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1. Introduction

In this paper we consider an asymptotic analysis of a queueing system.

Suppose the "state" of the queueing system at time t is given by the

n-dimensional vector X € (Z+)n, where Z+ = {0,1,2,...}. For small positive

e, the scaling of interest here is given by X^ = eX - , corresponding to large

time and large excursions. We shall assume that the original process X# is

modelled as a jump Markov process. Hence the rescaled process X# is also a

jump Markov process, with state space given by S = {y € R : y/e € (Z ) }.

The problem we are interested in concerns the estimation of probabilities

of certain rare events involving the original (unsealed) system. For example,

take n = 2 and consider the event

(1.1)

A = {xt + y > M/e for some 0 < t < T/e, given xQ = x/e, yQ = y/e}

where M.T are positive real numbers and X = (x ,y ). In the rescaled system

this event is given by

(1.2) {x* + y* > M for some 0 < t < T, given x* = x, y^ = y}

The results of this paper give asymptotic (e I 0) estimates of P(Ae) of the

form exp((-I(x,y) + 0(l))/e), where the 0(1) term converges to zero uniformly

for (x.y) in compact subsets of {(x,y) : x I 0,y > 0, x + y < M}, and where

I(x,y) = u(x,y,0), where u is the value function of a non-standard



deterministic optimal control problem. The formulation of this control problem

can be found in Section 3, below.

The problem we have described is one of estimating the probability of an

event corresponding to a large deviation of the scaled queueing system. In the

general theory of large deviations for stochastic dynamical systems, one is

given a process X , defined for 0 < t < T, with sample paths living in some

space D and is asked to obtain a family of functionals S(x,») : D » [0,«>]

such that (in addition to other properties)

(1.3) for any open set A C D,

inf e t o P (Xe € A) > -inf S(x,<*>)
eiO x A

(1.4) for any closed set G C D

«im sup e f o P (X^ € G) < -inf S(x,<f>)
elO X <p£G

where P denotes the probability given Xn = x. We refer to Varadhan [27],

and Stroock [26] for the precise properties required of S. The problem we are

trying to solve is a special case of the full large deviations problem as

described above, since we are interested in obtaining "rough" asymptotics of

P (X# € A) (as given by (1.3) and (1.4)) only for a particular class of sets A.

The techniques employed in this paper are those of the theory of viscosity

solutions to Hamilton-Jacobi equations. The application of such methods to

problems concerning large deviations originated with the work of Evans and Ishii

[8]. Further work in this area may be found in [1], [2], [9], [11], [12], [13],



[17], and [20]. For a general introduction to problems concerning large

deviations of dynamical systems, the reader is referred to the book of Freidlin

and Wentzell [14], where probabilistic (as opposed to analytical) techniques are

employed. An example of how probabilistic methods may be used to estimate

escape probabilities is in [7]. Also, in [18]-[19] some formal formulae were

obtained for problems similar to the one described here, and applications were

discussed in [23], [28].

The new features involved in developing a large deviations for processes of

the type that arise from queueing systems result from the "boundaries" of the

system. For simplicity consider a system of two queues (x ,y ) in which

interarrival and service times are constants, and for which the relationships

between the queues is as depicted in Fig. 1 below. Define the rescaled system

(x ,y ) = e(x . ,y . ). If both x and y are strictly positive, then the

conditional statistics of ((x^+g,y^+6) - (x^.y^)) given (x^,y^) = (x,y) are

roughly independent of (x,y). However, as x A y -» 0 (one or both queues empty)

there is an abrupt change in the statistics of the small time increment, since

the associated jump measure suffers a discontinuity. As we will see below, the

nature of the stochastic process we deal with is such that this transition in

the jump measure leads to a nonlinear boundary condition for the associated

partial differential equation (PDE).

Since it is the treatment of the effects due to the "boundaries" that is

novel, we devote the majority of the paper to the detailed development of a

simple two-dimensional system that exhibits the essential new features.

However, the arguments may be applied to queueing systems whose structure



routing schemes, etc.) is quite general, and we attempt to indicate this

generality as well.

The outline of the paper is as follows. In Section 2, we define the

logarithmic transformation of the probability of interest and show that it

converges to a viscosity solution of an associated Hamilton-Jacobi equation, as

e tends to zero. In Section 3, we obtain a representation for the solution of

this equation in terms of the value function of a certain nonstandard optimal

control problem. This suggests the form of the functional that would be correct

if (1.3) and (1.4) were to hold. Sections 4, 5, and 6 prove the uniqueness of

viscosity solutions satisfying a nonlinear boundary condition, which ensures

that our two representations are in fact the same. These sections are of

independent interest. We conclude in Section 7 with a discussion of extensions.

In particular, Section 7.1.2 contains a summary of the main results of the

paper, written for a system of interconnected queues. The appendix includes a

brief discussion of a weaker formulation of the FDE.

Figure 1



2. An Example

We return our attention to the queueing system depicted in Fig. 1, and

consider the problem of determining the limiting behavior of

(2.1) ue(x,y,t) = -e in P(xe + ye > M for some s € [t,T] | xj = x, yj = y)
S S L L

For the sake of notational simplicity, we take M = 1. The process

corresponding to the queueing system depicted in Fig. 1 is a jump Markov process

(x ,y ) whose jump measure is concentrated on the points (1,0), (1,-1), (0,-1),

(-1,0), and (-1,1) with intensities X, p, T, a, and \i respectively, unless a

boundary is encountered. We assume that all the intensities are nonnegative.

In order to obtain a nontrivial system we must also assume that X > 0, ]i > 0,

and that either T > 0 or P A a > 0. When the process is on a boundary, only

those jumps that do not lead to escape are allowed by the jump measure, and they

retain the intensities that are in effect on the interior. We then use the

definition (x
t»Yt) =

 e(xt/ >yt/ ̂  t o °^ t a i n t*ie scaled system. See Figure 2.



Figure 2

Define

= {e(i.j) : (i.j) € Z2>

= {(x.y) : x > 0. y > 0. x + y < 1}

= {(O.y) : 0 < y < 1}

= {(x.O) : 0 < x < 1}

= {(x.y) : x I 0. y I 0. x + y = 1}

* D n sfc

= Tj n Se. i = 1,2.3.



