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Abstract

It is desired to control a two-dimensional Brownian motion by adding a

(possibly singularly) continuous process to it so as to minimize an expected

infinite-horizon discounted running cost. The Hamilton-Jacobi-Bellman

characterization of the value function V is a variational inequality which

has a unique twice continuously differentiable solution. The optimal control

process is constructed by solving the Skorohod problem of reflecting the

two-dimensional Brownian motion along a free boundary in the -vV direction.
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problem, Skorohod problem.

AMS subject classification: 93E20, 35R35

Abbreviated title: Regularity of the Value Function



OOfTIENTS

1. Introduction

2. The singular stochastic control problem

3. The Hamilton-Jacobi-Bellman equation

4. Solution of the Hamilton-Jacobi-Bellman equation

5. An obstacle problem

6. D2u inside %

7. The gradient flow

2 °°
8. w ' regularity for the obstacle problem

9. Lipschitz continuity of T

o

10. D u outside <6

11. Regularity of the free boundary

12. Construction of the optimal control process

13. Appendix. Proof of Lemma 4.1

14. References



1.1

1. Introduction.

We study regularity of the solution of the variational inequality

associated with a two-dimensional singular stochastic control problem with a

convex running cost. The solution u of this variational inequality, which

is the value function for the control problem, is shown to be of class CT.

We also study the regularity of the free boundary in IR which divides the

region where u satisfies a second order elliptic equation from the region

where it does not. The free boundary is shown to be smooth, and this fact is

instrumental in our construction of the optimal process for the stochastic

control problem.

Previous work on the regularity of the value function in singular

stochastic control has focussed on one-dimensional problems. Benes, Shepp &

Witsenhausen (1980) suggested that the value function for these problems

should be of class Cr and used this so-called "principle of smooth fit" to

determine some otherwise free parameters which arose in the solution of their

problems. It has been used in the same way by Harrison (1985), Harrison &

Taylor (1978), Harrison & Taksar (1983), Karatzas (1981, 1983), Lehoczky &

Shreve (1986), Shreve, Lehoczky & Gaver (1984) and Taksar (1985). See also

Chow, Menaldi & Robin (1985). An important question is whether the principle

of smooth fit can be expected to apply to multi-dimensional singular control

problems, or is it strictly a one-dimensional phenomenon. The paper Karatzas

& Shreve (1986) suggests that it might apply in higher dimensions. These

authors study the singular control of a one-dimensional Brownian motion under

a constraint on the total variation of the control process (a "finite-fuel"

constraint). The fuel remaining constitutes a second state variable, and the

value function for this problem was found to be of class <J jointly in both

state variables. One should observe, however, that the second state variable
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observe, however, that the second state variable in this problem is not a

diffusion; indeed, the fuel remaining is constant until control is exercised,

at which time it decreases an amount equal to the displacement caused by the

control.

The present paper concerns the control of a two-dimensional Brownian

motion, and control can cause displacement in any direction. Thus, the

discovery of a CT value function provides strong support for belief in a

widely applicable principle of smooth fit. Nonetheless, the argument of this

paper depends heavily on the fact that only two dimensions are involved (see

Remark 6.2), and we have not found a way to obtain a similar result in higher

dimensions.

This paper is organized as follows. Section 2 defines the underlying

stochastic control problem, and Section 3 relates it to a free boundary

problem, the so-called Hamilton-Jacobi-Bellman (HJB) equation. Section 4

constructs a C ' , nonnegative convex solution u to the HJB equation and

proves its uniqueness. Sections 5-10 upgrade the regularity of u to <J .

The key idea here is to use the gradient flow of u to change to a more

convenient pair of coordinates. This is a generalization of the device used

by many authors in one-dimensional problems of differentiating the Bellman

equation so as to obtain a more standard free boundary problem. In Section 11

the free boundary is shown to be of class Cr f a for any a € (0,1). In

Section 12 we return to the stochastic control problem, which now reduces to

the Skorohod problem of finding a Brownian motion reflected along the free

boundary in the - vu direction. The established regularity of u and the

free boundary allow us to assert the existence and uniqueness of a solution to

the Skorohod problem and finally complete the proof begun in Section 3 that u

is the value function for the stochastic control problem of Section 2.
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2. The singular stochastic control problem

Let {W , J ; 0 < t < »} be a standard, two-dimensional Brownian motion

defined on a complete probability space (Q, ?, P), and let {?t} be the

augmentation of the filtration generated by W (see Karatzas & Shreve (1987,

p. 89). The state process for our control problem is

t

(2.1) X = x + J2 W. + [ N df , 0 < t < «>,
U "C J^ S S

where x € R is the initial condition and the control process pair

{(N , f ); 0 < t < oo} is {?}-adapted and satisfies the conditions:

(2.2) |Nt| = 1, V 0 < t < «o, a.s.,

where |»| denotes the Euclidean norm, and

(2.3) f is nondecreas ing, left-continuous, and f = 0 a.s.

The process N gives the direction and f gives the intensity of the "push"

applied by the controller to the state X.

Given control processes N and f, we define the corresponding cost

00

(2-4) VN f(x) £ E
34 J e"* [h(Xt)dt + d ^ ] .

2
where h: R -* R is a strictly convex function satisfying, for appropriate

positive constants CL, cn and q:
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(2.5) h € C2.'* (K2),

(2.6) 0 < h(x) i CQ(1 + |x|
q) V x € K2,

(2.7) |vh(x)| * CQ(1 + h(x)) V x € K2,

(2.8) co|y|
2 < 0 ^ ) 7 • y < C0|y|

2(l + h(x)) V x € R2, y € K2.

Without loss of generality, we also assume that

(2.9) 0 = h(0) < h(x) V x € K2.

For x € K , we define the value function

(2.10) V(x) £ inf V _(x).
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3. The Hamilton-Jacobi-Bellman equation

We shall show that the value function V of (2.10) is characterized by

the Hami1ton-Jacobi-Be1lman (HJB) equation

(3.1) max{u - Au - h, |vu|2 - 1} = 0.

The following theorem gives a partial description of the relationship between

V and the HJB equation. More definitive results are proved in Section 12.

2 _2

3.1 Theorem. Let u : K -* R be a convex, <J solution of (3.1). Then

u < V. For a given x € IR , suppose there exists a control process pair (N,£)

such that V^ >-(x) < « and the corresponding state process (2.1) satisfies

(3.2) u(Xt) - Au(Xt) - h(Xt) = 0 V t € (O.co), a.s.,

t

(3-3) J 1{N = . ̂ x )}dCs = Ct V t € [ O . - ) . a....
\J S S

(3.4) u(Xt) - u(Xt+) = f t + - Ct V t € [O.co), a.s.

Then

u(x) = V(x) = VN f(x)

i.e., (N,C) is optimal at x.
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Proof: Let x € K and any control process pair (N,f) be given. Applying

It6's rule for semi-martingales (Meyer (1976), pp. 278, 301) to e^ufX ),

adjusting the result to account for the fact that f is left-continuous

rather than right-continuous, and observing that |vu| < 1 so

E e~Svu(X )dW = 0, we obtain for t > 0:
Jn s s

t

(3.5) u(x) = E e SifXJ + E f e S[u(X ) - Au(X ) - h(X )]ds
t JQ S S S

t

+ E f e Sh(X )ds + E f [-e Svu(X ) • N ]df
Jo

 s Jo s s s

E 2 e s[u(X ) - u(X ) + vu(X ) • N (C - C )].
0<s<t S S + s s s+ s

The second and fifth terms on the right-hand side of (3.5) are nonpositive

because of (3.1) and the convexity of u, respectively. Because |vu| < 1,

the fourth term is dominated by E e Sdf , and thus we have
J0 S

(3.6) u(x) < E e'^CXp + E J e~S[h(Xs)ds + dfs].

We wish to let t -» «> in (3.6) to obtain

(3.7) u(x) i E J e"S[h(Xs)d
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Assume E [ e Sh(X ) < <», for otherwise (3.7) is obviously true. This implies

that

lim E e ^(XJ = 0.

Now (2.8), (2.9) and the inequality |vu| < 1 (from (3.1)) imply that

V y € K2,

(3.8) u(y) i u(0) + |y| < u(0) + 1 + \y\Z < u(0) + 1 + f- h(y),
c0

so

lim E e \i(X ) = 0.

CO

We may therefore pass to the limit in (3.6) along a sequence {t } . such
-t

that E e nu(X ) -» 0 as t -» «>, and (3.7) follows. Since (N,f) is an
c n
n

arbitrary control process pair, we have u(x) < V(x).

If (3.2)-(3.4) are satisfied, then the second and fifth terms on the

t

right-hand side of (3.5) are zero, and the fourth term is E e Sdf . It
J0 S

follows that equality holds in (3.6), and hence also in (3.7), i.e.,

u(x) < V(x) < V(N o(x) = u(x).
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3.2 Remark. Equation (3.1) is similar but not equivalent to a problem arising

in elastic-plastic torsion (Ting (1966, 1967), Duvant & Lanchon (1967), Brezis

& Sibony (1971)). The elastic-plastic problem is posed on a bounded domain

O C R , and is to minimize

T, x A P 1 I i2 1 2 ,
J(v) = p |vv| + 5: v - vh

over K = {v € HL(Q); Hvvll̂  < 1}. Equivalently, one seeks u € K satisfying

J (h - u)(v - u) - I vu • (w - vu) < 0 V v € K.

