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Abstract

A method for the explicit computation of the Lyapunov exponents of

certain Markov processes is developed. Its utility is demonstrated by an

application to two-dimensional random evolution differential equations.

Our approach exploits the relation between the Lyapunov exponent and the

p-moment Lyapunov exponents, as was first observed and studied by

Arnold [1]. The p-moment Lyapunov exponent is characterized by the domain

in which the Laplace transform of t -*E|x(t)|P is finite.

We apply our results to the random harmonic oscillator and derive an

explicit expression for the Lyapunov exponent. In a simple case it is

computed by quadratures.
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Explicit expressions for the Lyapunov exponents

of certain stochastic processes

1. Introduction. The asymptotic behavior of a system which is described

by a differential equation can be characterized, to a large extent, by its

Lyapunov exponent and its p-moment Lyapunov exponents. It is hence

obviously desirable to be able to compute these numbers explicitly. As

mentioned by Wihstutz in his survey paper [20] there are not many results

in this direction. In fact all the explicit expressions refer to

two-dimensional systems, in particular to the random harmonic oscillator.

Moreover, the framework in these results is such that the system depends on

some small parameter e and one computes the asymptotic behavior of the

Lyapunov exponent in the limit where e -* 0. (See Arnold, Papanicolaou and

Wihstutz [5], Pinsky [17], Pardoux and Wihstutz [15] and Kleimann [12].)

The object of this work is to study the Lyapunov exponents of a class

of Markov processes and their relationship with the p-moment Lyapunov

exponents. As a byproduct of this study we derive explicit formulas for

the Lyapunov exponents of certain two dimensional processes. Part of the

discussion holds in quite a general context. We will, however, demonstrate

our method by applying it to a certain type of two-dimensional random

evolution differential equation. This class of equations contains the

random harmonic oscillator.

Let t -» x(t;x~) be a Markov process which satisfies

P(X(0;XQ) = X Q ) = 1. The real number X is the Lyapunov exponenet of x

if almost surely (a.s.)



«imi«og|x(t;x0)| = X

for almost every initial value xn.

Another quantity which is of interest for us is the p-moment Lyapunov

exponent g(p;xQ), which is given whenever it is defined for a real number

p by the expression

(1.1) g(P;x0) = «im f «og E|x(t;x ) |
P .

t*>

The relation between the Lyapunov exponent and the p-moment Lyapunov

exponents g(p;xQ) was first observed and studied by Arnold (see Arnold [1]

and Arnold, Oeljeklaus and Pardoux [4]). In [1] Arnold considered the

linear differential euqation x(t) = A(f )x(t), where f is a nice

ergodic process on a smooth manifold. He showed that g(p;x0) does not

depend on x~, that the limit in (1.1) exists for every real p, that

P -* g(p) i s a convex function, g(0) = 0 and g(p)/p is nondecreas ing.

Moreover g(#) is differentiable at p = 0 and

(1.2) X = g ' ( O ) .

We will show that these properties hold for a general class of Markov

processes.

In order to use (1-2) to compute X we need to know the asymptotic



behavior of E|x(t)| as t -> » for small values of |p|. Our method is

thus to study a differential equation which is satisfied by the function

(1.3) <Kt,xQ) =E|x(t,x o)|
P.

This method was used in [13] to obtain bounds and estimates for the

Lyapunov exponenet X.

A large portion of the recent work about Lyapunov exponents of

solutions of differential equations was concerned with linear differential

equations of various types. We mention just a few studies out of the vast

literature on the subject. In the context of white driving noise we

mention the works of Has'minskii [10], [11], Pinsky [15] and Arnold,

Oeljeklaus and Pardoux [4]. In the context of real driving noise we

mention the work of Arnold [1], Arnold, Kleimann and Oeljeklaus [3], Arnold

and Kleimann [2], Crauel [8] and Kleimann [12]. In the context of driving

noise processes of jump type we mention the work of Arnold, Papanicolaou

and Wihstutz [15], Blankenship and Loparo [7], Pinsky [17] and Blakenship

and Li [6].

We will consider the class of homogeneous differential equations,

which contains the class of linear differential equations. Namely, we will

consider equations of the form

x(t) = f(x,G>)

where f has the property f(sx,«) = sf(x,w) for every scalar s > 0,



every x and every G>. It will then follow that the functions

(t,x) -* <p(t,x) in (1.3) satisfy a differential equation with a certain

homogeneity property. This will serve to reduce the number of independent

variables. In the case of two dimensional systems this leads to a study of

an ordinary differential equation which yields the explicit expression

for X.

The paper is organized as follows. In section 2 we introduce a

definition of the exponents g(p) which is different from the one given in

(1.1) and which may be applied for a large class of Markov proceses. The

two definitions coincide whenever the limit in (1.1) exists. We will

derive some properties of the function p -• g(p), in particular we will

show that it is convex and satisfies a version of the relation (1.2). This

last is derived in section 3.

In section 4 we will consider solutions of random evolution

homogeneous differential equations. We will derive systems of partial

differential equations which are satisfied by the functions (t,x) -» <p(t,x)

in (1.3) and by their Laplace transforms (s,x) -»>//(s,x). A key fact in our

method is that >//(s,x) is finite for s > g(p) and diverge as s 4 g(p).

In this section we will show how the homogeneity enables to reduce by one

the number of independent variables. In section 5 we consider

two-dimensional homogeneous differential equations. In this case the study

is reduced to that of an ordinary (deterministic) differential equation

with periodic coefficients. We proceed to study the nonsingular case,

where the coefficients of the first derivatives never vanish. It then

follows that p -» g(p) is differentiable at p = 0 and the Lyapunov

exponent satisfies (1.2). We use this to derive an explicit expression



for the Lyapunov exponent in terms of the fundamental solution of the above

mentioned ordinary differential equation with periodic coefficients.