Then for ue(x.y,t) defined by (2.1) the Chapman-Kolmogorov equations imply

(2.2a) - £ u e ( x , y , t ) + He(x,y,ue(-. •, t)) = 0, (x.y.t) € De x (0,T),
at

a e(2.2b) - ^ - u ^ x . y . t ) + H* . (x ,y ,u e ( - , - , t ) ) = 0, (x.y.t) € r* x (O.T). i = 1,2,

(2.2c) - £ u
e ( x , y , t ) + H^(x.y,ue(-,-,t)) = 0, (x.y.t) € {(0,0)} x (0,T),

dt

(2.3) ufc(x,y,t) = 0, (x.y.t) € rj x (0,T),

(2.4) ue(x,y,T) = +«, (x,y) € (D\T3) D S
e,

(here 3,i denotes boundary number i. and c denotes the corner).

The Hami1tonians are given by

(2.5a) ^(x.y.•(•••)) = x[exp[- l|>(x + e.y) - *(x,y)]] - l]

{*(x + e.y - e) - *(x,

nr[exp[- ^ ( x . y - e) - *(x,y)]] - l]

a[exp[- i[*(x - e.y) - *(x,y)

{>(x - e,y + e) -
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(2.5b) H^jCx.y,•(•.•))

- a[exp[- ±£*(x - e.y) - *(x

- e,y + e) -

(2.5c) H^2(x,y,•(•,•)) =H
e(x,y,*(-,-))

- /3|exp[- ^>(x + e.y - e) -

,y - e) -

(2.5d) H^(x,y,*(•,•)) = x[exp[- ̂ ( x + e.y) - •(x.y)]] - l]

It follows that if « € ̂ (D), then

(2.6) €im H^x.y.K-,-)) = H(v*(x,y))
elO

(2.7a) Urn HX .(x.y.«(•••)) = H_ .(v*(x,y)) i = 1.2.

(2.7b) «im H^(x,y,*(•.•)) = H (v«(x,y))
elO C C

uniformly in (x,y), where



(2.8a) H(p.q) = X[e P - 1] + p[eq P - 1] + -r[eq - 1] + a[eP - 1] + u[eP C

p P~Q < -i

(2.8b) H- 1(p.q) = H(p,q) - a[e - 1] - fi[er - 1J

(2.8c) Ha.2 ( p' q ) = H ( p' q ) " P [ e J-

(2.8d) H (p.q) = X[e"P - 1]

2.1. For each T' < T. there is a constant K(T') Independent of e such

that

|u£(x,y,t)| < K(T')

for all t < T'.

The result is a simple consequence of the fact that X > 0, and the easy

proof is omitted.

Following [2], we next define u and u as follows:

(2.9a) u(x,y,t) = £im u£(xe.ye,te)

(xe.yfc,teMx.y,t)

(xe,y£,te)€DhSex[O.T)
e-O

(2.9b) u(x,y,t) = £im ue(xe,ye,te)

(xe,y£,teMx,y.t)

(xfc.ye.te)€DhS£x[O,T)
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Theorem 2.1. Suppose <f> € C*(D x (0,T)), and that (xo,yo,to) (with tQ < T)

satisfies

V = max(u - *) [(u - *)(xo,y0,t0) = min(u -

If:

i) (xQ.y0) € D, then

(2.10a) - dY«(x0,y0,t()) + H(v«(xo.yo,tQ)) < 0 [* 0]

4 i) (x0«y())
 € Fi' i = 1.2, then

(2.10b) .in {- ^
[max]

:o [* o]
- » - ^ v v J

iii) (xo,yo) = (0,0) then

(2.10c) min {- ̂  + H(v«); - £* + H
[max] v

~ aT* + Ha,2(v*): - aT* + H ^ U ̂  ° ^ °] •



11

Proof. Without loss of generality, we may assume that any maximum or minimum

holds in the strict sense (by simply replacing $ by

•6(x,y,t) = *(x,y,t) ± 6|(x.y,t) - ( V V V ' 2 and Using that

*x = *x'*y = *y9 and *t = *t at (x0'y0it0))- We prOVe ii} f ° F the case °f

maximum and for i = 1. All other cases are proved in a similar way.

From the definition of u there exist (xe,ye,te) € (D U Tj) fl Se x [0,T)

such that

(2.11a) (ue - *)(xe,ye.te) = max[(ue -

(2.11b) «im(xe,y£.t£) = (xo,yo,to)

Owing to (2.11b), we may assume that either (xe,ye) € De or (xe,ye) € r£.

If (xfc,ye) € De then by (2.2a)

(2-12) 0 = - ^

which implies

(2.13) f- ̂ -^(X
e,ye.tfc) + ̂ (x6,ye,*(•,-, te))l
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If (xe,ye) € Tj, then

(2.14) 0 = «im[- ^ u
f c(x e,y e,t e) + H^ A(x

e.ye.ue(-. • , te))]

Then (2.13) and (2.14) give (2.10b). D

The Limiting Equation

We have shown that in a certain sense (which we now make precise) that u

and u satisfy the equation

(2.15) - ^-u + H(vu) = 0 in D x (0,T)

with appropriate boundary conditions. First we give a definition. This a

straightforward generalization of the definitions given in [3], [5]. See also

[15], [21].

Definition 2.1. We say that the upper (lower) semi continuous function u is a

viscosity sub (super) solution to the equation
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(2.16) - J^u + H(vu) = ° (°n D x (°.T))

together with the boundary conditions

(2.17a) - â -u + H(vu) = 0 or - Ĵ -u + Ha .(vu) = 0 (on I\ x (O.T)), i = 1,2

(2.17b) - Ĵ -u + H(vu) = 0, or - J^u + Hg j(vu) = 0. or

- ^ u + H» o(vu) = 0, or - ̂ ru + H (vu) = 0 (on {(0,0)} x (0,T))
Ot O, £ Ot C

(2.17c) u = 0 (on T3 x (0,T))

and with infinite terminal data at time T if for any ^ € C (D x (0,T)) and

point (x.y.t) € D x (0,T) such that (u - •)(x,y,t) = max(min)[u - • ] , we have

(at the point (x,y,t))

(2.18) - Ĵ -* + H(v«) < 0 (> 0) whenever (x.y) € D ,

(2.19a) min [- ̂  + H(v*); - ̂ + H^ .(v*)] < 0 (> 0)min [- ^

whenever (x.y) € T , i = 1,2,
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(2.19b) min f- £* + H(v*); ~ 4 * + H .(v*):
(max) L

whenever (x,y) = (0,0),

(2.19c) u < 0 (u > 0) whenever (x,y) €

and if u(x,y,t) -•+» as t | T, for all (x,y) €

Remark. There is an obvious analog for the equation with finite terminal data.

