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Tests for injectivity in finitely generated universal Horn classes.
Michael H. Albert.

In this paper we will discuss criteria for determining when the universal Horn class
generated by finitely many finite algebras has enough injectives. Section 1 exploits the
syntactic results of [1] and illustrates how these may be used, both to prove known results,
and also to produce some new ones. Section 2 is more algebraic. Superficially it deals with
developing effective tests for when a universal Horn class generated by finitely many finite
algebras has enough injectives. However, in the process of discovering such tests, we
prove results extendihg those of [6] to universal Horn classes.

For work in this area [9] is an invaluable reference, and we enthusiastically refer readers to
its extensive bibliography and cogent summaries of previous work on injectivity, the
congruence extension property, and residual smallness. Whole hearted thanks are also due
to Ross Willard whose comments and questions inspired much of the work in Section 2.

1. Syntactic Criteria for Injectivity.

In this section we consider criteria for when a finite algebra A is injective in the universal
Horn class, ISP(A), which it generates. Our criteria will be syntactic ones, involving the
elimination of existential quantifiers. For conciseness we introduce the following
definitions:

Definition: i) A & at-formula is a formula which is the conjunction of atomic
formulas.

ii) An open-positive formula (O+-formula) is a quantifier free
formula formed without negations.

iii) An 3&at-formula is a formula of the form 3 y\|/(x,y) where \|/ is an
&at-formula.

iv) An 3+-formula is a formula of the form 3 y\|/(x,y) where \\f is an O+-
formula.



Note that we use boldface lower case letters to denote tuples of unspecified length. To

avoid tiresome qualifications we reserve the symbol y for non-empty tuples. For a blass X

of algebras, we denote the class of injectives in DC by XmJ.

We begin by recalling a result from [1].

Theorem: IfQ is a finite set of finite algebras then Q c ISPCQ)^ iff every 3&at-

formula is equivalent modulo Q to a Scat-formula.

We write the latter condition as: Q t= 3&at = &at.

This section is devoid to exploring how this criterion may be simplified, or exploited if,
first of all Q consist* only of a single finite algebra A, and secondly, this algebra satisfies
some additional conditions.

Definition [5]: A is self-injective if A is injective in SA.

This means simply that any homomorphism from a substructure of A to A extends to an
endomorphism of A <

Proposition 1: A is self injective if every 3+-formula is equivalent modulo A to an O+-
formula. *•

Proof: A 1= 3+ =©+

=> SA has TP (by Lemma 1 of [1])

=>A G (SA)^ (directly)

=> (if A satisfies a positive existential formula at a, and b is the image of a
under a homomorphism of the subalgebra generated by a to A, then A satisfies
the same existential formula at b)

=> (that whether A satisfies a positive existential formula at a depends only on
the positive open diagram of a)

=> A N 3 + = O + . •

Note that if A N (x=y) v (u=v) s &at then A N O+ = &at. From this simple observation
and the syntactic criteria above we get:



Proposition 2 [10] : If A is quasi-primal then A is injective in ISP(A) iff A is

self-injective.

Proof: By Proposition 1, A is self-injective <=> A N 3 + = O+ . Also, as noted above,

(x=y) v (u=v) = &at <=> O+ = &at, and in the presence of a ternary discriminator

this latter condition is automatically true. •

In fact we get the slightly more general:

Proposition 3: If A N (x=y) v (u=v) = &at, then A is injective in ISP(A) iff A

is self-injective. •

Definition: A+ is A with each element added as a constant.

Proposition 4: [5] If A e ISP(A)inJ then A+ e ISP(A+)inJ.

Proof: A direct proof is easy, but a proof from the syntactic criterion of [1]

is trivial, just by the usual trick of replacing constants by variables. •

Proposition 5: If A N (x=y) >/ (u=v) = &at then A+ e ISP(A+)inJ.