In section 6 we verify that the random harmonic oscillator (with

sufficiently small driving noise coefficients) is described by a

nonsingular system. In cases where the perturbing noise depends on a small

parameter e we show how one can obtain the asymptotic expansion of the

Lyapunov exponent in powers of e by quadratures. We also use quadratures

to compute the Lyapunov exponent in the special case where the driving

Markov chain has two states.

2. The p-moment Lyapunov exponent.

We consider a Markov process t -* x(t,cj) in the state space

D n

X = U X. where' D > 1 is an integer and each X. is a copy of R
i=l 1 X

such that X. n X. = {0} whenever i ^ j. Thus X is a finite dimensional

cone. We denote by |x| the norm of x as an element of R .

The underlying probability space is (Q.^.P) and we assume that

t -» x(t) is a space homogeneous process in the sense that

(2.1) P (x(t) €aA) = P (x(t) € A)
axQ x Q

for every x Q € X, a > 0, t > 0 and a Borel set A C X.

Remark 2.1. The homogeneity assumption (2.1) is not necessary for most of

the discussion in this section (though it simplifies some of the



notations). We assume it, however, since the development in the subsequent

sections is concerned only with homogeneous processes.

We are interested in the growth properties of |x(t) | as t -» », thus

we consider, for fixed real s and p, the following random variable

(2.2) Y (s) = fe-st|x(t)|pdt.
o

It follows from the positivity of the integrand in (2.2) that the random

variable Y(s) is well defined (the value +«> not excluded). We assume

the following.

Assumption A. There is an s~ such that Y (s^) is a.s. finite and in

L (0). There is an s- such that Y (s-) is not in L (Q).
1 p 1

Clearly if s Q is as in Assumption A then Y(s) is a.s. finite for

every s > s~.

Example 2.2. We consider a random evolution linear differential equation

(2.3) > = A. y(t) . y(0) = y Q

where •{j } ^^ is a Markov process with a finite state space {1,..., D } ,

y(t) € Rn, for t > 0 and some integer n > 1, and A. is an n x n

matrix for 1 < i < v. We thus consider the Markov process



(2.4) x(t) = (y(t),jt) , t > 0

V

with the state space X = U X., each X. being a copy of R . It

follows from (2.3) that there is a constant c > 0 such that

e~Ct|y0| < |y(t)| < eCt|yol
 f o r every yQ,<i) and t > 0. Thus Assumption A

holds with s^ > |p|c and s1 < -|p|c.

Example 2.3. Generalizing the situation in Example 2.2 we consider the

random evolution homogeneous system

(2.5) y(t) = f (y(t)) . y(0) = y.
Jt

where {Jt}tvQ is a Markov process with a finite state space {1, D } ,

y(t) € Rn for some integer n and all t > 0, and f. : Rn -» Rn is a

homogeneous Lipschitz continuous function for 1 < i < D. We consider the

Markov process t -* x(t) in (2.4) and it follows from the relation

dt

which is valid whenever y(t) ̂  0, that there is a constant c > 0 such

that

e |yol i |y(t)| < e
ct|y0|
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for every y Q £ O,<o and t > 0. Thus Assumption A holds with the choice

sQ > |p|c and s- <

It follows from Assumption A that

inf{s : EYp(s)

is finite. It may, however, depend on the initial condition yn, and we

want to exclude this possibility. We thus consider the projected process

e(t) =x(t)/|x(t)|

which is a stochastic process in the state space

v
S = U S.

where S. is a copy of the unit sphere in R . The process t -» 6(t) is

well defined provided that a.s. x(t) ? 0 for all t > 0. Then it follows

that t -» 8(t) is a Markov process on S with the transition probability

function

Q (t,B) = P (t,A)
S0 X0

where P (t,A) is the transition probability function of the process
X0

t -* x(t), the set A is given by A = U aB and x Q = j3s0 for some
a>0



P > 0 (we employ the notation /3(yQ,i) = (PyQ,i) for /? > 0 and

(y,i) € X). It follows from (2.1) that the definition of Qg in (2.5)

does not depend on the choice of /5 for xQ. We want t -» G(t) to have an

irreducibility property so that the following Assumption holds:

Assumption B. The process t -» x(t) is such that a.s. x(t) ? 0 for all

t > 0 whenever x(0) ? 0 a.s. Moreover, the Markov process t -» 6(t) on

S is such that for every sQ € S

(2.6) Q (G(t) € B) > 0 for some t > 0
S0

whenever B C S is a Borel set with positive Lebesgue measure.

Definition 2.5. Let t ->x(t) be a space homogeneous Markov process

satisfying Assumptions A and B. Then we call x(#) a homogeneous

irreducible process.

Remark 2.6. It is not hard to give conditions which imply the validity of

Assumption B. We will do this for the special cases considered in the

subsequent sections.

The following result asserts that the values s for which Y (s) in

(2.2) is integrable are essentially independent of the initial value x~.

Proposition 2.7. Let t -»x(t) be a homogeneous irreducible process with

the initial value xQ and let Y (s) be the corresponding random variable
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defined in (2.2). Then there is a number g(p) such that for almost every

x in X we have Y (s) € L*(Q) if s > g(p) and Y (s) € L^fi) if

s < g(p)« (The exceptional set of values in X may depend on p.)