If u solves the elastic-plastic torsion problem, then

(u - Au - h)(|vu| - 1) = 0,

but u - Au - h may be positive. In the special case that h is a

nonnegative constant function, a solution to the elastic-plastic problem also

satisfies (3.1) (see Evans (1979), Section 6), but such an h is not

interesting in the control problem.
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4. Solution of the Hamilton-Jacobi-Bellman equation

The existence of a W7fC° solution to the HJB equation (3.1) follows from

a modification of Evans (1979) (see also Ishii and Koike (1983)), who treated

a bounded domain and general h and space dimension. We need to refer to

this construction in the next section, so we provide it here.

Let j3 : R -* R be a C°° function satisfying

(4.1i) J3(r) =0 V r € (-co, 0],

(4.1ii) /?(r) > 0 V r € (0, <*>),

(4.1iii) |3(r) = r - 1 V r € [2,«>),

(4.1iv) j3'(r) > 0, P"(r) > 0 V r € R.

For each e > 0, we form the penalization function

(4.2) j3£(r) = P ( — ) V r € R,

and we consider the penalized equation

(4.3) ue - Aue + Pe(|vu
e|2) = h.

The following lemma is proved in the appendix.

4.1 Lemma. For every e € (0,1), there exists a nonnegative, convex, <J

solution ue to (4.3). There exist positive constants CL, CL and p,
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independent of e , such t h a t V e € ( 0 . 1 ) , V x € R :

( 4 . 4 ) 0 i u e ( x )

(4.5) |vu e (x) | i CjCl + | x | P ) ,

and for every y € K ,

(4.6) 0 £ D2u fc(x)yy < C 2 | y | 2 ( l + u £ (x) ) .

4 . 2 D e f i n i t i o n . W e d e f i n e a n o r m o n t h e v e c t o r s p a c e o f 2 x 2 m a t r i c e s b y

IIAII = Jtrace(AAT) .

If A is symmetric with eigenvalues X1 and X^, then

(4 .7 ) IIAII = JA + *

4.3 Theorem. The HJB equation (3.1) has a nonnegative, convex solution

u € W ^ satisfying

(4.8) IID2u(x)ll < C^ (1 + |x|m), a.e. x € R2,

for some C^ > 0 and m € IN.

2 6Proof- Because D u is locally bounded, uniformly in e € (0,1), we may
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choose a decreasing sequence {e } - with limit zero such that {u } n = 1 and

{vu n}C°_1 converge uniformly on compact sets, and {D u } j converges in

the L- - weak topology. Define u = lim u , so that vu = lim vu and

the weak* limit of {D2u n } ~ = 1 is D2u, Passage to the limit in (4.3) gives

(3.1). D

Lemma 4.4. Let u € WT' be a nonnegative, convex solution to the HJB

equation (3.1), and define

(4.9) « = {x € K2; |vu(x) |2 < 1}.

Then for every unit vector D,

(4.10) uvv = (D2u) v • v > 0 on «.

is bounded, and u attains its unique minimum over K inside

Proof* We have

(4.11) u - Au = h on «,

and h € C ^ ( R 2 ) , so u € C4>a(^) V a € (0,1). Differentiating (4.11), we

obtain

u - A u = h on <6,vv vv vv
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and since h > 0, relation (4.10) holds. Equation (4.11) also implies that

u > h on <6, and since |vu| < 1 on IR but h grows at least quadratically

(see (2.8)), H? must be bounded.

Let 6 € (0, ^) be given, and choose x € IR such that

u(x6) < u(x) + 6 V x € K2.

Define

^ ( x ) = u(x) + 6 |x - x 6| 2 V x € IR2,

and note that \fj~ attains its minimum over IR at some point y . In

particular,

(4.12) 0 = v^(y 6) = vu(y6) + 26(y6 - x 6 ) .

But also

u(y6) + 6|y6 - x 6| 2 = ^ ( y 6 ) < ^ ( x 6 ) = u(x6) < u(y6) + 6.

It follows that |y - x | < 1, and returning to (4.12), we see that

|vu(y6)| < 25 < 1. Therefore, y 6 € <6 V 6 € (0, | ) , and the sequence { y 1 } ^

accumulates at some y € ^. From (4.12) we have vu(y ) = 0, so y € ^, and

2
the convexity of u on IR implies that u attains its minimum at yQ.

This minimum is unique because of (4.10). 0
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2 °°
4.6 Theorem. There is only one nonnegative, convex solution u € W ' to the

HJB equation (3.1).

Proof: Let u1 and u~ be two nonnegative, convex solutions to (3.1), and

let y be the point where u o attains its minimum. Given 6 > 0, define

<pJx) = u,(x) - uo(x) - 6 |x - y°|
2 V x € K2.

O X £

The function <p~ attains its maximum at some x € K , and 0 = v<p̂ (x )

vu^x 6) - vu2(x
6) - 26(x6 - y°).

Consequently,

= |vu2(x )I +46 |x - y I

46 vu2(x
6) •

Because u 2 is convex, vu2(x ) • (x - y ) > 0, so either |vu^(x ) | < 1 or

x = y . This last equality would imply that vu^(x ) = 0, so in any event,

|vu2(x
6)|2 < 1. From (3.1) we have

=u o(x
6) - h(x6).

Because <p attains its maximum at x , we have from the Bony maximum

principle (Bony (1967), Lions (1983))
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0 > lim inf ess A <p(x)

x -» x

= lim inf ess [A u-(x) - A uo(x) - 46]
6 L Z

x -» x

- uo(x
6) - 46.

It follows that V x € K2,

u2(
x) = ̂ M + 6 \x - y

0i2

6 |x - y |

< 6 (4+ |x - y°|2).

Letting 6 4 0, we obtain Uj < Ug. The reverse inequality is proved by

interchanging u. and u^. D

4.6 Remark. Throughout the remainder of the paper, u will denote the unique

nonnegative, convex solution in W7' to equation (3.1). The set % will be

given by (4.9), and y € ^ will denote the unique minimizer of u. We shall

prove that u € C ^ ( K 2 ) V a € (0,1) (Theorem 10.3), m is of class

C 2 ^ V a € (0,1) (Corollary 11.3), and n(x) • vu(x) > a V x € &G, where n(x)

is the outward normal to *€ at x and a is a positive constant (Lemma

12.3).
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5. An obstacle problem

Let us return to the construction of u in the proof of Theorem 4.3 as

e e
the limit of a sequence of functions {u } _i» where each u satisfies

e A e 9 en
(4.3). Define w n = |vu n| and compute the product of vu with the

gradient of both sides of (4.3) to obtain

e - e e o e e e e
(5.1) w - s- A w + 2/3' (w )(D u )vu • vu = H

Z en

where

e A e o e o
H = vh • vu - IID u II .

Along a subsequence, which we also call {e } -, {H "} _1 converges to

(5.2) H = vh • vu - \,

where \ is the limit of IID u nll in the weak* topology on L^ . We will

show that

w = |vu|2 = 11* |vu6n|2

solves an obstacle problem involving H, and we will then obtain W ' P

regularity for w by invoking the theory of variational inequalities.

For r > 0 chosen so that Br(0) = {x € K ; |x| < r} contains
 C6, define
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= {v € W 1 > 2(B r); 0 < v < 1 on Br and v - 1 € wJ
f2(Br)}.

We pose the problem of finding <p € K such that
r

(5.3) ± [ vp • (w - v <p) > f (H - w)(v - <p) V v € K .
JBr(0) \{0) r

5.1 Lemma. The function w = |vu| solves (5.3).

Proof: Let v € K be given. From (5.1) we haver v '

(5.4) I ( w n - | A w n - H n ) ( v - w n )
JBr(0)

 2

= - 2 |3' (w n)(D u n)vu n • vu n(v - w n ) .
JB fO) en

e e e
The function u n is convex, j5r (w n) = 0 whenever w n < 1, and

n
e e

v - w < 0 whenever w > 1. Therefore, the right-hand side of (5.4) is

nonnegative, and integration by parts yields

(5.5) i f ( v - w n ) v w n - n + ~ r v w n - ( w - v w n )
Z J Z JBr(0)

n £ £ £
I { H

n-w n)(v-w n),
JBr(0)
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e
where n is the outward normal on 3B (0). Now w n -» v uniformly on

e e _ e
9B (0), w n -» w uniformly on B (0), and H -» H, vw -» vw, both the latter

convergences being weak in L (B (0)). Because the weak limit of |vw |

dominates |vw| , we may pass to the limit in (5.5) to obtain

(5.6) i f vw • (w - vw) 1 f (H - w)(v - w) V v € K
JBr(0)

 JBr(0)

5.2 Theorem. For every p € (1,»), w = |vu| € W_ .

Proof: This is a classical result. See, for example, Lemma 5.1 and Theorem

3.11, p. 29 of Chipot (1984).

D

5.3 Corollary. We have w € C1>a(R2) for any a € (0,1).

Proof: This follows from Sobolev imbedding (Gilbarg & Trudinger, Theorem

7.17, p. 163). D

5.4 Remark. Integration by parts allows us to rewrite (5.6) as

I ( w - J- A w - H ) ( v - w ) > 0 V v € K ,
JB (0) r
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for all sufficiently large r, and so

(5.7) max {w - ̂  Aw - H, w - 1} = 0.

Now x appearing in (5.2) dominates IID ull, and so H is dominated by

(5.8) H i vh • vu - IID2ull2.

