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1. INTRODUCTION.

In this paper we obtain the r(L*(£2))-liinit of a family of perturbations of a nonconvex
functional of vector-valued functions.
The variational problem that we study is of the form

Ex(u) = W(u) dx + (92th2 IVulfdx (1.1)

where Q is an open bounded strongly Lipschitz domain of R", u: il -» RY and W supports two
phases, precisaly W attains the minimum value of zero at exactly two points aand b (system with
two potential wells of equal depth).With no loss of generality, we assume that meas (Cl) =1.
Itisclear that the problem:
minimize Eq(u) with u satisfying a volume congtraint
J u(x) dx =m, lwherem = 9a + (I-G)b for some 0 € (0,1), (1.2
n
has infinitely many piecewise congtant solutions with values a and b and thereisno restriction on
the interface between the sets {u = a} and {u = b}. Modulqthevolumeoonsiraint, thesst A={u=
a} iscompletely arbitrary.
As pointed out by GURTTN [7], this lack of uniqueness is a consequence of the fact that
interfaces are allowed to form without an increasein energy.
If we search fotfa mechanism that singles out the solutions that are more likely observed,
then we should try to examine which are the limiting cases within theories that penalize the

formation of interfaces. In this context, the natural conjectureis that physically preferred solutions
arethose that minimize the area of theinterface {x e Q | x e dA}.

A theory that includes interfacial energy directly penalizing the interfaces is given by
GURTTN [5], [6].

Also, studying the behavior of minimizers of the perturbed problem (1.1) as e -» 0" gives
another selection criterion to resolve the non-uniquenessin thelower order problem (see GURTIN

[7D).

Here, we analyze the asymptotic behavior as e -» 0" of a sequence u, of minimizers of

Eg.We show that if ug-» ugin L* then ugonly takes the values a and b (corresponding to the two
phasesin equilibrium since W(a) = 0 = W(b)) and the interface has minimal ares, i.e. the portion

occupied by thephase ug = a minimizes the geometric area-like quantity
Per"(A) (Perimeter of A in Q)



among all subsets A' of {2 with meas(A’) = meas({u, = a}).

This new variational problem arises as I'-limit of the functionals
J(u) == -!-J W(u) dx + €| [Vul’dx,
EJa Q

where we impose the volume constraint (1.2).
In fact, we show that if W is a locally Lipschitz function growing at least linearly at infinity then
@)  any family (vg) such that Jo(ve) S C <eo for all € > Ois compact in L1(Q);
(i) if vg—> vgin LY(Q) then lim inf Jg(ve) 2 Jo(vy);
(iii) Forany vjye L1(Q) there exists a family (vg) such that ve— v, in LY(Q) and lim J e(Ve) =
Jo(vp), where
K Perg(f{u=a} ifu(x) € {a, b} ae.
Jo(u) =

oo otherwise,
and

1
K=2 inf{j VW(gB)) Ig'(s)| ds | g is piecewise C!, g(-1) = a, g(1) = b}
-1
is the energy left on the interface as the boundary layer goes to zero.

Properties (ii) and (iii) say that J is the T(L}(Q))-limit of Jg.

The form of J,, and the role played by the geodesic curves was independently conjectured by

KOHN & STERNBERG [8], who refer also to MAHONEY & NORBURY [9].
This result confirms the selection criterion of the perturbation process. Moreover, we conclude

that the method of KOHN & STERNBERG [8] for constructing local minimizers of Jg for

sufficiently smalt«e can be applied to systems with two potential wells.

The one-dimensional version of this problem (n=1, N=1) is studied in OWEN [11] (see also
CARR, GURTIN & SLEMROD [1]). The n -dimensional case (n arbitrary, N=1) was treated by
MODICA [10] and STERNBERG [14] and later by OWEN [12] in a more general setting, where
he considers a wider class of perturbations. OWEN [12] concludes that there is no loss of

generality in studying the behavior of the simplest perturbation €2|Vu? of W(u) as a selection
criterion as opposed to taking a more complicated perturbation. We conjecture that a similar result
must hold for the vector-valued case.

In Section 2 we state some results on functions of bounded variation and sets of finite perimeter.
A general discussion of these subjects can be found in De GIORGI [2] and GIUSTI [4].