Proof: Suppose A 1= 3y (p(x,y,a) «-> v(x=b) (where the disjunction on the right

simply enumerates the tuples at which the existential formula holds). Then we can
replace the disjunction on the right by a conjunction of atomic formulas with

parameters from A, i.e. by an A+-&at formula. •

Proposition 6: If A is hereditarily subdirectly irreducible and ISP(A) is congruence

distributive, then A e ISP(A)inhffA e (SA)in>andA 1= (x=y) v (u=v) = (feat.

Proof: Proposition 2.4 of [12] says that the hypotheses on the algebra A imply that

A N (x=y) v (u=v) = 3&at. This gives us the left to right implication, and we

already have that from right to left. •

Definition: For an algebra A, let En(A) be the meet subsemilattice of P(An) generated
by those subsets which are equalizers of terms.



Proposition 7: A is injective in ISP(A) iff every subset of An definable by an

3&at-formula is in En(A).

Proof: This is just a rephrasing of the first Theorem stated above. •

Another way to interpret this proposition is to observe that it is equivalent (by induction) to

the condition that the image of the projection map from En+1(A) to P(A) is contained in

En(A).

Definition: An order primal algebra Q, is obtained from an ordered set Q, by taking
as fundamental operations all order preserving maps from Qn to Q for all n. The following
result of Davey and<2uackenbush was announced at Oberwolfach in February 1988,
although their proofNvas by different means.

Proposition 8: Let Q, be an order primal algebra. Then Q, is injective in ISP(Q).
i

Proof: If Q is an antichain then Q is primal so we!re done. Otherwise choose a<b in Q.

Then for ce Q* define fc: Qn -> Q by:
fc(x) = a if x<c

b otherwise.
gc(x) = a if x<c

b otherwise.

Then {x: fc(x) = gc(x)} = Qn \{c}, so En(Q) is P ( Q n ) and we're done. •

Note that Q may have one non-trivial quotient, namely the primal algebra P obtained by

collapsing each component of Q to a single point It is just as easy to check that both P

and Q are injective in the universal Horn class which they generate.

More generally one could define, for a relation R on a finite set A, the R-primal algebra
on A which has as fundamental operations all those functions which preserve R. In the case
where R is a binary relation Ross Willard and I have an almost complete classification of
those R for which the R-primal algebras are injective in the universal Horn class which they
generate.



2. Algebraic tests for injectivity.

In this section we address the question of whether there exist effective tests for determining
when the universal Horn class generated by a finite set, Q, of finite algebras has enough
injectives, or is a variety with enough injectives. In providing such tests we also discover
internal structural properties of these classes which demonstrate that injectivity in all of
ISP(Q) depends only on a finite subset of this class. The latter test is interesting in the case
where for some reason, we have an effective method for finding the subdirectly
irreducibles in a variety, and overlaps some of the results in [8]. However, our results are
purely existential, and do not provide a method for constructing any injectives other than
the obvious ones in such classes. Much more structural information is revealed for
particular classes satisfying additional conditions in [5]. The techniques utilized here are
algebraic, as opposed to the logical ones of Section 1. However, the frequent use of
ultraproducts strongly suggests some underlying syntactic results, and is reminiscent of (he
Jonsson diagram techniques developed in [7].

For completeness, let us recall the following result (see [4]):

Lemma 9: A universal Horn class generated by a set Q of finitely many finite algebras

is an elementary class; in particular it is closed under ultraproducts. •

The standard proof of this result is to show that any reduced product is a subalgebra of a
product of ultraproducts. However, a more "model-theoretic11 proof is also possible, by
adjoining a binary relation symbol to the language, which is intended to denote a
congruence with quotient algebra in Q , and using compactness.