But let x € <6 be given and choose e > 0 such that the closed disk

is contained in <g. Choose a positive integer N such that

|vu n(x)| < 1 V n > N, x € Bo (x°)2ey

From (4.1i), (4.2) and (4.3), we see that

e e
n A n ,

u - A u = h on

According to Theorem 4.6, p. 60 of Gilbarg & Trudinger (1983), for every

e
a € (0,1), |u | o n is bounded uniformly in n > N. Thus, on

B (x ), D u is continuous and converges uniformly to D u, \ = IID ull , and(x ), D

H = H. We conclude that (5.7) remains valid if H is replaced by H, i.e.,

(5.9) max{w - g- Aw - H. w - 1} = 0.
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>. D 2 u inside

Inside the set <6 defined by (4.9), u satisfies the elliptic equation

u - Au = h, and is therefore smooth (at least C > a V a € (0,1) because h is

CT' ). In this section, we describe the behavior of D u as 3^ is

approached from inside ^.

6.1 Lemma. Let z € &£ be given. As x € <6 approaches z, D u(x)

approaches the matrix

A(z) § (u(z) - h(z))

u2(z) -u1(z)u2(z)

2, ,

where u. denotes the i-th partial derivative of u.

Proof: Because w = |vu| = 1 on cW?, A(z) can be characterized as the

unique 2 x 2 positive semidef inite matrix with eigenvalues zero and

u(z) - h(z), and with vu(z) an eigenvector corresponding to the eigenvalue

zero. Let v be a unit vector orthogonal to the unit vector vu(z). It

suffices to show that

(6.1)

(6.2)

lim D2u(x) vu(z) = 0

xee

lim D2u(x)i> = (u(z) - h(z))u.

Because w = |vu| attains its maximum value of 1 at z, and vw is
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continuous (Corollary 5.3), we have

0 = vw(z) = lim vw(x) = lim D u(x) vu(x).

xee xee

Since v u is co n t i n u o u s and D u 6 L , (6.1) follows.
tfoc v *

o
Let 0 = Xj(x) < X2(x) denote the eigenvalues of D u(x). Then

u(x) - h(x) = Au(x) = Xj(x) + X2(x) V x € <6, and (6.1) shows that

lim Xj(x) = 0. Consequently,

(6.3) lim X2(x) = u(z) - h(z),

which is thus nonnegative. If u(z) - h(z) = 0, then D u(x) approaches the

zero matrix and (6.2) holds. If u(z) - h(z) > 0, then (6.1) implies that any

unit eigenvector corresponding to X1 (x) must, as x € <g approaches z,

approach colinearity with vu(z). Hence, any unit eigenvector corresponding

to Xp(x) approaches colinearity with v, and (6.2) follows from (6.3). D

6.2 Remark. The characterization of A(z) used in the proof of Lemma 6.1

makes critical use of the fact that our problem is posed in two dimensions.

The two-dimensional nature of the problem also plays a fundamental role in

Lemma 8.1, and together these lemmas provide the basis for Section 10, where

the existence of a continuous version of D u on IR is established.

6.3 Theorem. For every a € (0,1), u € CT>a(i), i.e., D u restricted to <6

has an a-Holder continuous extension to HZ.
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Proof: Because |vu| = 1 on &€, we can choose an open set G C <€ such that

|vu| is bounded away from zero on <6\G. Elliptic regularity implies the

Holder continuity of D u on G, so it suffices to prove uniform Holder

continuity of D u on

Let a unit vector v be given, and define on iS\G9 17 = 1 1

A
Z = I) -

A J

z

"FT
if z * 0,

if z = 0.

Observe that 17 • T = 0 and \x\\ = | T | = 1. Therefore,

Au = (D u) TfT] + (D u)nfr on

Direct calculation shows that on

(D2u) !>•!> = (D2u) z-z

= |z|2(Au - (1TU 2(D-T?)(D
2U)T?

2 2
u»T]) (D U)

Since Au = u-h and 2 (D 2 U)T) = - r ^ j on <6\G, we have
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(6.4) (D2u)u-u = |D - iST^L vu|2 ( u _ h 1
| | 2 2

^ | ( ^
|vu|2 2 |vu|

v _ ( » v u ) v w . v u on
4IvuT 2|vuP

All the terms appearing on the right-hand side of (6.4) are uniformly Holder

continuous in <€\G (recall Corollary 5 .3) . •
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7. The gradient flow

Recalling Remark 4.6, we let y € ^ denote the unique minimizer of u.

Using the strict convexity of u in ^ (Lemma 4.4), we choose 6 > 0, p. > 0

such that

(7.1) B26(y°)C<6,

(7.2) D2u(x)y • y > n|y|2 V x € B25(y°),

(7.3) VL < |vu(x)|2 < I V x € dBJy°),

(7.4) vu(y° + 69) • 6 > p. V 6 € Sj,

A O
where Sj = dB^O) is the set of unit vectors in IR . For 0 € Sj, we define

the gradient flow ^(t,0) to be the unique solution to the differential

equation

(7.5) dt"^*'6) = vu(x'/(t'0))« t > °.

with the initial condition

(7.6) ^(0,0) = y° + 60.

We will find it convenient to use \fj to change coordinates in R . The

following theorem justifies this.

7.1 Theorem. The map >// is a homeomorphism from [0,«>) x S1 onto IR \B^(y ).



7.2

Proof: Let us for the moment fix 0 € S1 and define

n(t) = >Kt,9) - y° V t > 0. Because |vu| < 1, we have |n(t)| < t + 5, and

y + —|— n(t) € B25(y ) V t > 0. We conclude from the convexity of u on IR

and from (7.2) that for t > 0:

(7.7) ± |n(t)|
2
 = 2 vu(y° + n(t)) • n(t)

= 2[vu(y° + n(t)) - vu(y° + ̂ ~- n(t))] • n(t)

2 [u(y° + ̂ n ( t ) ) - vu(y°)] • n(t)

6At

2 f D2u(y° + -m(t))n(t) • n(t)di
J0

f) |n(t)|2.

Since |n(0) | = 6 , we can integrate (7.7) to obtain the inequality

(7.8) |*(t.e) - y°|2 ̂ ( 1 V \ ) * * e^ t A 6> V t >_ 0, 0 €

One consequence of (7.8) is that

(7.9) k(s,9) - *(0.<*>)l > 0 V s > 0. 6 € Sr y € Sr

Now let s,t € [0,«>) and 0,<p € S- be given. Again using the convexity

of u, we may write
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(7.10)

t
I

2 f [
Jo

If 9, f are in S^ and t^.tg are in [0,«>) and tj ? t^, then (7.9),

(7.10) imply that ^(tj.G) * >//(t1(«p). If tj = tg but 9 * <f>, then the

uniqueness of solutions to (7.5) implies that ^(t-,8) * xf/(t2><f>). This

concludes the proof that >J> is injective.

It is clear from its definition that i> is continuous. Define

D £

to be the range of >/». Let x € D and e > 0 be given. It follows from

(7.8) that there exists T > 0 such that

DflBJx)

But an injective, continuous map on a compact set has a continuous inverse, so

$ is continuous at x.

It remains to show that D = R \B6(y ). There is a function

yp: [0,<») x R -• HT such that
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I(t,/3) = *(t. (cos p, sin &)) V (t,/3) € [O.«) x K,

and \f> is continuous and locally injective. It follows from Deimling (1985),

Theorem 4.3, p. 23 that

= J((0,«>) x R)

n
x }

is open. On the other hand, if {x } - C D is a sequence with limit

0 2 —1 n w

x € R , then (7.8) shows that {\J/ (x )} - is bounded and thus has an

accumulation point (t ,9 ) € [0,«>) x & The continuity of ^ implies that

x° = *(t°,9°)f so D is closed. It follows that D = R2\B^(y°). D

7.2 Corollary. For 9 € Sj and nr € [i, 1], define

(7.11) T^(8) = inf{t > 0; |vu(+(t.B)) |2 > -r}.

Then

sup T (9) < sup T (8) <

Proof: According to Lemma 4.4, *6 is bounded. We can use (7.8) to choose

t € (O,") such that

<6C*([0,t*] x S 1).



7.5

7.3 Theorem. The homeomorphi sm $ is Lipschitz continuous on compact subsets

of [0,<») x S1, and ^ is Lipschitz continuous on all of IR \Bg(y ).

Proof: It follows immediately from (7.5) that I j f ^ K ^ 0 ) ! < 1

V (t,9) € [0,») x S-. Now let T > 0 be given and use Theorem 4.3 to choose

a Lipschitz constant C for vu on ^([0,T] x Sj). For 6,<p € Sj and

t € [0,T], we have

Jo

6 |9 - <p\ + C [ |
J0

Gronwal1's inequali ty gives

crfie^1 | e - , | .

and the local Lipschitz continuity of >/> is proved.

To prove the global Lipschitz continuity of >// , we let

^ y 0 ) be given and define (tj.Gj) = ^ ( x 1 ) . (tg.Bg) = ^ ( x 2 ) .

Assume without loss of generality that |x - x | < 1 and that t1 > tQ. Set

S = tl " t2" According to (7.10) and (7.8),



7.6

(7.12)

> 5 ( 1 V I-) e^v J - 5
~ o

vff6(sAo).

If 0 < s < 6, then (7.12) yields

(7.13) |tl " t2| < ^ Ix1 -x 2|

If s > 6 and v8 I 1, (7.12) again yields (7.13). Finally, if s >. 6 and

0 < v6 < 1, (7.12) yields |xX - x2| > fi S 1"*^ 6, so

-L JL JL
#T7 IA\ \*. ^ \ s t ^"V^\V^ I 1 2 i u 6 , r cl-u6>Lt6 I 1 21( r . 1 4 ) It- - t 1 I < (|Li o ) ^ | x - x I < {jio ) | x - x | .