In Section 3 we prove the main theorem of the I'(L}(Q2))-limit of the functionals J ¢ and we use

this result to analyze the behaviour of a L1(Q) limit of a minimizing sequence for Eg.

In Section 4 we prove a compactness result that allows us to extract a LI(Q) convergent

subsequence of any sequence (vg) such that Jo(vg) < C <o for all € > 0. In particular, we conclude

that any sequence of minimizers of E; admits a subsequence converging in L1(Q) to a minimizer of

E, with a minimal interfacial area.

o

2. FUNCTIONS OF BOUNDED VARIATION AND SETS WITH FINITE
PERIMETER.
In this section we discuss very briefly the concepts of functions of bounded variation and
perimeter of a set. We will restrict ourselves to the properties that will be of later use in this paper.

Let Q be an open bounded strongly Lipschitz domain of R”. A function u € L1(Q) is said to be

a function of bounded variation (u € BV(Q)) if
JQIVu(x)I dx :=sup { Lu(x).div e(x)dx |pe C(I)(Q;IR"), NPl £ l} < oo,

It follows immediately from this definition that if v converges to v, in L1(Q) then

I |Vu(x)| dx < lim inf J [Vug(x)| dx. 2.1)
Q e-0 Jg
Moreover it can be shown that the sets

{ ue LI(Q)| Jnlu(x)l dx + Lqu(x)| dx<C <oo} (2.2)
are compact in L1(Q)..

If A is a subset of R" then the perimeter of A in Q2 is defined by

Perg(A) := -LIVxA(x)I dx =sup { JAdiv o(x)dx |@pe Q}(Q;IR"), lPll. < 1} ,

where ¥ , denotes the characteristic function of A. Clearly, if A is a subset of Q and if
aifxe A

u(x) =

bifxe Q\A

then u € BV(Q) if and only Perp(A) < . Also, if dA is smooth then the divergence theorem

3



implies that
PCYQ(A) = I‘In_l(aA N Q),

where H_, is the n-1 dimensional Hausdorff measure.

The next two results are taken from STERNBERG [14]. The first lemma states that every set
with finite perimeter can be approximated by sets with smooth boundaries and Lemma 2.4 asserts
the smoothness of the signed distance function to the boundary of a sufficiently regular set.

Lemma 2.3.

Let A be a subset of €2 such that Per(A) < > and 0 < meas (A) < meas (£2). There exists a
sequence of open sets {A, } satisfying the following properties:
@ A NQeCk
() meas ((ANYD\VA)UANVANQ))) 0 ask — o
(iii) Pern(A,) — Perg(A) ask — eo;
(iv) H,;(0A, N 3Q) =0;

(v) meas (A, N Q)= meas (A) for sufficiently large k.

Lemma 2.4.

Let A be an open subset of R® with a C2 compact and nonempty boundary intersecting Q and

such that H_,(9ANIQ) = 0. Define the signed distance function to dA by
dist(x,0A) ifxe Q\A

dx) :=
—dist(x,0A) ifxe ANQ.

Then for sufficiently small € >0 the restriction of d to the set {x € Q| |d(x)| < € } is a C? function

with |Vd| = 1. Furthermore,
Jim Hy ((x e Q|d) =eD =H, 0A N Q).

We will also use the coarea formula (see FEDERER [3])
400
J'n £(h(x)) [Vh(x)| dx =J' £ H, ({x e Q|h()=1}) dt 2.5)

for all measurable functions f and Lipschitz h.
For more details on these subjects we refer the reader to De GIORGI [2] and GIUSTI [4].
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3. THE r-LIMIT OF A FAMILY OF FUNCTIONALS OF VECTOR VALUED
FUNCTIONS.

In what follows, Q is an open bounded strongly Lipschitz domain of R" and W satisfies the
following properties:
(H) W e wj£(R"; R)isanonnegative function such that

W(u) =0ifand only ifu € {a b}, wherea* b.
(H2) Thereexist a, 8> 0 such that
iflu-a|<5 then cclu-al’<W(uy<"-|u-af®

and |
alu - b2 £ W(U)& —u - bl whenever u - b| < 5.

(H3) Thereexis C,R>0 suchthat
if|u|>RthenW (u)£C|ul.

