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1. INTRODUCTION.

In this paper we obtain the r(L*(£2))-liinit of a family of perturbations of a nonconvex

functional of vector-valued functions.

The variational problem that we study is of the form

E£(u) := J W(u) dx + e2f |Vu|2dx (1.1)

where Q is an open bounded strongly Lipschitz domain of Rn , u: il -» RN and W supports two

phases, precisely W attains the minimum value of zero at exactly two points a and b (system with

two potential wells of equal depth).With no loss of generality, we assume that meas (Cl) =1.

It is clear that the' problem:

minimize E0(u) with u satisfying a volume constraint

J u(x) dx = m, Iwhere m = 9a + (l-G)b for some 0 € (0,1), (1.2)

n
has infinitely many piecewise constant solutions with values a and b and there is no restriction on

the interface between the sets {u = a} and {u = b}. Modulo the volume constraint, the set A = {u =

a} is completely arbitrary.

As pointed out by GURTTN [7], this lack of uniqueness is a consequence of the fact that

interfaces are allowed to form without an increase in energy.

If we search fotfa mechanism that singles out the solutions that are more likely observed,

then we should try to examine which are the limiting cases within theories that penalize the

formation of interfaces. In this context, the natural conjecture is that physically preferred solutions
are those that minimize the area of the interface {x e Q | x e dA}.

A theory that includes interfacial energy directly penalizing the interfaces is given by
GURTTN [5], [6].

Also, studying the behavior of minimizers of the perturbed problem (1.1) as e -» 0+ gives

another selection criterion to resolve the non-uniqueness in the lower order problem (see GURTIN

[7]).

Here, we analyze the asymptotic behavior as e -» 0+ of a sequence ue of minimizers of

Eg.We show that if u£-» u0 in L1 then u0 only takes the values a and b (corresponding to the two

phases in equilibrium since W(a) = 0 = W(b)) and the interface has minimal area, i.e. the portion

occupied by the phase u0 = a minimizes the geometric area-like quantity
Per^(A) (Perimeter of A in Q)



among all subsets A1 of Q with meas(A') = meas({u0 = a}).

This new variational problem arises as T-limit of the functional

JE(u) := - f W(u) dx + e f |Vu|2dx,

where we impose the volume constraint (1.2).

In fact, we show that if W is a locally Lipschitz function growing at least linearly at infinity then
(i) any family (v e) such that J e(v e) £ C <«> for all e > 0 is compact in L*(Q);

(ii) if v e - » v 0 in hl(Q) then lim inf J e(v e) £ J0(v0);

(iii) For any v 0 € LX(Q) there exists a family (v£) such that ve—> v 0 in Ll(Q) and lim Je(v£) =
Jo(vo)> w h e r e

K Pera({u = a} if u(x) € {a, b} a.e.

J0(u):=<

oo otherwise,
and

K = 2 inf I J VW(g(s)) |g'(s)| ds | g is piecewise C1, g(-l) = a, g(l) = b \

is the energy left on the interface as the boundary layer goes to zero.

Properties (ii) and (iii) say that Jo is the rOL^Q^-limit of Je.

The form of Jo and the role played by the geodesic curves was independently conjectured by

KOHN & STERNBERG [8], who refer also to MAHONEY & NORBURY [9].

This result confirms the selection criterion of the perturbation process. Moreover, we conclude

that the method of KOHN & STERNBERG [8] for constructing local minimizers of Je for

sufficiently small € can bfe applied to systems with two potential wells.

The one-dimensional version of this problem (n=l, N=l) is studied in OWEN [11] (see also

CARR, GURTIN & SLEMROD [1]). The n -dimensional case (n arbitrary, N=l) was treated by

MODICA [10] and STERNBERG [14] and later by OWEN [12] in a more general setting, where

he considers a wider class of perturbations. OWEN [12] concludes that there is no loss of

generality in studying the behavior of the simplest perturbation e2| Vu|2 of W(u) as a selection

criterion as opposed to taking a more complicated perturbation. We conjecture that a similar result

must hold for the vector-valued case.

In Section 2 we state some results on functions of bounded variation and sets of finite perimeter.

A general discussion of these subjects can be found in De GIORGI [2] and GIUSTI [4].