Relations (7.14) and (7.15) imply the global Lipschitz continuity of the first

component of >/» .i.e., there exists a constant L > 0 such that

(7.15)

Now
1 2 2. 0

let x ,x € Br\Bg(y ) be given, and define (tj.Gj), (t2.02^
 a n d



7.7

s = tj - t 2 > 0 as before. From (7.10), (7.5) and (7.6), we have

Ix1 - X
2| i \Hs,ex)

> - s + 6 |e1 - e2|.

Relation (7.15) gives us

'91 " 9
2 I *I 1*1 " ̂ 1 + o- I34' " ̂ 1 < I (1 + D l x 1 - x 2 | .

D

7.4 Remark. In much of what follows, we will use the coordinates

(t,8) € [0,°°) x S1 rather than the coordinates x € lIVAB^y ). We may

identify Sj with the unit circle, and let [0,«>) x S^ have the product

of Lebesgue measure and arc length measure. An important consequence of

Theorem 7.3 is that >// maps measure zero subsets of [0,°°) x S1 onto Lebesgue

~(measure zero subsets of K \B~(y ). Likewise, \f/ preserves measure zero

sets.



8.1

2 <*>8. W ' regularity for the obstacle problem

The purpose of this section is to show that the function w = |vu| is

in W«' . This improves the regularity result of Theorem 5.2.

8.1 Lemma. We have

(8.1) (D2u)vu = 0, ||D2u|| = Au a.e. on

Proof: By the definition of <6t w attains its maximum value of 1 at every

point in DrY6, so vw = 0 everywhere on BTY6. But vw = 2(D u)vu almost

everywhere on IR , and the first part of (8.1) follows. Since D u is

singular almost everywhere on IR x€, the second part of (8.1) also holds.

D

8.2 Remark. Because D u is positive definite on <6 and positive

semidefinite almost everywhere on IR , and since (recalling Remark 7.4)

(8.2) ^rwWt.8)) = 2D2u0Kt,6))vu(>Kt,e)) • vu(*(t.9))dt

a.e. (t,9) € [0,«>) x S1,

the function t H> w(>//(t,6)) is nondecreasing for almost every G € S . In

particular, with TAB) defined by (7.11), we have

(8.3) wOKt.9)) = 1 V t > TjCG). a.e. 0 € S1.



8.2

8.3 Theorem. The function w = |vu| is in VT>a>.

Proof: Recall that w satisfies (5.9), where V a € (0,1), H = vh • vu

- IID ull is of class <j > a inside C6, and H is defined up to almost

everywhere equivalence on K v6. We define

vh(x) • vu(x) - IID2u(x)ll2 V x € <€

(8.4) H(x) S

vh(x) • vu(x) - [(u(x) - h ( x ) ) + ] 2 if x €

Now u - h = Au > 0 on %, so u - h > 0 on 6*6. Theorem 6.3 and Lemma 6.1

then show that H is locally Holder continuous with exponent a for any

a € (0,1). Because of (3.1) and Lemma 8.1,

u - h < Au = IID2ull a.e. on K^VB.

2
But Au > 0 a.e. on K , so

e. on[(u - h) +] 2 < IID2ull2 a.

Therefore H > H a.e. on tP\*. and H = H on <6, so (5.9) yields

(8.5) max{w - | Aw - H, w - 1} = 0.

With the aid of (8.5) and the Holder continuity of H, we can obtain the

r

w f regularity of w from the theory of variational inequalities. More

precisely, choose r so that KB (0) and observe that the Dirichlet
r

problem



 



8.3

- |- A<p = H on Br(0),

<p = 0 on d B (0),(

has a solution <f> which is in C2>a(B]r(0)) for any a € (0,1) (Ladyzhenskaya

&Ural'tseva (1968), Theorem 3.1.3, p. 115). Set w = w - </>, so that

w € YT>P(B (0)) for any p € (I,00), and

(8.6) max{w - ̂  Aw, w - 1 + <p} = 0 in B (0),
£ I*

(8.7) w = 1 on 3 Br(0).

Define

L r i {v € W
1'2(Br(0)); - <p < v < l-<p on Br(0) and v-1 € wJ'

2(Br)},

and note from (8.6), (8.7) that w € L and

or vw • (w - vw) > - w(v - w) V v € L .
JBr(0)

 JBr(0)

— o oo

It follows from Chipot (1984), Theorem 3.25, p. 49, that w € W * (B (0)), so

also w € «T>CC>(B (0)). On DT\B (0), w = 1. •

8.4 Corollary. We have D2u € Wlf

1 °°
Proof: Use the W f regularity of vw in (6.4). D



9.1

9. Lipschitz continuity of T

Recall the mappings T : Sj » [0,«>) defined by (7.11) for each

T € [V.I]. The continuity of vu o $ implies the lower semi continuity of

each T . In this section we prove that for each nr € [5-, 1], T is, in fact,

Lipschitz continuous.

9.1 Lemma. We have

(9.1) K ^ sup M x > 1 <
D u(x)u^

Proof} Let u,i7 € S1 be given and set f = (D U)D #D and g = VW#TJ. Then in

f - Af = (lA)wi) > cQf g - Ag = 2 vH*T] - g,

where cQ > 0 is the constant in (2.8), and H, defined by (5.8), is in

W (i) because of Corollary 8.4. Furthermore, g = 0 < f on d^. Therefore

the maximum principle implies that g - Kf < 0 in (£, where

-L(2 HvHIl m _ + llvwll m _
C0 L (<g) L ("€)

2
In other words, vw • 17 < K (D u)u»u.



9.2

9.2 Theorem. For each nr € [|-.l]. the mapping T^: Sj » [0,«>) is Lipschitz

continuous with a Lipschitz constant which is independent of T.

Proof: For each t € [g*1]* define

\ = Wt.6); 0 < t < T̂ (9)} U B6(y°)

(with >//,6 and y° as in (7.1) - (7.6)). Each « is open, w < nr on ^

and w = nr on 9^. For nr € [^,1), we also have ^ C <6. Because of (4.10),

vw dos not vanish on C6, so for fixed nr € [g-, 1) and z € 9^ , the outward

normal to *€ exists and is

r x A vw(z) _ 2 D u(z) vu(z)
n l z j " |vw(z)| - |vw(z)l •

In fact D w is continuous in <6 and bounded in K (Theorem 8.3), so for

every nr € \jr% 1), 9*6 has bounded curvature, i.e., there are constants

e > 0, K > 0 such that for every z € 9^ , and for every x € B (z):

(9.2) (x - z) • n(z) ̂  K^ |x - z|2 =» x € B?V8 .

d2 1
We may use the local boundedness of —^^(t.B) = 7? vw(^(t,8)) and the

dtZ *

Lipschitz continuity of ^ to choose a constant K~ > 0 such that for every
^ € C^'1)' every P € C 0' 1]. and every 9,<p € Sj:
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(9.3) kcye) + p.e) - •(Tr(9).e) - p vu(^(e),0))| < K2P
2,

(9.4) 1*0,(9) + p.9) - ̂ ( G ) + p.*)| < K2|9 - y

With K as in (9.1), choose L > max{|-K Kg, 1}. Let 0,<*> € Sj be given

setwith \0 - *p\ < f-, and

P = L |9 - <p\, z = yp(T (0)9e)9 x =

Then (9.3), (9.4) imply the existence of vectors I>,TJ € B^O) such that

x = z + |3vu(z) + KJ3 v + K2 |0 - «P|T].

We calculate

(x-z) . n(z) = 2 / 3 p ^ ^ j Z ) t V U ( z ) + K/nCz)., + % \B - 9\ n(z).r,

= (^ - K 2 ) 10 — <̂ I — KgL
2 \0 - <p\2,

and

K |x - z| = K^|p vu(z) H

2 9 4 9 i
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It is clear that for |0 - <p| sufficiently small, u € B (z) and

(x - z) • n(z) > K^ |x - z|2,

from which we conclude (see (9.2)) that x € DfVg^, i.e.

f L|9 - <p\.

Interchanging the roles of 9 and <p, we obtain

- -ye)! < L |e - *

for all Q,*p € St such that |0 - <p\ is sufficiently small.

For each 0 € S-, the mapping t » w(>//(t,G)) is strictly increasing on

[0,1^(9)] (see (8.2) and (4.10)). Therefore, the mapping T » T^(9) is

continuous on [g%l]. The Lipschitz continuity of T. follows from the

uniform Lipschitz continuity of T for T € [— 1). D

9.3 Corollary. With x//,6 and y as in (7.1) - (7.6), we have

(9.5) <6 = {*(t,9); 9 € S1, t € [0,^(9))} U B6(y°).

Proof: Define ^ to be the set on the right-hand side of (9.5). It is clear

that ^ C <g, and because of (8.3) and Remark 7.4, the Lebesgue measure of ^\?

~ A —1
is zero. Let x € <eY6 be given, and define (t,9) = ^ (x). Then t > T1(0),1

but because w(T]L(9),9) = 1, we must in fact have t > Tj(0). The continuity

of T. and w allows us to choose an open neighborhood of (t,9) contained in

& and this contradicts the Lebesgue negligibility of <eV6. D



10.1

10. D u outside <6

We saw in Lemma 8.1 that D u is singular almost everywhere in R v6.

Indeed

(10.1) = 0, = 0 a.e. on

and because u. + u^ = 1 on IR Y6, we have

(10.2) D2u = Au

U2 ~U1U2

"U1U2
2

Jl

a.e. on

Because u has continuous first partial derivatives on K , the proof of

continuity of D u on Rv6 reduces to a search for a continuous version of

Au on this set. In order for D u to be continuous across &€, we must also

have Au = u-h on &€ (see Lemma 6.1).