2.2. u and u, defined by (2.9), are respectiuely sub and super

solutions of (2.16) and (2.17) with infinite terminal data.

Definition 2.2. We say a function u is a viscosity solution of (2.16) and

(2.17) if its u.s.c. and l.s.<?. envelopes

(2.20)

.t) =

(x,y,7)-<x,y, t) (x,y,T)-Kx,y, t)

u*(x,y,t) = «im u(x,y,t), u (x.y.t) = iim u(x,y,t)

are sub and supersolutions, respectively.

It will follow from the results of Sections 2 and 3, together with the

uniqueness results of Section 5, that u and u are both equal to the unique

continuous viscosity solution. In the next section we give an alternative

representation of this solution.
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3. A Second Representation

Let L(w,v), L« .(w.v), and L (w,v) be the Legendre transforms of H(p,q),
0, X C

Ha .(p,q), and H^p.q):

(3.1a) L(w,v) = sup [-wp - vq - H(p,q)]
p.q

(3.2b) L .(w,v) = sup [-wp - vq - H- .(p,q)]
a > 1 p.q dtl

(3.3c) Lc(w,v) = sup [-wp - vq -
p.q

As is well known, the Legendre transform defines a function that is convex

and lower semi continuous in the dual variables (w,v). Moreover, the above

functions can be expressed almost explicitly by using the Legendre transform

h(t) of e S - 1, i.e.

(3.2) h(t){t fc t - t + 1 ; t > 0

+» ; t < 0.

Then, we have the following alternative expressions for L, L~ -, L~
0, X 0,

L .c

(3.3a) L(w.v) =

Xt^l.O) + Pt2(l,-1) + nrt3(0,-l) + at4(-l,0)
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(3.3b) = inf{Xh(tj) + /5h(t2) + Th(t3)

Tt3(0,-l) = (w,

(3.3c) Lg 2(w,v) = inf{Xh(tl) + ah(t4)

(3.3d) Lc(w.y) =

Xtl(l,O) + at4(-1.0)

Xh(w/X) ; v = 0

+00 ; v / 0

Remarks. These expressions may be interpreted as a manifestation of the

"contraction principle" [27] and the fact that our process may be thought of as

being the sum of several independent Poisson processes. Owing to our

assumptions on the jump rates, L(w,v) is finite for all values of (w,v).

However, L_ , and La o are finite only on certain convex cones, and the cones
a,I o,2

themselves depend on which of the jump rates are positive. For example, if

T = 0, and if X and /3 are positive then L_ - is finite only on the (open)

cone generated by (1,0) and (1,-1).

We continue by defining a "cost" that is appropriate for each of the

boundaries I\.r2:

(3.4a)

inf{PL(w,v) + (1 - p)La j(w,v) : p € [0,1] .

p(w.v") + (1 - p)(w.v) = (0,v)} ; w = 0

L(w,v)

+00

; w > 0

: w < 0
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(3.4b) €g 2(w,v) =

inf{pL(w,v) + (1 - p)La 2(w,v) : p € [0,1] ,

p(w.7) + (1 - P)(w,v) = (w,0)} ; v = 0

L(w.v)

+00

; v > 0

; v < 0

Remark. The parameter p appearing in (3.4) has an interesting and natural

large deviations interpretation. In the probabalistic approach to proving lower

large deviation bounds, one typically considers a change of measure such that

under the new measure (which we denote by P ) the process 'centers' on a

given deterministic path ^ (in the sense that x# => $ under P ). One then

obtains a lower bound from the formula (P is the original measure)

JA AW^

where the set A constains a neighborhood of 4>. Under the 'optimal* change of

measure that centers on $ (largest asymptotic lower bound for -e £og P (A))

the dominant term in dPVdl^ is of the form exp - S(x,$)/e, where S is the

functional appearing in (1-3) and (1.4). Now consider our process x#, and a

path ^ that lies on I\ . For simplicity take $(t) = t(0,v). For our process

we may consider a change of measure as being equivalent to changing the jump

rates. Suppose we consider p € [0,1], (w,v) and (w,v) such that

p(w,v) + (1 - p)(w,v) = (0,v). Consider a change of measure (change of jump

rate) that centers the process on (w.v) while in De, and on (w,v) while in T^.

It is easy to prove in this case that under P6" (and as e -* 0) the relative
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proportion of time the process x^ spends in De to the time spent in rf is

p/(l - p). If we separately choose the jump rates to correspond to L(w,v) in

D and L~ *(w,v) in 1\ , then the dominant term under this change of measure

is

exp[-T(pL(w,7) + (1 - p)La>1(w.v))/e] .

It follows that the 'tightest* lower bound (which should also give the form

of the upper bound) is

exp[-T inf{pL(w,7)+(l-p)La j(w.v) : p(w,7)+(l-p)(w,v)=(0,v), p€[O,l]}/e]

This suggests the form of £g - given by (3.4a)

Finally we must define a cost for the corner point (0,0). We set

(3.5)
1(w2.v2)

P,(w..v ) = (0,0) , p 2 0 , Z p = l } ; w = v = 0
il

L(w,v)

ea j(w,v)

ed 2(w,v)

; w > 0, v > 0

; w = 0, v > 0

; w > 0. v = 0

; w < 0 or v < 0
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Then, our candidate for a continuous viscosity solution is

(3.6) u(x.y.t) = inf f [L(f(s))l{f(s)€D} + «c(f(.))l{f(s)=(0,0)}
t l ' x.y.t

2
+ Z £~
i=l '

where 1. is the indicator of the Borel set A, and

(3.7) Ax y t = iS : [t.G] - D : f(t) = (x,y) , ?(9) € ry 6 < T, and

f is absolutely continuous}

Theorem 3.1. The uaiue function defined by (3.6) and (3.7) Is a continuous

viscosity solution to (2.16), (2.17).

