2

solution u® to (4.3). There exist positive constants CII' CIZ and p,



4.2

independent of e, such that V e € (0,1), V x € Rzi

(4.4) 0 < u(x) < c (1 + [x[P),
(4.5) x| < c 1+ Ix[P).
2
and for every y € R™,
2 € 2 3
(4.6) 0 < Du (x)y+y £ Coly[|™(1 + u™(x)).

4.2 Definition. We define a norm on the vector space of 2 x 2 matrices by

nan & Jerace(anT) .

If A 1is symmetric with eigenvalues A, and A2, then

1

(4.7) nAn = 2 + Ag

1

4.3 Theorem. The HJB equation (3.1) has a nonnegative, convex solution

2'“ . 3
u € weoc satisfying

(4.8) IDZaGl < €y (1 + [x|™). ae. x € R,

for some C3 >0 and m € .

Proof: Because D2ue is locally bounded, uniformly in e € (0,1), we may
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€

00 e . n, o
choose a decreasing sequence {en}n—l with limit zero such that {u }n=1 and
®n,® . 2 “nw .
{vu }n—l converge uniformly on compact sets, and {D” u }n=1 converges in

3 €
the L; - weak* topology. Define u = limu N so that wvu = lim wu ' and
oc n—® n—°
x* 2 “n 2 .
the weak limit of {D"u }n—l is D%, Passage to the limit in (4.3) gives

(3.1). =

[+ ]
Lemma 4.4. lLet u € W%;c be a nonnegative, convex solution to the HJB

equation (3.1), and define

(4.9) e 2 (x e R |vu(x)|? < 1}.
Then for every unit vector v,
(4.10) u 0% v-v>0 o e

€ 1is bounded, and u attains its unique minimum over Rz inside <.

Proof: We have

(4.11) u - Au

I
=

on %,

and heCl(®). so ueche) vae (0.1). Differentiating (4.11). we

obtain

vV VD v
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and since hvv > 0, relation (4.10) holds. Equation (4.11) also implies that
u>h on €, and since |vu] ¢ 1 on Rz but h grows at least quadratically

(see (2.8)). € must be bounded.

Let 6 € (O, %) be given, and choose x6 € Rz such that

u(xa) Cu(x) +6 Vx€ Rz.
Define

u(x) + 6 |x - x V x € R,

6,2 2
¥5(x) I
and note that wb attains its minimum over Rz at some point ya. In

particular,
(4.12) 0 = w,(v") = m(y?) + 28(s° - 0.

But also
uy®) + 81y° - 1% = v (5% € v, (0) = ux®) < u(r®) + b

It follows that |y6 - xal { 1, and returning to (4.12), we see that
1

Ivu(yb)l { 26 < 1. Therefore, y6 €€ V6 € (0, %), and the sequence {yn}:=3
accumulates at some yo € €. From (4.12) we have vu(yo) = 0, so yo € €, and
the convexity of u on Rz implies that u attains its minimum at Yo

This minimum is unique because of (4.10). o
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[vo]
4.6 Theorem. There is only one nonnegative, convex solution u € W%;C to the

HJB equation (3.1).

Proof: Let uy and u, be two nonnegative, convex solutions to (3.1), and

let yo be the point where U, attains its minimum. Given 6 > O, define

¢6(x) 4 ul(x) - u2(x) -6 |x - y0|2 Vx€ Rz.

The function ?5 attains its maximum at some xa € R2, and O = v¢6(x6) =

vu, (%) - vu, (%) - 25(:° - ¥).

Consequently,
6,12 é 0
e A e T L O [ e A
+ 46 vu2(x6) . (x5 - yo).

Because u, 1is convex, vuz(xb) . (xG - yo) 2 0, so either |vu2(x6)|2 <1 or
(]
X = yo. This last equality would imply that vu2(x5) = 0, so in any event,

|Vu2(x6)|2 < 1. From (3.1) we have
o 6 6
A uz(x ) = u2(x ) - h(x").

R . . 6
Because ¢ attains its maximum at x , we have from the Bony maximum

principle (Bony (1967), Lions (1983))
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O 2 lim inf ess A ¢(x)

X =X

lim inf ess [A ul(x) - A u2(x) - 49]

X =X

A\

u, (%) - uy(x%) - 46.

It follows that VY x € Rz.

(%) - uy(x) = 95(x) + 5 |x - y°I?

IN

95(x") + 8 |x - y°I?

0,2
5 (4+ |x-y 9.

IN

Letting & | 0, we obtain vy < Uy The reverse inequality is proved by

interchanging u, and u,. a

4.6 Remark. Throughout the remainder of the paper, u will denote the unique
nonnegative, convex solution in W%;: to equation (3.1). The set € will be
given by (4.9), and yo € € will denote the unique minimizer of u. We shall
prove that u € C%ég(mz) Vac€ (0,1) (Theorem 10.3), d€¢ 1is of class

C2,a V a € (0,1) (Corollary 11.3), and n(x) * vu(x) 2 o V x € 3¢, where n(x)
is the outward normal to € at x and o is a positive constant (Lemma

12.3).
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5. An obstacle problem

Let us return to the construction of u in the proof of Theorem 4.3 as

€
. n,® n P
the limit of a sequence of functions {u }n-l’ where each u satisfies

€ €
(4.3). Define w n 4 vu n|2 and compute the product of wvu % with the

gradient of both sides of (4.3) to obtain

en 1 en en 2 en en en en
(5.1) woo- §-A v+ Zﬁé (w )(Du )vu "+ vu =H
n
where
€ € €
H®2 vh - vu ™ - ip?u ™2

€
Along a subsequence, which we also call {en}:—l' {H n}:_l converges to

(5.2) A2 vh« wu-x.

2 €n 2 %* © .
where x 1is the limit of |ID"u 'll in the weak topology on L£oc’ We will
show that

w = |vul? = lin |vu |2

solves an obstacle problem involving H, and we will then obtain W?éz

regularity for w by invoking the theory of variational inequalities.

For r > O chosen so that Br(O) 4 {x € R2; [x| < r} contains <€, define
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K 2 {vew?(B); 0O<v<lonB andv- 1€w?B)}.

Ve pose the problemof finding <p € K such that
r

(5. 3) gJ[Br(O)vp- (w- v P E\f{O) (H-wW(v- <9 V V€Kr..

5.1 Lenma. The function w= |vul “ solves (5.3).

Proof: Let v € K. be given. From(5.1) we have

(5. 4) I (W”-lAW”-H”)(v-W”)

=~ 1 203 (w) (DE V" v (V- W)
'BfO °n

e e e
The function u" is convex, j5¢ (w") =0 whenever w" <-1, and
n
e

vV - wen< 0 whenever w NS Therefore, the right-hand side of (5.4) is

nonnegative, and integration by parts yields

; € n & 1 € i
(5.5 .if (Vv-w')vw'-n+2~r1 vw'- (w-vw")
VAR yAN]
aB_(0) B, (0)
n £ £ £
2 | n
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€
where n is the outward normal on aBr(O). Now w " > v uniformly on

€ € _ €
aBr(O), w " > w uniformly on Br(O), and H™ > H, vw " > vw, both the latter

€

*
convergences being weak  in L?(Br(O)). Because the weak limit of |vw n|2

dominates |vw|2, we may pass to the limit in (5.5) to obtain

(5.6) 5 vw o+ (Vv - vw) 2 IB (o)(ﬁ -wW)(v-w) VveEK.
T

5.2 Theorem. For every p € (1,®), w 4 |VU|2 c w%;z.

Proof: This is a classical result. See, for example, Lemma 5.1 and Theorem
3.11, p. 29 of Chipot (1984).

a

5.3 Corollary. We have w € cl'“(mz) for any a € (0,1).

Proof: This follows from Sobolev imbedding (Gilbarg & Trudinger, Theorem
7.17, p. 163). a

5.4 Remark. Integration by parts allows us to rewrite (5.6) as

(W-sMw-H)(v-w20 V vek,

JB,.(O)
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for all sufficiently large r, and so

(5.7) max {w — %'AW -H, w-1} =0.

Now x appearing in (5.2) dominates HD2uH, and so H is dominated by

(5.8) HE vh + vu - 10%ur?.

But let x0 € € be given and choose e > 0 such that the closed disk

B2e(x0) is contained in €. Choose a positive integer N such that

e ——————————
lva ®x)] <1 ¥V n 3N x€B, ().

From (4.1i), (4.2) and (4.3), we see that

n n 0
u -Au =h on Bze(x ).