Proof: For every p and a nonzero x Q € X (namely x~ of the form (y~,i)

for some y 0 £ 0) we define

g(p;x0) = inf{s € R
1 : EYp(s) < «>}.

It follows from Assumption A that for every fixed p the mapping

x Q -* g(p;xQ) is a bounded measurable function from S into R . We notice

that the homogeneity of t -» x(t) implies that for every nonzero x Q

= g ( P ;

Thus our goal is to show that the mapping x^ -» g(p;x^) is essentially

constant on S (namely has the same value except, possibly, on a set of

zero Lebesgue measure).

Assume that x Q € S and B C S are such that B has positive

Lebesgue measure. It follows from the irredicibility property that for

some t^ > 0

(2.7) Q (6(tn) € B) > 0.
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Then

E I e St|x (t;x0)|
Pdt = E[E J" e St |x(t;X()) |

Pdt |x(to;X())] >
0 J0

-stn ,» -s(t-tn)n f> -s(t-tn)

°E[E J e U |x(t;x0)|
Pdt|x(to;e

-st
= e

0 [ E\f e St|x(t;y)|Pdt]p (x(t ) € dy) >
Jx U o J X O

2 e S t° [ Elf e St|x(t;y)|Pdt]p (x(t ) € dy)

where A = U a B (and B is as in (2.7)). If s is such that s <
a>0

g(p:y) for every y € B then E e |x(t;y)|Pdt = » for every y € A.
J0

Since (2.7) implies that P (x(tn) € A) > 0 it follows that whenever
x0 U

s < g(p;y) for every y € B then E e"St |x(t,xo) |
Pdt = «, namely

s < g(p;x^). Since x^ in this argument is arbitrary nonzero element of

X, it folows that there is a null set N C X and a number g(p) such that

g(p:y) = g(p) for every p € X\N , and g(p;y) > g(p) for every g € N .

This concludes the proof of the Proposition.

D

Remark 2.8. For certain linear systems we may have the simplification that

the value g(p) is common to all the nonzero x^t without an exceptional
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null set (see Arnold [1]-) Also in the two-dimensional applications

studied in the following sections the g(p;xQ) are independent of x Q

in S.

We consider the function

g : X\{0} -» R1

whose existence is guaranteed in Proposition 2.7 and establish the

following property:

Theorem 2.9. The function p -» g(p) is convex. Moreover, if Q is

defined by

(2.8) Q = {(p.s) € R 2 : s > g(p)}

then Q is a convex set and the function

(p,s) ->«og E j e St|x(t;x0)|
Pdt

is convex.

2
Proof: We will show that Q is a convex subset of R , from which the

convexity of g(*) follows. Let Sj > g(Pj), s^ > g(P2)

p = ap- + (1 - a)p2, s = as1 + (1 -
 a) so * o r s o m e 0 < a < 1. It then
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follows (as we prove below) that

(2.9) E f e"St|x(t;x )|Pdt < »

for almost every xQ € S, hence by Proposition 2.8, s > g(p). This being

true for every s- > g(Pj) and s2 > g(p2)
 in Q proves the convexity

of Q.

We prove now (2.9). With the above notations we have

-[as1+(l-a)s9]t ap +(l-a)po
Yp(s) = | e

 X 2 |x(t;xn)|
 1 2dt =

£ ~s^1 Pi « ~sot
[e l |x(t;xo)| ^ [ e

 2 |x(t;

*> -s-t p, narr*9 -sot p_ -j
e |x(t;xo)| MtJ [J e

 2 |x(t;xo)|
 2dtj

where we used the Holder inequality. Another application of Holder

inequality yields

E Yp(s) < E[Yp (Sl)]
a[Yp (sg)]

1 " ̂  [E Yp (s^fCE Yp (s^]
1 a

1 2* 1 2t
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which prove (2.9). Computing the logarithm of both sides of the inequality

E Tp(.) i [E T (.,)]»[£ T (^)]»-

we conclude that (p,s) -• £og E Y (s) is a convex function, which concludes

the proof of the Theorem.

D

3. On the realtion between X and g(p).

For a homogeneous irreducible process t -» x(t) we define the Lyapunov

exponents X+(
xn) ky

(3.1) X_(x ) = £im inf ~ *og|x(t;x )|, X (x ) = Urn sup |eOg|x(t;x ) |.
tH» t"*»

Remark 3.1. If t -* x(t;x~) is the solution of a linear system of

differential equations then one may apply Oseledec's Theorem (see

Raghunathan [17]) or the Furstenberg and Kesten Theory concerning products

of random matrices ([9]) to deduce additional information on X (xQ). E.g.

the iim inf in (3.1) might be replaced by iim, X might be nonrandom and

of the same value for all nonzero x^. In our context of homogeneous

irreducible processes we will establish upper and lower bounds which are

essentially nonrandom and independent of x^. In case that g'(0) exists

these bounds coincide and we have X_(xQ) < g'(0) < X+(xQ). Other tools,

e.g. the ergodic theorem or the above mentioned theorems of Oseledec and
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Furstenberg and Kesten may be used to show that in (3.1) the £im inf and

the £im sup are in fact limits and then the value of the Lyapunov exponent

is g'(0). We will do this for a class of two dimensional homogeneous

equations by using the Ergodic Theorem.

It follows from Theorem 2.9 that the left and right derivatives of

P -* g(p) exist at p = 0 and we denote

(3.2) k = «im £U^, k_ =
pnO P

p>0 p<0
PHO P

Theorem 3.2. Let t -* x(t;xQ) be a homogeneous irreducible process with

the initial value xQ. Let \ ( x Q ) be defined by (3.1) and k + be as in

(3.2). We then have that a.s.

