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1. Introduction

In this paper we consider an asymptotic analysis of a queueing system.
Suppose the "state" of the queueing system at time t is given by the
n-dimensional vector Xt € (Z+)n, where Z'@ = {0,1,2,...}. For small positive
e, the scaling of interest here is given by Xi = ﬁthe. corresponding to large
time and large excursions. We shall assume that the original process X is
modelled as a jump Markov process. Hence the rescaled process X? is also a
jump Markov process, with state space given by st = {y € R® : y/e € (Z+)n}.

The problem we are interested in concerns the estimation of probabilities
of certain rare events involving the original (unscaled) system. For example,

take n = 2 and consider the event

(1.1)
Af = {xt + Y, 2 M/e for some O ( t { T/e, given Xy = x/e, Yo = y/e}

vhere M,T are positive real numbers and Xt = (xt.yt). In the rescaled system

this event is given by

(1.2) {xi + yi 2 M for some O <t T, given xg = X, yg =y}

The results of this paper give asymptotic (e { 0) estimates of P(Ae) of the
form exp((-I(x,y) + O(1))/e). where the O(1) term converges to zero uniformly
for (x,y) in compact subsets of {(x.y) : x 2 0,y 2 0, x + y < M}, and where

I(x,y) = u(x.,y.0)., where u is the value function of a non-standard




deterministic optimal control problem. The formulation of this control problem
can be found in Section 3, below.

The problem we have described is one of estimating the probability of an
event corresponding to a large deviation of the scaled queueing system. In the
general theory of large deviations for stochastic dynamical systems, one is
given a process Xi. defined for O { t { T, with sample paths living in some
space D and is asked to obtain a family of functionals S(x,*) : D» [0,x]

such that (in addition to other properties)

(1.3) for any open set A C D,
€im inf e én PX(Xf € A) 2 -inf S(x.¢)
elo $EA
(1.4) for any closed set GCD

£im sup € ¢n Px(xf € G) < -inf S(x.¢)
elo $€G

where Px denotes the probability given XS = x. We refer to Varadhan [27],
and Stroock [26] for the precise properties required of S. The problem we are
trying to solve is a special case of the full large deviations problem as
described above, since we are interested in obtaining "rough" asymptotics of
Px(Xf € A) (as given by (1.3) and (1.4)) only for a particular class of sets A.
The techniques employed in this paper are those of the theory of viscosity
solutions to Hamilton-Jacobi equations. The application of such methods to

problems concerning large deviations originated with the work of Evans and Ishii

[8]. Further work in this area may be found in [1], [2]. [9]. [11]. [12], [13],



[17]., and [20]. For a general introduction to problems concerning large
deviations of dynamical systems, the reader is referred to the book of Freidlin
and Wentzell [14], where probabilistic (as opposed tc analytical) techniques are
employed. An example of how probabilistic methods may be used to estimate
escape probabilities is in [7]. Also, in [18]-[19] some formal formulae were
obtained for problems similar to the one described here, and applications were
discussed in [23], [28].

The new features involved in developing a large deviations for processes of
the type that arise from queueing systems result from the "boundaries” of the
system. For simplicity consider a system of two queues (xt.yt) in which
interarrival and service times are constants, and for which the relationships
between the queues is as depicted in Fig. 1 below. Define the rescaled system
(xi,yi) = e(xt/e,yt/e). If both x and y are strictly positive, then the
conditional statistics of ((xi+6.yi+6) - (xi,yi)) given (xi,yi) = (x,y) are
roughly independent of (x,y). However, as x Ay = O (one or both queues empty)
there is an abrupt change in the statistics of the small time increment, since
the associated jump measure suffers a discontinuity. As we will see below, the
nature of the stochastic process we deal with is such that this transition in
the jump measure leads to a nonlinear boundary condition for the associated
partial differential equation (PDE).

Since it is the treatment of the effects due to the "boundaries” that is
novel, we devote the majority of the paper to the detailed development of a
simple two-dimensional system that exhibits the essential new features.

However, the arguments may be applied to queueing systems whose structure



routing schemes, etc.) is quite general, and we attenpt to indicate this

generality as wel | .

The outline of the paper is as follows. In Section 2, we define the
logarithmc transformation of the probability of interest and show that it
converges to a viscosity solution of an associated Ham | ton-Jacobi equation, as
e tends to zero. In Section 3, we obtain a representation for the solution of
this equation in terns of the value function of a certain nonstandard opti nal
control problem This suggests the formof the functional that woul d be correct
if (1.3) and (1.4) were to hold. Sections 4, 5, and 6 prove the uni queness of
viscosity solutions satisfying a nonlinear boundary condition, which ensures
that our two representations are in fact the same. These sections are of
i ndependent interest. W conclude in Section 7 with a discussion of extensions.
In particular, Section 7.1.2 contains a sunmary of the main results of the
paper, witten for a systemof interconnected queues. The appendi x includes a

brief discussion of a weaker formulation of the FDE

Figure 1



2. An Example

We return our attention to the queueing system depicted in Fig. 1, and
consider the problem of determining the limiting behavior of

(2.1) ue(x,y,t) = -e én P(xz + yz > M for some s € [t,T] | xi = X, yi =y)

For the sake of notational simplicity, we take M = 1. The process
corresponding to the queueing system depicted in Fig. 1 is a jump Markov process
(xt,yt) whose jump measure is concentrated on the points (1,0), (1,-1), (0,-1),
(-1,0), and (-1,1) with intensities A, B, v, a, and u respectively, unless a
boundary is encountered. We assume that all the intensities are nonnegative.

In order to obtain a nontrivial system we must also assume that A > O, n > O,
and that either ~ > 0 or B A a > 0. When the process is on a boundary, only
those jumps that do not lead to escape are allowed by the jump measure, and they
retain the intensities that are in effect on the interior. We then use the

R € € . .
definition (xt,yt) = e(xt/e.yt/e) to obtain the scaled system. See Figure 2.



Define

S® = {e(1.3) : (1.3) € 22}

D= {(x.y)
r, = {(0.y)
r2 = ((X,O)

:x >0, y>0, x+y<1)
:0<Cy <1}
:0<x <1}

:x20,y20, x+y=1}

, 1 =1,2,3.



Then for ue(x.y,t) defined by (2.1) the Chapman-Kolmogorov equations imply

(2.2a) - g%-ue(x,y,t) + HE(x,y,u8(+..t)) = 0, (x.y.t) € D x (0,T),

(2.2b) - & v (x.y. 1) + HS  (oy.uS(e.o.1)) = 0, (x.y.t) € TS x (O.T). 1 =1.2,
(2.2¢) - & u*(x.y.t) + Ko(xy.u%(.=. 1)) = 0. (x.y.t) € {(0.0)} x (0.T),
(2.3) u(x.y.t) = 0, (x.y.t) € I3 x (0.T),

(2.4) w(x,y.T) = +@, (x,y) € (D\ry) N s¢,

(here 3J,i denotes boundary number i, and c¢ denotes the corner).

The Hamiltonians are given by

-

(2.5a) H(x.y.¢(*.°)) = 7\-eXP - i—[ﬂx +ey) - ¢(x,Y)]] - 1]
S
+ B exp |- dex+ey-¢) - ’P(X:Y)]] - 1]

L

+fexe|- %{«»(x'y -€) - ¢(Xs)’)]] - 1]

+ afew[- Lotx - €3 - sx11] - 1]

-

+ u:exp :— %[Mx - ey +e)- ¢(x,y)]] - 1]



(2. 5b) H Oy, o (0. #)) = Ko(xy.8(.))