According to Theorem 4.6, p. 60 of Gilbarg & Trudinger (1983), for every

€
a € (0,1), |u is bounded uniformly in n > N. Thus, on

"
,a 0
(8, ("))
€
Be(xo), D2u ™ is continuous and converges uniformly to D2u, X = HD2uH2. and

H = H. We conclude that (5.7) remains valid if H is replaced by H, i.e.,

(5.9) max{w - %-Aw - H, w-1} =0.
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6. D2u inside €

Inside the set € defined by (4.9), u satisfies the elliptic equation
u - Au = h, and is therefore smooth (at least C4’a V a € (0,1) because h is
C2’1). In this section, we describe the behavior of D2u as J€ is

approached from inside <.

6.1 lemma. Let z € 3¢ be given. As x € € approaches =z, Dzu(x)

approaches the matrix

A ug(z) —ul(z)uz(z)
A(z) = (u(z) - h(z)) > -
-ul(z)uz(z) ul(z)

where uy denotes the i-th partial derivative of u.

Proof: Because w = lvul2 =1 on J€, A(z) can be characterized as the
unique 2 x 2 positive semidefinite matrix with eigenvalues zero and

u(z) - h(z), and with wu(z) an eigenvector corresponding to the eigenvalue
zero. Let v be a unit vector orthogonal to the unit vector wvu(z). It

suffices to show that

(6.1) lim D2u(x) vu(z) = O
X=Z
X€Q

(6.2) lim D2u(x)v = (u(z) - h(z))v.
Xz
x€¢ '

2
Because w = |vu|® attains its maximum value of 1 at z, and ww is
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continuous (Corollary 5.3), we have

0 = vw(z) = lim vw(x) = lim Dzu(x) vu(x).
X—Z X-Z
x€¢ x€¢

Since wvu is continuous and D2u € L:oc' (6.1) follows.

Let O = Al(x) < Az(x) denote the eigenvalues of D2u(x). Then

]
]

u(x) - h(x) = Au(x) Al(x) + Az(x) Vx €€, and (6.1) shows that

lim Al(x) = 0. Consequently,

X—Z

X€Q

(6.3) lim Az(x) = u(z) - h(z).
Xz
X€Q

which is thus nonnegative. If u(z) - h(z) = 0, then D2u(x) approaches the
zero matrix and (6.2) holds. If wu(z) - h(z) > O, then (6.1) implies that any
unit eigenvector corresponding to Al(x) must, as x € € approaches z,
approach colinearity with wu(z). Hence, any unit eigenvector corresponding

to R2(x) approaches colinearity with v, and (6.2) follows from (6.3). O

6.2 Remark. The characterization of A(z) used in the proof of Lemma 6.1
makes critical use of the fact that our problem is posed in two dimensions.
The two-dimensional nature of the problem also plays a fundamental role in
Lemma 8.1, and together these lemmas provide the basis for Section 10, where

. . 2 2 . .
the existence of a continuous version of D™u on R is established.

6.3 Theorem. For every a € (0,1), u € Cz’a(é), i.e., D’u restricted to €

has an a-Holder continuous extension to <.
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Proof: Because |vu|l =1 on 8¢, we can choose an open set G C € such that

|[vu| is bounded away from zero on €\G. Elliptic regularity implies the

Holder continuity of D2u on G, so it suffices to prove uniform Holder

continuity of D2u on @\G.

Let a unit vector v be given, and define on 6\G, 7 e

Tl -

A
z=v - (vem)m,

z
if z #0,
a | T2T
¥ =
[_‘1) (l)]n if z=0
Observe that n * v =0 and |n| = |v| = 1. Therefore,

Au = (D2u) n'n + (Dzu)1°7 on €\G.
Direct calculation shows that on %\G,

(%) vev = (D) z-z + 2(v-n)(D2u) n°z + (v-m)2(D%u) n°n

& (0%u)nen) + 2(v-n)(D%u)n -+ (v - (vem)n)

|z |“(Au

(v'n)2(D20)n°n-

+

Since Au = u-h and 2(D2u)n

W
T;GT- on €\G, we have
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(6.4) (Dzu)v°v = Jv - Lzlzgl-vulz (u-h - %-LZ!:%EIJ
|vu| |vu|
vevu *vu 2
+ 5 VW s v - iB-——%—-v w * vu on %\G
lvu] 2|vul

All the terms appearing on the right-hand side of (6.4) are uniformly Holder

continuous in ¢\G (recall Corollary 5.3). 8]
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7. The gradient flow

Recal ling Remark 4.6, we let y0 € ~ denote the unique mnimzer of u.

Using the strict convexity of u in " (Lemma 4.4), we choose 6 >0, p. >0

such that

(7.1) Bzs(y°) C<6,

(7.2 Du(x)y « y >nlyl® Vx€By(y°),

(7.3) VL fvu(x)]?<yl V x € dBly®),

(7.4) vu(y® +69) « 6>p. V6€S,
A (0]

where S = dB”"0O) is the set of unit vectors in IR. For 0 € Sj, we define

the gradient flow ~(t,0) to be the unique solution to the differential

equati on

(75) d-drn/\*lﬁ) =VU(X|/(t|0))« t >__o.

with the initial condition
(7.6) A(0,0) =y° + 60.

W will find it convenient to use \fj to change coordinates in R2. The

follow ng theorem justifies this.

.1 Theorem The map ¥# is a honeonorphismfrom[0,«>) x S onto IR2\B"(yO)..
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Proof: Let us for the nonent fix 0 € S; and define

n(t) g>Kt,9) -y®> Vt >0. Because |vu <1, we have |n(t)|] <t +5, and
O At . R2
y + —+—n(t) €Bz5(y(5 Vit >0. W conclude fromthe convexity of u on |
and from(7.2) that for t > O:

(7.7) &tln(t)|2=2 vu(y® + n(t)) < n(t)

= 2[vu(y® +n(t)) - vu(y® + ¥ n(t))] « n(t)

+ 2 [u(y®+"*n(t)) - vu(y®)] = n(t)

22 f  Dlu(y® +-mt))n(t) « n(t)di~

2000 A ) |n(t)]%
Since |n(0) | =6 wecanintegrate (7.7) to obtain the inequality
(7.8) [*(t.e) - y°| 2™ ( 1V\ ) ** et ">Vt >_0, 0€s;.
e consequence of (7.8) is that
(7.9) K(s,9) - *0<3)l >0 Vs >0 6€£S y€S

Now let s,t € [0,«) and O € 31 be given. Again using the convexity

of u, we nay wite
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(7.10) |y(t+s,0) - ¢(t.¢)|2 = |y(s.8) - ¢(0.¢)I2

t
+ 2 Jo[w(¢(7+s,9)) - vu(y(T.¢))]

- [y(7+s,0) - ¥(T.9)1dT
> 1¥(s.8) - ¥(0.9)|2.

If 6, ¢ are in S1 and tl,t2
(7.10) imply that \p(tl,e) # \Il(tl,cp). If t =ty but 6 # ¢, then the

uniqueness of solutions to (7.5) implies that ¢(t1,e) # w(t2.¢). This

are in [0,®) and t; £ty then (7.9),

concludes the proof that ¥ 1is injective.

It is clear from its definition that ¢ 1is continuous. Define
D & ([0.%) x §,) € RA\B,(y")

to be the range of Y. Let X €D and € > O be given. It follows from

(7.8) that there exists T > O such that
DN Be(x) C ¥([O0,T] x Sl)'

But an injective, continuous map on a compact set has a continuous inverse, so

¥ is continuous at x.

It remains to show that D = R2\B6(y0). There is a function

y: [0,2) xR >R such that
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¥(t.B) = ¥(t. (cos B. sin B)) V (t.B) € [0.%) x R,

and ¢ is continuous and locally injective. It follows from Deimling (1985),

Theorem 4.3, p. 23 that

DN (R\B4(y")) = ¥((0.%) x R)

is open. On the other hand, if {xn}:_1 CD is a sequence with limit
L e R2, then (7.8) shows that {¢—1(xn)}:_1 is bounded and thus has an
accumulation point (tO,GO) € [0,») x Si' The continuity of  implies that

X = w(to.ﬂo), so D is closed. It follows that D = R2\B6(y0). o

7.2 Corollary. For 6 €S, and v € [3, 1], define

(7.11) T (0) £ inf{t 2 0: |vu(v(t.0))[* >

v/
<
—’

Then

sup Tq(B) { sup TI(G) { o,
6€s
<~v<1 1

9€S1

N&r

Proof: According to Lemma 4.4, € is bounded. We can use (7.8) to choose

t € (0,») such that

€ C w([0,t*] x s!). o
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7.3 Theorem. The homeomorphism ¢ is Lipschitz continuous on compact subsets

of [0,») x Sl’ and w-l is Lipschitz continuous on all of Rz\Ba(yo).