(3.3) XJxQ) < k+ , k_ < X+(xQ)

for almost every x Q € X. In particular, if p -• g(p) is differentiable at

p = 0 then a.s.

X+(xQ)

for almost every x Q € X. If it is known that the limit in (3.1) exists

then a.s.

X(xQ) = g'(0) for almost every xQ.
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Remark 3.3. In the situation considered in section 5 the equality

A_(XQ) = A+(xQ) a.s. is an immediate consequence of the Ergodic Theorem.

Proof' A real number k satisfies

(3.5) g(p) > kp for every p > 0 (p < 0)

if and only if it satisfies

(3.6) k < k+ (k > k j .

For a given xQ let n(xQ) be a random variable which satisfies

(3.7) jx(x0) < XJx Q) a.s.

Then by the definition in (3.1) there is a random variable

w -» c(w), c(w) > 0, such that a.s.

|x(t;xQ)| > c(w)e ° for all t > 0.

For a positive p and an s > g(p) we thus have

(pji(xn)-s)t
(3.8) e St|x(t;x0)|

P > c(u)P e
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From the fact that E e S t |x(t;xQ) |
Pdt < «> for almost every x Q (for

this value of p) it follows that a.s. e S |x(t;xQ) |
Pdt < » for almost

every xo. We consider only rational positive values for p and conclude

that a.s. e~S |x(t;xo)|
Pdt < « for almost every x Q and every

rational p > 0, which, in view of (3.8) yields that a.s.

pji(xQ) - s < 0

for almost every x Q and every rational p > 0. As the last inequality

holds for every s > g(p) it follows that

a.s. g(p)

for every rational p > 0, for almost every x... But then it holds for

every p > 0, for almost every x^. Since this is true for an arbitrary

random variable n(xQ) which satisfies ju(xo) < X_(xo) a.s. we conclude

that

(3.9) a.s. g(p)

for every p > 0, for almost every xQ. A similar argument for negative

values of p implies that
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(3.10) a.s. g(p) > X+(x0)p

for every p < 0, for almost every x0- By the equivalence of (3.5) and

(3.6) this implies (3.3). Then (3.4) follows in case that p -» g(p) is

differentiable at p = 0.

•

4. Random evolution homogeneous differential equations.

We consider the situation in Example 2.3. The initial value is of the

form X Q = (yQ,i) where y Q € R is nonzero and i is an integer,

1 < i < i). Let p -» g(p) be the convex function discussed in Theorem 2.9.

Then for almost every y Q € R the Laplace transform

f e S t E|x(t;x )|Pdt
0

of the function

(4.1)

is finite (infinite) for almost every y Q if s > g(p) (s < g(p)). We

will derive a system of differential equations which is satisfied by

<p(t,y) = {<f>.(t,y)}V * . From this system we will obtain a system of

equations satisfied by the Laplace transforms of the functions {<^i}i=j»

namely by
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(4.2) ,(s,y) = [ e sV(t,y)dt.
1 J0

This last system of equations will provide information about g(p), since

g(p) is characterized by the property that >Ks,y) should be finite for

s > g(p) and infinite for s < g(p).

Let the infinitesimal generator of the Markov chain {j } be given by

v
G = (g. .)V . - , which is such that g. . > 0 for i * j and Z g = 0.

ij l, j—l IJ . j ij

It is a standard result that the expected values in (4.1) define functions

{<?.}. i which satisfy the system of equations

(4.3)

i

at -

n(o.:

i
ay

f) =

1 y

|y|p .

D

i - i

Proposition 4.1. The functions y -»<p.(t,y) are homogeneous of order p

for every 1 < i < v and t > 0.

Proof: The assertion follows from the homogeneity of t -» x(t) and the

definition (4.1). It is enough to observe that

x(t,ax0) = ax(t,x0)

for every a > 0 and x Q € X (where a(yQ,i) = (ayQ,i)).
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For sufficiently large s the function + . in (4.2) is finite and

well defined. We obtain a system of equations for {+.}V* by computing

the Laplace transform of the system (4.3) and then obtain

(4.4)

3^ v
- |y|p = -^- • f.(y) + 2

i = 1,

It follows from Proposition 4.1 and (4.2) that y -*^.(s,y) is a

homogeneous function of order p. We denote a generic element in S n ,

the unit sphere in Rn, by 8 and it follows that

(4.5) ^(s.y) = u.(s,9)|y|p, for y = |y|9

for some functions 9 -»u.(s,9) on S f 1 < i < D.

Let the point 9 € S n be represented by an n - 1 coordinates

system 9- , .... 9 - . Thus every point y € R \{0} is represented by the

n-tupple (r,G-,...t 9 - ) . There are then n functions T. : S n -* R

and first order linear differential operators {^.(9)}. 1 in the variables
1 j=i

8- , . .., 8 1 such that1 n—1

for C functions \p on Rn. For >/>. as in (4.5) we thus have



^ = ^ ( 6 ) ^ ( 8 . 6 ) 1 ^ * + [2j(e)u(s,0)]r
P-l

Using the last equality and denoting

f i ( y ) = fin ( y ) )

where each f. . : R -* R is a homogeneous function, we obtain

(4.6) —!- • f.(y) = [pG.(e)u.(s,e) + ̂.

where

(4.7)
n

G.(9) = 2

(4.8) Jf (9) = 2 f (0)2 (9)
1 j=l 1J J

Substituting (4.5)-(4.8) in (4.4) we obtain

(4.9)

V
.(8^.

i = 1 v

[pG.(0) - s]u. 2 gUUJj=l J J
= 0

21

This is a system of v first order linear differential equations on the
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unit sphere S

We will assume now that the solution t -* x(t;xo) of equation (2.3) is

an irreducible process. We want to characterize the values g(p) by

properties of the corresponding system (4.9). The functions

<p = {<P.}V=1 and $ = {^.^i in (4.1) and (4.2) can be used to construct

solutions of (4.9) for every s > g(p). By the expected value meaning of

<P and ^ it follows that as s i g(p) the solution >// of (4.9) must blow

up so that

(4.10) sup

ees11"1
-> » as s 1 g(p).