In Section 3 we prove the main theorem of the r(L1(Q))-limit of the functional Je and we use

this result to analyze the behaviour of a L*(£2) limit of a minimizing sequence for Ee.

In Section 4 we prove a compactness result that allows us to extract a hl(Q) convergent

subsequence of any sequence (vg) such that Je(ve) < C <©© for all e > 0. In particular, we conclude

that any sequence of minimizers of Eg admits a subsequence converging in JJ(Q) to a minimizer of

EQ with a minimal interfacial area.

2. FUNCTION^ OF BOUNDED VARIATION AND SETS WITH FINITE
PERIMETER.

In this section we discuss very briefly the concepts of functions of bounded variation and

perimeter of a set. We will restrict ourselves to the properties that will be of later use in this paper.

Let Q, be an open bounded strongly Lipschitz domain of Rn. A function u e lJ(Q) is said to be

difunction of bounded Variation (u€ BV(£2))if

f |Vu(x)| dx r^sup { f u(x).div <p(x) dx | <p e CJ(Q;Rn), ||q>|L < i t < ~.

It follows immediately from this definition that if ve converges to v0 in L 1 ^ ) then

f |Vu(x)| dx < Mm inf f |Vue(x)| dx. (2.1)

Moreover it can be shown that the sets

{ u € l}(Cl) I f |u(x)| dx + f |Vu(x)| dx < C <ool (2.2)

are compact in Ll(Q).

If A is a subset of Rn then the perimeter of A in Q is defined by

Pern(A) := J^|V%A(x)| dx = sup j J\ l iv <p(x) dx 19 e C^(n;IRn), H9IL < l l ,

where xA denotes the characteristic function of A. Clearly, if A is a subset of Q and if
a i fxe A

u(x)=<

b ifxG Q\A

then u € BV(£2) if and only PerQ(A) < <». Also, if dA is smooth then the divergence theorem



implies that
(

where H ^ is the n-1 dimensional Hausdorff measure.

The next two results are taken from STERNBERG [14]. The first lemma states that every set

with finite perimeter can be approximated by sets with smooth boundaries and Lemma 2.4 asserts

the smoothness of the signed distance function to the boundary of a sufficiently regular set

Lemma 2.3.

Let A be a subset of Cl such that Per^A) < <*> and 0 < meas (A) < meas (£2). There exists a

sequence of open sets {Ak} satisfying the following properties:

(i) 2

(ii)

(iii) Per a(Ak)-» PerQ(A) ask->©o;

(iv) H n . 1 OA k n9Q) = 0;

(v) meas (Ak n Q ) = meas (A) for sufficiently large k.

Lemma 2.4.

Let A be an open subset of Rn with a C2 compact and nonempty boundary intersecting Q and

such that H ^ B A r d Q ) = 0. Define the signed distance function to dA by

fdist(x,3A) if

d(x):=<

-dist(x,9A) i fx€ A n Q .

Then for sufficiently small e >0 the restriction of d to the set {x € Q | |d(x)| < e } is a C2 function

with |Vd| = 1. Furthermore,
x e ft | d(x) = e}) = H^jOA n Q).

We will also use the coarea formula (see FEDERER [3])

f f(h(x)) |Vh(x)| dx = f f(t) ^({x € ft | h(x) = t}) dt (2.5)

for all measurable functions f and lipschitz h.

For more details on these subjects we refer the reader to De GIORGI [2] and GIUSTT [4].



3. THE r-LIMIT OF A FAMILY OF FUNCTIONALS OF VECTOR VALUED

FUNCTIONS.

In what follows, Q is an open bounded strongly Lipschitz domain of Rn and W satisfies the

following properties:
(HI) W e wj£(RN; R) is a nonnegative function such that

W(u) = 0 if and only if u € {a, b}, where a * b.

(H2) There exist a, 8 > 0 such that

and

i f | u - a | < 5 then cc|u-a|2<W(u)<^-|u-a|2

a|u - b|2 £ W(u)'& —|u - b|2 whenever |u - b| < 5.

(H3) There exist C, R > 0 such that
if|u|>RthenW(u)£C|u|.

For e > 0 consider the functional

J£(u) := - f W(u) dx + e f |Vu|2dx

and let

K PerQ({u = a}) if u(x) e {a, b} a.e.