We shall construct the desired continuous version of Au in the (t,8)

variables. Indeed, if we set

x(t,e) = v e c s 1 , t >

then a formal calculation relying on (10.2) and the constancy of w on R v8

leads to

(10.3) dt .G)) " IID2u0Kt,9))ll2

= - A2(t ,6) V 9 € S1 , t >
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Integrating this equation and invoking the condition Au = u-h on 9*6, we

obtain

(10.4) X(t,9) = ! + (t-T1(9))[u(+(T1(e).9)) - M^T^G) .9))]

v e e s r t >

The task before us is to show that with X defined by (10.4), the function

X o \f> is a version of Au on R v€. This is essentially a justification

of the formal differentiation in (10.3), which involved third-order

derivatives of u.

Let p: IR -̂  [0,») be a C* function with support in B1(0) and

satisfying ~ p = 1. For n = 1,2,..., we define mollifications of u by

(10.5) u(n)(x) £ J 2 u(x - I f) p(f )df = n
2 J 2 u(f) p(n(x-f)) df.

Then vu^ ' and D u^ ' are locally bounded, uniformly in n, and u^n' -* u,

vu^ -» vu and D u^ ^ -» D u in L^ . By passing to subsequences if

necessary, we assume that these convergences occur almost everywhere. We

define for (t,9) € [0,°°) x S1:

(10.6) «(n)(t,9) ̂  Au(n)0//(t,9)), n = 1,2,...,

(10.7) i (t,9) i

and observe that ^n^(t,9) -* «(t,9) for almost every (t,9) € [0,«>) x S1



10.3

(Remark 7.4).

10.1 Lemma. The functions

) «(n)(t,e) = v A u ( n )

are locally bounded, uniformly in n.

Proof: Observe first of all that

« ( n> = v Au<n> • vu<n> + v A u ( n ) • (vu - vu<n>)

= | A( |vu<n> | 2 ) - lQjV n >ll 2 + v Au<n> • (vu -

where £^ * is evaluated at (t,6), and the right-hand side is evaluated at

>//(t,0). It suffices to obtain uniform local bounds on A( |vu^n^ | ) and

v Au*n* • (vu - v u ^ ) .

Define for i € {1,2} the functions

I2
IR

= n J 2 (|vu(x - ^ f)|2)±

= 2n J 2 vu^x - i f) . vu(x - i f) p.(f)df,

n = 1.2.
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and note that these functions are uniformly bounded in n (Theorem 8.3). Then

..= 2n6 J 2 J 2 vutf) • vu(T7)[Pii(n(x-f))p(n(x-T7))

+ p.(n(x-f))p.(n(x-11))]dfd77

JJR2

" S » • vu(x - I i,)Pl(f )p(i,)dfdr,

+ 2 J 2 J 2 VU.(X - I f) VU.(X - I T|)p(f)p(T))dfdTI.

The last term is locally bounded in x, uniformly in n. The next to last

term is

" ^ ) " vu(x - I

which is also locally bounded in x, uniformly in n, because V f ,17 €

|vu(x - — 17) - vu(x - - f) I < - sup I1D ull.T)) vu(x
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This provides a uniform local bound on A( |vû  '| ).

On the other hand,

v Au^(x) • (vu(x) -

= n& J 2 J 2 Au(f )[vu(x) - VU(TJ)] • vp(n(x-f ))p(n(x-r?))dfdi7

= n J 2 J 2 Au(x - I f )[vu(x) - vu(x - ± 17)] • v

and the boundedness of this expression follows from the local Lipschitz

continuity of vu. D

Because of Lemma 10.1, a subsequence of {€^ *} _1 converges in the

00 ^ 00

Lp -weak topology to a function f € L~ ([0,00) x SJ. We assume without

loss of generality that the full sequence converges. For each nonnegative

integer k, choose a number t, > k such that {£ (t, ,6)} . converges for
a.e. 9 € Sj, and define ^ X ^ . 0 ) to be this limit. (Whereas «(•»•) is

defined up to almost everywhere equivalence on [0,°°) x S-, the functions

X, (t, ,•) are defined up to almost everywhere equivalence on S-.) We insist

furthermore that tQ be chosen so that ^(to,8) € <B V 6 € Sj. Then

Au(>//(t0, •)) is defined pointwise on S- because Au is continuous on *€, and

so we may require that

X0(t0,G) = Au0Kto,9)) V 8 € 8 r
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For each k = 0,1,..., define X^ [0,«) x S1 » K by

J.
so that any two versions A, and X, of this function have the property that

the set {9 € Sjl 3 t € [0,°°) with Ajft.B) * Ajft.G)} has measure zero.

We now relate the functions A, , k = 0,1,..., to the function £ of

(10.7). Let <p be a continuous, real-valued function on [O,00) x S1, and

define

•(t,8) = I <p(s,8) ds V (t,9) € [0,») x S
Jo A

For k = 0,1,

I

r r k
[A, (t, ,6)<Z>(t,.6) - C(s,G)<p(s,G)ds]d9Js K K K j Q

G) - f
J0

lim [ [ « ( t
n-*» JS

= lim I [ k «(n)(s,G)«p(s,G)dsdG

ltk
«(s,0)«p(s,G)dsdG.
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It follows that A, = € a.e. on [0,t, ] x S-. In particular, for any two

nonnegative integers k and m, A, and X agree almost everywhere on
j£ in

[0,t, A t ] x S-, and hence almost everywhere on [0,<») x S1. In particular,
ic m JL j.

(10.9) A0(t,9) = Au(*(t.G)). a.e. (t,6) € [0,«>) x S1.

and for a.e. 6 € S-,

(IO.IO) xo(t,e) = Au0Hto,e)) + J C(s,e)ds v t e [o,«»).

o

10.2 Lemma. Almost everywhere on the set

r- t

2
the function f appearing in (10.10) is equal to - Xfl.

Proof: From (10.8) we have

= v Au # vu + Au Au

^U12 U2 + Ull U P l + ^U12 Ul + U22 U2^2

+ Ull U22 + U11U22 " ̂ 12 U12*
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Now u j ^ u 2 2 +
 uiiu2o " 2 u12 12 iS l o c a l ly bounded* uniformly in n, and

converges almost everywhere to 2 det D u, which is zero on IR \*8. It follows

from (10.1) that for any function <p € C l

lim [£V j o yf1 + (i

= 0.

Because the functions «'n' o ^ + (« o >// 1)(«^n^ o >/; 1) are locally bounded,

uniformly in n, we can show that for every <p € L (K \ ^ ) ,

(10.11) lim f [«(n) o ̂ T1 + (« o yfT1)^11) o ̂ " 1 » = 0.

Now let -r € l}(1> 1(K2\'6)) be given so that (T O ^, X) |j * 2 | e L1(R2\«). where

|j^ | is the bounded (Theorem 7.3) determinant of the Jacobian of <//" . From

(10.11) it follows that

f ,J+ 1

^tSx

= 0.



10.9

On the other hand, 2y ' + £€v J converges in the hp -weak topology on
vOC

2 2
[0,°°) x Sj to f + € = C + XQ a.e., and the lemma follows. •

2 210.3 Theorem. There is a Lipschitz continuous version of D u on R .

Proof: For 9 € Sj and 0 < t < T][(9), define

(10.12) X(t,9) ̂  Au(*(t,9)),

where, of course, we mean the Lipschitz continuous version of Au inside <6

(Corollary 8.4). For 9 € Sj and t > ̂ ( 9 ) , define X(t,9) by (10.4), which

gives us a Lipschitz function. At t = T1(9), the Lipschitz continuity of X

follows from (10.4), Lemma 6.1, and the equality |vu| = 1 on m. The

Lipschitz continuity of \p implies the Lipschitz continuity of X o \JJ .

It remains to show that X o \p is a version of Au, or equivalently,

(10.13) X(t,9) = Au(>//(t,9)), a.e. (t,9) € [0,«>) x Sy

In light of (10.9) and (10.12), we need only show that for a.e. 9 € Sj,

(10.14) X(t,9) = XQ(t,9) V t > Tj(9).

But (10.10) shows that for a.e. 9 € SJf the function t ̂  XQ(t,9) is

absolutely continuous on [0,°°); in particular,
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(10.15) V ^ c e M ) = lim xo(t,e)

= lim

- h(>//(t,e))]

Equation (10.10) and Lemma 10.2 imply that for a.e. G € S.,

(10.16) \n(t,6) = ~ ^(t. 0). a e - * ̂  "M6).

Equations (10.15) and (10.16) imply (10.14). •



11.1

11. Regularity of the free boundary

In this section we apply known regularity results for free boundaries to

show that the boundary of "6 is of class <J >a for all a € (0,1). In order

i i2 JZ mto apply these results, we recall that w = |vu| is a w f function

(Theorem 8.3) which satisfies (see (5.9)) 1-w > 0 on R2 and

(11.1) | A(l-w) = H-w on <g,

where we recall that H = vh • vu - IID ull . We shall establish the strict

positivity of the forcing term H-w on 9*6. Recall that

w - | Aw - H < 0 on R2,

and w = 1, Aw = 0 on Hr\£9 so

(11.2) H-w = H-l > 0 on

11.1 Lemma. The function H is locally Lipschitz continuous, and H > 1 on

m.

Proof * The local Lipschitz continuity of H follows from Theorem 10.3. To

prove that H > 1 on 9*6, we assume that there exists a point on 9*6 where

H = 1. Without loss of generality, we take this point to be the origin (0,0),

and we take vu(0,0) = (-1,0).