We summarize this in the following.

Theorem 4.2. Assume that the solution t -* x(t) of (2.3) is an irreducible

process. Then for every p the number g(p) is such that there exists a

solution of (4.9) for every s > g(p) and these solutions satisfy (4.10).

Example 4.3. We consider the situation described in Example 2.2 with

n = 2. Thus the matrix A. is explicitly written as

A11 A12
Ai Ai

.21 .22
Ai Ai

Introducting the polar coordinates (r,9)



= r cos 0 , y2 = r sin 8

we have for the gradient of a C function

23

f a W sin e a^ . o &i> . cos e
c o s 9 aF ~ - T " ae- s i n e d7 + " T " aej

and

_ A
12

(A
22

+ r + Aj 2 sin 9 + (A| 2 - A21)sin 8 cos el

Thus in this case the system of equation (4.9) becomes

(4.11)
F.(9)uJ(e) +

i = 1 , v

- s]u.(G) + 2 1 = 0

where

(4.12)

91 9 19 9 99 11
F.(9) = A^cosZ6 - A! sinG + (A^ - At^sin 6 cos 9

Gi(9) = k]
1
 COS 29 + A 2 2 sin29 + (AJ1 + A 2 1) sin 9 cos 9

Here we are looking for periodic solutions of (4.11) for various values of

p and s.
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5. Two dimensional random evolution differential equations.

We consider now two-dimensional homogeneous systems as in Example 2.3.

We write it explicitly as

(5.1)
y2(t)

= r P, (6)
J

where a.(#) and £.(•) are Lipschitz continuous scalar functions, periodic

of period 2ir. To obtain the equations for t -» r(t) and t -» 9(t) we

observe that (5.1) may be written in the form

cos 9 -sin 9
sin 9 cos 9 ](*]•

which yields

(5.2)

r/r = G (0(t))
Jt

e = F (G(t))
Jt

with the notation

(5.3)

e - ^(8)8111 e

9 + pi(9)sin 9
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(this notation is consistent with (4.12) as we will see below). In this

two dimensional framework it is easy to give conditions which imply the

validity of Assumption B. Clearly such is the simple condition stated in

the following.

Proposition 5.1. Assume that there is an integer 1 < i < v such that

Fi(0) * 0 for every 0 < 9 < 2TT. Then Assumption B holds.

We consider now the corresponding system (4.9). Clearly it is of the

form (4.11) and we just have to determine how the functions G.(») and

F.(#) depend on the functions a.(*) and |3.(»).

Proposition 5.2. The corresponding system (4.9) is given by (4.11) with

Ft(*) and G±(*) defined by (5.3).

Proof: We compute the product -^ • f .(y) = ^ • Igrgl which is equal to

{cos 9 *r - ilBJL v sin e *r + £22-°v(™(9)]' r^ely to

r[a(9)cos 0 + /3(9)sin 9 ] ^ + [0(9)cos 9 - a(9)sin 9]x//0. Thus substituting

>//(y) s u(9)rp gives the expression

[pG(9)u(9) + F(9)u'(9)]rP

with G(9) = a cos 9 + j3 sin 9, F(9) = -a sin 9 + /3 cos 9. This concludes

the proof.

D
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Since F(»), G(»), a(») and /?(•) are related by

fG(0)] . f cos 9 sin 9] fa(9)]
LF(0)J " l-sin 6 cos 6J \p(0)}

which may be inverted to

fa(e)l - fcos e ~sin 0] fG(0)
(j5(9)J " [sin 9 cos 9J [F(9)

there is a 1-1 correspondence between Lipschitz continuous and periodic

pairs (<*(•) ,j3(#)) on one hand and such pairs (G(»),F(»)) on the other hand.

Thus every system (4.12) corresponds to some homogeneous random evolution

system.

For the solution 9(») of (5.2) we consider the Markov process

v
t -» (9(t),j ) on U S . , where each S. is a copy of the unit circle. If

t i=l 2 X

Assumption B holds then it has an equilibrium measure whose support is the

whole of S, denote it by a(d9) = {ajCdB)}". We have from (5.2) that

(5.4) i«og r(t) = l j G. (9(s))ds.

The process t -» (fl(t).j ) with the initial distribution a(d9) is a

stationary Markov process on S. It follows from (5.4) by applying the

Ergodic Theorem (see Rosenblatt [20], page 105) that the limit

£im — £og r(t) exists a.s. for this process. If P is the probability
t-*» t X0

P conditioned on (9(0) = x Q}, and E(xQ) is the event
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w : «im i- «og r(t) exists, 9(0) = xQ}

then we have the relation

(5.5) P(E) = J Px (E(xQ)) a(dxQ).
S "0

In (5.5) E is the event {w : iim — £og r(t) exists} for the above
tnoo

stationary process t -» (6(t),j ). Since P(E) = 1 it follows from (5.5)

that

(5.6) £im — £og r(t) exists a.s. for a-almost every x 0 in S.
t*» z

We want to deduce that the limit in (5.6) holds for Lebesgue almost every

x~ in S. This will follow easily for a special class of homogeneous

random evolution systems which we introduce now.