J0(u):=-

. oo otherwise,
where

K = 2 inf | J VW(g(s)) |g'(s)| ds | g is piecewise C1, g ( - l ) = a, g(l) = b i .

By (H3) we have that Je(u) < ~ only if u e Hl(Q; RN).

Our main theorem states that the Jo is the rC

Theorem 3.1.
Under the hypotheses (HI) - (H3) the following hold:

(i) if ve-» v0 in L!(Q) then lim inf J£(ve) > J0(v0);

(ii) for any v0 e LJ(Q) there exists a family (ve) such that v£-> v0 in L!(Q) and lim J£(v£)



Before proving Theorem 3.1 we present three technical lemmas concerning the constant K.

Lemma 3.2.

Let Kj and I^be given by

K! := inf j I W(g(s)) + |g'(s)|2 ds | g is a piecewise C1 curve with g(-«>) = a and g(+°o) = b

and

K := inf j J W(g(s)) + |g'(s)|2 ds | L>0, g is a piecewise C1 curve with g(-L) = a and g(L) = b f.

Then Kx = K2.

Proof. It is easy to check that Kj £ Kj. In fact, if g : [-L, L] -> RN is such that g(-L) = a

and g(L) = b then by (HI) the extension
a ifs<-L

g*(s) := g(s) i f - L < s < L

b if s>L

verifies

f W(g(s)) + |g1(s)|2ds=f

Conversely, let g: R -» RN be a piecewise C1 curve with
lim g(s) = a and Mm g(s) = b

and

J W(g(s)) + |g'(s)|2 ds < oo.

By ^12) we have that

g-a e HH(-OO, L ) ; R N ) and g-b e H^-L, +<»); 1RN) for all L > 0.

If 7 is a smooth cut-off function such that 0 < y£ 1 and
f l

0 i
we define

(3.3)



gk(s):=

ifs>0.

Clearly we have gk(-2k) = a, gk(2k)« b, gk(s) = g(s) if | s | £ k and (3.3) together with (H2) yield

r 2 k -> r*~ i
EmJ W(gk(s)) + |gk'(s)|2 ds = J W(g(s)) + |g'(s)|2 ds.

Next we show that Lemma 3.2 and the hypothesis (HI) yield the following result.

Lemma 3.4.

K1 = K 2 = K .

Proof, (i) First we prove that Kj £ K. If g : [-L, L] -» RN is such that g(-L) = a and g(L)

= band if
£(s):=g(Ls) for-l<s<l

then

W(g(s)) + |g'(s)|2ds.

(ii) In order to show that K1 < K it suffices to consider curves g : [-1,1] -» RN with g(-l) = a and

g(l) = b for which the arc length

x(s):=f|g1(t)|dt
J-i

is a strictly increasing function on [-1,1]. Reparametrizing g with x'1, we obtain a curve g*: [0, L]

-» RN with g*(0) = a , g*(L) = b, |g*'(s)| = 1 a.e. and

f L . r1 .
VW(g*(s)) |g*'(s)| ds = VW(g(s)) |g'(s)| ds (3.5)

Jo J-i
where

L:=J_|g'(t)|dt.

Define the function
F(s):=VW(g*(s))

which, by (HI), is locally Lipschitz, and consider the initial value problem



fh1(s) = F(h(s))

h(O) = y .

By (HI) there exists an interval (possibly unbounded) (To, T,) such that h(T0) = 0, hCTj) = L and

h'(s) > 0 in (To, Tj). We extend h by 0 in (-«>, To) and by L in (Tj, +oo). Setting

g**(s):=g*(h(s))

we have that g** is Iipschitz and satisfies g**(-«>) = a, g**(+°°) = b and

|g**'(s)|2 = |g*'(h(s)) h'(s)|2 =W(g**(s)).
Therefore, we obtain

W(g**(s)) + |g**'(s)|2 ds = 2 | VW(g**(s)) |g**'(s)| ds

= 2J VW(g*(s)) |g*'(s)|ds,

which, by (3.5) and given the arbitrariness of g, permits us to conclude that Kx ^ K.