For e > 0 consider the functional
3:(u) = 1 W(u) dx + ef [Vufidx
and let .
K Perg({u=a}) ifu(x)e {a b} ae
Jo(u):=-

.00 otherwise,
where

- .
K=2inf|J YW(g(s)) lg'(s)| ds | g is piecewise C*, g(-1) = a, g(I) = in.
By (H3) we have that Je(u) < ~only if ue H(Q; RY).

Our main theorem states that the J, is the rCLY(€))-limit of Je.

Theorem 3.1.
Under the hypotheses (HI) - (H3) the fallowing hold:

(i) ifve»vgin L!'(Q) then liminf Je(ve) = Jo(Vo);

(i) forany voe LY(Q) thereexists afamily (Vo) such that ve-> Vo in L'(Q) and lim Je(ve) =



To(Vo)-

Before proving Theorem 3.1 we present three technical lemmas concerning the constant K.

Lemma 3.2.
Let K, and K,be given by

K, :=inf { r W(g(s)) + |g'(s)* ds | g is a piecewise C' curve with g(—e) = a and g(+) = b}

and
L

K, :=inf {LJW(g(S)) + lg'(s)l2 ds | L>0, g is a piecewise ! curve with g(-L)=aand g(L)= b} .

Proof. It is easy to check that K, £K,.In fact,if g : [-L, L] — RN is such that g-L)=a

and g(L) = b then by (H1) the extension
a if s<-L

g*(s) ;=4 g(s) if-L<s<L
b if s>L

verifies

L +oo
J' Wigs) + g6 ds =j W(g(s)) + [g* ()P ds.

Conversely, let g : R — RN be a piecewise C! curve with
lim g(s)=a and 1im+°° gs)=b
s

§ — —oo
and
o0
J‘ W(g(s)) + lg'(s)P ds < oo.
By (H2) we have that

g-a € Hl((-o0, L);RN) and g-b € HI((-L, +e0); RN) forall L > 0.

If y is a smooth cut-off function such that0 <y<1 and
1 ifis|<1

Ys) =
0 ifjs|=22,
we define

(3.3)



T RERIC) N

(s (Ag)p w0

Clearly we have g (-2k) = a, g,(2k) = b, g, (s) = g(s) if | s | <k and (3.3) together with (H2) yield
2k 400
2kW(gk(s)) + ng'(s)lz ds = j W(g(s)) + Ig'(s)l2 ds.

gx(s) =1

lim
k-

Next we show that Lemma 3.2 and the hypothesis (H1) yield the following result.

Lemma 34.
K, =K,=K.

Proof. (i) First we prove that K, 2K. If g : [-L, L] = RN is such that g(-L) = a and g(L)

=b and if
E(s) := g(Ls) for-1<s<1

then
1 L L
ZI l«l W(E(s)) [E'(s)| ds = ZJ L\lW(g(s)) lg'(s)| ds < I LW(g(s)) + g6 ds.

(i) In order to show that K, <K it suffices to consider curves g : [-1, 1] — RN with g(-1)=aand
g(1) = b for which the arc length

2(s) = j g0

is a strictly increasing function on [-1, 1]. Reparametrizing g with 77}, we obtain a curve g*: [0, L]

— RN with g¥0)=a,g*L)=>b,|g*(s)=1a.e. and

L 1
_[0 VWG |g*(s)] ds = j WG IOl ds (3.5)
where
1
L:= ng ()] dt.
Define the function

F(s) := VW(g*(s))

which, by (H1), is locally Lipschitz, and consider the initial value problem



h'(s) = F(h(s))

L
h(0) = 3
By (H1) there exists an interval (possibly unbounded) (T, T,) such that h(Tj) = 0, h(T,) = L and

h'(s) > 0 in (T, T,). We extend h by 0 in (-e0, Tjy) and by L in (T, +o). Setting

g**(s) := g*(h(s))

we have that g** is Lipschitz and satisfies g**(-e) = a, g**(+00) = b and
lg**'(s)? = 1g*'(h(s)) h'(s)2 =W (g**(s)).

Therefore, we obtain

oo T
j W(g*(s)) + |g** () ds = 2L NWGEGY |g++(s)| ds
— 0

L
- 2J; VWG [g*(s)| ds,

which, by (3.5) and given the arbitrariness of g, permits us to conclude that K, <K.