Definition 5.3. The random evolution system which is defined in terms of

(a•(*)»£.(•))• * = It-.., u, is called nonsingular if the corresponding

pairs (G.(#),F.(#))f 1 < i < u, are such that F.(») never vanishes for

every i. The random evolution system is said to be singular if at least

one F.(») vanishes at some point.

In the rest of the paper we will consider nonsingular systems. In

view of Proposition 5.1 the Assumption B holds in this case.
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The assumption in (5.7) below is easily verified and holds in many

cases.

Lemma 5.4. Let the system (5.1) be nonsingular and assume that there are

integers i * j , 1 < i, j < i>, such that

r d0 f d0r d

Then the Lebesgue measure of S is absolutely continuous with respect to

the measure a(d8).

Jo Fi<
Remark 5.5. The quantity | v ,„. is the time which takes for a

solution of 0(t) = Fi(9(t)) to change by 2TT. It thus follows from (5.7)

that if 0.(0 and 6 .(•) are solutions of 6

respectively then |0.(T) - 0.(T)| -» » as T

that if 9.(0 and ©.(•) are solutions of 0 = F.(0) and 0 = F.(0)

Proof: Let A C S be of positive Lebesgue measure. For every t > 0 we

have

(5.8) cr(A) = J P(t,xo,A)a(dxo)

where (t.x^.A) -* P(t,xo,A) is the transition probability function for the

process t -* (0(t),Jt).
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The assertion of the Lemma will follow from (5.8) once we have proved that

(5.9) P(t,xo,A) > 0 for every x Q € S

for every set A C S of positive Lebesgue measure and for t large

enough.

We consider continuous functions 8 - [0,T] -» R such that 9(#) is a

solution of

deft) f V if o * * < t0
(5.10) a"yf = { * U for some 0 < tn < T

I if tQ < t < T

where i,j are as in (5.7). For a fixed initial value 9Q we consider

functions 6.(#) and B.(#) as in Remark 5.5 and it follows from this

remark that |9.(T) - 6.(T)| > 2TT if T is large enough, and this

uniformly for all possible 0n. If we consider (5.10) as a differential

equation on the unit circle, fix 9^ and let t^ vary between 0 and T,

then we conclude that for every o < 91 < 2ir there i s a 0 < t o < T such

that the corresponding solution of (5.10) satisfies 0(T) = 91. The time

T can be chosen uniformly for all 9~.

We consider first a set A C S which is of the form A = {j} x K,

where K is a subset of the unit circle which has positive Lebesgue

measure. We fix the initial condition 9Q and consider the set of times
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(5.11) U = | 0 < tQ < T : 9(T) € K, where 6(*) is

the corresponding solution of (5.10)>.

The mapping tQ -* G(T) which is defined by (5.10) (for a fixed 9Q) is

continuously differentiable, thus it follows from the fact that K has

positive Lebesgue measure that U in (5.11) has positive Lebesgue measure.

Thus if T is the first jump time of {Jt}t>0«
 a n d lf xn = t 1-^' t h e n

P (T € U) > 0, which implies that (5.9) holds for xn of the form (i,6n)
x0

and A of the form {j} x K. The general claim (5.9) is implied by this as

follows. Let TQ be such that

(5.12) P(to,xo,Ao) > 0 for every tQ > TQ. xQ = (i,60) and AQ = j x KQ

with L C S of positive Lebesgue measure. Now let A = £ x K with

K C S of positive Lebesgue measure and x~ = (k,60). Let T be the

first jump time of {Jt}t>o
 a f t e r t = 0 and a be the first jump

after t = TQ + 2. For an tQ + 3 < s < TQ + 4 we define a set

A(s) C j x {S } as follows. Let t -» 6 (t,<p) be the solution of
s

time

d 9 j . J l w / i f T 0 + 2 ^ t < s

i f s < t < T

6(T 0 + 2) =

Then
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A(s) = {* : (£,9s(T») € A}

namely, all the initial values such that if the jump of {Jt}tyr +2
 f r o m

to £ occurs at t = s, then (£,0(T) € A.

It now follows that for T > TQ + 4

r V 4 i 2

P(T,xo,A) > P(r € dt)P(a € ds)P(To + 2 - t,x(t),A(s))
U JTQ+3

 Jl U

which is positive since, by (5.12), P(TQ + 2 - t,x(t),A(s)) > 0 for every

1 < t < 2 and TQ + 3 < s < TQ + 4. This proves (5.9) and, as explained

at the beginning, concludes the proof of the Lemma.

D

A consequence of (5.6) and Lemma 5.4 is the following result.

Theorem 5.6. Let the system (2.3) be nonsingular and (5.7) hold for some

l<i,j<i>. i ^ j . Then the limit in (3.1) exists a.s. for Lebesgue

almost every initial value xo € S and has the nonrandom value g'(0)

which is the Lyapunov exponent for the system (2.3).