In order to effectively test when a finitely generated universal Horn class has enough
injectives, we will need to understand an appropriate version of the congruence extension
property in such classes. To this end, we introduce the following definitions:

Definition: a) Let %bea class of algebras, and A e 3C. We say that 0 e Con(A) is

a OC-congruence ifA/Q e 3C.

b) Let %bea class of algebras. We say that 3C has the congruence
e x t e n s i o n p r o p e r t y ( C E P ) , i f f o r e a c h A e 3 C , e a c h e x t e n s i o n B G X o f A , a n d

every %-congruence 0 on A, there exists a %-congruence 0 onB with Q\A - 0.



If X is closed under I, S, and P, then the X-congruences on A are closed under arbitrary
intersections of non-empty families of X-congruences. If in addition, X contains a one
element algebra then the X-congruences are closed under arbitrary intersections and hence
form a complete lattice.

We define the principal X-congruence K(a,b) on A generated by a pair of elements
a,be A to be the smallest X-congruence on A containg (a,b), if such a congruence exists,
and leave it undefined otherwise. Then the principal congruence extension property
(PCEP) is just the CEP restricted to defined principal X-congruences.

In [6] it is shown that for varieties of algebras the CEP and PCEP are equivalent. We
extend this result befew to universal Horn classes generated by finitely many finite
algebras, and then slow how one may effectively test for the PCEP in such a class.

Lemma 10: If X = ISP(Q) where Q is a finite set of finite algebras, then X has the

CEP iff'X hasthe&CEP.

Proof: The implication from left to right is of course trivial. So suppose that X has the

PCEP. Thqh clearly any fintely generated X-congruence on an element Ae X

can be extended to any B G K containing A. Suppose CyD e X and

CCD, and suppose that 0 is any X-congruence on C. For each finitely

generated (and hence finite) subalgebra F of D, let E = CnF, and let QE =

Q\E. Then 0^is certainly a finitely generated X-congruence, and hence has an

extension QF on F. There is an ultraproduct U of the finitely generated

substructures of D which admits a natural embedding from D to U. Then U e

X since X is elementary; and furthermore, the congruence on {/induced by the

QpS is an extension of 0. Restricting this congruence to D provides the required

extension Of 0. •

Definition: A set Q of algebras will be called Horn-basic if for every embedding of
any element ofG into an element <?/ISP(G), the composite of this embedding with one
of the projections is an isomorphism.

For a variety 17, if every subdirectly irreducible is contained in a maximal subdirectly
irreducible then the class of maximal subdirectly irreducibles form a Horn-basic generating
set for 17. Otherwise, no Horn-basic generating set for 17 exists.



Lemma 11: A universal Horn class X generated by finitely many finite algebras has a
Horn-basic generating set, and given an arbitrary generating set Q = {Ax: l<i<n} for X
consisting of finite algebras, there is an effective procedure for constructing a Horn-basic
generating set.

Proof: Given a finite generating set Q, if it is not Horn-basic then it must be possible to

replace an element of Q by a finite or empty set of proper substructures of that

element, and produce a generating set 38. Clearly this procedure can only be

applied finitely often. For effectiveness it suffices to observe that the set of

homomorphisms with domain and range in Q is finite. •

Lemma 12: If Q is Horn-basic then ISP(Q) has enough injectives iffQQ ISP(G)inJ.

Proof: If Q C ISP(G)inJ then clearly ISP(Q) has enough injectives. Conversely,

suppose that ISP(Q) has enough injectives. Since Q is Horn-basic, each A G Q

is a retract of any element of ISP(Q) in which it embeds, thus each A G Q must

be injective. •

Definition: For a class X of algebras, with AJi e X,we say that a homomorphism

f:B-+A is an injectivity base for X if for every embedding g:5-* Ce X, there

exists a homomorphism h:C-> A with hg=f.

For a homomorphism gJJ -> THA-y ie 1} let II(g) = {^g : ie I}.We say that a set S of

embeddings is representative (for B in ISP(Q)), if for any embedding h with domain

By and range in P(Q), there exists an embedding ge £ such that II(g) = IT(h).