Now we define a "geodesic distance” ¢ as follows. Let
fr):= inf YWQ)

ju-cl=r
where
. a+b
c:= 5
If we set
a-b
T ===l

then by (H3) there exists r; > ry such that

ff(r) ar> - (3.6)
L )

M:= o _cmzlué ervm .
and define

¢(x) :=inf { flT(g(s)) |g'(s)| ds | g is piecewise C', g(~=1) =a and g(1) = x} , 3.7
where

T(u) := min {VW(u), M}.



Lemma 3*8.
(i) ¢ isalipschitz function;

(i) fue H'(&, RY) then4u € H'*; RY) and
IV(peu)(X)| < VW(U(X)) Vu(x)] ae x€ Q.

(i) K = 2 <p{).

Proof, (i) Let x and y be two points in RN and let y be an arbitrary piecewise C* curve
joining ato x.Then we have

<Py fTds+ f  Tds

where [x, y] denotes the segment in R" with endpoints x and y. Therefore, it follows that
PPN + Mx-y]
and, in asimilar way

<Pi<Py) + M[x-y].
Hence, we conclude that
0G) - oy <M [x - yl.
(if) Using an argumentidentical to that of part (i), it is easy to show that

V(<Pow(X)|< T(u(x)) |Vu(x)] ae xeflifue C'(Q_). (3.9

Let ue H'(Cl; RM) and corisider a sequence

u e C (Q) such that u, —» uin H™.
Since T € L°°, by (3.9) (V((P*ujJ)) is bounded in L?, and hence it converges weakly in L2.
Moreover, by (i) 4w € L%ndso<tau€ H!~; RY). Finaly, since T(uy) [V uy| converges weakly

inL?to T(u) [Vu] we conclude that (3.9) still holds for u.
(iii) Clearly, K £ 2<p(). As T(u) = Vw(u) if |u- ¢| ~rig it remains to prove that if g: [-1,1] -> R"

issuch that g(-1) = a, g(I) = b and |g(so) - c| =+ e for some s, € (-1,1) and e > 0, then
J_T(90s) g'(9) ds™ K.
In fact, we have that

| fiy*
1

"T(9(9) [d(9) ds>2  f(r) dr> K.

Proof of Theorem 3.1. (i) Let ve-> voin L'(Q) and suppose that lim inf Jo(ve) < co. By
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Fatou's Lemma we have
J' W(vy(x)) dx < lim inf I W(v(x)) dx =0
o) €0 Jo

and so, by (H1) v, € {a, b} a.e. On the other hand, by Lemma 3.8 (ii) we obtain
J(v) 22 ‘L.,/ W(ve(x) [Vve(x)| dx 2 2LIV(¢°V8(X))I dx,

and therefore, by Lemma 3.8 (i), (iii) and (2.1) we conclude that
| 1 ..
&(ve) = Hvp)inL", ¢lvy) = —2-K Xtv, =b} and L'V(q’“’o)(")! dx < lg u&f J.QIV(q)ove)(x)l dx < oo,

Hence, vye BV(L2) and
Jo(vg) =K Perg({vg=b}) < h&n&f Je(ve).

(ii) By (i) it suffices to consider vy € BV(Q) with v, =X Ad+(1-% A)b where A C Q. Moreover,

using a diagonalization argument, we can assume with no loss of generality that 90A N Q € C2 and

H _;0ANdQ)=0.Letg:[-L,L] > RN be a piecewise C! curve such that g(-L) =aand gL) = b
and define

a if d(x) < —€eL
we(x) =1 g(d(x) if |[d(x)| < €L
b if d(x) > €L,

where d is the signed distance function to dA and
s
g:(s) := g(;).

By Lemma 2.4 and the coarea formula (2.5) we have for small €
0
Lwo(x) — w ()| dx = J' a8 Hyi({xe Q1dW=sD ds
-.e

el
+J'o b - g.(s)| Hy_,({x € ©]d(x)=5})ds
0
—e I la-gO/H, (({xe Q]dw=esDds

L
+e J; b g(9)| Hy_,({x € ©d(x)=es}) ds
<eL (Ja— gll.. + b - gll) (Perg(A) + 1), - (3.10)

Therefore, wg—> v, in L1(Q). Moreover, (H1), Lemma 2.4 and (2.5) yield

el
Twe) = Ll[% Wig(s) + ¢ |g'€(s)|2] H, ,(x e Q]dx) =s}) ds

10



L
- j W) + O] Hyy(fx < Q1 =esh) ds

and so,

L
m J,(w) = Perg(A) J_L[W(g(s)) + g ds.