Now we define a "geodesic distance" $ as follows. Let
f(r) := inf Vw(uT

|u - c| = r

where
a-t-b

If we set
a - b

ro : = I—2—'»

then by (H3) there exists rl > r0 such that

. (3.6)

Let
M:= max

|u-c|<ri

and define

<|>(x) := inf | f T(g(s)) |g'(s)| ds | g is piecewise C1, g(-l) = a and g(l) = x L (3.7)

where
T(u) := min (Vw(u), M}.



Lemma 3*8.

(i) <|> is a lipschitz function;

(ii) If u e Hl(&, RN) then 4>»u € H 1 ^ ; RN) and
)(x)| < VW(u(x)) |Vu(x)| a.e. x € Q.

(iii) K = 2 <|>(b).

Proof, (i) Let x and y be two points in RN and let y be an arbitrary piecewise C1 curve

joining a to x.Then we have

<|>(y)< fTds+ f Tds

where [x, y] denotes the segment in RN with endpoints x and y. Therefore, it follows that
<|>(y)<<|>(x) + M | x - y |

and, in a similar way
<|>(x)<<|>(y) + M | x - y | .

Hence, we conclude that

(ii) Using an argument identical to that of part (i), it is easy to show that

|V(<|)ou)(x)| < T(u(x)) | Vu(x)| a.e. x e f l i f u e Cl(Q). (3.9)

Let u e Hl(Cl; RN) and consider a sequence

uk e C (Q) such that uk —» u in H1.

Since T € L°°, by (3.9) (V((|>*ujc)) is bounded in L2, and hence it converges weakly in L2.

Moreover, by (i) 4>ou € L2and so <|>ou € H 1 ^ ; RN). Finally, since T(uk) |Vuk| converges weakly

in L2 to T(u) |Vu| we conclude that (3.9) still holds for u.

(iii) Clearly, K £ 2<|>(b). As T(u) = Vw(u) if |u - c| ^ rl9 it remains to prove that if g: [-1,1] -> RN

is such that g(-l) = a, g(l) = b and |g(s0) - c| = r2+ e for some s0 € (-1,1) and e > 0, then

J T(g(s)) |gf(s)| ds ^ K.

In fact, we have that

Jl fiy*

T(g(s)) |gf(s)| ds > 2 f(r) dr > K.

Proof of Theorem 3.1. (i) Let ve-> v0 in L!(Q) and suppose that lim inf Je(ve) < oo. By

9



Fatou's Lemma we have
f W(vo(x)) dx £ lim inf f W(vE(x)) dx = 0

Jn w £-»o Ja

and so, by (HI) v0 e {a, b} a.e. On the other hand, by Lemma 3.8 (ii) we obtain

J£(vE) £ 2 f Vw(vc(x) |Vv£(x)| dx £ 2 f |V(<|>.v£(x))| dx,
Ja Ja

and therefore, by Lemma 3.8 (i), (iii) and (2.1) we conclude that

tfve) -> <Kv0) in L1,<Kv0) = ±K X{Vft = b} and f |V(<hvo)(x)| dx < lim inf f |V(<|><»v£)(x)| dx < ~.

Hence, v o e BV(ii) and
J0(v0) = KPern({v0 = b}) £lunmf J£(vE).

(ii) By (i) it suffices to consider v0 € BV(Q) with v0 =xAa + (1 - xA)b where A C Q , Moreover,

using a diagonalization argument, we can assume with no loss of generality that dAnQe C2 and

H ^ B A n dQ) = 0. Let g : [-L, L] -» RN be a piecewise C1 curve such that g(-L) = a and g(L) = b

and define

a ifd(x)<-eL

g£(d(x)) if|d(x)|<eL

b ifd(x)>eL,
where d is the signed distance function to 3A and

By Lemma 2.4 and the coarea formula (2.5) we have for small e

f |vo(x) - w£(x)| dx = f |a - g£(s)| H^idx e Q | d(x) = s» ds
Ja J-eL

+ J Ib - g£(s)| H^iiix e Q | d(x) = s}) ds

= e I |a - g(s)| ̂ ({x e « | d(x) = es}) ds

+ e J |b- g(s)| ̂ ^ { x e Cl | d(x) = es}) ds

^ e L (||a - g|L + lib - g||J (Per^A) + 1). (3.10)

Therefore, we—> v0 in L!(i2). Moreover, (HI), Lemma 2.4 and (2.5) yield

Je(w£) = f [ j W(g£(s)) + e |g'£(s)|2] ^ . ^ { x e Q | d(x) = s}) ds

10



= f [W(g(s» + |g'(s)|2] H^tfx € £11 d(x) = es}) ds
•ML

and so,

£->0
Km Jc(w€) = Pera(A) f [W(g(s» + |g

fCs)|2] ds.