We now consider, for every p, the system of equations

V

+ [PG.(G) - s]u.(0) + Z g. .u.(6) + 1 = 0

(5.13) < J-x

u . ( 0 ) = u.(2ir) .
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We look for a periodic solution under the assumption that F.(9) ± 0 for

every 1 < i < i> and 0 < 0 < 2ir. The value g(p) is such that for every

s > g(p) there is a periodic solution for (5.13), and we can find solutions

S c ji

u = {uj}1:=1 corresponding to s > g(p) such that

m =
S

satisfies m -» <» as s i g(p). Thus if we divide (5.13) by m we gets s

(5.14)

[PG.(9) - s]v.(e) + z

Vj(O) = v.(2ir), i = 1

where we denoted v.(0) = u.(6)/m so that
1 IS

(5.15)
1.9

every s > g(p)

and p -» 0 as s i g(p)s

Proposition 5.7. For every p there is a nontrivial periodic solution of

(5.16)

+ [pG.(e) - g(P)]vi(9) + z = o

v.(0) = vi(27r) , i = 1 0
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Proof: We know that there exists a periodic solution {v
i}i_i

 of (5

for every s > g(p) and such that (5.15) holds. It then follows from the

nonsingularity of the system that there is a constant K such that

d s

for every s > g(p), 1 < i < v and 0 < 6 < 2ir. But then we can find a

i °°
subsequence of periodic solutions denoted {v }.- corresponding to values

J *•
00

{s.}._1 such that s. > g(p) and s. -* g(p) as j •>», and such that the

solutions {v J}.- converge uniformly on [0,2rr] to a continuous function

v. We have the relation

(5.17) (vJ).(e) = (vJ).(O) - fQ p ^ C P G . - s.]vj + ̂ ^ v ^ ) + p.

for 1 < i < D, and letting j -» » in (5.17) we conclude that v(*) is a

solution of (5.16), which completes the proof.

•

We consider the ordinary differential equation

(5.18) F.(e)v^(e) + [pG.(G) - s]v.(e) + 2 SijV^e) = 0, 1 < I < v

with periodic coefficients, and denote its fundamental solution by

S e(0.9 n). By Proposition 5.7 there is a nontrivial periodic solu
P , S vs

(5.18) for s = g(p), denote it by v(*)- Then we have
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which implies that unity is an eigenvalue of S . .(2ir,0) for every p

(since v(0) * 0).

We thus wish to study the eigenvalues of the fundamental solution of

(5.18) and address the question: Considering a small neighborhood of the

origin in the (p,s) plane, what should be the relation between p and s

so that the corresponding matrix S (27r,0) has unity as an eigenvalue, up
p, s

2 2to the order of magnitude 0(p + s ).

The system (5.18) can be written in the form

(5.19) ^ - = [A(9) + pB(9) + sC(9)]u(9)

where A( #), B(#) and C(») are periodic v x v matrix valued functions, p

and s are real parameters considered in a small neighborhood of (0,0) in
2

R . We have that B(») and C(#) are diagonal matrices, and explicitly

gi3 G.(9)

(5.20) A.jCS) = - p-^j, B±i(e) = - p-joy, C..

Let SO(9,9O) denote the fundamental solution of

(5.21) ^ = A(9)u(9)

(namely the system (5.19) with p = s = 0). The function
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(p,s,0,9n) -» S (9,0n) is a real analytic function of its (p,s) variables
p

so we can write

(5.22)

where we denote by o(p,s) a function <?(*•*) such that

and l | f - | / [ | p | + l s ^ "* ° a s

0
|p| + | s | -* 0. Substituting (5.22) in (5.19) we obtain

£S + pM + sL] = [A + pB + sC][SQ + pM + sL] + o(p,s)SQ

dS
which implies, in view of -rs- = ASL, the relations

dM(e,e )
d9 = A(e)M(e,e0) + B(e)so(e,eo) , M(eo,eo) = o

dL(e,e )
jg-^- = A(9)L(0,9O) + C(9)S0(9,80) . L(9Q.9O) = 0

for every fixed 9Q. We consider now 0Q = 0 and simplify the notations

so that SQ(9) denotes SO(9,8), M(9) and L(9) denote M(9,0) and L(9,0)

respectively. We thus have that

M(8) = S (0,̂ )B(«p)S

L(9) J- £ so<e
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for 0 < 9 £ 2n. We are interested in the eigenvalues of

S p s(2ir.O) = S0(2TT) + pM(2ir) + sL(2ir) + o(p,s)

where by the above equations for M(8) and L(9)

M(2ir)

(5.23)

= S0(2TT) J S Q
1

L(2ir) = S 0 ( 2 T T ) J ^S"
1 {<p)C(<p)S0(<p)d<p

We know by Proposition 5.7 that for s = g(p) the matrix S (2TT) has

unity as an eigenvalue. Moreover, by Theorem 5.6 the function p -» g(p) is

differentiable at p = 0 and there is a number k such that

g(p) = kp + o(p)

(where o(p) denotes a function p -» p(p) such that p(p)/p -» 0 as

p -»0). We will expand the characteristic polynomial of S (2ir), taking
p > s

s = kp + o(p) for some constant k, and we will derive a condition on k

that this polynomial has unity as a root, up to order o(p). This will

yield an expression for the Lyapunov exponent, as asserted in Theorem 3.2.