Proof. The continuity of u follows from the boundedness of L on compact

sets. Suppose that $ € C (D x [0,T]) and that

(3.9) (u - f K v V V = "̂ t11 " *]

We may assume without loss that the maximum is zero. If (^'Yo*^) ^ D x (0»T),

then the standard proof [21] works. (Alternatively the reader can glean the

proof from the development below.) Next assume that (XQ^YQ^Q) € ri x (°»T)-

Then dynamic programming [10] yields that for any (w,v) € R x R and A > 0,
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(3.10)

u(O,yo,to) = •(O.yo.to) i J [L(w.v)l{w>0} + ̂  ^O.vjl^jjds
*0

wA,y0 + vA.t0 + A)

It follows that (see (3.4a))

(3.11) - A* ( 0,y 0,t 0) - «fll(w.v) - <(w.v).v*(O.yo.to)> < 0o.to)

for (w.v) € R x R and hence

(3.12) -^••(O.yo.to) + sup C-«dtl(w.v) - <(w.v).v*(0.y0.tQ)>] < 0

Using the definition of €g ., we rewrite (3.12) as

(3.13) max<- •£-$ + sup* [-L(w.v) - <(w.v).v*>] ;
L O t w>O,v

f Q 1
supFp - -art - L(w,v) - <(w,v),v$> +(_ ot J

+ (1 - P) | - •§£+ ~ La j(w.v) - <(w,v),v^>] : p € [0.1] ,

p7 + (1 - p)w = 0] j i 0 at (O.yo.to)



21

Now assume that

(3.14) - £ • +Ha.i(v*) > ° at (O'VV

The fact that Hg - is the Legendre transform of Lg j, and continuity

properties of L ., imply there is (w ,v ) with w > 0 such that

(3.15) - §t* + [-La j(w*.v*) - <(w*,v*).v*>] > 0 at (0,yo,t0).

Also, (3.13) gives

(3.16) - §-+ + sup [-L(w.v) - <(w,v),v«>] i 0 at (O,yo>t )
w>O,v

and by taking (w,v) = (w ,v ) in (3.13) we obtain that at (0,y •

(3.17)

- ^-^ + sup[-L(w,v) - <(w.v),v^> : (w,v) = -

p € [0,1], v € R] < 0

Combining yields

(3.18) - ̂ * + sup[-L(w.v) - <(w.v),
w.v

< 0 at (O,yo,to).
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Recall that we have assumed (3.14) in proving (3.18). We have thus proved:

(3.19) min{- £ * + H(v*), - §^+ + H3,l(v*)} * ° at ^^0'^'

Now suppose that for (xfv.yo)
 € I\ we have

(3.20) (u - •MxQ.yQ.tQ) = min[u - *] = 0.

Using dynamic programming arguments (as in the proof of Theorem 2.1 of [25]),

and the form of €g ., we can show that there exist w £ 0, v such that

(3.21) - A* (o,y o,t o) + [-*a>1(w.v) - <(w.v),v*(O,yo.to)>] > 0

If w > 0, iQ 1(w.v) = L(w,v), and obviously - Ĵ -* + H(v<*>) I 0 at (O,yo>to)

Now suppose that w = 0. Then, the definition of £g j yields.

(3.22) sup[p[- ̂  - L(w.v") -

: P € t 0- 1]'

pv + (1 - p)v = v, pw + (1 - p)w = Oj > 0 at (O,yo,to)

Clearly in either case, we obtain

(3.23) max|- ̂ + H(v*), - £* + Hg j(v«)} 2 0 at (O,yo.to)
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Exactly the same arguments work if (XQ»YQ)
 e r

2*
 Finally w e consider the

point (xQ,y0) = (0,0). Assume that the maximum of (u - <f>) is achieved at

(0,0,t~). Dynamic programming arguments give

(3.24) - ^ + sup [-«c(w.v) - <(w,v),v*>] < 0 at (0,0, t Q),

which we rewrite as

(3.25) max/- £-+ + sup [-L(w.v)
^ w>0v>0w>0,v>0

+ sup [-€ (w.v) - <(w,v),v«>] ,
w=0,v>0

- §-* + sup t-e (w.v) - <(w,v),v*>]
Ot w>0,v=0 °'Z

s u p [ p i f at"* " L(wrv i) " <(w
r

v
1)«

P2f o l * -

ST* - La,2*W3'V3>

4 4
2 P^Wj.vp = (0.0). p ^ O , 2 Pi = l j | < 0 at (0,0, tQ)
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We assume at (0.0,tQ)

(3.26) > 0 . i = 1.2

+ Hc(v#) > 0

Then there exist (WJ.VJ), (Wg.Vg), (Wg.Vg), (w^.v.) such that w2 > 0, v3 > 0,

v. > 0, and v. = 0, and further satisfying

(3.27) 0

* x.

}

0

at (0.0.tQ)

Arguing as before the third term in (3.25) gives

(3.28) - & • + [-L(w.v) - 0 at (0,0,tn)

for (w.v) of the form
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for p € [0,1] and v > 0, while the second term in (3.25) gives (3.28) for all

(w,v) of the form

• ?<--

for p € [0,1], w > 0. Combined with the first term in (3.25), this gives

(3.28) for the shaded portion in fig. 3. Region I is the open convex cone

generated by (0,1) and (1,0), region II is the half-open convex cone generated

M M MM

by (1.0) and "(W9>V2^' while region III is generated by (0,1) and ~(wo»vo)-

From the fourth term in (3.25) we obtain (3.28) for the closed cone generated by

M M M M M M
-(w2>v2), -(w-.v-), and -(w4,v4), which contradicts (3.26). Hence, at (0,0,tQ)

(3.29) min{- jfc+ + H(v*), - ̂ + HJv*). min - ̂ + Ha>i(v*)} < 0 .
1 — X , £

The case where a minimum is achieved at (0,0) is handled in a similar

fashion. We have thus proved: u defined by (3.6) and (3.7) is a viscosity

solution of (2.16) and (2.17).

D
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Figure 3
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4. The Uniqueness Theorem

In this section and in the two that follow we prove uniqueness for the

viscosity solutions to the equations (2.16) and (2.17). In particular we will

prove that u. u (c.f. (2.9)) are sub and super viscosity solutions to (2.16),

(2.17). Hence, an immediate consequence of the comparison result (Theorem

4.2)is the uniform convergence of the sequence u to the unique solution of

(2.16), (2.17), which is equal to both u and u.

To simplify the exposition, the problem and notations of the preceding

sections are retained. However, the methods used are applicable to more general

problems, some of which we describe in Section 7. To simplify, we switch from

(x,y), (p,q), etc., notation to (Xj.Xg), (Pj.Pg). e t c- notation.

In order to compare viscosity solutions we require suitable test functions

$ which will force the interior equations (and not the boundary equations) to

hold at maximizing points of ufXj.x^t) - ufr^y^t) - 4>(Xj ~ Yj» * 2 "
 y 2 ^ ' f o r

any two viscosity solutions u, and u. Naturally, the form of the test

functions ^ depends on the boundary conditions. Although the use of such

functions $ in this fashion is now standard ([2], [22], [25]), our

construction of the test functions is quite different from constructions that

exist in the literature.