Proof: It follows immediately from (7.5) that |é%-¢(t.6)| <1
V (t,6) € [0,0) x Sl' Now let T > O be given and use Theorem 4.3 to choose
a Lipschitz constant C for wvu on y([0,T] x Sl)' For 6.9 €S, and

t € [0,T], we have

[w(t.0) - ¥(t.¢)| < |¥(0.8) - ¥(0.0)]

t
v [ Iruewr.0)) - vaCu(r.e) lar
(0]

t
<618 -¢f + CI [¥(7.0) - y(T.¢)|dT.
0
Gronwall’s inequality gives

lW(t.8) - w(t.9)| < 6T |0 - o,

and the local Lipschitz continuity of y is proved.

To prove the global Lipschitz continuity of w_l, we let »
xl,x2 € R2\B6(yo) be given and define (tl,el) = w_l(xl), (t2.92) = w_l(xz).
Assume without loss of generality that le - 2| <1 and that t, > t,. Set

s =1t - t, According to (7.10) and (7.8),
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(7.12) I - %1 2 1¥(s.8)) - ¥(0.86,)]|

(A4

l4(s.8,) - ¥°I - I¥° - ¥(0.8,)]

N\

5(1 v Y0 H(sh0) _ 5

'

(1 Vv %)”5(sA5).

If 0 (s <6, then (7.12) yields

g Ix -
ou :

(7.13) lt; - 5l
If s26 and pé 2 1, (7.12) again yields (7.13). Finally, if s 2> 6 and

0 < pb <1, (7.12) yields |x! - x2| > u 67M0H0 o0

1 1 1

1-ud.ué | 1 2.6 1-ud.ud | 1 2
R I (-l Ll Pl L O (- s l.

(7.14) |t |x* - x

1

Relations (7.14) and (7.15) imply the global Lipschitz continuity of the first

component of w—l, i.e., there exists a constant L > O such that
(7'15) Itl - t2| S L|\P(t1:91) - \p(t2,62)|
v (tl,Gl).(t2,92) € [0,°) x Sl'

Now let xl,x2 € Rz\Bé(yo) be given, and define (tl,el), (t2,92) and
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s =1t -t > 0 as before. From (7.10), (7.5) and (7.6), we have

Py

v

l¥(s.8,) - ¥(0.6,)]

v

= |¥(s.8)) - ¥(0.6.)| + |¥(0.8;) - ¥(0.6,)]

2—s+6|91—92|.

Relation (7.15) gives us

1

1 1
1~ %l <5ty -l rFlx

-2l <5 -2

7.4 Remark. In much of what follows, we will use the coordinates
(t,8) € [0,°) x S1 rather than the coordinates x € R2\B6(y0). We may

identify S1 with the unit circle, and let [0,®) x S, have the product

1
of Lebesgue measure and arc length measure. An important consequence of
Theorem 7.3 is that ¢ maps measure zero subsets of [0,®) x S1 onto Lebesgue

0 . . -1
measure zero subsets of R2\B6(y ). Likewise, ¢ preserves measure zero

sets.
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8. W2’°° regularity for the obstacle problem

. . . 2
The purpose of this section is to show that the function w = |vu| is

in W%;:. This improves the regularity result of Theorem 5.2.

8.1 Lemma. We have
(8.1) (0%u)vu = 0, |ID%] = du  a.e. on RAE.

Proof: By the definition of €, w attains its maximum value of 1 at every
point in Rz\@, so vw = 0 everywhere on mz\e. But ww = 2(D2u)vu almost
everywhere on Rz, and the first part of (8.1) follows. Since D2u is
singular almost everywhere on R2\€, the second part of (8.1) also holds.

u]

8.2 Remark. Because D2u is positive definite on € and positive

semidefinite almost everywhere on Rz, and since (recalling Remark 7.4)

(8.2) L w(v(t.0)) = 20%u(y(t.0))vu(¥(t.0)) * vu(¥(t.6))
1

a.e. (t,0) € [0,») x S,

the function t » w(y(t,0)) is nondecreasing for almost every 6 € Sl. In

particular, with Tl(B) defined by (7.11), we have

(8.3) w($(t.8)) =1 V t 2T (0). ae. 6 €S
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9
8.3 Theorem The function w= |vu 2 is in VP®.

Proof: Recall that w satisfies (5.9), where Va€ (0,1), HZ2vh « vu
- |||3u|2 is of class Z%”inside %, and H is defined up to al nost

ever ywher e equi val ence on K2%. Ve define

vh(x) * vu(x) - HDZUMX)II? V x € <€

8.4)  HX S
vh(x) « vu(x) - [(u(x) - h(x))*]1? if x €m2\<e.

Now u- h=Au>0 on % so u- h>0 on 66 Theorem6.3 and Lemma 6.1
then show that H is locally Hil der continuous with exponent a for any

a€ (0,1). Because of (3.1) and Lemma 8.1,

[IBUl a.e. on KMVB.

c
1
>
IN
&
1

[(U-h)"]12<BUI? a g oy RAE.

In

Therefore H>H a.e. on tP\*. and HA=H on <6 so (5.9) yields
(8.5) max{w - | Aw - HT w- 1} =0.

Wth the aid of (8.5) and the Holder continuity of H we can obtain the

l r
w' regularity of w fromthe theory of variational inequalities. More
precisely, choose r so that KB (0) and observe that the Dirichlet

r

problem
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H on Br(O).

€
|
N+
>d
Y
Il

-
Il

O on & Br(O).

has a solution ¢ which is in C2’a(Br(O)) for any € (0,1) (Ladyzhenskaya

> R

& Ural’tseva (1968), Theorem 3.1.3, p. 115). Set w = w - ¢, so that

w € WP(B_(0)) for any p € (1,v), and

(8.6) max{w - 5 AW, W - 1+ ¢} =0 in B _(0),
(8.7) w=1 on 3B (0).
Define

L 2 (vew" 3B (0)): - ¢ <v<lyonB(0)and v-1€ Wy (B )}

and note from (8.6), (8.7) that w € L. and

o owew-wme-|[ we-wovover
B_(0) B_(0)
It follows from Chipot (1984), Theorem 3.25, p. 49, that w € Wz'w(Br(O)), so

also w € ¥'"(B_(0)). On EXB_(0), w= 1. o

8.4 Corollary. We have D2u € W!'*(¥).

Proof: Use the Wl'°° regularity of vw in (6.4). o



9. Lipschitz continuity of 1‘1

Recall the mappings Tqi S1 » [0,») defined by (7.11) for each
¥ € [%;1]. The continuity of wvu o ¢y implies the lower semicontinuity of
each Tq. In this section we prove that for each ~ € [%;1], T,7 is, in fact,

Lipschitz continuous.

9.1 Lemma. We have

(9.1) K 4 sup l!ﬁiEll__  ®»,

v€SI,x€€ D2u(x)v°v

Proof: Let v,n € S1 be given and set f 4 (D2u)v-v and g 4 vwen. Then in

€,
f - Af = (Dzh)v'v 2 Cor & Ag = 2 VvH*n - g,

where o > 0 is the constant in (2.8), and H, defined by (5.8), is in
Wl'm(ﬁ) because of Corollary 8.4. Furthermore, g = 0 { f on J€. Therefore
the maximum principle implies that g - Kf < O in €, where

4

K (2 IWHI  _ + lvwll  _ ).

1
o L7(®) L (%)

In other words, vw * 1 { K (Dzu)v°v. o
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9.2 Theorem. For each « € [-é—,l], the mapping Tq: S1 » [0,») is Lipschitz

continuous with a Lipschitz constant which is independent of ~.
Proof: For each ~ € [%,1]. define
A 0
€ = {¥(t.0);: 0 Lt <T(6)} UB(y)
¥ ¥ 6
(with ¢,6 and yo as in (7.1) - (7.6)). Each ‘8‘7 is open, w < v on ‘67
and w =17 on 6‘97. For ~ € [-;—,1). we also have ‘eq C €. Because of (4.10),

vw dos not vanish on €, so for fixed ~ € [-;—,1) and z € 6‘6’7, the outward

normal to ‘61 exists and is

2
A ww(z) _ 2 DPu(z) vu(z)
n2) 2 T = T

In fact D2w is continuous in € and bounded in IR2 (Theorem 8.3), so for
every v € [%-,1), 6“87 has bounded curvature, i.e., there are constants

e >0, Kq > O such that for every z € 6‘67, and for every x € Be(z)t

(9.2) (x - z) » n(z) 2 K |x - z|2 >x € IRZ\‘G’Y.
a2 1
We may use the local boundedness of —3 ¥(t,0) = 5 vw(y(t,0)) and the
dt

Lipschitz continuity of ¥ to choose a constant K2 > 0 such that for every

v € [%,1), every B € [0,1], and every 6,9 € S;:
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(9:3)  IW(T,(0) + B.68) - ¥(T,_(6).0) - B vu(¥(T,(6).0))] < K>,

(9-4) V(T (8) + B.8) - W(T (8) + B.o)| <Kyl0 - of.