We thus consider the characteristic polynomial

* (x) = det[A + pB + sC - xl]
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and express it in terms of the characteristic polynomial

*0(x) = det[A - xl]

and an expansion in powers of p and s. It follows that

(5.24) * p s ( x ) = 4>Q(x) + pa^jCx) + sb^ ̂ ( x ) + o(p,s)

where a *(x) and b i(x) are polynomial in x of degree v - 1. We

know that *n^^ = ^ said, moreover, there is an o(p) function such that

= ° for every p-

We substitute in (5.24) x = 1 and s = kp + o(p) and obtain

(5.25) PV

Dividing the equation (5.25) by p and letting p -» 0 we get that

k.->H

provided that b^_j(l) ^ 0. In view of Theorem 5.6 we have thus proved the

following Theorem.
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Theorem 5.8. Consider the two-dimensional homogeneous nonsingular random

evolution system (2.3). Let 0 -* So(8) be the fundamental solution of

(5.21) and let M and L be the matrices in (5.23), where the matrices

A, B and C are as in (5.20). The polynomials of v - 1 degree

x -» a(x) and x -» b(x) are defined by the relation

det[SQ(2Tr) + pM + sL - xl] = det[SQ(2Tr) - xl] + pa(x) + sb(x) + p(p,s)

where p(p,s)/[|p| + |s|] -* 0 as |p| + |s| -> 0. If b(l) * 0 then the

Lyapunov exponent is given by

a.s.

for almost every xQ (with respect to the Lebesgue measure).

6. The random evolution harmonic oscillator.

We consider a random harmonic oscillator which is exposed to random

perturbations so that it is modeled by the following equation

(6.1) f(t) + (1 + e )f(t) = 0 .
Jt

The real numbers e , 1 < i < v, in (6.1) are such that |e. | < 1 for every

1 < i < v and {Jt)txQ
 i s a Markov chain on the state space {1 D } .

Then the two dimensional process
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y(0 = L

satisfies the random evolution linear differential equation

(6.2) y(t) = A y(t)
Jt

where A. = I (A * n for 1 < i < i>. As discussed in section 5, there
l L ^1+e^J UJ

is associated with (6.2) an ordinary differential equation (5.4). In the

present situation we have

F.(9) = -1 - e± cos
29

G.(9) = -e. sin 9 cos 9

for 1 < i < D, and the condition |e.| < 1 implies that (6.2) is

nonsingular. We consider the fundamental solution of the periodic

coefficient linear differential equation

(6.3) ^ = A(9)u(9)

where A(9) is the v x v matrix defined by

2
1 + fcj cos 9
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In this situation it is well known that the Lyapunov exponent exists

as a limit in (3.1), thus we don't have to employ Theorem 5.6 to deduce

that. (Theorem 5.6 is applicable if (5.7) holds for some 1 < i, j < v

which is the case for "most" choices of values e., 1 < i < i>.

Nevertheless, if D = 2 and e- + eo = 0 then (5.7) fails.)

Once the fundamental solution of (6.3) is computed then we find the

matrices M and L by using (5.23), and the polynomials a(*) and b(»)

are obtained as described in Theorem 5.6. The Lyapunov exponent is given

by A = - y\^ /, using Theorem 5.6.

Example 6.1. We assume that v = 2 and for some 0 < e < 1 we have

e- = e and e~ = -e. The two dimensional ordinary differential equation

(6.3) is

(6.4) de[v
2 2

1 + e cos 0 1 + e cos 9

1 - e cos 0 - e cos 0

where G = ~ ~ is the infinitesimal generator of the Markov chain

{j } .~f a,/3 > 0. The special form of (6.4) enables a solution by

quadratures. In fact this is the case whenever v = 2. We multiply (6.4)

from the left by (1,-1) and define w(t) = u(t) - v(t). Then

(6.5) w(0) = exp{-f f 2L
1 J 0 Ll + e i

2cos <p 21 - e cos 0
•]*} f(0)
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and we have for u(*) and v(#)

(6-6) & = " a

1 + e cos 6
w(B) • £ - " P

1 - e cos 6
W(0).

When (6.6) is integrated with the initial values u(0) = 1, v(0) = 0 (which

yield w(0) = 1 in (6.5)) we get the first column of the fundamental

matrix 0 -»S0(6), while choosing u(0) = 0 and v(0) = 1 gives the

second column. We thus obtain

(6.7) So(6) =

_ a f w
^0 1 + e cos <p

w(<?)d<f>

0 1 + e cos

f
J 0

w(<f>)d<f>
1 -

0 1 - e cos - e cos <p

where here we denoted

w(0) = exp <-
2 2

0 Ll + £ COS <p 1 - £ COS <p

•]*}

(the one which corresponds to w(0) = 1 in (6.5)). As described above,

the expression (6.7) is used to obtain the matrices M and L in

quadratures. We thus denote

ml "»2

"3 m4
I. L =
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and consider the characteristic polynomial

det[Sn + pM + sL - xl].

It is equal to

det[SQ - xl] + (ax - x)(pm4 + s«4) + (a^ -

s«2) + o(p,s)

from which we deduce that

a(x) = -

b(x) = -

Then the Lyapunov exponent is

X = -

provided that the denumerator does not vanish.

We consider now the situation where e. = ec. where c ,
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i = 1 D, are fixed numbers and we want to study the asymptotic

behavior of the Lyapunov expnent as e -» 0. Then the matrix A(G) in (6.3)

can be written as

A(8) = G + eC cos 6 + o(e)

where G is the infinitesimal generator matrix and C is given by

C. . = -g c . If 9 -* S(9) is the fundamental solution of (6.3) with

S(0) = I then it is of the form

S(9) = So(9) + eX(9) + o(e)

where SQ(9) = exp G9 and X(») satisfies

= GX(9) + cos29 Ce G 9 , X(0) = 0.

Thus 9 -» X(9) is given by

X(9)
Jn

which gives the first order approximation for 9 -* S(9) in quadratures. It

is just as easy to obtain higher order approximations of S(9), for every

fixed prescribed order, by using an iterative method and developing the

matrix A(9) in (6.3) in powers of e up to that order.
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