We first obtain an upper bound on H near (0,0). Inside <S9 H is

differentiable and
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(11.3) vH • vu = (D^Jvu • vu + (D2u)vu • vh - v(IID ull ) «vu.

1 2 2
Let v and v be unit eigenvectors for D u, and let X. and X^ denote

their respective (nonnegative) eigenvalues. Then

(11.4) v(IID2ull2) • vu = tr (D2w D2u) - 2 tr [(D2u)3]

< 2 IID2ull sup (D2w)u*u.
L

Applying Theorem 1 and the remark following it from Caffarelli (1977) to the

function 1-w, we have that for some positive constants C and e,

(11.5) sup D2w(x,y)ivi> < C |log(dist((x,y), &G))\~e V (x,y) € <g.

Combining (11.3)-(11.5) , we conclude that

(11.6) vH(x,y) • vu(x,y) > DHi(x,y)vu(x,y) • vu(x.y) + ^ vw(x,y) • vh(x,y)

- 2 IID2ull C | log(dis t ( (x ,y) , &€))\ e V (x,y) €
L («)

As (x,y) approaches (0,0) € 96, |vu(x,y) | approaches 1 and vw(x,y)

approaches 0. Using (2.8) and (11.6), we can choose e > 0 such that
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(11.7) vH(x,y) • vu(x,y) > -£ V (x,y) € [-e.e]2 D <g.

Let GQ e Sj be such that ^(^(GQJ.GQ) = (0,0). For t €

chosen so that ^(t,Gn) € [-e.e] ,

It follows that for some T > 0,

(11.8) HWTjOo) - t,90)) i HWjie^.Bj,)) - |cot

= 1 - |c Qt V t € (0,T).

But also

(11.9) I+CTJCGQ) - t,90) - (t,0)| = ^ ( T ^ G Q ) - t,GQ)

+ t

m V t € (0.^(9^).
JL*

Let /5 > 0 be a Lipschitz constant for H in a sufficiently large

neighborhood of (0,0). From (11.8), (11.9), we have for all t € (0,T):
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H(t,o) < H^T^e) - t, eQ)) + |H(t,o) - HOKT^BQ) - t, 8Q))|

< 1 - \ c t + pt 2 IID2ull2 ° L

Choosing r smaller, if necessary, we have H(t,O) < 1 - ~- c~t for all

t € ( 0 , T ) . Again using the Lipschitz continuity of H, we obtain the desired

upper bound

(11.10) H(x,y) i 1 - | cQx + p|y| V (x.y) € [O.T] X [-T.T].

We next construct a function <p: IR -* K such that for appropriate

P.CT € ( 0 , T ) ,

(11.11) V - \ A<(> > H on [0,p] x [-a,a],

(11.12) <p 1 1 on 3([0,p] x l-a,a-\),

(11.13) <p(0,0) = 1.

c 0For this purpose, choose 0 < p < min{T, ) such that

2
(11.14) (1 - £|-) sinh >T2 p > 42" p.

Then define



(11.15) a = min{T, -^— }
4 42

11.5

2

(11.16) )
sinh 42 p cosh 42~ a

<p(x,y) i 1 + Pa (2 - c o s h ̂  y) (1 - sinh>f2x+ sinh 42 (p-x))
cosh 41i a sinh ^2 p

Ap(l - £2sh j2 jL ) { _ x + sinh 42 x} y (x y )

cosh >T2 a p sinh J2 p

Then

,y) = <p(p,y) = 1 V y € [ -a ,a] ,

t . \ 1 . o n sinh ^ x + sinh >H2 (P~X)T V - w ^ r^ n<*>(x,± a) = I + ]3a[l ^̂ —̂*-] > I V x € [0,p]
sinh 43* p

because

(11.17) sinh a + sinh b < sinh a cosh b + sinh b cosh a

= sinh (a+b) V a,b € R.

It remains to verify (11.11). Direct computation reveals
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, v 1 k , > 1 or> A . A sinh >T2 x cosh >f2 y
<p(x,y) ~ 2 ^vx»y) = 1 + 2J5a - Ax + Ap —

sinh 42̂  p cosh >f2 a

cosh >f2" y (sinh >T2 x + sinh >f2 (p-x).

cosh >T2 a sinh >T5 p

>I2"> l + / 3 a - A x + Ap
sinh 42̂  p cosh ̂ 2 a

I 1 - (1 ^-£ ) Ax +
sinh A2 p cosh 42 a

> H(x,y) V (x,y) € [O.p] x [-a,a],

where we have used (11.17), the inequality a < sinh a V a > 0, (11.16), and

(11.10).

On the other hand, (5.9) implies that

w - =• Aw < H on [0,p] x [-a,a]

w £ 1 on d([O,p] x [-cr.a]).

The maximum principle implies that w i <p on [0,p] x [-a,a]. In particular,

V x € [0,p],

w(x,0) - w(0,0) = w(x,0) - I i a ( x , 0 ) - 1 = <p(x,O) - «p(0,0),
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and thus

(11.18) 0 = J-w(O.O) * J-*(0.0)

The final step in the proof is to show that ^- <f>(0,0) < 0, so (11.18) is

contradicted, as well as the assumption that H = 1 at some point; on 9*6. We

compute

(11.19) J^(O.O) = >T2 Pa(2 )(cosh 42 p -
cosh 42 a sinh 42 p

cosh 4i2 a sinh 42 p

The first term on the right-hand side of (11.19) is bounded above by

2 42 Pa (cosh 42 p -
sinh >T2 p

As for the second term, (11.14) and the inequality cosh ̂ 2 a - 1 > >T2 a

imply that

Ad '—Hi -H )
cosh s2 a sinh 42 p

sinh 42* p

£ .) l + (cosh 42 a - 1) J ] "

4 • i -
p >I2 cr

42 p2
p2g .

) •

4 4£ a
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Therefore,

c

J- <p(0,0) < a[2/5p - f

and (11.15) and the choice of p show that

S- <p(0,0) < a[2j3p — ] < 0. D

11.2 Theorem. The free boundary &€ is of class C , and w has continuous

second partial derivatives inside ^ up to 9*6.

Proof: Because Tj is Lipschitz (Theorem 9.2), for evey 9 € Sj, the point

(T1(8),9) is a point of positive density with respect to the measure of Remark

7.4 for the set {(t,9) | 9 € S1, t € 0^(9),°°)} = ^(IR2^). But >// and yf1

are locally Lipschitz, so every point of &€ is a point of positive Lebesgue

density for IR \<6. It follows from Theorem 2 of Caffarelli (1977) that &G

is Lipschitz. Caffarellifs Theorem 3 can now be applied (with v in

Caffarelli *s Assumption (HI) equal to our 1-w), and it yields the desired

results. D

11. 3 Corollary. The boundary ff£ is of class CT > a for every a € (0,1).

Proof: In light of Theorems 6.3 and 11.2 and equation (6.4), D2u has a C1

extension from <g to ^. Therefore, H-w appearing on the right-hand side of

(11.1) has a C extension from <6 to <£, and because &% is of class C ,
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H-w has a C extension to an open set containing <8. (In Lemma 12.4, we

explain in some detail how to construct a similar extension.) Lemma 11.1 and

Theorem 11.2 permit us to apply a theorem of Kinderlehrer & Nirenberg (1977)

(see also Theorem l.l(i) of Friedman (1982), p. 129), to conclude that 96 is

of class C *a for every a € (0,1).

Now observe that vw solves the problem

vw - j Avw = vH in «,

vw = 0 on 96.

Since vH is continuous up to 96 and 96 is C *a, Theorem 8.34 of Gilbarg

& Trudinger (1983), p. 211, implies that vw is of class ClfCr on % up to

96. Inserting this regularity into (6.4), we conclude that u u, and hence

H-w, are of class C %a on *6 up to 96. We may again appeal to Theorem 1.1

of Friedman (1982) to conclude that 96 is of class Crta for every

a € (0,1). D

11.4 Remark. The bootstrapping in Corollary 11.3 can be continued until the

regularity of h is exhausted. If, in place of assumption (2.5), we assume

that h € C^'a for some k i 3 and a € (0,1), then the free boundary is of

class CT>a
f w is of class CT'a inside <6 up to 96, and u is of class

(T *a inside « up to 96. This argument uses Theorem 1.1, p. 107, of

Ladyzhenskaya &Ural'tseva (1968), to wit. if vH is of class <J *a up to

96 and 96 is C^1*". then vw is of class C^" 1^ up to 9€.
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12. Construction of the optimal control process

12.1 Definition. Let x € <6 be given. A control process pair {(N .f );

0 < t < <»} as in Section 2 is called a solution to the Skorohod problem for

reflected Brownian motion in ^ starting at x and with reflection direction

- vu along ff€ provided that:

(a) f is continuous,

(b) the process X defined by (2.1) satisfies Xt € «, 0 < t < °°, a.s., and

(c) for all 0 < t < co,

s= -vu(Xs)}
s

For every x € <6, the Skorohod problem of Definition 2.1 has a solution

starting at x. This follows from Theorem 4.3 of Lions & Sznitman (1984),

provided that the following three conditions are satisfied:

(Cl) <6 has a C boundary and satisfies a uniform exterior sphere condition,

(C2) 3 a > 0 such that vu(x) • n(x) > a V x € 8<g, where n(x) is the

outward normal vector for <6 at x,

(C3) vu on % has an extension to a CT function on an open set containing

Condition (Cl) is implied by Corollary 11.3. We establish (C2) and (C3).