With K as in (9.1), choose L > max{%-K K2, 1}. Let 6,9 € S1 be given

with |6 - ¢]| ¢ %; and set
B=L[8-9l|. z=wT(6).8). x = ¥(T_(8) + B.9).
Then (9.3), (9.4) imply the existence of vectors v,n € BI(O) such that
x =z + PBvu(z) + Kzﬂzv + K2 e - ¢|n.
We calculate

2
(x-z) * n(z) = 2BD tlx‘%zl%zt;(lz)-vu(z) + szzn(z).v + K, le - ¢] n(z)*n

> 2 - k% - K, o - ol

2L

2 2
=&k lo- ol - K2 |0 - ol

and
2
K |x - z|® =K |p vu(z) + K570 + Ky [0 - eln |

< 9K w2+ K§L4 + K%) lo - o]
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It is clear that for |0 - ¢| sufficiently small, v € Be(z) and
2
(x - z) *» n(z) 2 Kq |x - z|%,
from which we conclude (see (9.2)) that x € IR2\‘€1, i.e.,
T (¢) ST (8) + B =T, (6) +L|6 - ¢l
Interchanging the roles of 6 and ¢, we obtain
IT (8) - T (6)] <L |6 - o]
for all 6,9 €S, such that [0 - ¢| is sufficiently small.
For each 0 € Sl’ the mapping t » w{y(t,0)) is strictly increasing on
[O,TI(G)] (see (8.2) and (4.10)). Therefore, the mapping ~ » T7(9) is
continuous on [%;1]. The Lipschitz continuity of T1 follows from the

uniform Lipschitz continuity of Tq for v € [%;1). 8]

9.3 Corollary. With ¥, and yo as in (7.1) - (7.6), we have

(9.5) €= {(t.0); 6 €S, t € [0.T,(8))} UB,(").

Proof: Define € to be the set on the right-hand side of (9.5). It is clear
that € C €, and because of (8.3) and Remark 7.4, the Lebesgue measure of ¢
is zero. Let x € €\€ be given. and define (t.0) 4 \p—l(x). Then t 2 TI(G),
but because w(Tl(G),G) =1, we must in fact have t > T1(9). The continuity

of T1 and w allows us to choose an open neighborhood of (t,8) contained in

€\%, and this contradicts the Lebesgue negligibility of \&. a
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10. th out si de <6

W saw in Lemma 8.1 that Dﬁu is singular al nost everywhere in R2VG.

| ndeed
(10.1) L e D 0, Ujoly + Uy = 0 a.e. on mz\e,

and because LL?*'UAzZ 1 on | R2Y6, we have

2
U2 ~U1U2
(10.2) DPu = Au , | ae on RAL.
“n U1U2 ‘JI

Because u has continuous first partial derivatives on I<% the proof of
continuity of E?u on F¥%6 reduces to a search for a continuous version of
Au on this set. In order for D?U to be continuous across &€, we nust al so
have Au = u-h on &€ (see Lemma 6.1).

V& shall construct the desired continuous version of Au in the (t,8)

variables. Indeed, if we set
X(t,€) = Au(¥(t.0)) Vecs', t T (s,

then a fornal calculation relying on (10.2) and the constancy of w on F?VB

leads to
(10.3) 2 A(t.8) = 5 A¥(¥(t.G)) " 11D’UOK1,9))II

- A%(t,6) V 9 €S', t 2 T (8).
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Integrating this equation and invoking the condition Au = u-h on J¢, we

obtain

u(¥(T,(6).6)) - h(¥(T,(6).6))

(10-4)  Nt.0) = T3 {er () [H(T,(8).0)) - K(¥(T,(8)-8))]

vV 6e€ Sl’ t 2 TI(B).
The task before us is to show that with A defined by (10.4), the function
Ao w_l is a version of Au on mz\@. This is essentially a justification
of the formal differentiation in (10.3), which involved third-order
derivatives of u.

Let p: R2-% [0,») be a C’ function with support in Bl(O) and

satisfying J‘Z p=1. For n=1,2,..., we define mollifications of u by
R

(10.5) w0 & [, uoc- 10 0 = 0 [ 5 uiE) o)) et

Then vu(n) and D2u(n) are locally bounded, uniformly in n, and u(n)-e u,
vu(n)-+ vu and D2u(n)‘9 D2u in Lzoc' By passing to subsequences if
necessary, we assume that these convergences occur almost everywhere. We

define for (t,0) € [0,») x SI:

(10.6) e™)(c.0) 2 ™ (y(e.0)), n=1.2...
(10.7) 2 (t.0) 2 Auw(t.0)),

and observe that e(“)(t,e)-» 2(t,0) for almost every (t,8) € [0,») x st
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(Remark 7.4).

10.1 Lemma. The functions

(10.8) 2™ o) = v 2 u(™(y(e.0)) - vuy(t.0))
are locally bounded, uniformly in n.

Proof: Observe first of all that

é(n) =v Au(n) . vu(n) +vA u(n) * (vu - vu(n))

2aCUn®™ 2y - w2 4 v ™ . (- ™)),

where é(n) is evaluated at (t,0), and the right-hand side is evaluated at
¥(t,8). It suffices to obtain uniform local bounds on A(Ivu(n)lz) and
v Au(n) * (vu - vu(n)).

Define for i € {1,2} the functions

F M0 8 fmz (vux - 2 )17, , p(E)dE

i,i

1 2
) PECICRE IR WNGE

= 2n J‘mz v (x - 2 §) « vu(x - L §) p,(E)aE.
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and note that these functions are uniformly bounded in n (Theorem 8.3). Then

(™2, = 20° Lkz sz va(g) + va(m)le,; (n(x-E))p(n(x-n))

+ p;(n(x-§))p; (n(x-n))]dfdn

T R O R RIGLD

+ p,(&)p;(n)]1dEdn
= 2n sz fmz vuy(x = o £) + wu(x - o)y (§)p(m)dEdn
v2 [y 5wk 8wyt L me@pmasan.

The last term is locally bounded in x, uniformly in n. The next to last

term is
P00 v o [ o [ o wo- 50 - - B - vue - L o)
p;(&)p(n)ddn,
which is also locally bounded in x, uniformly in n, because VY §,n € Bl(O).

lvu(x - L 9) - vu(x - %-g)l < %- sup  IDZull.
B, ()
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This provides a uniform local bound on A(IVU(n)Iz).

On the other hand,

v ™ (x) + (vu(x) - w™(x))

n” sz sz Au(E)[vu(x) - va(n)] - vp(n(x-E))p(n(x-n))dEdn
=" J,Rz I,Rz Mu(x - = E)[vu(x) - vu(x - L 7)1 - vo(E)p(n)dEan,

and the boundedness of this expression follows from the local Lipschitz

continuity of wu. o

Because of Lemma 10.1, a subsequence of {é(n)}:=1 converges in the
L:oc—weak* topology to a function ( € L:oc([O,m) X Sl)' We assume without
loss of generality that the full sequence converges. For each nonnegative
integer k, choose a number ty > k such that {e(“)(tk,e)}:=1 converges for
a.e. 6 € Sl' and define Ak(tk.e) to be this limit. (Whereas &(-,*) is
defined up to almost everywhere equivalence on [0,®) x Sl’ the functions
Ak(tk,-) are defined up to almost everywhere equivalence on Sl') We insist
furthermore that to be chosen so that w(to,e) €€VYOE Sl' Then
Au(w(to,-)) is defined pointwise on S1 because Au is continuous on %, and

so we may require that

7\0(t0.9) = Au(\p(to,ﬂ)) V6e Sl‘
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For each k =0,1,..., define Ak: [0,») x S1 » R by

t
NLEO) BN (g0 + [ s 0)as,
k

N

so that any two versions Ak and Xk of this function have the property that

the set {6 € Sll 3t € [0,0) with Ak(t,e) # Xk(t,ﬂ)} has measure zero.