- afexp[- A (x - ey) - *(x.y)]] - 1]

- u[exp[— otk - ey +e) - ¢(x.y)]] - 1]
(2.5c) Ha(x,y, o (0, 0)) =H(x,y,*(-,-))

Mol >(x v ey -6 - seeni] - 1]

- -r[exp[— Hotx,y - e - ¢(x.y)]] - 1]
(2.5d)  H'(Gy,*(+,0)) = x[exp[- “(x+ey) - o(xy)]] - 1] .

It follows that if « €A7(D), then

(2.6) EimH'X.y. K-,-)) = Hv*(x,Y))

el O
(2.7a) Un HX . (X.y.«(se0)) = H .(v*(x,y)) i = 1.2
(2. 7b) AMH(X, Y, *(*.*)) = H (v«(X,y))

elO © c

uniformy in (x,y), where



(2.8a) H(p.q) = N[e P - 1] + B[e¥P - 1] + 2[e? - 1] + a[eP - 1] + p[eP @ - 1]

(2.8b) Hy 1(p.q) = H(p.q) - a[e® - 1] - u[e”? - 1]
(2.8c¢) Hy 5(p.q) = H(p.q) - B[e?P - 1] - a[e? - 1]
(2.8d) H_(p.q) = ANeP -1].

Lemma 2.1. For each T' < T, there is a constant K(T') independent of € such
that

lu®(x.y.t)| < K(T")

for all t < T'.

The result is a simple consequence of the fact that A > O, and the easy

proof is omitted.

Following [2], we next define u and u as follows:

(2.9a) a(x.y.t) = Zim u(x%.y%. t5)
(x€.¥%, t5)(x.y. t)
(x%.y%. t5)edns®x[0.T)
e-0
(2.9b) u(x,y.t) = 2im u(x%.y5.t%) .
(x5, 5. t5)(x.y. t)

(xe,ye.te)eﬁhsex[O,T)

e-0



<T)

Theorem 2.1. Suppose ¢ € C/(D x (0.T)), and that (Xg+¥grto) (with t,
satisfies »

(E - ¢)(x0-yOvto) = n’a_x(ﬁ- - ¢) [(‘i - ¢)(x0.y0.t0) = min(!-.l. - "’)] .
If:

1) (xy.¥y) €D. then
(2.10a) = 5% (ge¥g to) + H98(x).¥0.t0)) <O [2 0] .
1) (x5.¥y) €Ty, i =12, then
(2.10b)  min {— %cﬁ(xo.yo,to) + H(V8(x.¥g tg)):
[max]
- 3e# CigYgto) + Hy (9(x0.7. 50} < O [2 0]
1i1) (x5.¥y) = (0.0) then

< a .. 9 .
(2.10c) [:;2 {— Fc® + H(v¢): 3c? * Ha,l(V'P).

- 5‘?;¢ + Hy 5(v4): - %4» + Hc(v¢)} <0 [20].

10
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Proof. Without loss of generality, we may assume that any maximum or minimum
holds in the strict sense (by simply replacing ¢ by

¢6(X'Y-t) = ¢(x.y.t) + 6|(x.y.t) - (xo.yo.to)l2 and using that
6 o o] . .
¢, = ¢x'¢y = ¢y’ and ¢, =9  at (x .yo.to)). We prove ii) for the case of a

maximum and for i = 1. All other cases are proved in a similar way.

From the definition of u there exist (xe,ye.te) € (DU Fl) n s® x [0.T)
such that
(2.11a) (u° - $)(x%.y".t%) = max[(u° - ¢)]
. ( E € _E
(2.11b) Lim(x ,y .t ) = (xo,yo,to)

Owing to (2.11b), we may assume that either (xe,ye) € D¢ or (xe,ye) € Fi.

If (x%,y%) € D then by (2.22)

(2.12) 0=- ;’—tue (x€.y5. %) + HE(:E.y& . uS(e. -, t9))

E € €

2 - :_uﬁ(x O tS) + O (xE. v 8(. 0. t%))

which implies

(2.13) 0> Zim [— %:»(xe,y",te) + He(xe.ye,tﬁ(‘.'.te))]
elo

)
= - a—¢ (xo,yo,to) + H(V¢(X syOvto)) °
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If (x°y®) €TF, then

(2.14) 0= glkr)ﬂ AEOXE Y )+ HOC YR UL e, t9)]
2 ?g[— 4055 S GEE )]
. .

= = 54 (-0 t0) * By 1 (790,35 )
Then (2.13) and (2.14) give (2.10b). D

The Li mting Equation

V¢ have shown that in a certain sense (which we now nmake precise) that u

and u satisfy the equation

(2. 15) - "Nu +Hvu =0 in Dx (0,7

wi th appropriate boundary conditions. First we give a definition. This a

strai ghtforward generalization of the definitions givenin [3], [5]. See also

[15], [21].

Definition 2.1. W say that the upper (lower) sem continuous function u is a

Vi scosity sub (super) solution to the equation
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(2.16) - Zu +H(va) =0 (on D x (0.T))

together with the boundary conditions

d d -
(2.17a) - 3cu *t H(vu) =0 or - et Ha.i(vu) =0 (on Fi x (0,T)), i =1,2

(2.17b) - 2-u + H(vu) = 0. or - g=u +Hy (W) = O, or

3t 3t
- Su +Hy () =0, or - gu +H(vu) =0 (on {(0.0)} x (0.T))
(2.17c) u=0 (on F3 x (0,T))

and with infinite terminal data at time T if for any ¢ € Cl(ﬁ x (0,T)) and
point (x,y,t) € D x (0,T) such that (u - ¢)(x,y.t) = max(min)[u - ¢], we have

(at the point (x,y.t))
(2.18) - 24 + H(v$) < O (2 0) whenever (x.y) €D
. 3 3
(2.190) nin, [ &4 +uee: - e vmy o] <o o)

(max

whenever (x,y) € Fi' i=1,2,



(2.19b) min [— (-;?t-.p + H(v¢); - 5‘1—¢ + Hy (v):
(max) ’

ad a
-2 vy o0 - e +E W] <0 (2 0)

whenever (x,y) = (0,0),

(2.19c) u € 0 (u 2 0) whenever (x,y) € T3 .

and if u(x,y.t) »+2 as t T, for all (x,y) € 5\1‘3.

14

Remark. There is an obvious analog for the equation with finite terminal data.

Lemm 2.2. u and u, defined by (2.9), are respectively sub and super

solutions of (2.16) and (2.17) with infinite terminal data.

Definition 2.2. We say a function u is a viscosity solution of (2.16) and

(2.17) if its u.s.c. and l.s.¢. envelopes

(2.20)

u*(x,y,t) = im u(x,y.t), u (x.y.t) = Zim u(x,y.t)
(X.5.0)(x.y.t) (X.¥.0)>(x.y.t)

are sub and supersolutions, respectively.

It will follow from the results of Sections 2 and 3, together with the

uniqueness results of Section 5, that u and u are both equal to the unique

continuous viscosity solution. In the next section we give an alternative

representation of this solution.
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3. A Second Representation

Let L(w,vVv), L« .(wv), and L (wv) be the Legendre transforns of H(p,q).,
0, X C

Ho ;(p.@), and H'p.g):

(3.1a) L(w,v) = sup [-wp - vg - H(p, q)]
p.q
(3.2b) L-.(wv) =sup [-w - vq - H .(p,0q)]
a>1 pq dtl
(3.3c) Le(w,v) = sup [-w - vq - H (p.q)]
p.q

As is well known, the Legendre transformdefines a function that is convex
and | ower sem continuous in the dual variables (w,v). Moreover, the above

functions can be expressed almost explicitly by using the Legendre transform

h(t) of e>- 1, i.e

]'tfct-t+1 .t >0
(3.2) h(t
l+» ; t < 0.
Then, we have the follow ng alternative expressions for L, L~ -, L~ 5 and
0, X O,
L.