Finally, Lemma 3.4 and a diagonalization argument allow us to construct a sequence vg— v, in

L1(Q) such that
lién sup Je(ve) K Perg(A)
-

which, together with part (i), implies that
elim0 Je(ve) = K Perg(A).
-

Assume that meas(€2) = 1 and consider the following variational problem:
(P,) minimi

E(u) := J'Qw(u) dx + eszqulzdx

on { ue WI'I(Q) | J’ u(x)dx = m} , where m = 0a + (1-0)b for some 0 € (0, 1).
Q

Clearly, E, admits inﬁnitcly many piecewise C! solutions with values a and b. We show that the

regularization E  of E; selects the solution with minimal interfacial area, namely

Theorem 3.11.

If the hypotheses (H1) - (H3) are verified and if ug is a sequence of minimizers of E,
converging to ug in LY(Q) then U, is a solution of the geometric variational problem:
minimize Perg({u = a})

on { ue BV(Q) |W(u)=0a.e. and Jﬂu(x) dx = m} .

Remark 3.12.(i) The new variational problem is said to be "geometric" because uyis a
solution if and only if A := {u, = a} minimizes Perg(A") with A’ satisfying the volume constraint
meas(A') = meas(A).

(ii) The existence of a minimizer u, of E is obtained easily by means of the direct method of the
Calculus of Variations. Moreover

11



there exists a constant C, > 0 such that Jgdig) < C, for sufficiently small e > 0. (3.12)
Infact, let ybe a smooth function with compact support and satisfying T(-1) =0,7(1) = 1 and O<

y<1. Given e> 0 choose T such that
£ foﬂ;

meas{ Xx€ Q|x,>Tig+e} + | -)dx=e
and define
(Sl _ ifx,>Tig-fe
w0 =d 0 o (1o 22 o it iy -md <e
L b ifX,<T|e-e.
Snce
We(X) dx =m,
wehave
Je(Ug) < Je(wg) = If f W(we(x)) dx+ yf* k ) | *[a-bf* dx]

<; Congt! max W) +||y|li]a-b]?l.
I v€ [ab] J

Proof of Theorem 3.11. By Remark 3.12 (ii) and Theorem 3.1 (i) we deduce that u.e

BV (Q), W(up) = 0 ae., the average of up is equal to m and
|BD’I’.T&1: Jg(Ug) 2 Jo(Uo). (313)

Suppose that u e BV(£2), ue {a, b} ae. and

| u(x)dx=m.
JQ

We claim that there exists afamily (ve) such that ve-» uinL *7), lim Je(ve) = Jo(u) and
J Ve(X) dx=m.

Then, since ueisasolution of (P), by (3.13) it follows that
Jo(u)= lim Jg(ve) ™ lim sup Je(ug) ™ IUQ)

and so, U is a solution of the geometric variational problem.

Weprove our claim by showing that it is possible to modify the sequence wg constructed in the

12



proof of Theorem 3.1 (ii), obtaining a new sequence w*, such that
J(w*y) = J(we) + 0 (1) and .Lw*e(x) dx =m.

In fact, define

w¥e = we + m—L w dx.

Clearly Vw*_ = Vw,and by (H1) we have
1

1J' lj ( I )
=] Wwr(x)dx==| W dx + = Wla+m- ) wedx Jdx
) (w e(X)) tJo (WE(X» € Ji{xe N]d(x)<—¢L} Q )

1
* € {x e Q| KX < sL}[W(We(x) +m- ‘Lwe dx) - W(WS(X))] dx

1 Wo - wete) s
€ Jixe Q|d(x)>¢L} Q

It suffices to notice that (H2) and (3.10) yield

1 .
1 W(a +m —j We dx) dx < — II u(x) — w(x) dx|® = O(e),
€ Jxe Qd(x)<—€L} Q ex Jg

‘ (b+m-fweaxJaxs g "’
- W|ib+m-—-] w.dx |dx £ — || ux) — w.(x) dx|"=O()
€ Jixe Qdx)>eL} o °© ea'Q € |

and, since || wg||.< Const. and W is locally Lipschitz, we deduce that

1
€ - -W dx| <

| € JixeQ | 4] < SL}[W(WE(X) +m J‘QWe dx) (ws(x))] | <

C°“s‘% meas {x € Q||d(x)| <eL}| Lu(x) — we(x) dx| =0 (1).