We now relate the functions xk, k=0,1,..., to the function £ of
(10.7). Let ¢ be a continuous, real-valued function on [0,®) x Sl' and -
define

t
®(t.0) é‘f 9(s.0) ds V (t,0) € [0,®) x §,.
0)
For k =0,1,...,

‘%
,8)¢(s,0) dsde
fsl fo N(5.0)¢(s.0) ds

t

k
A (t..0)8(t,.0) - | C(s.8)e(s.0)ds]d0
J\Slkkk (50 = [ * £(s.000(s.0)a5]

t.
lim I [e™ (e, .0)0(t,.0) - Jk 2(")(s.0)0(s,0)ds]a0
n-o S1 0

t
lim J‘ J‘k e(n)(s,9)¢(s,9)dsd9
n- S1 0

k
J‘ I 2(s,0)¢(s,0)dsdo.
S1 0
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It follows that Ak =& a.e. on [O,tk] x Sl' In particular, for any two
nonnegative integers k and m, Ak and Am agree almost everywhere on

[O,tk A tm] x Sl’ and hence almost everywhere on [0,®) x S In particular,

1

(10.9) Ag(£.0) = Mu(¥(t.0)). a.e. (t.0) € [0,®) x ST,

and for a.e. 0 € Sl'

t

(10.10) A(t.8) = Au(¥(ty.0)) + J‘ C(s.0)ds V t € [0,%).
t
)

10.2 Lemma. Almost everywhere on the set
v 1®A\e) = {(t.6) € [0.%) x S;: t 2 T,(6)),
the function { appearing in (10.10) is equal to - A
Proof: From (10.8) we have
5™ oy s e oyl oy
=V Au(n) * vu + Au Au(n)

g?)ul)l + (“gg)“l + “ég)“z)z

+ u

(“gg)“z

(n) (n) _ o . (n)
Fug gy Uy Ut - 2u5 Ty,
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Now uj__"u£+“iif2_{_)2) " 2“1_?1)42 'S toeally hounded* uniformy in n, and
conver ges al nmost evérywhere to 2 det D%, which is zero on IRT*8 It follows

from (10.1) that for any function <p € C(I)(m2\"é).

||mf [£\/poyf1+(l'°¢ Le® oy,

lim ‘[Rz\te [(ugz) u, + u(n)ul)1 + (u( ) uég)uz)z] ¢

(n) (n), (n)

2 Uy * “11 u dey + (u57uy + ugs"us)e

',';iﬁfmz\

. . o3 - -
Because the functions «""' o A71l+ (« 0 #) («"™ o0 ¥~ are locally bounded,

uniformy in n, we can showthat for every <p €L (k\z‘)

(10. 11) limf . J«™ oAT' + (« 0 yf THAY) 02" 1» = 0.

AL - By e

Now let -1 €1}(15Y(KA'B)) be given so that (TOM %) |j *2] e LY(RA «J where
|j"_1| is the bounded (Theorem7.3) determnant of the Jacobian of 41, From
(10.11) it follows that

lim Jf4, (™) 4 o)y,

o (IRQ\Q)

- nm/[ S (2™ o ¢l s 2oy 1™ o y v 0 v Y

o M SX
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On the other hand, é(n) + ee(“) converges in the L;oc—weak* topology on

[0,») x S, to (¢ e - ¢+ Ag a.e., and the lemma follows. a

10.3 Theorem. There is a Lipschitz continuous version of D2u on R2.

Proof: For 6 € S1 and 0 ¢ t < Tl(e), define

(10.12) A(t.0) & Au(y(t.8)).

where, of course, we mean the Lipschitz continuous version of Au inside %
(Corollary 8.4). For B0 € S1 and t 2 TI(B). define A(t,0) by (10.4), which
gives us a Lipschitz function. At t = TI(G), the Lipschitz continuity of A
follows from (10.4), Lemma 6.1, and the equality |wu|® =1 on &€. The
Lipschitz continuity of w—l implies the Lipschitz continuity of A © w—l.

It remains to show that A o w_l is a version of Au, or equivalently,
(10.13) A(t,0) = Au(y(t,0)), a.e. (t,0) € [0,») x Sl'
In light of (10.9) and (10.12), we need only show that for a.e. 6 € Sl‘

(10.14) A(t.8) = A (t.0) V t 2T (6).

But (10.10) shows that for a.e. 6 € S,, the function t » Ro(t,B) is

1'

absolutely continuous on [0,®); in particular,



(10.15) A(T;(8).86)

Equation (10.10) and Lemma 10.2 imply

lim Ao(t,e)
tTT1(9)

lim Au(¥(t,6))
¢1T,(6)

lim [u(¥(t.8)) - h(y(t.0))]
t1T,(6)

u(¥(T;(8).8)) - h(¥(T,(6).6)).

that for a.e. 06 € Sl'

(10.16) Ag(t.0) = - A2(t.8), a.e. t > T (6).

Equations (10.15) and (10.16) imply (10.14).

10.10
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11. Regularity of the free boundary

In this section we apply known regularity results for free boundaries to
show that the boundary of € 1is of class C2,a for all « € (0,1). In order

to apply these results, we recall that w |vu|2 is a W2’°° function

(Theorem 8.3) which satisfies (see (5.9)) 1-w > O on R2 and

(11.1) 5 A(1-w) = Bw on e,
where we recall that H e vh « vu - HDzuﬂz. We shall establish the strict

positivity of the forcing term H-w on J€. Recall that

and w=1, Aw =0 on R2\§. so
(11.2) H-w = H-1 > 0 on Rz\@.

11.1 Lemma. The function H 1is locally Lipschitz continuous, and H > 1 on

de.

Proof: The local Lipschitz continuity of H follows from Theorem 10.3. To
prove that H > 1 on J€, we assume that there exists a point on J€ where
H = 1. Without loss of generality, we take this point to be the origin (0,0),
and we take vu(0,0) = (-1,0).

We first obtain an upper bound on H near (0,0). Inside ¢, H is

differentiable and
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(11.3) vH » vu = (Dzh)vu * vu + (D2u)vu * vh - v(lID2u112) *vu.

Let v1 and 02 be unit eigenvectors for D2u, and let Al and Az denote

their respective (nonnegative) eigenvalues. Then
(11.4) viD?ul®) « wu = tr (D% D2u) - 2 tr [(D?u)’]
= ?\I(Dzw)vlw1 + ?\2(D2w)v2°v2 - 2(A? + Ag)

¢2 %l ,  sup (D°w)vev.
L (€) v€S1

Applying Theorem 1 and the remark following it from Caffarelli (1977) to the

function 1-w, we have that for some positive constants C and e,

(11.5) sup D?w(x.y)vep < C |log(dist((x.y). 8€))|™ V (x.y) € <.

v€S1

Combining (11.3)-(11.5), we conclude that
(11.6) vH(x.y) * vu(x,y) 2 D’h(x.y)vu(x.y) * vu(x.y) + 5 Ww(x.y) * vh(x.y)

-2 0%l ,  C |log(dist((x.y). 8€))|™¢ V (x.y) € €.
L(¢)

As (x.,y) approaches (0,0) € 3¢, |vu(x,y)| approaches 1 and ww(x,y)

approaches 0. Using (2.8) and (11.6), we can choose € > 0 such that
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(¢

(11.7) VH(x.y) * vu(x.y) 2 5 V (x.y) € [.E°ne.
Let 6, € S1 be such that W(TI(GO),OO) = (0,0). For t € (O,TI(BO))

chosen so that w(t,eo) € [—2.2]2,

d Hew(e.0 H %
3t BOM(£.80)) = VHU(£.8)) + va(¥(£.6))) 2 = -
It follows that for some T > O,
(11.8) H(W(T, (8,) - t.685)) < H(W(T,(8,).8,)) - 5 c,t

1
1-3

cat V t€(0,71).

o

But also

(11'9) |\P(T1(90) - t'eo) - (C,O)I I“‘(Tl(eo) - t’eo) - ‘P(TI(GO)’GO)

+ t va(y(T,(68,).8,)) |

IN

%l Vot € (0.T,(6,))-
L (€)

Let B > O be a Lipschitz constant for H in a sufficiently large

neighborhood of (0,0). From (11.8), (11.9), we have for all t € (0,7):
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H(t.0) < H(¥(T(8) - t, 8)) + |H(t,0) - H(¥(T,(8,) - t, 90))|

<1-geyt + Bt WDl
L (¢)

Choosing 7 smaller, if necessary, we have H(t,0) {1 - %cot for all

t € (0,7). Again using the Lipschitz continuity of H, we obtain the desired

upper bound

1

(11.10) H(x.y) <1 - zecpx+ Blyl V (x.y) € [0,7] x [-7.7].

Ve next construct a function ¢: IR2 - R such that for appropriate

p.o € (0.7).

(11.11) $-2A42H on [0.p] x [-0.0].
(11.12) $21 on 8([0.p] x [-0.0]).
(11.13) (0,0) = 1.

c
For this purpose, choose O < p < min{T, } such that
642 B
2
(11.14) (1 —%) sinh 42 p > 2 p.