(3.3a) L(wv) = inf{?\h(tl) + 511(:2) + Th(ta) + ah(t4) + ph(ts) :

XA O) + Pty(l,-1) +nrtg(0,-1) +ate(-1,0) + peg(-1.1) = (w.v)}
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(3.3b) La'l(w.v) = inf{Ah(tl) + ﬁh(tz) + 1h(t3) ;
7\t1(1,0) + [Btz(l,—l) + 'rt3(0,—1) = (w,v)}
(3.3¢c) La'z(w,v) = inf{)\h(tl) + ah(t4) + uh(t5) :
Atl(l,O) + até(—l,O) + pts(—l,l) = (w,v)}
Ah(w/A) i v=0
(3.3d) Lc(w,v) = {
+ ;s v#EO

Remarks. These expressions may be interpreted as a manifestation of the
"contraction principle” [27] and the fact that our process may be thought of as
being the sum of several independent Poisson processes. Owing to our
assumptions on the jump rates, L{(w,v) is finite for all values of (w.v).
However, L and L

d,1 ad,2
themselves depend on which of the jump rates are positive. For example, if

are finite only on certain convex cones, and the cones

v =0, and if A and B are positive then La 1 is finite only on the (open)
cone generated by (1,0) and (1,-1).
We continue by defining a "cost” that is appropriate for each of the

boundaries Fl,th

[ inf{pL(W.V) + (1 - p)L, 1(?3) : p € [0,1] .

p(w.v) + (1 - p)(W.V) = (0O.V)} 5 w

"
o




17

[ inf{pL(w.V) + (1 - p)La’z(’v\l’.;) : p€[0,1],
p(w.v) + (1 - p)(W.¥v) = (w,0)} s v=0
(3.4b) 25 5(w.v) =

L(w.v) ; v>0
400 ; v<O

Remark. The parameter p appearing in (3.4) has an interesting and natural
large deviations interpretation. In the probabalistic approach to proving lower
large deviation bounds, one typically considers a change of measure such that
under the new measure (which we denote by ?e) the process xf ‘centers’ on a
given deterministic path ¢ (in the sense that xf > ¢ under ﬁe). One then

obtains a lower bound from the formula (Pe is the original measure)
(3
PE(A) =I o,
A dP

where the set A. constains a neighborhood of ¢. Under the °‘optimal’ change of
measure that centers on ¢ (largest asymptotic lower bound for -e fog Pe(A))
the dominant term in dPS/dP° 1is of the form exp - S(x,¢)/e, where S 1is the
functional appearing in (1.3) and (1.4). Now consider our process x?, and a
path ¢ that lies on Fl. For simplicity take ¢(t) = t(O,v). For our process
we may consider a change of measure as being equivalent to changing the jump
rates. Suppose we consider p € [0,1], (;:;) and (;.;) such that

p(w.v) + (1 - p)(;,;) = (0,v). Consider a change of measure (change of jump
rate) that centers the process on (w,v) while in D®, and on (;.;) while in Ti.

It is easy to prove in this case that under P* (and as € - 0) the relative
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€
1

p/(1 - p). If we separately choose the jump rates to correspond to L(w,v) in

proportion of time the process xf spends in D to the time spent in I, is

D¢ and La 1(;.;) in T?. then the dominant term under this change of measure

is
exp[-T(pL(W.¥) + (1 - p)L, ;(W.¥))/e]

It follows that the 'tightest’ lower bound (which should also give the form

of the upper bound) is
exp[-T inf{pL(w,V)+(1-p)Lg (W.V) : p(W.V)+(1-p)(W.V)=(0.v), p€[0.1]}/€] .
This suggests the form of 86 1 given by (3.4a).

Finally we must define a cost for the corner point (0,0). We set

(3.5)
. .
Inf{pL(w;.v1) + Poly 1(W3.¥5) + Palyg o(W3.v3) + Pyl (wy.vy)
4 4
2 p.(w,,v.)=(0,0) , p. 20 , X p.=1} ; w=v=0
=1 ittit i i =1 i
e (w.v) = { L(w,v) ;: w>0,v>0
ea'l(w.v) ;i w=0,v>0
ea’z(w.v) ; w>0, v=0
L +® ‘ ; w<O0 or v<O
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Then, our candidate for a continuous viscosity solution is

(36) uxy.t) = ot L) e - T () 6,00}
VR S

2

+ iil EE‘ i(é(s))l{f(s)ﬂ'i}]ds

wher e 1}\ is the indicator of the Borel set A and
(3.7 Ay =1S: [t.G -DT f(t) = (xy) , 2(9) €ry 6 <_T, and
f is absolutely continuous}

Theorem3. 1. The uaiue function definedby (3.6) and (3.7) |Is a continuous

viscosity solutionto (2.16), (2.17).

Proof. The continuity of u follow fromthe boundedness of L on conpact

sets. Suppose that $ € 01(5x [0,T]) and that

(3.9) (U-f KvVVaraglte ]

W may assune without loss that the maximumis zero. If (A" Yo*”~) ~ D* (0»T),

then the standard proof [21] works. (Aternatively the reader can glean the

proof fromthe devel opment bel ow.) Next assume that (XxQ YQ Q) €'i * (°»7)-

Then dynam c programming [10] yields that for any (wv) € R xR and A > 0,



(3.10)

It fol

(3.11)

tO+A
u(O,yo,tO) = ¢(O,y0,to) < Jt [L(W,V)l{wx)} + ea,l(o.v)l{w:o}]ds
0

+ ¢(x0 + wA,yo + vA,to + A).

lows that (see (3.4a))

d
- ‘-9T¢(O,y0,t0) - ea,l(w.v) - <(w,v),v¢(0,yo,to)> <0

for (w,v) € R" x R and hence

(3.12)

Using

(3.13)

3
- 3c¢ (0.y5.t5) + wigpv (-85 1 (w.v) = <(w.v).v$(0.y,.t5)>]1 < O

the definition of ea 10 ve rewrite (3.12) as

maxq - ai‘? + sup® [-L(w.v) - <(w,v),v$>] ;
t
w>0,v

sup[ p [—- 56?45 - L(w.v) - <(;,7),v¢>] +
+ (1 -p) [- ;’—tcp - La'l(;,:;) - <(?v‘.?7),v¢>] : p € [0,1],

pw + (1 - p)w = 0]} <0 at (0.y5.ty)

20



Now assume that
d
(3.14) - §¢ + Ha'l(vﬂ >0 at (O.yo.to)

The fact that Ha 1 is the Legendre transform of La 1’ and continuity

properties of La 1’ imply there is (w*.v*) with w* > 0 such that
d t I %

(3.15) “ 3t t [—La’l(w WV ) = <{{w,v).ve>] >0 at (O,yo,to).

Also, (3.13) gives

(3.16) - ;—t‘p + sup [-L(w,v) - {(w,v),v¢>] < O at (O,yo,to)
w>0,v

and by taking (;.;) = (w*,v*) in (3.13) we obtain that at (O,yo.to)

(3.17)

- &¢ + swlLny) - <wv).we> ¢ (wy) = - LSBU ) + o),
p € [0,1], vER] KO

Combining yields

(3.18) - 24 + sup[-L(w.v) - <(w.v).v$>]

3
= - 3¢# + H(v$) <0 at (0.y,.t,)-

21
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Recall that we have assumed (3.14) in proving (3.18). We have thus proved:
(3.19)  min{- ¢ + H(v$), - 2=¢ + H, .(v$)} < O at (0,y~.t.)
. 3t T 3.1 2 Yo' tol-
Now suppose that for (xo,yo) € 1"1 we have
(3.20) (u - ¢)(x0,yo.t0) = minfu - ¢] = O.