In this section we assume the existence of such a sequence of test

functions, and relegate the construction to the two following sections.

Assumption A.4.1.

For each 6 > 0, there exist test functions {$ A C C J(R 2), 0 < e < 1,

satisfying
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(4.1)

H(v*
£

-8 , for x. < 0

6 , for 0

i = 1,2, and

(4.2)

f *fc.6(0,0) = 0
1

e f o r
9 9 1/9+ V diam

Theorem 4.1. Let u (resp. u) be an u.s.c. uiscosity subsolutiori (resp. i.s.c.

viscosity supersolution) of (2.16) and (2.17) but with finite terminal data at

t = T. Assume A.k.l, and that ufXj.Xg.T) < ̂ (x-.Xg.T) for ( X j ^ ) € D. Then

u < u on D x [0,T].

Proof. Fix 0 < T < T, and set Q = D x (T,T], X = (x rx 2), y = (y rY 2). For

6 > 0, define U,U by

(4.3)

U(x,t) = u(x,t) - ,(T - T)'
(t - T)

LU(x,t)=u(x,t) + 2 6 i I ^ l £

Observe that to prove the conclusion of the theorem, i t suffices to show that

(4.4) U £ U on Q
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for all 6,T > 0. Let us assume that

(4.5) sup(U - U) > 0
Q

Finally, for 0 < e < 1, and 0 < p < sup(U - U) consider the auxilary function
Q

(4.6) *(x,y,t,s):= U(x,t) - U(y,t) - ^ ( x - y) - ±{t - s) 2 - p

where (x,t),(y,s) € Q and $ x is as in A.4.1. Note that $(x,y,t,s) tends

to -00 uniformly when either t or s approaches T. Therefore, using the

semicontinuity of $ we conclude that $ attains its maximum on Q, say at

(x.y.t.s) € Q. Moreover,

(4.7) *(x,y,t.s) > sup(U - U) - p > 0
Q

Also, we claim that neither (x,t) nor (y,s) belongs to

2 = T3 x [T.T] U D x {T}; the part of the boundary on which the Dirichlet

condition is imposed. Indeed

(4.8) *(x,y,t,s) i u(x,t) - u(y.s) - ^ fi(x - y) - i(t - s)
2 - p

Recall that u £ u on 2, that u and -u are upper semi continuous, and

•e 6(x - y) > 1/e if |x - y| > e. Using the fact that i(7 - s) 2 and
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•e a(x - y) must be bounded independently of e, together with (4.2), we

conclude that |x - y| and |t - s| tend to zero as e approaches zero. Thus, if

(x,t) € 2, then (y.s) is near 2 (for small e) and conversely. Hence, for

small enough e, *(x,y,t,s) < 0 whenever (x,t) € 2 or (y,s) € 2. This

together with (4.7) gives

(4.9) (x,7),(y.7) € 2.

We continue by using the equations (2.16), (2.17). First, observe that the

map

(4.10) (x.t) » u(x.t) - [ 7 2 6 [ T " T ) (t I J)

attains its maximum at (x,t). Since u is a viscosity subsolution of (2.16),

(2.17) and (x,7) € 2, this observation yields that either

,T .2 ,- _ -.
(4.11) 25<1 " T> - 2 ^ S^ + H(v* (x - y)) i 0,

(t - T)Z

or one of the other inequalities appearing in (2.17) holds. But we claim that

in each case the following inequality holds:

(4.12) 6 - 2 ^ S^ + H(v«£ fi(x - y)) ̂ 0 .

Clearly (4.11) implies (4.12). To handle the other cases, we use the assumed
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properties of * fi (c.f. (4.1)), which imply the following (for i = 1,2)

(4.13) x. = 0 =» x. - yt < 0 => H a^(v^ 6(x - y)) > H(v*e g(x - y)) - 6

(4.14) y± = 0 * x. - ̂  < 0 * Ha>.(v*e g(x - 7)) < H(v«e6(x - y)) + 6

It is now straightforward to obtain (4.12) from (4.13) and (2.17). Indeed,

suppose that instead of (4.11) we have

2 2

(4.15) 2 5 ^ ~ T> 2 - 2 ^ I
 S>

for i = 1 or 2. This may happen only if x. = 0. Consequently (4.13) holds,

and (4.13) together with (4.15) gives (4.12). In the case x = (0,0) we use the

identity H = HL - + HL o - H together with (4.13).

Similarly, since u is a viscosity supersolution to (2.16), (2.17), we

obtain

(4.16) -6 - 2 ^ e
 S> + H(v*e6(x - y))

In this argument, we use (4.14) instead of (4.13).

Now, subtract (4.16) from (4.12) to obtain that 26 < 0. By contradiction,

(4.4) is true.

•

To extend this uniqueness result to the case of infinite terminal data we
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adapt the ideas of [12] (see also [6]), and make use of two facts which hold in

our problem*

(4.16) C2:= inf{H(p) : p € R
2} > -«

(4.17) there exists a viscosity solution u of (2.16), (2.17)

which belongs to C(D x (0,T)) and which tends to +»

as t | T, uniformly on compact subsets of D\J\ (c.f.

Theorem 3.1).

We start with a lemma. For the remainder of this section u denotes the

continuous function described in (4.17).

4.1. For x = (x-.x^p € D, u(x,t) - C^t Is a nondecreasing function

of t.

Proof. Fix (xQ,t0) € D x (0,T), and 0 < r < tQ. Choose e > 0 and A < «> so

that

B(xQ.e) = {x : |x - xQ| < e} C D

and

(4.18) u(x.t) £ u(xo,to) + e + A|x - xQ|

whenever (x,t) € aB(xQ,e) x [T,tQ] U B(xQ,e) x {tQ}. Define u by
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u(x,t) = u(xo,tQ) + e + A|x - xQ|
2 - C2(t - tQ)

Then

(4.19) - g^u + H(vu) I 0 in B(xQ,e) x [T,tQ]

and by the comparison principle [5] and (4.18) u < u on B(xQIe) x [T,tQ]. In

particular, u(xQ,t) < u(xo,to) + e + C2(t - tQ), which implies the conclusion of

the lemma.

D

Theorem 4.2. Let u (resp. u) be an u.s.c. uiscoslty subsoiution (resp. £.s.c.

uiscoslty supersolutton) of (2.16), (2.17). Assume A.4.1. Then u < u on

D x (0,T).