Observation: Suppose Q is a finite set of finite algebras, and let X = ISP(Q). Then:
i) each finite 5 G X has a finite representative set of embeddings;
ii) if f:B -• A is a homomorphism, then to determine whether f is an
injectivity base for X, it suffices to determine if this holds of a
representative set of embeddings for B; and
iii) to check whether X has the CEP it suffices to check that each
congruence on each A e X extends over a representative set of
embeddings.



The first part of the observation is trivial in as much as there are only finitely many
functions from B to the elements of Q, while the second and third parts depend only on
basic properties of the Cartesian product. The notion of a representative set of embeddings,
and part (i) of the observation above are due to G. Burger [2].

Theorem 13: There is an effective test to determine if the universal Horn class X

generated by a finite set Q of finite algebras has enough injectives.

Proof: By Lemma 11 we may assume that Q is Horn-basic. If X is to have enough
injectives then it must have the CEP, and by Lemma 10 it suffices to check
whether %.. has the PCEP. Suppose that B,Ce X, a,be B and that K(a,b) is
defined. If-K(a,b) cannot be extended to C then there is a pair (x,y) e BAicfob)
such that if f:C-*De X is a homomorphism and f(a)=f(b) then f(x)=f(y).
Consider the subalgebra <a,b,x,y> of B generated by {a,b,x,y}. The principal
X-congru^tice on this algebra generated by (a,b) is also defined and cannot be
extended to C either. Thus we see that if every principal X-congruence on every
four-generated algebra in X can be extended, then X has the PCEP. But by the
first and third parts of the observation above, this condition can be verified
effectively.

Now suppose that A e Q, B,C e X, f:B -> A is a homomorphism, and
g:B -> C is an embedding. Assuming that we have verified that X has the CEP,
the X-congruence ker(f) can be extended to C. This yields the diagram below
which shows that to determine whether A is injective it suffices to determine
whether every inclusion of a subalgebra of A into A is an injectivity base,
which by the first two parts of the observation above can also be carried out
effectively.

B e - C

i i

B/ker(f) c ^ D

i

A

•
We now turn our attention to the case where we hope that the class Q constitutes the
subdirectly irreducibles of some variety.

8



Lemma 14: A universal Horn class X generated by finitely many finite algebras which
is closed under quotients by ordinary principal congruences, is a variety.

Proof: Let fie X and 6 e Con(B). We must show that B/Q e X. But any finitely

generated substructure of B/Q is the quotient of a finitely generated (hence finite)
substructure of B9 and hence belongs to X (since X is also closed under
quotients by finitely generated congruences). Therefore, as in Lemma 10,
B/Q e SPU(X), and as X is elementary and universal, B/Q e X. •

Theorem 15: There is an effective test to determine if the universal Horn class X
generated by a finite set Q of finite algebras is a variety with enough injectives.

Proof: By Lemma 11, we may assume that Q is Horn-basic. First we can use the

procedure outlined in Theorem 13 to determine whether X has enough injectives.
If so then we note that if X is not a variety then, by Lemma 14 there exists an
algebra B e X, and a,befi such that £/G(a,b) £ X (where G(a,b) is the
ordinary principal congruence generated by the pair (a,b)). Thus there exists a
pair (x,y) G B2\G(a,b) such that such that if fJf-+De Q is a homomorphism and
f(a)=f(b) then f(x)=f(y). But no homomorphism from the substructure <a,b,x,y>
with range in Q, and f(a)=f(b) but f(x)*f(y) can exist either, lest its range fail to
be injective. So we already have that <a,b,x,y>/9(a,b) £ X. To summarize, if X
has enough injectives but is not a variety then there exists a four-generated
algebra, C e X, and a principal congruence G on C such that C/Q £ X.

This condition may be checked effectively since there are only finitely many
isomorphism classes of four-generated algebras in X. •

Unfortunately, because we began the procedure in this proof by checking for injectivity,
and such a test was required for the latter part of the proof, we have not produced an
effective test to determine whether X is a variety, and this remains, for us at least, an open
question.
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