Using dynamic programming arguments (as in the proof of Theorem 2.1 of [25]),

and the form of ea 1+ We can show that there exist w 2 0, v such that
d
(3.21) - 3c? (O,yo,to) + [—ea,l(w.v) - <(w.v),v¢(0,y0.t0)>] >0

. d
If wd>oO, ea'l(w,v) = L(w.v), and obviously - -a—t¢ + H(v¢) 2 0 at (O.yo,to).

Now suppose that w = 0. Then, the definition of 86,1 yields.
(3.22) sup[p [- Lo -LET - <(W.V),v¢>]
+ (- p [ Ze -y G5 - G e o,
pv+ (1-p)V=v, pw+(l-pws= o] 20 at (0.y4.ty)
Clearly in either case, we obtain

(3.23) — 5"’;4» + H(v¢), - -a%wp + Hatl(w)} 20 at (0.y4.t)



Exactly the sanme argunents work if (x®YyQ €7,* Find| |y W¥e consider the
poi nt (Xq Yo) = (0,0). Assune that the maxi mumof (u - <f>) is achieved at

(0,0, tU~) . Dynami c progranmi ng argunments give

(3.24) - N+ éup [-«c(W.Vv) - <(wvVv),v¥>] <0 at (0,0, tg),
w20,v20

which we rewite as

(3.25) nmax/ - ££-+ + sup [-L(wv) - (w.v).vé>] ,
T W=0y=0

9
- =¢ + U -€ w.v) - <(w,v),v«>] |
Bt + 3 [ (W) - <wv)vee]

- g—* + sup t-e. - (w.v) - <(w,v),v*>] ,
w>0v=0 °*¢

Su[Pi e L (WYY <Y 9]

+ Péf'_o_ | * - La.l("z' 2) - <(w2’v2)'v¢>.

5 :
* "3[‘ ST* - ta2#"3V3> ~ ((w3.v3).ve>

a
+ p4[- 51:-4- - Lc(w4.74) - <(w4. 4‘).'\'M)] :

4 4 n
21 PWjwp = (0.0). p~O, 2.p =1j| <0 at (00, tg)
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We assume at (0.0,to)

3
- 3¢ + H(ve) >0

(3.26) -S4+ Hy ((74) >0 . i

1,2

a
- a—t-'P + Hc(v¢) >0

% % % % »* % % 3 2 %
Then there exist (wl,vl). (w2. 2), (w3.v3). (w ,v4) such that Vo >0, vy >0,

w: > 0, and v: = 0, and further satisfying

-

(3.27) = Fg 4 [ V) - V) ve] > 0

3
-2+ [-La’l(w*,v;) - (Wy.vy).v$>]1 > 0
f at (0,0.to)

3
- 3c# + [Lg o(w3.v3) = <(w3.v3).94>] > 0

d LI »
- T d [—Lc(w4,v4) - <(w4.v4).v¢>] >0 ]
Arguing as before the third term in (3.25) gives

(3.28) - éa?at + [-L(w.v) = <(w.v).v$>] < O at (0.0.t)

for (w,v) of the form



1 - * % 1, —
- L—-B—El{ws, 3) + ;{O,V)
for p € [0,1] and Vv > O, while the second term in (3.25) gives (3.28) for all

(w.v) of the form
1 - * 1,—
- .(_Tz)_(wz,vz) + 2(w.0)

for p € [0,1], w > O. Combined with the first term in (3.25), this gives
(3.28) for the shaded portion in fig. 3. Region I is the open convex cone
generated by (0,1) and (1,0), region II is the half-open convex cone generated
by (1.0) and —(w*.v;), while region III is generated by (0,1) and —(wg,vg).
From the fourth term in (3.25) we obtain (3.28) for the closed cone generated by
—(w;.v;), —(w;.vg), and —(w:,v:), which contradicts (3.26). Hence, at (0,0,t

o)

d (i)
(3.29) min{— 3c® * H(v¢), - 3ct Hc(v¢o). i:inz - ;—t¢ + Ha’i(vﬂ} 0.

The case where a minimum is achieved at (0,0) is handled in a similar
fashion. We have thus proved: u defined by (3.6) and (3.7) is a viscosity

solution of (2.16) and (2.17).
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4. The Uniqueness Theorem

In this section and in the two that follow we prove uniqueness for the
viscosity solutions to the equations (2.16) and (2.17). In particular we will
prove that u, u (c.f. (2.9)) are sub and super viscosity solutions to (2.16),
(2.17). Hence, an immediate consequence of the comparison result (Theorem
4.2)is the uniform convergence of the sequence u® to the unique solution of
(2.16), (2.17), which is equal to both u and u.

To simplify the exposition, the problem and notations of the preceding
sections are retained. However, the methods used are applicable to more general
problems, some of which we describe in Section 7. To simplify, we switch from
(x.y). (p.q)., etc., notation to (xl,x2), (pl,pz), etc. notation.

In order to compare viscosity solutions we require suitable test functions
¢ which will force the interior equations (and not the boundary equations) to
hold at maximizing points of G(xl,xz.t) - g(yl,yz,t) - ¢(x1 Yy X5 T y2), for
any two viscosity solutions G. and u. Naturally, the form of the test
functions ¢ depends on the boundary conditions. Although the use of such
functions ¢ in this fashion is now standard ([2]. [22], [25]). our
construction of the test functions is quite different from constructions that
exist in the literature.

In this section we assume the existence of such a sequence of test

functions, and relegate the construction to the two following sections.

Assumption A.4.1.

For each 6 > O, there exist test functions {¢e 5} Cc Cl(Rz), 0<e<1,

satisfying
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Hy,1(V9¢ 6(x:%5)) 2 H(v8, s(x;.%5)) - & . for x; <O

(4.1)
H&,i(v¢e,6(xl’x2)) < H(V¢6’6(x1.x2)) +6 , for Xi 2 0
i=1,2, and
[‘*6,5(0'0) =0
(4.2)

1 2 2.1/72 .
i"’e.a(xr"z) >z for e < (x] + %) < diam D.

Theorem 4.1. Let u (resp. u) be an u.s.c. viscosity subsolution (resp. €.s.c.
viscosity supersolution) of (2.16) and (2.17) but with finite terminal data at

t =T. Assume A.4k.1, and that u(xl.xz,T) < g(xl,x2.T) for (xl,x2) € D. Then
u<u on Dx[0,T].