12.2 Lemma. Condition (C2) is satisfied.

Proof: Let x € &€ be given. We construct a sequence {x, }, 9 in <6 such

that xk -> x and [^ ) | •* n(x). With K as in Lemma 9.1, we have
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and (C2) follows.

00

As for the construction of {XiL o. we choose r > 0 such that

Br(x + rn(x)) fl <g = $. Define x = x + 1 rn(x), so Br/2(x) n <6 = * and
x € 3Br/2(x). Given k > 2, we define ^ i {x € R2; w(x) < 1 - -}. We then

translate B /2(
x) i n t h e ~n(x) direction until it touches &&9 i.e., we

define

pk = sup{p > 0; Br/2(x - pn(x)) D

and we choose x, € B .Ax. - p,n(x)) fl 61"?. . Then B /9(x - p,n(x)) is an

exterior sphere for c«L at x,, so the outward normal to ^ at x, is

- pkn(x) -

Ix - Pkn(x) -

vw k
As k -» °>, we have x, -» x and p, -» 0, so T — T — y r -» n(x) . D

12.3 Lemma. Condition (C3) is satisified.

Proof: Given e > 0, we can find a finite set of open discs {Bk}if_i» each

n

with radius e, such that *€ C U B, , and we can find C functions
k=l K

o n

T. : R -» [0,1] such that supp x C B, for every k and 2 -r, = 1 on
JK=x
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n
We can decompose u on ^ as 2 nr, u, so it suffices to show that each

k=l K

uk ^ ^ku h a s a ^ e x t e n s i o n f r o m \ n * t o \ - F o r sufficiently small

e > 0, in each B, there is a CT change of coordinates which results in

^ fl 1 C {(xfy) | x < 0} and B^\€ C {(x,y) | x > 0}. Now ufc has a C 2

extension from B, PI <6 to B, fl s| (Theorem 6.3), and taking u, to be zero

on {(x,y) | x < OjXfB, fl ̂ ) , we have a <J function on the closed left

half-plane. For x > 0, y € K, define

uk(x,y) = 3 lyo,y) - 3 uk(-x,y) + uk(-2x,y).

It is easy to check that this extended u, is CT on all of K .

o -

12.4 Theorem. Let x € K be given. If x € <6, then the solution to the

Skorohod problem of Definition 12.1 is an optimal control process pair for the

singular stochastic control problem with initial condition x posed in

Section 2. If x € <!, then there exists a unique pair (t,6) € [0,«>) x S1such that x = >//(t,8). Define x = ^(T^ 6). 0) and le* (N.C) b e a solution to

the Skorohod problem starting at x. Then (N,f) is optimal for the control

problem with initial condition x, where

(12.2)
» « *

0

(12.3)

- vu(x) if t = 0,

N. if t > 0,

if t = 0

t + |x - x| if t > 0.
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In either case, we have that u(x) = V(x), where u is the solution to the

HJB equation (3.1) (see Theorem 4.6) and V is the value function for the

control problem defined by (2.10).

Proof' The theorem follows immediately from Theorem 3.1 once we observe that

in the case x £ ̂ , Lemma 8.1 implies that for all s > T1(6),

s

vu(x//(s,6)) = vu(x) + -7- vu(>//(T,8))dT
JT fa\ clT

f
JT

= vu(x)

= vu(x).

Thus, when x € '€, the control process pair (N,f) of (12.2), (12.3) causes the

state to jump from Xn = x to X = x and u(x) - u(x) = |x - x|. After
U 0

this initial jump, the state is kept inside % by reflection in the - vu

direction along &€. U
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13. Appendix. Proof of Lemma 4 . 1 .

6. R
For e € (0,1), R > 0, denote by u ' the solution to

(13.1) u e' R - Au e' R + ]3e(|vu
e'R|2) = h on B R(0),

(13.2) u e > R = 0 on aBR(O).

The existence of u e > € CT(BR(0)) follows from Ladyzhenskaya & Ural'tseva

(1968), Theorem 4.8.3, p. 301; uniqueness follows from the following lemma.

13.1 Lemma. Suppose that <p is a subsolution and >p is a super solution to

(13.1). Then V x € B R(0):

(13.3) <p(x) - *(x) < sup
y€3BR(0)

Proof: If <p->// attains its maximum over B~(0) at an interior point x

then v<p(x ) = wp(x ) and 0 > A<p(x ) - A^(x ) = <p(x ) - >p(x ). D

13.2 Lemma. Let q > 0 be as in (2.6). There exists a constant CL > 0,

independent of e and R, such that

(13.4) 0 < u e' R(x) < Cjfl + |x|q) V x € B R(x).

£ R t R
Proof: To prove the nonnegativity of u ' , take <p = 0 and ^ = u ' in

6. R E. R
Lemma 13.1. To obtain the upper bound on u * , take <p = u ' and
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r x
= E e z h(x + >f2 W.)dt,

J o t

where TX = inf {t > 0; |x +J2 Wt | £ R}. Then + - A>// = h on ^ ( 0 ) , >// = 0

on 3 ^ ( 0 ) , and Lemma 13.1 and (2.6) imply that

ue'R(x) £ E f e t h(x + >[2" W )dt
Jo t

00

i E I e"* h(x + >I2" W. )dt

oo

2«CLE f e- t ( |x |q
+ |>f2Wjq)dt

< Cj (1 + | x | q )

for an appropriate constant C-.

13.3 Lemma. There exist constants C > 0 and p > 0, independent of e and

R, such that

(13.5) max |vue'R(x)| £ C(l + Rp) V e € (0,1), R > 0.

Proof: Let N be a positive integer greater than s>, and define

g, B: [0,«) ->R by



N 2k <» 2k
g(r) = 2 -r^ g ' B<r> = 2 I T 2

k=0 4K(k!) k=0 4K(k!)

Then

2N

g(r) - V ( r ) - g " (r) = -^
r 4"(N«

and

(13.6) B(r) - -B'(r) - B" (r) = 0.

For R > 0, define

so

= C 0 ( 2 + |x|2N) ̂  h(x) V X

13.3

2C0+C04
N(N!)2g(|x|)

[2CQ + C04
N(N!)2g(R)] ̂ Hlj^ V x 6 R,

= 0 V x €

& R
It follows from Lemma 13.1 that u ' < >//R on BR(0), and because these

e R
functions agree on B ^ O ) and because vu ' on 6BR(0) must point inward,

6. R
where u is nonnegative, we have
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e'R(|vue'R(x)l i |v*R(x)| V x € cffi^O)

But on

= |CQ4
N(N!)2g'(R) " [2CQ + C04

N(N!)2g(R)J

Equation (13.6) and the nonnegativity of B" show that

0 < Br(r) < r B(r) V r > 0,

so we may bound the growth of max |W>R(x) | by a constant times

x€9Bp(0)

(1 • R 2 " * 1 ) .

13.4 Lemma. There exist constants C > 0 , p > 0 , X > 0 , independent of e

and R, such that

(13.7) |vu£fR(x)| < Xue>R(x) + C|x|P + C V x € B ^ O ) , e € (0,1), R > 0.

Proof: With C > 1 and p > 2 satisfying (13.5), and CQ as in (2.7),

L}, B = C p^ + CL,define X = max{2,CL}, B = C p^ + CL, and consider the auxiliary function

<p(x) = vu (x) • v - Xu (x) - C |xp - B,

where e € (0,1), R > 0 are fixed, and v is a fixed unit vector. It

suffices to show that <p(x) £ 0 V x € 8^.(0), so let x be a point at which

<p attains its maximum over B ^ O ) . If x € SB^O), then (13.5) implies that
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<p(x ) < 0. Thus, we need only consider the case that x € BR(0), for which

we have

0 > A<Kx*) = A vue'R(x*) • v - X Aue'R(x*) - C p 2 |x*|P~2.

Using (13.1), we may rewrite this as

(13.8) 0 > vue'R(x*) • v + 2 p;(r*) v[vue'R(xH) • u] • vue>R(xX)

- vh(x ) • D - Xu ( x ) - A ] 3 ( r ) + X h(x ) - C p |x |̂  ,

where r^ denotes |vue" (x^)| . Because of (2.7),

|vh(x) | < CQ + X h(x) V x € K.

Furthermore,

< C|x|P + CpP V x €

Adding these two inequalities, we see that

p

|vh(x*)| + Cp2|x*| < Xh(xX) + C|xK|P + B.

Substitution into (13.8) yields
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(13.9) 0 I <Kx*) + 2/3'(r*) v[vue'R(x*) • i>] • vufc'R(x*) - *fi (r*).

9£

Because v<p(x ) = 0 , we a l s o have

(13.10) 0 = v<Kx*) • vu e 'R(x*)

= v [vu e 'R (x*) • D ] • vu e > R(xX) - Ar*

- Cp |x |K x • vu (x ) .

Substitution of (13.10) into (13.9) results in the inequality

rX) - 2 p;(rM)rM] - 2 Cp |x*|P~V(r*)x* •

Let us assume that <p(x ) > 0. Then

> vu f c fV) • D > B > 2,

so r* > 4 and for all e € (0,1),

Consequently,
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0 < ,<x") < - | (|vu£« V ) | 2 • 1 + e) - ^ | x ^ r 2 x* • vu£« V )

- - ( |vu (x ) | + 1 + e) H £

which implies that

|vu6'V)l i ̂ ^ P " 1 < CpP I^P"1 < C |x*P + B.

This inequality contradicts the assumption that <p(x ) > 0. D

00

13.5 Lemma. For each e € (0,1), there is an increasing sequence {R } - of

positive numbers converging to infinity and a function u € Cr(IR ) such that
S,K 6., K

Tl 00 T̂  00 |̂  f̂

{u } _1 and {vu } + converge uniformly to u and vu ,

respectively, on compact sets. Furthermore, u is a solution to (4.3) and

satisfies (4.4), (4.5), with CL and p independent of e.