Then define



- 2
(11. 15) a=mn{T, -"—}
4 42
C
(11. 16) Al {1 - iﬁp — )'1.

sinh 42 p cosh 42~ a

P(xy) i 1+ Pa(2-2°"Ay) (1- sinh>f2x, sinh 42 (p-x),
cosh 411 a sinh "2 p

+aP( - £2shj2iLy_ X+ sinh 42 X}y oy e B2,
cosh>2a P sinhJZp

Then
¢(0y) =<ppy) =1 Vy¢€[-aza],
A>(xta) = 1+ 13f10__S! nh " x + si nh +e AT w1 wy x e 0,
sinh 43 p
because
(11.17) sinh a + sinh b < sinh a cosh b + sinh b cosh a

= sinh (a+b) V ab €R

It remains to verify (11.11). Direct computation reveals

11.5
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sinh {2 x cosh JT‘Z-y
sinh @p cosh {2 o

#(x.¥) = 5 A #(x.y) = 1 + 200 - Ax + Ap

cosh {2 y (sinh {2 x + sinh Jﬁ'(p—x))
cosh {2 ¢ sinh 2 p

- Bo

2 x
sinh 2 p cosh 2o

v

1+ Po - Ax + Ap

12 p
sinh {2 p cosh {2 o

[\

1-Q -

) Ax + o

21-3cx+p lyl
2 H(x,y) V (x.y) € [0,p] x [-0,0],

where we have used (11.17), the inequality a { sinha V a > 0, (11.16), and

(11.10).

On the other hand, (5.9) implies that

Aw

IN

H on [0,p] x [-0,0]

DNj

%
IN

1 on 9([0,p] x [-0,0]).

The maximum principle implies that w { ¢ on [0,p] x [-0,0]. In particular,

vV x € [0,p],

w(x.0) - w(0,0) = w(x,0) - 1 < 0(x,0) - 1 = ¢(x,0) - ¢(0,0),
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and thus
(11.18) 0 = 2 w(0,0) < Z (0.0
- ax 9’ - ax , .
The final step in the proof is to show that -é%«p(0,0) <0, so (11.18) is

contradicted, as well as the assumption that H =1 at some point on &8€. We

compute

ad 1 cosh V2 p -1
(11.19) =— ¢(0,0) =42 Bo(2 - ) ( )
ax ¥ cosh 2 o sinh 2 p

Ly - —2e

- A(1 - —_—t}.
cosh {2 o sinh ~r2-p

The first term on the right-hand side of (11.19) is bounded above by

cosh {2 p -1
sinh 4-2-p

242 po ( ) < 2Bop.

As for the second term, (11.14) and the inequality cosh {20 - 12> {20

imply that

Aq - — - —@—P—-—)
cosh {2 o sinh Ep

= %0- [ - _2p )-1 + (cosh {2 o - 1)—1]—1
sinh {2 P

C
0.4 1
3 L3

3p 20

-1

[\

]

gq_(Jz‘gza
3 p2+4~r§a
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Therefore,

c 2
a o, 2p
== ¢(0.0) < o[2Bp - 5 ()1
x 3 p2 + 420
and (11.15) and the choice of p show that
c

0

J_J(O. o
3 N2

2 $(0.0) < ol[2Bp -

11.2 Theorem. The free boundary J€ is of class Cl, and w has continuous

second partial derivatives inside € up to J¢€.

Proof: Because T1 is Lipschitz (Theorem 9.2), for evey 0 € Sl’ the point
(Tl(é),ﬂ) is a point of positive density with respect to the measure of Remark
7.4 for the set {(t.08) | 6 € Sl, t € (TI(G),W)} = ¢(R2\§). But ¢ and ¢_1
are locally Lipschitz, so every point of J€ is a point of positive Lebesgue
density for R2\@. It follows from Theorem 2 of Caffarelli (1977) that J%

is Lipschitz. Caffarelli’s Theorem 3 can now be applied (with v in

Caffarelli’s Assumption (H1l) equal to our 1-w), and it yields the desired

results. a]

11. 3 Corollary. The boundary J€ is of class C2,a for every a € (0,1).
Proof: In light of Theorems 6.3 and 11.2 and equation (6.4), D2u has a C1
extension from € to €. Therefore, H-w appearing on the right-hand side of

(11.1) has a C1 extension from € to €, and because 3€ is of class Cl,
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H-w has a C1 extension to an open set containing €. (In Lemma 12.4, we
explain in some detail how to construct a similar extension.) Lemma 11.1 and
Theorem 11.2 permit us to apply a theorem of Kinderlehrer & Nirenberg (1977)
(see also Theorem 1.1(i) of Friedman (1982), p. 129), to conclude that &€ is
of class Cl'a for every a € (0,1).

Now observe that wvw solves the problem

Avw = vH in <,

Nj=—=

O on &¢.

3

Since VvH 1is continuous up to 8¢ and 8¢ is Cl'a

, Theorem 8.34 of Gilbarg
& Trudinger (1983), p. 211, implies that ww 1is of class Cl'a on € up to
d€. Inserting this regularity into (6.4), we conclude that D2u. and hence
H-w, are of class Cl'a on € up to 9€. We may again appeal to Theorem 1.1
of Friedman (1982) to conclude that 8€ is of class C2’a for every

a € (0,1). o

11.4 Remark. The bootstrapping in Corollary 11.3 can be continued until the
regularity of h is exhausted. If, in place of assumption (2.5), we assume
that h € C:oz for some k 23 and a € (0,1), then the free boundary is of
class Ck'a. w 1is of class Ck’a inside € up to 8¢, and u is of class
Ck+1’a inside € up to 8€. This argument uses Theorem 1.1, p. 107, of

Ladyzhenskaya & Ural’tseva (1968), to wit, 1f vH 1is of class Ck-B'a up to

g€ and 8¢ is Ck_l'a. then vw 1is of clags Ck_l'a up to J¢€.
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12. Construction of the optiml control process

12.1 Definition. Let x € <6 be given. A control process pair {(Nt"f t);

0 <t << as in Section 2 is called a solution to the Skorohod problemfor

reflected Brownian notion in ~ starting at x and with reflection direction

- vu along ff€ provided that:

(a) f is continuous,
(b) the process X defined by (2.1) satisfies X €« 0<_t <°, as., and

(c) for all 0 <t <o

t
(12.1) £, = _[0 l{xseare. Ne= -vu(X)} s 8-S
s

For every x € <_f5 the Skorohod problemof Definition 2.1 has a solution
starting at x. This follows fromTheorem 4.3 of Lions & Sznitman (1984),
provided that the following three conditions are satisfied:
(Ad) <6 has a & boundary and satisfies a uniformexterior sphere condition,
(C2) 3a>0 éuch that vu(x) ¢ n(x) >a Vx € 8g, where n(x) is the

outward normal vector for <6 at X,
(C3) vu on % has an extension to a C?I' function on an open set containing

€.

Condition (Cl) is inplied by Corollary 11.3. W establish (C2) and (C3).

12. 2 lemma. Condition (C2) is satisfied.

Proof: Let x € & be given. W construct a sequence {X, i,x_g_, in <6 such

——

vw(x, )
that xx ->x and {‘%’—-* n(x). Wth K as in Lema 9.1, we have
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vw(x, ) vu(x )
[vw(x, ) |

RN

2

and (C2) follows.
As for the construction of {xk};_z, we choose r > O such that
. = 1 =
Br(x + rn(x)) N € = ¢. Define x = x + 5 rn(x), so Br/2(x) Ne=¢ and
x € 6Brl2(>_c). Given k 2 2, we define <ek 4 {x € IR2; w(x) <1 - %} We then

translate Br/2(>_<) in the -n(x) direction until it touches a@k i.e., we

define

Py = sup{p > O; Brlz(;c - pn(x)) N € = ¢},

and we choose X € Br/z(;c - pkn(x)) n aek Then Brlz(;: - pkn(x)) is an

exterior sphere for 6‘€k at X+ SO the outward normal to '€k at x is

w(x)  x - pn(x) - x
[vw( )T =

% - pa(x) - x|

ww(x, )

As k - o, we have X X and pk->0, so w(xk)

- n(x). o

12.3 Lemma. Condition (C3) is satisified.

Proof: Given € > O, we can find a finite set of open discs {Bk}E__l. each

n
with radius €, such that € C U Bk’ and we can find Cm functions
k=1
2 - n
T R - [0.1] such that supp 7 C Bk for every k and kzl T =1 on €.
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n
We can decompose u on € as 2 T, SO it suffices to show that each
k=1

u e MU has a C2 extension from Bk ne to Bk' For sufficiently small
e > 0, in each Bk there is a 02 change of coordinates which results in
B N € C {(x,y) | x < 0} and Bk\§ C {(x,y) | x > 0}. Now u  has a @
extension from Bk ne to Bk N € (Theorem 6.3), and taking u  to be zero
on {(x,y) | x ¢ O}\(Bk N €), we have a C2 function on the closed left

half-plane. For x > O, y € R, define

u (x.y) =3 4 (0.y) - 3 y(=xy) + y(-2xy).