Proof. Fix 0 < T < T, and set Q=D x (7,T], x = (xl,xz). y = (yl,yz). For

5> 0, define U,U by

2
E(x,t) - 261%;::1%7

2
u(x.t) + 251"{%_27

U(x,t)

(4.3)

LI}

U(x.t)

Observe that to prove the conclusion of the theorem, it suffices to show that

<l

(4.4) U< on Q
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for all 6,T >0. Let us assune that

(4.5) sup(U- 0 >0
Q

Finally, for 0<e <1 and 0 <p < sup(U- U consider the auxilary function

Q

(4.6) (xy,tys)r=Uxt) - Uy, t) -~ (x-y) -t -s)?-p

where (x,t),(y,s) €Q and $ , isas inA4.1 Note that $(x,y,t,s) tends

_00

to uniformy when either t or s approaches T. Therefore, using the

semcontinuity of $ we conclude that $ attains its maximumon Q say at

(x.y.T.s) €Q Mreover,

(4.7) *(x,y.t.s) >sup(U- U - p>0
Q

Aso, we claimthat neither (X,f) nor (y,s) belongs to
2=Ts3x [T.T] UDx {T}; the part of the boundary on which the Drichl et

condition is inposed. |ndeed

(4.8)  *(xy,t,s) 1 U(Gt) - y(y.s) - Mii(x-y) - igt - s)?-p

Recal | that ﬁ'£y’ on 2, that U and -y are upper sem continuous, and

“es(x-y) > Ve if |x-y|l 2e sing the fact that i(7 - §)? and
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¢6'a(§'~ y) must be bounded independently of e, together with (4.2), we
conclude that |x - y| and |t - s| tend to zero as e approaches zero. Thus, if
(x,t) € Z, then (y.s) is near X (for small e) and conversely. Hence, for
small enough e, ¢(x.,y.t.s) { O whenever (x,t) € £ or (y,s) € Z. This

together with (4.7) gives
(4.9) (x.t).(y.s) € =.

Ve continue by using the equations (2.16), (2.17). First, observe that the

map

2 —2
(4.10) (x.t) » u(x,t) - [¢6’6(x -y) + 25£T——T'r) L - s) ]

attains its maximum at (x,t). Since u is a viscosity subsolution of (2.16),

(2.17) and (x,t) € =, this observation yields that either

2 - -
(4.11) 252{ - ”)2 - oft ; s)_ ., H(v¢6'6(§ -y)) <o,
t-T

or one of the other inequalities appearing in (2.17) holds. But we claim that

in each case the following inequality holds:

(4.12) 5 - 2-(£-;—:)- + H(ve_ 5(x - ¥)) < 0.

Clearly (4.11) implies (4.12). To handle the other cases, we use the assumed
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properties of ¢_ o (c.f. (4.1)). which imply the following (for i = 1,2).
(4.13) x; = (o) ='xi -y <0 $~Ha,i(v¢e’5(x -y)) 2 H(v¢e,6(x -y)) -6
(4.14) y; =0=3x, -y, CO3Hy (v¢, (x - y)) CH(VP, s(x-y)) + 20

It is now straightforward to obtain (4.12) from (4.13) and (2.17). Indeed,

suppose that instead of (4.11) we have

2 = _ 2
(4.15) 2521 - T;2 - ot - ), Hy ((v¢_ s(x-¥)) <O
t-T ’ ’

for i =1 or 2. This may happen only if ;; = 0. Consequently (4.13) holds,
and (4.13) together with (4.15) gives (4.12). In the case x = (0,0) we use the
identity Hc = Ha,1 + H6,2 -

Similarly, since u 1is a viscosity supersolution to (2.16), (2.17), we

H together with (4.13).

obtain

(4.16) -5 - 2%—)- + H(v¢e’6(; -y)) 20

In this argument, we use (4.14) instead of (4.13).
Now, subtract (4.16) from (4.12) to obtain that 26 < 0. By contradiction,

(4.4) is true.

n]

To extend this uniqueness result to the case of infinite terminal data we
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adapt the ideas of [12] (see also [6]), and make use of two facts which hold in

our problem:

(4.16) Cyi= inf{H(p) : p € K} > -

(4.17) there exists a viscosity solution u of (2.16), (2.17)
which belongs to C(D x (0.T)) and which tends to +®
as t 1T T, uniformly on compact subsets of ﬁ\l":3 (c.f.

Theorem 3.1).

We start with a lemma. For the remainder of this section u denotes the

continuous function described in (4.17).

Lemma 4.1. For x = (xl,xz) €D, u(x,t) - C2t is a nondecreasing function

of t.

Proof. Fix(x.to)er(O,D, and 0<T<t Choose € >0 and A < ® so

0"
that

B(x..€) = {x : Ix-xol <e}CD
and
(4.18) u(x,t) € u(x ,to) +e+ Alx - xo|2

wvhenever (x,t) € IB(x,,e) x ['r,to] U B(x,.e) x {t Define u by

0}'
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U(X,t) =u(Xo,tg +e+AX- Xol?2- Gt - tg

Then
(4.19) - AU H HVWY 1 0 in B(xg€) X [T, td

and by the conparison principle [5] and (4.18) u < U on B(xge) x [T, tg. In
particular, u(Xxgt) <u(Xe ty) +e+C(t - tg), whichinplies the conclusion of
t he | enma.

D
Theorem4. 2. Let u~(resp. u) be an u.s.c. uiscoslty subsoiution (resp. £.s.c.

uiscoslty supersolutton) of (2.16), (2.17). Assume A 4.1. Then U < U on

Dx (0, 7).

Proof. W prove that U<u and us<uy on Dx (0, T), where u a continuous
viscosity solution to (2.16), (2.17). First note that by the definition of a
viscosity solutionwith infinite terminal data and by Lenma 4.1, u(x,t) tends to

+» as t | T, uniformy on conpact subsets of ﬁl\a. Hence, for each e > 0,

there is 0 < 6gp< e such that for any x €D and 0 < 6 < 6g
(4. 20) ux, T- e - e <u(xT- 6)
By Theorem4.1, for any x €D, e<t <T, and 0 < 6 < 6q

(4.21) ux,t - e) - e <u(x,t - 6)
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Letting 6 go to zero, and replacing t - e by t we obtain

(4.22) u(x,t) Cu(x,t +e) +e

for any x €D, and 0<t {T-e. Letting € go to zero

(4.23) u(x,t) € u(x,t)

for (x,t) € D x (0,T). A very similar argument (again exploiting the continuity

of u) gives u<u on D x (0,T).
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5. Construction of the test functions

In this section we show how to construct {¢e.6} satisfying A.4.1 for the
case where all of A,B,v,a, and pu are strictly positive. Cases where one (or
more) of these is zero are considered in the next section.

The basis of the construction is an interesting use of the Legendre

transform. Define

for i =1,2. For now we look for a function ¢(+) which satisfies only (4.1)

with 6 = 0. Define (for i = 1,2)

C; = {(py.Py) : Hy ,(p;.Py) 2 0}
(5.1)
C; = {(py-py) : Hy ,(p.Py) £ 0O}

(Refer to Fig. 4)
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H® <0(C}) H° =0 H° >0(C})

ad,l P . 2,
H® >0(C¥)

2
c -
2020
g
. -
Ha’gO(CZ)
Figure 4

Then to satisfy (4.1) with & = O, we require
+ -
(5.2) v¢(x1,x2) € Ci(resp. Ci) whenever X4 2 O (resp. X, €0),i=1,2.

Assume that it is possible to find a strictly convex, finite valued function
R(pl.pz) such that R(0,0) = O, (0,0) € 8R(0,0), (where &8 denotes the set of

subdifferentials of a convex function [24]), and
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(53) A'iR( Pr PZ) * o (resP_ * o) if (H'F2>€Ci Tresp_ C;), i=1,2.

(I.e. VR partitions the (p-l,pg)-plane in the sane way as (I—Pa".USZ).) Defi ne

(5.4) - MXjxr = sp [xpg + X5Py ~ R(p.P5)])
Pr PZ

(this differs slightly fromour previous definition of the Legendre transforn..