Proof. We prove that u < u and u < u on D x (0,T), where u a continuous

viscosity solution to (2.16), (2.17). First note that by the definition of a

viscosity solution with infinite terminal data and by Lemma 4.1, u(x,t) tends to

+» as t | T, uniformly on compact subsets of D\I\. Hence, for each e > 0,

there is 0 < 6Q < e such that for any x € D and 0 < 6 < 6Q

(4.20) u(x,T - e) - e < u(x,T - 6)

By Theorem 4.1, for any x € D, e < t < T, and 0 < 6 < 6Q

(4.21) u(x,t - e) - e < u(x,t - 6)
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Letting 6 go to zero, and replacing t - e by t we obtain

(4.22) Jj(x.t) < u(x,t + e) + e

for any x € D, and 0 < t £ T - e. Letting e go to zero

(4.23) u(x,t) < u(x,t)

for (x,t) € D x (0,T). A very similar argument (again exploiting the continuity

of u) gives u < u on D x (0,T).

D
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5. Construction of the test functions

In this section we show how to construct {4> A satisfying A.4.1 for the

case where all of A,/3,*r,a, and \i are strictly positive. Cases where one (or

more) of these is zero are considered in the next section.

The basis of the construction is an interesting use of the Legendre

transform. Define

Ha,i = H " Ha,i

for i = 1,2. For now we look for a function •(•) which satisfies only (4.1)

with 6 = 0 . Define (for i = 1.2)

^ = {(Prp2) : l£ .(prp2) > 0}

(5.1)

(Refer to Fig. 4)
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Hc <0(C7)

Figure 4

Then to satisfy (4.1) with 6 = 0 , we require

(5.2) € C^resp. C^) whenever 0 (resp. Xj i 0). i = 1,2.

Assume that it is possible to find a strictly convex, finite valued function

R(Pj,P2) such that R(0.0) = 0, (0,0) € dR(O,O), (where d denotes the set of

subdifferentials of a convex function [24]), and
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(5.3) ^-R(P rP 2) * ° (
resP- * °) if (Pi-P2> € ci (resp-

(I.e. vR partitions the (p-,p2)-plane in the same way as (H° ^.Ug 2).) Define

(5.4) ^(Xj.x^ = sup
P rP 2

(this differs slightly from our previous definition of the Legendre transform).

By conjugate duality [24]

(55) (PrP2) € 3<Kxrx2) +-* (x rx2) € 3R(prp2)

Let (Pj.P2)
 e S^(xlfx2). By (5.3) and (5.5), Xj I 0 (resp. Xj < 0) if and only

if (P1.P2) € C- (resp. C.). A similar result holds regarding x^. Since

R(0,0) = 0 we obtain <t> > 0, and (0,0) € 3R(0,0) implies *(0,0) = R(0,0) = 0.

In particular, if + is dif ferentiable it satisfies (4.1) with 6 = 0.

Moreover, the differentiability of • follows from the uniform convexity of R.

More precisely, suppose that R satisfies the following

(5.6) «im inf{R(p) : |p| = s}/s =
SHC0

(5.7) for every L > 0 there is e = e(L) > 0 such that

R(p) - e|p| is a convex function of p, on |p| < L.

In other words, R is uniformly convex on bounded

o
subsets of R .
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Then. * € CX(R2). [24].

We continue by constructing R having the properties (5.3), (5.6), and

(5.7). To obtain (5.3), we look for r-fp), r2(p) > 0 such that

(5.8) . 1 = 1.2 . p € R^.

A necessary and sufficient condition that (5.8) hold for some R € CT(R ) is

(5.9) "a?1
(r2Ha,2) = ^

In the present case it is relatively simple to guess a form for r.. and r_ so

that (5.9) holds. By taking

and

,po) = A exp(ap1 + bpo)

,P2) = B exp(cpx

we obtain as sufficient conditions for (5.9)

(5.10)

A/B = /3/fi

c = j3a/q , b =

a = c - 1 = -(-ret

d ss b - 1 = - ( T O + /3a)/q

q = TCX + prr + /5a.
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Integrating, and choosing the constants of integration in such a way that

R(0,0) = 0, (0,0) = vR(0,0), we obtain

(5.11) R(PrP2) = q[(M/a[exp(a/3Pl - a(/3

[exp(a/3p1

(p/ir)[exp(-Oi

This function, in addition to (5.3), satisfies (5.7) and (5.8). Hence, its

Legendre transform $ satisfies (4.1) with 6 = 0. Finally, we obtain the

sequence {$ Q} by appropriately rescaling $.

5.1. Let ^ be the Legendre transform of the function R giuen by

(5.11). Assume A,a,/3,̂ t,T > 0. Then., there is a function p(e) > 0 such that

the sequence

•e(x) = p(e)*(x/p(e))

satisfies (4.1) with 6 = 0 , and (4.2).

Proof. Since v^(x) = ^(-j|y), clearly ^ satisfies (4.1) with 6 = 0, for

any choice of p(e) > 0. The finiteness of R implies the existence of G(L)

such that
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R(p) < ie(L)|p|2 whenever |p| < L

which in turn gives

I I 2

(5.12) «(x) * ^ L - whenever |x| $ LG(L)

Set

(5.13) L = 2 D i a m D - ' - fe3
Je " 3 ' K V t ; " 26(L

We now calculate directly that

• 2 I ,2l |xf
2p(e)G(Le) " e 3

whenever |x| < L 8(L )p(e) = Diam D. Hence, ^ satisfies (4.2).
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6. Construction of the test functions: continued

In this section we remove the restriction that all \9(397tat and JJ. must

be strictly positive. It turns out it is not interesting to consider jit = 0 or

X = 0, since for these cases the problem becomes trivial. In order to fix the

ideas and exhibit the method in a simple way, we consider only the case /5 = 0.

The other cases may be handled in a similar fashion.

The results of Sections 2-4 remain valid in this case, except that we can

not construct test functions satisfying (4.1) with 6 = 0, as we did in

Section 5. Indeed, if we consider R defined by (5.11) and take j3 = 0, we

obtain

(6.1) R(p rp 2) = q|^M/a)[exp(-aTp2/q) - 1] + exp(-jrrp2/q) - lj

where q = nra + JLIT, and this function is not uniformly convex and does not

satisfy (5.7). Hence we take a different tack, which requires an approximation

argument.

Let R(P,p1,p2) be given by (5.11), where we make the dependence on /3 > 0

explicit. Define

(6.2) RO.Lj.L^Pj.Pg) = R(P,PrP2)

where
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(6.3)
0 if |Pl| < Lj and |p2| < L 2

+• otherwise

Then R(/3,L.. ,L2; •, •) is uniformly convex, and finite in a neighborhood of the

origin, if p.Lj.Lg > 0. We then define f(P.L,.L2;x Xg) to be the Legendre

transform of RO.Lj.Lg: *.*) (c.f. (5.4)).