Finally, Lemma 3.4 and a diagonalization argument allow us to construct a sequence ve-» v0 in

L*(Q) such that
lim sup Jc(vc) < K Pern(A)

which, together with part (i), implies that
lim Je(ve) = K Peifl(A).

Assume that meas(Q) = 1 and consider the following variational problem:

(Pe) minimize

Ee(u) := f W(u) dx + e2 f |Vu|2dx

on j u € W1'1^) | J u(x) dx = ml, where m = 6a + (l-9)b for some 9 e (0, 1).

Clearly, Eo admits infinitely many piecewise C1 solutions with values a and b. We show that the

regularization Ee of Eo selects the solution with minimal interfacial area, namely

Theorem 3.11.

If the hypotheses (HI) - (H3) are verified and if u e is a sequence of minimizers of E£

converging to u0 in L2(i2) then UQ is a solution of the geometric variational problem:

minimize Perft({u = a})

on j u e B V(Q) | W(u) = 0 a.e. and J u(x) dx = ml.

Remark 3.12.(i) The new variational problem is said to be "geometric" because u0 is a

solution if and only if A := {u0 = a} minimizes Perfl(A
f) with A1 satisfying the volume constraint

meas(Af) = meas(A).

(ii) The existence of a minimizer u£ of E e is obtained easily by means of the direct method of the

Calculus of Variations. Moreover

11



there exists a constant C2 > 0 such that Jgdig) < Cx for sufficiently small e > 0. (3.12)

In fact, let ybe a smooth function with compact support and satisfying T(-1) = 0,7(1) = 1 and 0 <

y <1. Given e > 0 choose T|e such that

meas{x€ Q|x n >Ti £ + e} + j M - ) d x = e

and define
si ifxn>Ti£-fe

b ifxn<T|e-e.

Since

J w£(x) dx = m,
a

we have

J£(u£) < J£(w£) = If f W(w£(x)) dx + |yf ̂ k ) | 2 |a - b|2 dx]

<; Const! max W(v) + ||y||i|a-b|2l.
I v € [a,b] J

Proof of Theorem 3.11. By Remark 3.12 (ii) and Theorem 3.1 (i) we deduce that uoe

BV(Q), W(u0) = 0 a.e., the average of u0 is equal to m and
lunmf J£(u£) > J0(u0). (3.13)

Suppose that u e BV(£2), u e {a, b} a.e. and

I u(x)dx = m.
JQ

We claim that there exists a family (ve) such that ve-» u in L 1 ^ ) , lim Je(v£) = J0(u) and

J v£(x) dx = m.

Then, since ue is a solution of (P£), by (3.13) it follows that

J0(u)= lim J£(v£) ^ lim sup J£(u£) ^ JQ(UQ)

and so, u0 is a solution of the geometric variational problem.

We prove our claim by showing that it is possible to modify the sequence wE constructed in the

12



proof of Theorem 3.1 (ii), obtaining a new sequence w*£ such that

Je(w*c) = J£(we) + o (1) and f w*£(x) dx = m.
Ja

In fact, define

w*£ := wc + m - I wc dx.

Clearly Vw*e= Vweand by (HI) we have

- f W(w*e(x)) dx = - f W(w£(x)) dx + - f wfa + m - f w£ dx) dx
ejfj eJn e J{xe nid(x)<-eU V Ja J

+ i f fwf w£(x) + m - f w£ dx) - W(w£(x))l dx
E J{xefl||d<x)|<eL}L V kk J J

+ - f wfb + m - f w£ dx) dx.
e J{xeQ|d(x)>EL} V Ja J

It suffices to notice that (H2) and (3.10) yield

i f wfa + m - f w£dxldx<^-|f u(x)-w£(x)dx|2 = (Xe),
e J{x6n|d(x)<-cL} V Ja J e« Ja

4 f wfb + m- f w£dx)dx£-5-|f u(x)-w£(x)dx|2 = O(e)

and, since || w£||M£ Const, and W is locally Lipschitz, we deduce that

I 7 f [wfw£(x) + m - f w£ dx) - W(w£(x))l dx| <
e J{xe«||d(x)|<eL}L V Ja J J

Const.- meas {x e Q, | |d(x)| < eL} |J u(x) - w£(x) dx| = o (1).