It is easy to check that this extended u is 02 on all of Rz. o

12.4 Theorem. Let x € Rz be given. If x € €, then the solution to the

Skorohod problem of Definition 12.1 is an optimal control process pair for the
singular stochastic control problem with initial condition x posed in
Section 2. If x € €, then there exists a unique pair (t,8) € [0,») x S1

such that x = y(t,0). Define x & W(TI(G),B) and let (ﬁ,f) be a solution to
the Skorohod problem starting at ;. Then (N,{) is optimal for the control

problem with initial condition x, where

- wu(x) if t=0,
(12.2) N, s
N, if t>o0,
(0] if t=0
(12.3) C, 8
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In either case, we have that u(x) = V(x), where u is the solution to the

HJB equation (3.1) (see Theorem 4.6) and V is the value function for the

control problem defined by (2.10).

Proof: The theorem follows immediately from Theorem 3.1 once we observe that

in the case x € €, Lemma 8.1 implies that for all s > Tl(B).

S

vu(x) + J;l(e)

d

vu(¥(s,6)) ar Vu(¥(7.0))ar

S

-w@ [ Dur.e)mr.0)ar
T,(6)

= vu(x).

Thus, when x € €, the control process pair (N,() of (12.2), (12.3) causes the

state to jump from X0 =x to X =x and u(x) - u(x) = |x - x|. After
0)

this initial jump, the state is kept inside € by reflection in the - vu

direction along 3d€. o
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13. Appendix. Proof of Lemma 4.1.

For e € (0,1), R > O, denote by ue'R the solution to

e,R

(13.1) R N Nl

) =h on By(0).
(13.2) wR -0 on @B (0).

The existence of ue’R € C2(BR(O)) follows from Ladyzhenskaya & Ural’tseva

(1968), Theorem 4.8.3, p. 301; uniqueness follows from the following lemma.

13.1 LLemma. Suppose that ¢ is a subsolution and ¢ is a supersolution to

(13.1). Then V x € BR(O):

(13.3) eo(x) - ¥(x) < sup  [e(y) - v(»)1"-

y€BL(0)

—_ *
Proof: If ¢—-y attains its maximum over BR(O) at an interior point x ,

then vw(x*) = vW(x*) and O > A¢(x*) - Aw(x*) = w(x*) - w(x*). o

13.2 Lemma. Let q > O be as in (2.6). There exists a constant C, > O,

1
independent of € and R, such that
(13.4) 0 <u™Rx) <o 1+ [x|Y) vxe B.(x).
. - e,R — e,R .
Proof: To prove the nonnegativity of u , take ¢ =0 and ¢y =u in

e,R

Lemma 13.1. To obtain the upper bound on ue’R, take ¢ = u and
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¥(x) = E on e " hix + {2 ¥, )de,

where Txeinf {t 2 0; lx +J'§Wt| 2R}. Then ¢y - Ay =h on BR(O), ¥y =0

on GBR(O), and Lemma 13.1 and (2.6) imply that

e,R X ¢
u’ (x)gEI e h(x+~l§wt)dt
0

©

<E I e ' hix+ I3 W, )dt
0

(]

< 2ch E I e (x| + N2 W |Yde
0 t

<Cp 1+ [xI%

for an appropriate constant C1 .

13.3 Lemma. There exist constants C > 0 and p > O, independent of € and
R, such that

(13.5) lv®B(x)] <c(1+RP) Vee (0.1), R >O.

max
x€6BR(O)

Proof: Let N be a positive integer greater than % and define

g, B: [0,9) > R by
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N 2 ® 2k
=3 =L~ B(r)= 3 .
e =2 4K kn? =2 &Kxn?
Then
1 r2N

g(r) - &'(r) - g" (r) = m .
and
(13.6) B(r) - L B/(r) - B" (r) = 0.

For R > 0, define
v(x) = 26, + Cd (V) e(Ix)
- [2¢, + Cy (N)%e(R)] gé%ﬁ%l V x €R,
so
¥a(3) = Mp(x) = G2 + [x[*) 2h(x) v x € BL(0).
Yp(x) =0 V x € 8Bp(0).

It follows from Lemma 13.1 that ue’R < wR on BR(O), and because these

.R

functions agree on BR(O) and because wu® on aBR(O) must point inward,

e"

where u is nonnegative, we have
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Ve RO T i | vER(X)| VX € Effing.
But on GBR(O).
l7vg(x) | = | CAYN)2g (R) " [2Cq + co4N(N!)zg(F§)J o
Equation (13.6) and the nonnegativity of B'  show that
0 <B(r) <rB(r) Vr >0,

so we may bound the growth of max  |WsR(Xx) | Dby a constant times

X€9Bp(0)
(1 « RE"*1y, 0

13.4 lemma. There exist constants C>0, p>0, X>0, independent of e

and R such that
(13.7) | vuf™®(x)| < Xu®R(x) + Cx|P+C Vx €Br"0), e € (0,1), R> 0.

Proof: Wth C>1 and p > 2 satisfying (13.5), and Cy as in (2.7),
define Xerax{Z,qD},, B4 Cp'\+q_1, and consider the auxiliary function

Pp(x) =vu  (x) * v-Xu (x)-Clxp - B,
where e € (0,1), R>0 are fixed, and v is a fixed unit vector. It

suffices to show that <p(x) £ 0 V x€8"‘.(0), so let X be a point at which
<p attains its maxinumover B7O). |If x*€SB"O), then (13.5) inplies that
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% .
¢(x*) < 0. Thus, we need only consider the case that x € BR(O), for which

we have

2 | xp-2
0> Ap(x) = A w® R(x) - v - A &R - cp? K P2.
Using (13.1), we may rewrite this as
(13.8) 02 v R - v+ 2 B Vv R - 0] - SR

- wh(x) v - REK) - M8 (1) + A B() - € pPIP2

“Re 2.

where r denotes |vu Because of (2.7),

|vh(x) | < Cy + A h(x) V x €R.

Furthermore,

2 -2 -2
e [x[P < cpP P
<Clx|P+cpP Vv xeR.

Adding these two inequalities, we see that

P2
I

Ivh(x™) | + 2 Ix*| < An(T) + C|x¥|P + B.

Substitution into (13.8) yields
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e,R

(13.9) 02 o(x) + 28 (x™) v[wu*"R(x") + ]« W R - 25, (7).

Because v¢(x*) = 0, we also have

]
g
£}

X
~

L[]

(13.10) 0

:
)

Substitution of (13.10) into (13.9) results in the inequality

.R

() CNIB_(r) - 2 BL(r)r] - 2 & 1P 2B ()" - v R,

Let us assume that ¢(x*) > 0. Then
I v R - v 3B 2,
so r >4 and for all e € (0,1),

2
2 r -1

B (r") =

o=

-1, BT =

Consequently,
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* p—2 JR,
0 <o) < -2 (IR P+ 14 e) - B2 PP K - )
<=2 nS R P e 1 o+ ZR RSP wS Red |

which implies that

»
R, % 2 3 p-1 x p-1 %
la® e ] < B2 P <o P e 1P+ B
3
This inequality contradicts the assumption that ¢(x ) > O. a

13.5 Lemma. For each e € (0,1), there is an increasing sequence {Rn}:=1 of

positive numbers converging to infinity and a function u e cz(mz) such that

e,R e.R
{u n}:_l and {vu n}:_l converge uniformly to uw® and wu%,
respectively, on compact sets. Furthermore, u® is a solution to (4.3) and

satisfies (4.4), (4.5), with C1 and p independent of €.