Lemma 6.1. Assume that X.-r.a.u > 0, and 0 = 0. Then, there exist functions

L1(£),L2(e),p(e), and /3(e,6) such that the family of functions

(6.4)

satisfies (4.1) and (4.2).

Proof. Pick L,.L2 > 2 diam D, so that the following is satisfied for every

/5,e € (0.1].

(6.5)

35 .^.P2) € C for

(ii) ^-RO.- 4

( 1 V ) ^

p • for

. for |

p • for 4
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Here. Cr fi are as in (5.1), where we make the dependence on /3 > 0 explicit.

The existence of such L.. and L« follow from elementary geometric

considerations (refer to Fig. 4).

Set

(6.6) L^e) = -± , i = 1,2
e.

(6.7) L. = (Lx A L2)/e
3 0(e.6) = 6 exp(-Lfc)

As in Lemma 5.1, there is 8(L ) such that

(6.8) R(P(e.6),p) < |e(Lfc)|p|

for all e,6 € (0,1]. Finally, set

(6.9) P(e) = fc

By using (6.8), we directly calculate that

I l2
•(P(e.6).L1(e).L2(e);x) }
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Hence

whenever

2p(e)e(L£) " 2,

(L. A L9)
|x| i L£e(Le)p(e) = 2

 Z .

Since L. A L > diam D. (4.2) is satisfied by * -.

We continue by verifying (4.1). By conjugate duality [24], a version of

(5.5) still holds even if R is not finite valued. In our particular example,

we have

(6.13) p = v ^ 6 ( x ) «*x = vR(P(e,6),p) if |p. | < L.(e)

Hence, whenever

(6.14) |^-* e 6(x)| <Li(e) , for j = 1,2
J

c
the construction of R(/3,») yields that (making the dependence of H^ . on /3

explicit)

(6.15) Ha,i,p(v*e,6(x)) * ° (resp- ^ 0)- if Xi

Then, in the case when (6.14) holds, one proves (4.1) after observing that

(6.16) H a i
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and

(6.17) Ha.2,o(p) = Ha.2,p(p> -

We therefore obtain (4.1) by using (6.7). Since by construction

|TT— • ^(x) | < L.(e), to complete the proof we have to consider the boundary

cases.

First, suppose that Xj > 0 and ^ - * e 6M = Ljt^)- Then, (6.5) (i)

together with (6.16) yields the desired result. Next, suppose that x1 > 0,

3 — $ ^(x) = Lo(e), and ^—4> x(x) < Lt(e). In this case, definition of
O X Q fc, O £ OX.. £., O 1

^ ^ implies that

Xl =

Hence, the construction of R(p,#) together with (6.16) yields the result.

All the other cases can be proved similarly.

D
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7. Extensions and Comments

7.1. Extensions.

The techniques and ideas used in the analysis of our particular queueing

model are in fact applicable to analogous problems for a very broad class of

queue models, some of which will appear elsewhere. We will content ourselves in

this subsection with describing only those extensions of the model and problem

considered so far for which the proofs involved are very close to those of

sections 2-6.

7.1.1. Different Escape Sets.

2

Let G be any bounded open set in R whose boundary is smooth. Then in

place of D we can use G fl {(x-.x^) • X- > 0,x~ £ 0}. We can consider

unbounded G as well if Lemma 2.1 continues to hold. Thus we can take

D = {(Xj.Xp) : x- > 0,0 < Xp < M}, which allows one to estimate the probability

that queue 2 exceeds M/e by time T/e.

7.1.2. Higher Dimensions.

We can consider a system of n interconnected queues. Label the queues 1

through n, and let S = {1 n}. Let X denote the number of customers

in the 1th queue, and X = (X* X n). Define
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X. . = jump intensity from queue i to queue j,
11J

A. Q ss jump intensity from queue i to outside the system

Xn = intensity of arrivals at j from outside the system,

e. , = (0.0 -1,0 1,0 ...)

'3 T t
.th .th

e n = (0,0 -1,0, ...,)
1,0 T

.th

for every point x € {(x-, . . . x ) € R n : x . 2 0 , i € S } = D define

I(x) = {i € S : x. = 0 } . For a subset s of S, we define the Hamiltonian

H(s,p) by

(7.1) H(s,p) =2 2 X. .[exp<p.e.
i€S\s j€S 'J l

and its dual

(7.2) L(s.v) = sup[<v.p> - H(s,p)] .
P

Finally, we define a 'cost' for each x € D. Let J(x,v) = {i € I(x) : v± = 0}
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and let I(x) and J(x,v) be the set of subsets of I(x) and J(x,v),

respectively. Then

(7.3) «(x.v) = inf{ PsL(x,vs) :

s€J(x.v)

Ps Vs =
s€J(x,v)

A

s€J(x,v)

2

s€J(x,v)

Let G be an open set in (R ) with smooth boundary, and define 5G' to

be the closure of {x € dG : I(x) = 0} (here 0 denotes the empty set). We

assume that the origin is interior to the convex hull spanned by {X. ,e. . ,(i,j)
i i J i» J

o
€ {0,1, .... n} }. This implies L(0,v) is finite for all values of v, and

that the function defined by (7.4) below is continuous. This assumption does

not imply a loss of generality. When it is violated, it implies that the

behavior of the system is in fact trivial or decoupled.

Under these assumptions we have the following theorem, where x = eX ,

gives the scaled queue system.

Theorem 7.1. Consider the following equation, interpreted in the viscosity

sense:

(7.4)

- Ĵ -u + H(0,vu) = 0, (x.t) € G x (0,T)

- T—U + H(s,vu) = 0 for some s € T(x),(x,t) € dG\3G' x (0,T)

u = 0 ,

u -• +» as t -• T

(x.t) € dG' x (0,T)

x € G\3G' .
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Then the following results are true.

(1) The equation (7.4) has a unique solution u in C(G x [0,T))<

(2) We have

(7.5) «im - e «og P{x^ C G for some r € [t,T] | x^ = x} = u(x,t)

with the convergence uniform in compact subsets of G\9G' x [0,T).

j;

(3) We haue

(7.6) u(x,t) = inf

where

K * - <f : C^.63 -»Rn : f(t) = x,f(6) € 3G', 6 ^ T. and f is absolutely

continuous}

Remark. The inf used to define «(x,v) through (7.3) may be simplified. In

fact, it is sufficient to sum over only those subsets of J(x,v) having only

zero or one element.
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7.1.3. Containment Probabilities.