4. A COMPACTNESS RESULT.

The main result of this section is the following theorem:

Theorem 4.1.

Under the assumptions (HI) and (H3), any family (v£) such that Je(ve) £ Const. <«> for all

e > 0 is relatively compact in JJ(Q).

Proof. Let (ve) be such that Je(ve) < Const. <«> for all e >0 and let

f W(0)l
R! := max -j R, -, k where R and C are as in (H3).

Write v£ = u£ + Zg, with

13



ze:=vcX{|vJ>R1}-

Since

f W(ve(x))dx<eConst.,

by (H3) we have that

Zg-^OinL1^) (4.2)

and

lim f W(ue(x)) dx = lim [ f W(v£(x)) dx + f W(O) dx 1

<S lim f W(v£(x))dx = O. (4.3)

As (ue) is bounded in L°\ there is a subsequence (that we will still denote by ue) and a Young's

probability measure \i (see TARTAR [15]) such that if f is a continuous function then

f(ue)->fx->J N f(y) d^y)! in L~ weak*.

Hence, by (HI) and (4.3) we conclude that
*ix = G(x) 8 y = a + (1 - G(x)) 8 y = b a.e., where 0 ^ 0 <> 1.

Now consider the function <J> as defined by (3.7). We obtain

J <|>(ve(x)) dx < meas(Q) l ^ u J L + f *(zc(x)) dx

which, by Lemma 3.8 (i) and (4.2), implies that

(<|>ove) is bounded in L!(Q). (4.4)

Also, by Lemma 3.8 (ii) we have

f |V(<j>ove)(x)| dx < f JW(v£(x)) |Vve(x)| dx ̂  ̂  Je(v£) < Const. (4.5)

From (4.4) and (4.5), together with (2.2), we conclude that (for some subsequence) there exists a

function h such that

Moreover, as <}> is a Lipschitz function by (4.2) we obtain

<|>ou£-*h in L!(Q) strong. (4.6)

Since the Young's probability measure associated with <|>«ueis given by
vx = 9(x) 8y = ^(a) + (1 - G(x)) S y =

(4.6) yields
v* = 5y==h(x) a.e.

and so, we have that
0(x) = 3CA&) m Q f°r s o m e A C

14



Define the function
Uo:=XAa+

From the fact that

it follows that
ue -> UQ in L P strong, for all 1 < p <©o,

which, together with (4.2), permits us to conclude that (for some subsequence)

Remark 4.7. From the previous theorem and Remark 3.12 we deduce that every sequence

of solutions of (P€) (i.e. minimizers of E£) admits a subsequence converging in L1 to a solution of

(Po) with minimal interfacial area.

FINAL COMMENTS.

We remark that our hypotheses are considerably weaker then those found in the literature for

the case N = 1. In fact, in order to establish the L1 compactness it is often assumed that W grows

quadratically at infinity (see KOHN & STERNBERG [8], MODICA [10], OWEN [12], OWEN &

STERNBERG [13]), i.e. there exist C j , C2 , r > 0 and p £ 2 such that

C^l^^Wi) <C2\t\
? forallt>r.

However, we only needed W to grow at least linearly as in Theorem 4.1.

Also, usually one has W € C2 and W"(a) > 0, W"(b) > 0 (note that MODICA [10] assumes

only continuity for W). For N > 1 KOHN & STERNBERG [8] proposed having the Hessian of W

positive definite at a and b and, in this case, it is clear that (HI) and (H2) hold trivially.

Added in proof: After submission of this article we learned of an analogous result obtained by P.

STERNBERG for N = 2. His analysis requires W to be more regular and grow at least

quadratically at infinity.
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