6, R
Proof: Let e € (0,1) be fixed and let r > 0 be given. Then u ' and
e. R

vu ' are bounded on B^ (0), uniformly in R and e (Lemmas 13.2, 13.4).

e. R
Elliptic regularity implies Holder continuity of vu ' on B (0), uniformly

in R € [2r,«>) (Gilbarg & Trudinger, Theorem 3.9, p. 41), and by the

co e > Rn »
Arzela-Ascoli Theorem, we can find a sequence {R } A along which {u } -

* nJn=l l Jn=l

e'Rn ~
and {vu } . converge uniformly on B (0). Indeed, by diagonalization we

oo e » R
n oo

 e > Rn »
can select {R } _1 so that {u } t and {vu } n converge uniformly

n n—l n—l n—i

on compact sets to limits u e and vue, respectively, where

ue € CltCL V a € (0,1). Passing to the limit in (13.1), we see that Aue

exists in the distributional sense and is equal to u + p ( |vu | ) - h, which
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is a C > a function. Elliptic regularity implies that D u e in fact exists

in the classical sense and u e is <Jfa. (By bootstrapping, we could

conclude that u is C ' because h is CTf .) •

The convexity of u will be established by representing u~ as the

value function of a stochastic control problem with convex cost functions.

With j5 defined by (4.2), we define a convex function g : R -» R and its

2
(convex) Legendre transform £ : R -* R by

(13.11) ge(x) £ /3e(|xh, ee(y) i sup {x • y - gjx)}.

x€R2

For every y € R2,

(13.12) «£(y) I | |y|
2 - g£ (| y) I | |y|

2.

Furthermore, the supremum in the definition of £ is attained if x is

related to y by y = 2/T(|x| ) x, i.e.,T(

(13.13) «e(2p;(|x|
2)x) = 2/3;(|x|2)|x|2 - Pe(|x|

2) V x € R2.e(2p;

A control process is any two-dimensional, absolutely continuous process 17

adapted to the Brownian motion {W %9 ; 0 < t < <»} and satisfying T/Q = 0 a.s.

Given an initial state x € R , the corresponding state process is

(13.14)
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For each R > 0, we define the cost corresponding to 17 up to the exit from

\{0) as

P
TR
J e^ [h(Yt) + y V

where T O = inf {t ;> 0; |Y.| £ R}, and TJ. = -rr v,. The value function up to

the exit from ^(0) is

ve'R(x) = inf ve>R(x).

It is clear that v ' (x) is nondecreasing in R, and

(13.15) lim ve'R(x) i ve(x) = inf E* f e t[h(Y ) + I (̂ /.)]dt,
P-40O -n Jn t £ t

where v is the value function for a control problem on K .

13.6 Lemma. For each e € (0,1), R > 0, the solution ue'R of (13.1), (13.2)

€L R

agrees with v * on

Proof: Ito's lemma implies that for a given control process 17, x € BR(0) and

t > 0:
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tATR
(13.16) E* e R u£'R(Y ) = ue'R(x) + E* f e"S[p ( |vue'R(Y ) |2)

R J0

- h(Y s) - v u e ' R ( Y s ) • T| s)]ds

tATR

ue'R(x) - E* f e"s[h(Y ) + i (\
Jo s e .

Letting t -* «>, we see that ve'R(x) > ue'R(x) for all TJ, SO

ve'R(x) > u e' R(x). However, if Y R is the solution to

z

Y R = x - J 2p;( |vue'R(YR) |2)vue'R(YR)ds + >f2 Wt. 0

then the corresponding control process satisfies

^R = 2 P;(|vue'R(YR)|2) Vue'R(YR), 0 < t < T R.

and equality holds in (13.16) because of (13.13), i.e.

t < T R

v ̂  (x) = u (x) i v (x),

and thus ue>R(x) = v e' R(x). Q

13.7 Lemma. For each e € (0,1), the function ufc constructed in Lemma 13.5

agrees with the value function v defined in (13.15).

Proof: We have immediately from (13.15) and Lemma 13.6 that u e < ve. For

the
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O 00

reverse inequality, let x € K be given and define Y (up to the time of a

possible explosion) by

~ = x - J 2p;( |vue(Y~) |2)vue(Y~)dt + >T2 Wt

Imitating (13.16), we have from Ito's lemma and (13.13) that for every R > 0,

tAT
r R _ -tAT

(13.17) u e ( x ) = E* e s [h(Y ) + « (*} ) ]ds + E* e u£

J o s e s

where

h" = 2P;(|vue(Y")|2) Vufc(Y~), TR i inf {t I 0; |Y"| > R}.

Deleting the (nonnegative) second term on the right-hand side of (13.17) and

letting R -» <», t -• «>, we obtain

(13.18) ue(x) > ^ \ e S[h(Y") + €
J 0

^) + % (r
s e s

where T = lim TD is finite if and only if Y explodes in finite time.
R*» R

To see that r = « a.s., observe that for all t > 0, R > 0,

tATR tAT_ tAT_

''tATg JQ ^s * ^s s - Jo
 | T ?s' s + Jo

 |T);
R

Gronwall's inequality implies
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tA-r,

max \rCr < e t |" " KTfas ' 4 e ' ' R

0<s<tATR

where we have used (13.12). Letting R -» » and taking expectations, we

conclude that

f r Ĵsup |TJS I <

00

f « (r>ds < ^J— u£(x) < «. V t > 0.
Jn e s e

But

00 ,
sup |Y | < x + sup |T? I + 42" max |W |

0<s<tAT S 0<s<tAT S 0<s<t S
00 ~ 0 0

and sup lŶ I < «> on {T < t}. It follows that P*{Tm < t} == 0 V t > 0.
0<s<tATa)

 S

Inequality (13.18) can now be restated as

e v I —Q oo •oo c.

u (x) > ET e [h(Y ) + t (77 )]ds > v (x) .

13.8 Corollary. For each e € (0,1), the function u6 constructed in Lemma

13.5 is convex.

13.9 Corollary. For each e € (0,1], lim ue(x) = <*>.
| |

Proof: In light of (2.8), (2.9), (13.12), and (13.15), we have

inf E- JQ •-* if |YJ
2
 + | |^|

2] dt.
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But the right-hand side is the value asociated with a linear-quadratic-

Gaussian problem, which is easily computed to be 5- a |x| + 2a, where a is

2 2
the positive root of the quadratic equation — a + a - c~ = 0. •

13.10 Lemma. There is a constant CL, independent of e, such that for every

e € (0,1), the function u constructed in Lemma 13.5 satisfies (4.6).

Proof: Let v be a unit vector and define u = (D U)D #D. It suffices to
vv v '

produce a constant CL, independent of e and u, such that

ue < Co(l + u
e ) .

vv ~~ 2 V J

We begin by differentiating (4.3) to obtain

(13.19) hm = u ^ - A u ^ + 2p;(|vue|2)(vu^ • vue + |(D2ue)u|2)

(|vue|2)(D2uevue • D

Let x be a minimizing point for ue, choose p > 0 satisfying (4.4),

(4.5), choose C Q > 0 to satisfy (2.8), let 6 > 0 be given, and define the

auxiliary function

" 6
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This function attains its maximum at some point y , where we have

(13.20) 0 = v<p6(y
6) = vu^(y6) - CQ vu

e(y6) - 5(p+2) |y6 - xe|p(y6 - x e),

(13.21) 0 I A<p6(y
6) = Au^(y6) - CQ Au

e(y6) - 6(p+2)2|y6 - xe|p.

Substituting (4.3) into (13.21) and using (13.19), we obtain

(13.22) 0 > u^(y6) + 2p;( |vue(y6) |2) vu^(y6) • vue(y6)

hm>(y6> " C0 u £ ( y 6 ) " C ( ) P e ( | v u e ( y 6 ) | 2 )

Cnh(y6) - o (p + 2 ) 2 |y6 - x f c p

+ 2p;( |vue(y6) | 2 ) vu^(y 6 ) • vufc(y6)

| vu e (y 5 ) | 2 ) + Cnh(y6)

_, n^2 I 6 e i p K i 6 e i p + 2
- 5(p + 2) |y - x |H + 6|y - x |H

|vufc(y6) | 2 ) vu^(y 6 ) • vu e(y6)

- C0(l + h(y 6 ) ) - CQPJ|vu f c (y 6 )

p_ p+2

2 6 p 2 (p + 2) 2
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because of (2.8) and the fact that

E £+2

- 6(p + 2)2rp + a rp+2 > - 26 p2 (p + 2) 2 V r > 0.

But (13.20) implies that

(13.23) vu^(y6) • vue(y6) = C0|vu
£(y6)|2

+ 6(p+2) |y
6 - x£|P(y6 - xe) • vue(y6)

>C0|vu
e(y6)|2

because u is convex and attains its minimum at xe. Substitution of

(13.23) into (13.22) yields

(13.24) 0 I ̂ (y 6) + 2CLfl'(|vue(y6)|2)|vue(y6)|2 - CLfl (|vue(y6)|2)

E Et2.
- CQ - 26 p

2 (p+2) 2

The convexity of /3 implies that

= P (r) V r > 0,
c- o c- £

so (13.24) reduces to

E
*6(x) < ̂ (y 6) < CQ + 26 p

2 (p+2) 2 V x € K2.

Letting 6 i 0, we obtain

< CQ(1 + u
e(x)) V x € K2. n
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