By conjugate duality [24]
(55) (P:P2) € 3<KXx;X2) +-* (X,X2) € 3R(prp2)

Let (Pj.Py) ® SM(x;¢x2). By (5.3) and (5.5), X | 0 (resp. X <0) if and only
if (P}.Pg) €C—t(resp. CI). A simlar result holds regarding x’\-. Si nce
R(0,0) =0we obtain <t>>0, and (0,0) € 3R0,0) inplies *(0,0) =R0,0) =0.
Inparticular, if + is differentiable it satisfies (4.1) with 6 = 0.
Moreover, the differentiability of e« follows fromthe uniformconvexity of R

More precisely, suppose that R satisfies the follow ng

(5.6) «iminf{R(p) : |p| = s}/s = +=,
SHOD

(5.7) for every L >0 thereis e =e¢e(L) >0 such that

R(p) - e|p|"" is a convex function of p, on |p|] < L.

In other words, R is uniformy convex on bounded

subset s of RQ‘.
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Then, ¢ € C(R%). [24].
We continue by constructing R having the properties (5.3), (5.6). and

(5.7). To obtain (5.3). we look for rl(p), rz(p) > 0 such that

(5.8) sCR(P) =T MG () . 1=12 . peR.

A necessary and sufficient condition that (5.8) hold for some R € 02(R2) is
d c d c
(5-9) ‘ESi(rzﬁa.z) = 55;(r1H6.1)'

In the present case it is relatively simple to guess a form for r, and r

1 SO

2
that (5.9) holds. By taking

r (p;.pPy) = A exp(ap; + bp,)

-

B exp(cpl + dpz).

we obtain as sufficient conditions for (5.9)

A/B = B/n -
c=pfa/q , b=pr/q
(5.10) {a=c=-1=-(va + uv)/q
d=b-1=-(va + Ba)/q
L Q = 7a + pv + Ba.
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Integrating, and choosing the constants of integration in such a way that

R(0.0) = 0. (0.0) = VR(0.0), we obtain
(5.11) R(p,.py) = a[(walexp(afp; - a(B + 1)py)/a - 1]
+ [exp(aPp; + wrpy)/q - 1]
+ (B/7)[exp(~(1 + @)p; + wPy)/q - 1]]

This function, in addition to (5.3), satisfies (5.7) and (5.8). Hence, its
Legendre transform ¢ satisfies (4.1) with & = 0. Finally, we obtain the

sequence {¢6 0} by appropriately rescaling ¢.

Lemma 5.1. Let ¢ be the Legendre transform of the function R given by
(5.11). Assume A,a,B,p,v > 0. Then, there is a function p(e) > O such that

the sequence

¢ (x) = p(e)e(x/p(e))
satisfies (4.1) with &6 = 0, and (4.2).

v¢(3%%7), clearly ¢_ satisfies (4.1) with 6 =0, for

any choice of p(e) > 0. The finiteness of R implies the existence of 6(L)

Proof. Since v¢e(x)

such that



R(p) < 39(L) [p|® whenever |p| <L

which in turn gives

2
(5.12) ¢(x) 2 E%%%T whenever |x| < L6(L)
Set
(5.13) | _2DiamD - e
: e=" 3 - PO =mE

We now calculate directly that

2 2
$c(x) 2 2p(!§g(Le) = l:%

whenever |x| ¢ Lee(Le)p(e) = Diam D. Hence, ¢ satisfies (4.2).

40
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6. Construction of the test functions: continued

In this section we renmove the restriction that all \g(3¢7;a; and J. rmust
be strictly positive. It turns out it is not interesting to consider jit =0 or
X =10, since for these cases the problembecones trivial. |In order to fix the

i deas and exhibit the method in a sinple way, we consider only the case /5 = 0.
The other cases may be handled in a simlar fashion.

The results of Sections 2-4 remain valid in this case, except that we can
not construct test functions satisfying (4.1) with 6 =0, as we did in
Section 5. Indeed, if we consider R defined by (5.11) and take j3 =0, we

obtain

" 1
(6.1) R(prp2) = q|l*Ma)[exp(-aTp2/q) - 1] + exp(-jrrp/aq) - 1j

where q = mra + JuT, and this function is not uniformy convex and does not
satisfy (5.7). Hence we take a different tack, which requires an approximation

ar gument .

Let R(P, pi, p2) be given by (5.11), where we neke the dependence on /3 >0

explicit. Define
(6.2) ROLj.L"Pj.Pg) =R(P, PP;) + I(L1.1.2;p1.p2).

wher e



0 if |p;| <L, and |p,| <L,
(6.3) I(Ll.Lz:pl.pz) =
+o0  otherwise

Then R(ﬁ,Ll.Lz;-,') is uniformly convex, and finite in a neighborhood of the
origin, if B,LI,L2 > 0. We then define ¢(ﬁ.L1.L2;x1,x2) to be the Legendre

transform of R(B,LI,L2:°.°) (c.f. (5.4)).

Lemma 6.1. Assume that A,v,a,n > O, and B = 0. Then, there exist functions

Ll(e),Lz(e),p(e), and PB(e,d) such that the family of functions
(6.4) ¢ 5(x) = p(e)9(B(e.8).L (€) . Ly(e)iorcy)
satisfies (4.1) and (4.2).

Proof. Pick Ll'L2 > 2 diam D, so that the following is satisfied for every

B.e € (0.1].
. L L
d 1 + 2
(i) BP_T—I R(ﬁ-_B‘-pz) € Cl.ﬁ , for |p2| < 3
€ €
L L
d 1 - 2
€ €
(6.5) <

L
css a 2 1
EF € (3

3 L

(1) o= Ry 2 ecy . for Ipyl <3
€ €
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Her e. O: (i are as in (5.1), where we nmake the dependence on /3 >0 explicit.
The exi stence of such Ll' and L‘<4< follow fromel enentary geonetric

considerations (refer toFig. 4).

Set
L.
(6. 6) Lre) =-4 , i =12
e
(6.7) L, = (L A L,)/e®  0(e.6) =6 exp(-Li)-
As in Lemma 5.1, there is 8(Le) such that
(6.8) RP(e.6),p) < le(Lo)lpl® . Ipl €L

for all e,6 € (0,1]. Finally, set

(6.9) P(e) =4 C.

<

By using (6.8), we directly calculate that

12
((P(e.6). Li(e). La(€): ) P 3oy » x| € Lol
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Hence
x12  Ix|?
$.6(0) 2 o yey = " 3
€ (3
whenever
(L, AL)
x| < L 8L )p(e) = —15—2-.

Since L1 A L2 > diam D, (4.2) is satisfied by ¢e 5
Ve continue by verifying (4.1). By conjugate duality [24], a version of

(5.5) still holds even if R 1is not finite valued. In our particular example,

we have

(6.13) P =V, 5(x) & x =VR(B(e.8).p) if |pi| <Ly(e)

Hence, whenever

3 .
(6.14) lg;; ¢6'5(x)| < Lj(e) , for j=1,2

-

C

the construction of R(B.°*) yields that (making the dependence of Ha ; on B
explicit)

. L
(6.15) Ha,i'ﬁ(v¢e'5(x)) 2 0 (resp. < 0). if x; 20 (resp. £ 0).

Then, in the case when (6.14) holds, one proves (4.1) after observing that

(6.16) Hy 1.0(P) = Hy | 5(p)
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and

Py,™P
(6.17) HS 5 o(P) = K5 5 5(p) - Ble © ' - 1]

We therefore obtain (4.1) by using (6.7). Since by construction

|ag—-¢6 G(X)I < Lj(e). to complete the proof we have to consider the boundary
j ’
cases.
First, suppose that x, 2 O and —g—-¢ (x) =L.(e). Then, (6.5) (i)
1 axl e,b 1
together with (6.16) yields the desired result. Next, suppose that 3 2 0,
a3 a . s
5;;- e'(S(x) = Lz(e), and 5;; ¢6'6(x) < Ll(e). In this case, definition of

¢6 5 implies that
xy = p(e)gp- R(B(e.6).98, 5(x)

Hence, the construction of R(B,+) together with (6.16) yields the result.