Proof: Let € € (0,1) be fixed and let r > O be given. Then ue'R and
vue'R are bounded on B2r(o)’ uniformly in R and e (Lemmas 13.2, 13.4).
Elliptic regularity implies Holder continuity of vue’R on Br(O), uniformly

in R € [2r,») (Gilbarg & Trudinger, Theorem 3.9, p. 41), and by the

e.R
Arzela-Ascoli Theorem, we can find a sequence {Rn}:_1 along which {u n}:_l
e,Rn o
and {vu }n=1 converge uniformly on Br(O). Indeed, by diagonalization we

© e,Rn o e,Rn o
1 s
can select {Rn}n=1 so that {u }n=1 and {vu }n=1 converge uniformly
on compact sets to limits u® and vue, respectively, where

u® € Cl'a Vae€ (0,1). Passing to the limit in (13.1), we see that Au®

exists in the distributional sense and is equal to u® + Be(|vue|2) - h, which
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is a CO,a function. Elliptic regularity implies that D2ue in fact exists

in the classical sense and u® is Cz'a. (By bootstrapping, we could

conclude that u® is C4’a

because h is C2’1.) o
The convexity of u® will be established by representing u® as the

value function of a stochastic control problem with convex cost functions.

With ﬁe defined by (4.2), we define a convex function g.: Rz >R and its

(convex) Legendre transform 86: Rz - R by

A 2 A
(13.11) g, (x) = B.(Ix]7). e.(y) Ssup {x -y -g ()}
2
x€R
2
For every y € R™,
2 2
(13.12) e 25 vl -8 G 23 Ivl*

Furthermore, the supremum in the definition of ee is attained if x is

related to y by y = 2Bé(|x|2) x, i.e.,

(13.13) e (L(Ix1*)%) = 28,(IxI*) Ix|? - B (IxI?) V x € B®.

A control process is any two—dimensional, absolutely continuous process 70

adapted to the Brownian motion {Wt,@t; 0 { t < ®»} and satisfying o = 0 a.s.

Given an initial state x € Rz, the corresponding state process is

A
(13.14) Y, =x+4f§wt -,
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For each R > 0, we define the cost corresponding to m up to the exit from

BR(O) as
V& R(x) & B JTR e ' [h(Y.) + & (m.)]dt
n - 0 t e''t ’

A . . e _d .
where TR = inf {t 2 O; |Yt| 2 R}, and N = gf "t The value function up to

the exit from BR(O) is

ve'R(x) 4 inf ve’R(x).
n n

It is clear that VE'R(X) is nondecreasing in R, and

(13.15)  lim v*'B(x) ¢ v¥(x) & inf EX f e ‘[h(Y,) + £_(n,)]dt,
R n 0

e . .
where v~ is the value function for a control problem on R2.

13.6 Lemma. For each e € (0,1), R > O, the solution ue’R of (13.1), (13.2)

R on BR(O).

. 3
agrees with v

Proof: Itd’'s lemma implies that for a given control process 7, x € BR(O) and

t 2 0:
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AR eR e.R TR -s e.R 2
(13.16) EX e u®’ (Yt/\TR) =u®" N (x) + EX IO e T[B (I (Y ) [)

- (Y - wR(Y,) - n.)]ds

tATR

W Rx) - B Io e S[h(Y,) + &_(n_)1ds.
Letting t - ©, we see that v (x) R(x) for all n, so

(x) 2 ue’R(x). However, if YR is the solution to

t

o , e.R, R, 12,_€,R R
Y, =x fozﬁe(lvu (Ys)l)vu (Ys)ds+~r2'wt, 0<t<mp

then the corresponding control process satisfies

ne = 2 BL(Iw™ R %) wRrD). o

IN
(ad
IN
-

R!

and equality holds in (13.16) because of (13.13), i.e

veﬁR(x) = (x) < v i(x),
M

and thus ue’R(x) = ve'R(x).

13.7 Lemma. For each e € (0,1), the function u® constructed in Lemma 13.5

agrees with the value function v® defined in (13.15).

Proof: We have immediately from (13.15) and Lemma 13.6 that u® ¢ v©. For

the
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o) 00
reverse inequality, let x € K be given and define Y (up to the time of a

possi bl e expl osi on) by

e

Y; =X - 3 2 ([vu(YS) [P vuE(Yy)dt + T2 W.
9

Imtating (13.16), we have fromIt®d's lemma and (13.13) that for every R > O,

tAT

[ R _ @ - -tATR :.(Ym )
(13.17) u®(x) = E* e 5[h(Y ) + «(*} )]ds + E* e ut tATR '

Jo s e s

wher e

Del eting the (nonnegative) second termon the right-hand side of (13.17) and

letting R-»<» t -¢ « we obtain

(13.18) us(x) = A \J0 e Sth(y"}) + & [)1as.

wher e TwelimTﬁ is finite if and only if Ym explodes in finite tine.
D

To see that r =« a.s., observe that for all t >0, R>0,
tATR tAT,, tAT
| s T?2a S+ “nr 124
"tATg: Jo Msrrs 0oy, T Jo Mrsar s
R

Gonwall's inequality inplies
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OgsgtATR

where we have used (13.12). Letting R - © and taking expectations, we

conclude that

t © 2t
EX sup lnwl2 < EX 32—-] ee(n:)ds < e ue(x) o, ¥t20.
0<s<tAT 0 c
But
sup lY:I {x+ sup |n:| + {2 max stl
Ogs(tl\'r00 Ogs(t/\'roo 0<s<t

and sup  |Y_| < on {7, < t}. It follows that P {r, <t} =0 V t »O.

0<s<tAT,

Inequality (13.18) can now be restated as

ue(x) > EX J; e—s[h(Y:) + ee(ﬁ:)]ds 2 ve(x). o

13.8 Corollary. For each e € (0,1), the function u® constructed in Lemma

13.5 is convex.

13.9 Corollary. For each e € (0,1], lim ue(x) = ®,
X |

Proof: 1In light of (2.8), (2.9)., (13.12), and (13.15), we have

[+ ]
c
u®(x) > inf EX J; e * [Eg'lYtlz + §-|ntl2] dt.
n
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But the right-hand side is the value asociated with a linear—quadratic-

Gaussian problem, which is easily computed to be %—a |x|2 + 2a, where a is

a2 + a - co = 0. n}

Y

. the positive root of the quadratic equation

13.10 Lemma. There is a constant C2, independent of €, such that for every

e € (0,1), the function u® constructed in Lemma 13.5 satisfies (4.6).

Proof: Let » be a unit vector and define uiv 4 (Dzu)v°v. It suffices to

produce a constant C_,, independent of € and v, such that

€ €
u < C2(1 +u).

We begin by differentiating (4.3) to obtain

_ € _ , € €12 € . € 2 ey 12
(13.19) h o=u - Au o+ ZBé(Ivu | J(va, o+ vus o+ [(D*u")v %)
+ 4B ([ ?) (0Puw® - v)?
€ _ L, € €12 e ., _ €
2u - Au o+ 2Bé(|vu ) vu e vu.

Let x° be a minimizing point for ue. choose p > O satisfying (4.4),

(4.5), choose CO > 0 to satisfy (2.8), let 6 > O be given, and define the

auxiliary function

e 2
o5(x) = ul (x) = Cu(x) - & |x - x*|P™=.
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. . R . : é
This function attains its maximum at some point y , where we have

(4] (4] (] ) (]
(13.20) 0 = wos(y") = vl (¥°) - Gy vu(y") - 8(p+2) Iy° - x°|P(y° - x©).

(13.21) 0 2 4o5(v") = &, (v°) - ¢, M) - a(m2)? Iy - x°IP.
Substituting (4.3) into (13.21) and using (13.19), we obtain
(13.22) 02w (v%) + 28 (I [} vt (7)) - w*(v%)
- (7)) - ¢, v (%) - coﬁe(lvue(yﬁ)lz)
+ Ch(y®) - 6 (p + 2% [y° - <&P
= 95(°%) + 28 (I Py v (7)) - w(v))
- b, (v7) - B (It %) + chy?)
- 5(p + 2)2 Iy - &P+ 8ly° - x°|P2
> 05(y%) + 28 (1)) 7) ws v7) - w*(v))
- Co(1 + (x®)) - cp (In*r*) %) + chv®)

P pt2
~26p> (p+2) 2
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because of (2.8) and the fact that

p+2

P*2 5 95 p2 (p+2)2 VroO.

- 6(p + 2)2rp +6r

But (13.20) implies that

(13.23) vt (v7) + wo(r%) = Gy Int 2 1P+ s(e2) y® - PGP - x°) - w(y¥)

[\

2
Colva*(y%) |

e . . . .
because u is convex and attains its minimum at x°. Substitution of

(13.23) into (13.22) yields

(13.29) 02 ¢,¢°) + 206 (I D) w2 12 - ¢ (I %) 1)

-0-26]) (p+2)

The convexity of Be implies that
] -— -—
BL(r)r 2 B_(r) - B,(0) = B.(r) V r 20,
so (13.24) reduces to

5 £ B2
05(x) < 95(v°) $Cy+ 26 0% (p2) 2V x € K.

Letting & ! O, we obtain

3 2
u (%) <Cy(1 +uS(x)) V x €R". o
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