Another class of probabilities that may be estimated via viscosity solution

techniques are containment probabilities. Let G be open (in (K )n) with nice

boundary. In this case we are interested in the asymptotics of

(7.7) ue(x,t) = -e log P .{Xe € G for all t < T < T}.

The associated PDE (to be interpreted in the viscosity sense) for this case is

(using the system and notation of the previous subsection)

- ^ + H(0,vu) = 0 (x.t) € G x (0,T)

- |^ + H(s,vu) = 0 for some s € T(x),(x,t) € 3G\9G' x (0,T)

u = 0 (x,t) € G x {T}

The PDE approach for calculating asymptotics for these types of

probabilities was first considered in [8]. The form of the associated

variational representation for the limiting value of u (x,t) in this case is

given by (7.6), except we now replace A by
x, x.

Av . = {f : [t,T] -»Kn : f(t) = x. £(T) € G for T € [t.T], and f is

absolutely continuous}

A theorem analogous to Theorem 7.1 holds. The proof uses the same test
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functions as those used in the case of escape probabilities. We omit the proof,

and instead refer the reader to [25]. This work treats the comparison result

for the same type of problem, but with an euqation that does not require such

complicated test functions. The proofs that u and u (defined by (2.9)) are

respectively sub and super solutions, and that (7.6) (with A replaced by
x, I.

A ) defines a solution, are essentially the same as those for escape
x, t

probabi1i ties.

7.2. OQ the Relationship of the Results to a Large Deviation Principle.

As mentioned in the introduction, the results presented in this paper

concerning the limiting behavior of certain classes of probabilities are all

special cases of the results that would be available if the process x#

satisfied a large deviation principle. It is an interesting fact that in a

certain sense the converse is also true. To be more specific, it is possible to

prove that if for a given process it can be shown that the normalized £ogs of

the escape and containment probabilities (given by (7.5) and (7.7) respectively)

have the representation (7.6) (with the inf over A and A
x., t x., v-

respectively), then under some regularity conditions on the form of the

function B appearing in (7.6), the measures induced by the process x#

satisfy a large deviation principle in the sense of [14; Sect. 3.3]. The rate

function is given by
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I 2(£.f)ds • £ is absolutely continuous, f(0) = x

S(x,f) = °
-H» , otherwise

Actually a slightly more general form of the results with regard to

containment probabilities is needed, in which we replace x by x ' = x + f,

00

where f is a C deterministic function. However, the same techniques that

apply for the case f = 0 easily adapt to this case as well.

We do not give a detailed proof of this assertion, since such a proof in a

general setting will appear elsewhere. Nonetheless it is worth mentioning the

basic steps involved. We first note that under compactness of the 'level sets'

*(x,r) = {* : S(x,*) < r}

the estimates (1.3), (1.4) follow if we can prove:

(1) given * € C([0,T] ; Rn) such that *(0) = x. and 6 > 0,

(7.8) £im e «og P { sup |xe(t) - *(t)| i 6}
e x 0<t<T

(2) given s < », and 6 > 0

(7.9) HSTe «og P { inf sup |xe(t) - *(t)| 2 6} < -r
e X *€*(x,r) 0<t<T
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Obtaining (7.9) is easily accomplished by using the 'escape' estimates. To

obtain (7.8), it must first be shown that it is sufficient to consider only <f>

00

that are piecewise C . This requires regularity conditions on £(•,•), which

turn out to be trivially satisfied for the functionals considered in this paper.

We then can obtain (7.8) by using the 'containment' estimates and the Markov

property.
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Appendix: A weaker forailation

In this section we present a weaker formulation of the PDE given in

Definition 2.1, in order to relate our definition to more standard ways of

describing boundary conditions.

First note that (2.19) implies

(A.I) min [- ^ + H(v«) ; -H(v*) + Kg j(v*)] $ 0 (resp. ^ 0)

and

if (x,y) er. , i = 1,2

(A.2) min [- ^
(max)

-H(v«) + Ha 2(v«) ; 0 (resp. > 0)

if (x,y) = (0,0).

Dropping the fourth term in (A.2) (the H term) leads to a statement that is
c

equivalent to letting that term remain. This follows from the equality

(A.3) -H + Hc = (-H + + (-H + Hg 2 ) .
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Thus, (A.2) holds if and only if (A.4) below holds.

(A.4) min f- j^+ + H(v*) ; -H(v*) + Hg ^ v * ) . i = 1,2] < 0 (resp. > 0)
(max) "•

if (x.y) = (0,0)

Note that (A.I) and (A.4) do not imply (2.19a) and (2.19b). In this weaker form

the PDE has nonlinear boundary conditions (interpreted in the viscosity sense).

Although this formulation is familiar, it is inferior to that given by (2.18)

and (2.19). This latter definition is more useful in many ways, such as in

proving uniqueness of the solution and in proving that the value function of the

associated control problem is a viscosity solution (see Sections 3, 4).

The correct interpretation of our original formulation ((2.18), (2.19))

requires that we view (2.19a) and (2.19b) not as boundary conditions, but rather

as the correct equations that would be associated to this part of the domain if

we interpret the problem as one involving a discontinuous Hamiltonian, i.e. the

correct Hamiltonians for the regions {(x.y) : x > 0, y > 0}, {(x.y) : x < 0,

y > 0}, {(x,y) : x > 0, y < 0}, {(x,y) : x < 0, y < 0} are H(-) Ugx(-).

Ho o^*)* ^ (#) respectively. Taking the upper semi continuous and lower

semi continuous envelopes of this discontinuous Hamiltonian yields the system

(2.18), (2.19). Obviously the techniques we have developed are equally well

suited to the treatment of analogous problems where the discontinuities of

Hamiltonian appear in the interior of the domain of interest G.

Now consider the special case /3 = 0. In this case, we have
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(A.5) -H(v*) + H- o(v*) = yle^'
uy'v - 1] = 0

or

^-0 -s 0

as the boundary condition on T~- Moreover, it is easy to show that 2g 2(w,0)

defined by (3.4b) has the following form.

(A.6) €g 2(w,0) = inf[L(w,v) : v < 0]

This expression agrees with the form of the integrand obtained in previous

work of P.-L. Lions [22], where the Kami It on-Jacob i equations with Neumann type

boundary conditions were studied.
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