All the other cases can be proved similarly.
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7. Extensions and Comments
7.1. Extensions.

The techniques and ideas used in the analysis of our particular queueing
model are in fact applicable to analogous problems for a very broad class of
queue models, some of which will appear elsewhere. We will content ourselves in
this subsection with describing only those extensions of the model and problem
considered so far for which the proofs involved are very close to those of

sections 2-6.

7.1.1. Different Escape Sets.

Let G be any bounded open set in R2 whose boundary is smooth. Then in
place of D we can use G N ((xl.x2) P Xy 2 O,x2 2 0}. We can consider
unbounded G as well if Lemma 2.1 continues to hold. Thus we can take
D= {(xl,xz) P Xy 20,0¢ X, < M}, which allows one to estimate the probability

that queue 2 exceeds M/e by time T/e.

7.1.2. Higher Dimensions.
Ve can consider a system of n interconnected queues. Label the queues 1

through n, and let S = {1, ..., n}. Let Xi denote the number of customers

1

in the ith queue, and Xt = (Xt. . X?). Define
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X.m. = junp intensity fromqueue i to queue |,
A1 Qss junp intensity fromqueue i to outside the system
X» .= intensity of arrivals at j fromoutside the system
e. , =(0.0 . ... -1,0. . . .. 10 )
1' 3
T t
th Jth
e.,=(00. . . . : 1,0, )
1,0 T
Lth
eO,j = (0-0- » I;IO' )
h
5t
for every point x € {(Xi’ . ':{() €R": Xy 20,1 €S}=D define

[(x) ={i €S X =0} . For a subset s of S we define the Ham|tonian

H(s,p) by

(7.1) H(s,p) =2 2 X.1 . [exp<p.e. J>-—1]
i€S\s j€S 7 L
and its dual
(7.2) L(s.v) = sup[<v.p> - H(s,p)]
p

Finally, we define a 'cost' for each x € D. Let J(x,v) ={i € 1(x) : v. =0},
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and let I(x) and J(x,v) be the set of subsets of I(x) and J(x.v),

respectively. Then

(7.3) &(x,v) = inf{ z psL(x,vs) :
s€J(x,v)

) P, Vg =V, A Py 20, z Py = 1}

s€J(x,v) s€J(x,v) s€J(x,v)

Let G be an open set in (R+)n with smooth boundary, and define dG' to
be the closure of {x € 8G : I(x) = &} (here @ denotes the empty set). We
assume that the origin is interior to the convex hull spanned by {Ai,jei’j,(i.j)
€ {0,1, ..., n)z). This implies L(®&,v) is finite for all values of v, and
that the function defined by (7.4) below is continuous. This assumption does
not imply a loss of generality. When it is violated, it implies that the
behavior of the system is in fact trivial or decoupled.

Under these assumptions we have the following theorem, where xi = eX

t/e
gives the scaled queue system.

Theorem 7.1. Consider the following equation, interpreted in the viscosity

sense:

- 2w + H(®.7u) = 0, (x.t) €G x (0.T)

- g%ﬂl + H(s,vu) = 0 for some s € I(x),(x,t) € 8G\3G' x (0,T)
(7.4) A

u=0 |, (x,t) € 8G' x (0,T)

, x € G\dG'
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Then the following results are true.
(1) The equation (7.4) has a unique solution u in C(G x [0,T)).
(2) Ve have

(7.5) &im - € &og P{xi € G for some T € [t,T] | xi = x} = u(x,t) ,
3

with the convergence uniform in compact subsets of G\3dG' x [0,T).

(3) Ve have
(7.6) u(x.t) = inf re(f,é)ds :
€ t
x,t
where
Ax ¢ = {€ : [t.8] - R" : E(t) = x,E(6) € G', 6 (T, and § 1is absolutely

continuous}

Remark. The inf wused to define £&(x,v) through (7.3) may be simplified. In

fact, it is sufficient to sum over only those subsets of j(x,v) having only

Zero or one element.
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7.1.3. Containment Probabilities.
Another class of probabilities that may be estimated via viscosity solution

techniques are containment probabilities. Let G be open (in (R )n) with nice

boundary. In this case we are interested in the asymptotics of
(7.7) u®(x,t) = —e fog P {X €G forall t<T<T}

The associated PDE (to be interpreted in the viscosity sense) for this case is

(using the system and notation of the previous subsection)

- %ug + H(@,vu) = 0 (x,t) € G x (0,T)
- g%-+ H(s,vu) = O for some s € I(x),(x.t) € 3G\dG' x (0,T)
u=0 (x.t) € G x {T})

The PDE approach for calculating asymptotics for these types of

probabilities was first considered in [8]. The form of the associated
variational representation for the limiting value of ue(x,t) in this case is

given by (7.6), except we now replace Ax by

» t

o = € [.T] >R™: E(t) =x, £(1) €G for T € [t,T], and § is

absolutely continuous}

A theorem analogous to Theorem 7.1 holds. The proof uses the same test
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functions as those used in the case of escape probabilities. W onit the proof,
and instead refer the reader to [25]. This work treats the conparison result
for the same type of problem but with an eugation that does not require such
conplicated test functions. The proofs that u and u (defined by (2.9)) are
respectively sub and super solutions, and that (7.6) (with A . replaced by

— X, I.
AX t) defines a solution, are essentially the sane as those for escape

probabi 1i ties.

7.2. 0OQ the Relationship of the Results to a Large Deviation Principle

As mentioned in the introduction, the results presented in this paper
concerning the limting behavior of certain classes of probabilities are al
special cases of the results that would be available if the process x?
satisfied a large deviation principle. It is an interesting fact that in a
certain sense the converse is also true. To be nore specific, it is possible to
prove that if for a given process it can be shown that the normalized £ogs of

the escape and contai nment probabilities (given by (7.5) and (7.7) respectively)

have the representation (7.6) (with the inf over A . and 7§_f
X, t X, VW
respectively), then under some regularity conditions on the formof the
€

function B appearing in (7.6), the nmeasures induced by the process X
satisfy a large deviation principle in the sense of [14; Sect. 3.3]. Therate

function is given by
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T
2(E.£)ds ., & 1is absolutely continuous, £(0) = x

S(x.£) =

+o , otherwise

Actually a slightly more general form of the results with regard to
containment probabilities is needed, in which we replace x by xe’f =x% + f,
where f is a c deterministic function. However, the same techniques that
apply for the case f = 0 easily adapt to this case as well.

We do not give a detailed proof of this assertion, since such a proof in a
general setting will appear elsewhere. Nonetheless it is worth mentioning the

basic steps involved. We first note that under compactness of the ’level sets’
®(x.7) = {¢ : S(x.¢) < T}
the estimates (1.3), (1.4) follow if we can prove:

(1) given ¢ € C([0.T] ; R") such that ¢(0) =x, and & > O,

(7.8) 2im e fog P_{ sup |x%(t) - ¢(t)| < &)
€ X 0<t<T
2 -S(x.¢) .