4. A COMPACTNESS RESULT.
The main result of this section is the following theorem:

Theorem 4.1.
Under the assumptions (H1) and (H3), any family (vg) such that J(v¢) < Const. <o for all

€ > Qis relatively compact in L1(Q).

Proof. Let (v¢) be such that J e(ve) < Const. <oo for all € >0 and let

W
R, :=max{R, —C(—())-},whereRandCareasin(H3).

Write vg = ug + ¢, with

13



Zg == Ve X{v >R}
Since
J. W(vg(x)) dx < eConst.,
Q

by (H3) we have that
z. > 0in LI(Q) | (4.2)

and

-0

tim IQW(ue(x)) dx= I [ J‘{ . W) dx + j{w X Rl}W(O) dx ]

< Jim IQW(ve(x))dx=0. .3)

As (ug) is bounded in L™, there is a subsequence (that we will still denote by ug) and a Young's

probability measure p (see TARTAR [15]) such that if f is a continuous function then
flu)) - (x - jRN f(y) dux(y)) in L™ weak +.

Hence, by (H1) and (4.3) we conclude that
He=0(x)8,_,+(1-6(x))8,_p ae.,where0<0<1.

Now consider the function ¢ as defined by (3.7). We obtain
‘L¢(ve(x)) dx < meas(Q) [[pou,ll. + ch(ze(x)) dx

which, by Lemma 3.8 (i) and (4.2), implies that

(¢ov,) is bounded in L1(Q). 4.4)
Also, by Lemma 3.8 (ii) we have
JQIV((bove)(xN dx < J'Q.,[ W00 [Vl dx < 5 J(v,) < Const 4.5)

From (4.4) and (4.5), together with (2.2), we conclude that (for some subsequence) there exists a

function h such that
¢ove = h inLIQ).

Moreover, as ¢ is a Lipschitz function by (4.2) we obtain
¢eu, - h in L1(Q) strong. (4.6)

Since the Young's probability measure associated with ¢eu,_is given by
Vx = 0(x) 8y _ o) + (1 = 6(x)) 8y _ 4(v),

(4.6) yields
Vy =8y - n(x) a.€.

and so, we have that
0(x) = xa(x) in , for some A C Q.
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Define the function
ug:=xaa+(1-xa)b.

From the fact that
Hy =08y u(x) &€

it follows that
u. — ug in L? strong, for all 1 <p <eo,

which, together with (4.2), permits us to conclude that (for some subsequence)
Ve = Ug in Li@).

Remark 4.7. From the previous theorem and Remark 3.12 we deduce that every sequence

of solutions of (P) (i.e. minimizers of E,) admits a subsequence converging in L1 to a solution of

(Pg) with minimal interfacial area.

FINAL COMMENTS.

We remark that our hypotheses are considerably weaker then those found in the literature for
the case N = 1. In fact, in order to establish the L! compactness it is often assumed that W grows
quadratically at infinity (see KOHN & STERNBERG [8], MODICA [10], OWEN [12], OWEN &

STERNBERG [13)), i.e. there exist Cy, Cp, r > 0 and p 2 2 such that
Cilt|IPSWEO<C,|tP forallt>r.
However, we only needed W to grow at least linearly as in Theorem 4.1.
Also, usually one has W € C? and W"(a) > 0, W"(b) > 0 (note that MODICA [10] assumes

only continuity for W). For N > 1 KOHN & STERNBERG [8] proposed having the Hessian of W
positive definite at a and b and, in this case, it is clear that (H1) and (H2) hold trivially.

Added in proof : After submission of this article we learned of an analogous result obtained by P.
STERNBERG for N = 2. His analysis requires W to be more regular and grow at least
quadratically at infinity.
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