(2) given s (e, and 6 >0

(7.9) €¢im e Log P_{ inf sup Ixe(t) - ¢(t)]| 28} < -r .
e X ¢ed(x,r) 0St<T
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Obtaining (7.9) is easily accomplished by using the ‘escape’ estimates. To
obtain (7.8), it must first be shown that it is sufficient to consider only ¢
that are piecewise C’. This requires regularity conditions on ¢£(+,*), which
turn out to be trivially satisfied for the functionals considered in this paper.

We then can obtain (7.8) by using the ’‘containment’ estimates and the Markov

property.



Appendix: A weaker formulation

In this section we present a weaker formulation of the PDE given in

Definition 2.1, in order to relate our definition to more standard ways of

describing boundary conditions.

First note that (2.19) implies

(A.1) min [~ 2¢ + H(ve) ; ~H(v$) + Hy ((v4)]1 < O (resp. 2 0)
(max) ’

if (xy) €T, . i=1.2

and

(A.2) min [- 2=¢ + H(v$) ; -H(vs) + H  (74) :
(max) |

H(v$) + Hy 5(v6) i -H(v$) + H (v)] <O (resp. 20)
if (x.y) = (0,0).

Dropping the fourth term in (A.2) (the Hc term) leads to a statement that is

equivalent to letting that term remain. This follows from the equality

(A.3) -H + Hc = (-H + Ha,l) + (-H + Ha,z).

54
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Thus, (A.2) holds if and only if (A 4) bel ow hol ds.

(A 4y mnf-jrM +HV*) ; -HVY) +HAvE) L =1,ZT <0 (resp. >0

(max) " _ -
if (x.y) =(0,0)

Note that (A.1) and (A.4) do not inply (2.19a) and (2.19b). In this weaker form
the PDE has nonlinear boundary conditions (interpreted in the viscosity sense).
Al though this forrmulation is famliar, it is inferior to that given by (2.18)
and (2.19). This latter definition is nore useful in many ways, such as in
provi ng uni queness of the solution and in proving that the value function of the
associ ated control problemis a viscosity solution (see Sections 3, 4).

The correct interpretation of our original formulation ((2.18), (2.19))
requires that we view (2.19a) and (2.19b) not as boundary conditions, but rather
as the correct equations that woul d be associated to this part of the domain if

we interpret the problemas one involving a discontinuous Hanmiltonian, i.e. the

correct Hamltonians for the regions {(x.y) : x >0, y >0}, {(x.y) : x <0,
y >0k, {0y) = x>0,y <0}, {(xy) © x <0 y<0}are H(-) Un(-).
FE’EA*)* '; (" respectively. Taking the upper seni continuous and | ower

sem conti nuous envel opes of this discontinuous Hanmiltonian yields the system
(2.18), (2.19). CQbviously the techni ques we have devel oped are equal ly well
suited to the treatnent of anal ogous probl ens where the discontinuities of

Ham | t oni an appear in the interior of the domain of interest G

Now consi der the special case /3 =0. |In this case, we have
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(A.5) ~H(v$) + Hy ,(v¢) = [(¥)® _ 170
or

3

ay* =°

as the boundary condition on Fz. Moreover, it is easy to show that 86 2(w,O)

defined by (3.4b) has the following form.
(A.6) ea 2(w,O) = inf[L(w,v) : v £ O]
This expression agrees with the form of the integrand obtained in previous

work of P.-L. Lions [22], where the Hamilton-Jacobi equations with Neumann type

boundary conditions were studied.



57

References

[1]

[2]

[31]

[4]

M. Bardi, An asymptotic formula for the Green’s function of an
elliptic operator, to appear in Ann. Norm. Sup. Pisa.

G. Barles and B. Perthame, Exit time problems in optimal control and
vanishing viscosity method, preprint.

M.G. Crandall, L.C. Evans and P.-L. Lions, Some properties of
viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math.
Soc. 282 (1984), 487-501. '

M.G. Crandall, H. Ishii and P.-L. Lions, Uniqueness of viscosity
solutions of Hamilton-Jacobi equations revisited, J. Math. Soc.
Japan, 39 (1987), 581-596.

[5] M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi

(el

[7]

(8]

[e]

[10]

[11]

[12]

[13]

equations, Trans, Amer. Math. Soc. 277 (1983), 1-42.

M.G. Crandall, P.-L. Lions and P.E. Souganidis, Maximal solutions
and universal bounds for some partial differential equations of
evolution, preprint.

P. Dupuis and H. Kushner, Minimizing escape probabilities; A large
deviations approach, preprint.

L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems
concerning random differential equations with small noise

intensities, Ann. Inst. H. Poincare Analyse Nonlineaire 2 (1985),
1-20.

L.C. Evans and P.E. Souganidis, A PDE approach to certain large
deviation problems for systems of parabolic equations, preprint.

¥W.H. Fleming and R. Rishel, Deterministic and Stochastic Optimal
Control, Springer, New York, 1975.

W.H. Fleming and H.M. Soner, Asymptotic expansions for markov
processes with Lévy generators, Journal of Appl. Math. and Opt., to
appear.

W.H. Fleming and P.E. Souganidis, A PDE approach to asymptotic
estimates for optimal exit probabilities, Ann. Scuola Norm. Sup.
Pisa, 13 (1986), 171-192.

W.H. Fleming and P.E. Souganidis, Asymptotic series and the method
of vanishing viscosity, Indiana U. Math. J. 35 (1986), 425-447.



[ 14]

[ 15]

[ 16]

[17]

[ 18]

[19]

[ 20]

[21]

[22]

[ 23]

[ 24]

[ 25]

[ 26]

[ 27]
[ 28]

58

MI. Friedlinand A D. Wntzell, RandomPert urbati ons of Dynam cal
Systens, Springer, New York, 1984.

H Ishii, Perron's method for Hamlton-Jacobi equations, Duke Math.
J. 55 (1987), 369-384. '

H Ishii, A boundary value problemof the Dirichlet type for
Ham | ton- Jacobi equations, Ann Scuol a Worm Sup. Pi za (to appear).

H Ishii and S. Koike, Remarks on elliptic singular perturbation
probl ens, preprint.

C. Knessl, B. Matkowsky, Z. Schuss and C. Tier, An asynptotic theory
of large deviations for Markov junp processes, SIAMJ. Appl. Mth,
96/ 6 (1985), 1006-1028.

, Asynptotic anal ysis of a state-dependent single-server

queues, SIAMJ. Appi. Hath., UG h (1986), 657-697.

S. Koi ke, An Asynptotic formula for sol utions of Ham I ton-Jacobi -
Bel | man equati ons, Nonli near Anal ysis, Theor, Math. Appl., 11
(1987), 429-436.

P.-L. Lions, Generalized Sol uti ons of Hani | t on-Jacobi Equati ons,
Pi t man, Boston, 1982.

P.-L. Lions, Neumann type boundary conditions for Hani| ton-Jacobi
equat i ons, Duke Math. J. 52 (1985), 793-820.

S. Parekh and J. Vélrand, Quick sinulation of excessive backlogs in
networ ks of queues, Proc. of IM\ U Mnnesota, June 1986, WH.
Flemng and P.-L. Lions editors.

T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.

HM Soner, ptinmal control with state-space constraints, |. SIAMJ.
Control Opt., 2k (1986) 552-561; |1. 2h (1986), 1110-1122

D. Stroock, AnIntroductiontothe Theory of Large Devi ati ons,
Springer, New York, 1984.

S.R S. Varadhan, Large devi ati ons and applications, Sl AM(1984).

A Wiss, Anew technique for analyzing large traffic systens, Adv.
Appl . Prob., 18 (1986). 506-532.






IHIlllll!llllﬂll!lllﬂlﬂﬂlllllllllWlf (il

4482 01356 1408



