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(1.6) bij =0 if i>3+2 or jo> i+ 2.

Let A be a real non-symmetric matrix in block diagonal

form

3 T T T o~
(1.7) A = a;i11e1 + elR + Ce1 + A

where RT and C are the truncated first row and column. If
one applies the Householder Transformation corresponding to R
and continues working on truncated rows of the reduced matrix the

final result is a matrix B in upper Hessenberg form, that is
(1.8) b.. =0 if j> i+ 2.

Similarly by working from the left one obtains a similar matrix B

in lower Hessenberg form, that is
(1.9) b.. =0 if i> 3+ 2.

Wilkinson [1l] gives a method for starting with a matrix in
lower Hessenberg form with a5 +# 0 and obtaining a similar matrix
satisfying (1.3) and which retains its lower Hessenberg form. The
method can be continued until the second element of the top row of
the reduced matrix is zero. He then suggests applying a similarity
transformation.

For practical numerical purposes, when aj, is small relative

to the norm of the truncated first row, one is little better off

than if a12 = 0.

v



It is the purpose of this paper to obtain a stable
tridiagonalization procedure for real non-symmetric matrices.
For theoretical purposes, the method extends easily to complex
matrices. However, it appears that the stabilization procedurés
need additional work. We therefore confine our attention to

real matrices.



2. Conditions for the Tridiagonalizing Step

Let us define a matrix to be of type k if it has the

block diagonal form

(2.1) P = (Pij) Pij = Pji = 6ij if i <k or j<k.

We shall in the sequel denote column vectors by letters and row
vectors as transposes of ¢olumn vectors. An n X n matrix A

may then be represented by

_ T T T
(2.2) A=A+ elR + Cel + allele1
where
T T
(2.3) R™ = (O,alz,...,aln), C = (0,a21,...,an1)

and where A is the matrix obtained by replacing the elements of
the first row and column of A by =zeros.

Definition. We shall call a similarity transformation P

of type 1 a tridiagonalization step for the matrix A if

B = p lap = (bij) satisfies

(2.4) b,. = b.. =0, j=3,..., n.

1j jl
The condition that a tridiagonalization step can be performed

has a remarkably simple form.

Theorem 2.1. There exists a tridiagonalizing step for the

matrix (1.2) if and only if

(2.5) RTC £ 0.
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Proof: Let P be the transpose cofactor matrix of a
matrix P of type 1. Let

Vv \%
(2.6) B = PAP = (bij)

and let us determine conditions under which

Yo=Y =0, §-3
(2-7) bij - ji - ’ ] = reeeys .

A%
Since P is of type one the first row of B is that of AP
v ..
and the first column is that of PA. Hence the condition (2.5)

is equivalent to the conditions

n
(2.8) X a,,pP.. =0, j=3,..., n
kep 1K KJ
and
Pa2 a1 Pon
(2.9) det P32 .o azq oo . =0, j=3,..., n
Pn2 an1 Pnn

the above notation indicating that the jth column of P has
been replaced by C. The condition that (2.8) be satisfied is
that the third through the nth columns of P are orthogonal
to R. The condition (2.9) can then be satisfied by letting the
second column of P be proportionel to C. Hence if (2.5) is
satisfied a matrix P whose last n - 3 columns span the
orthogonal complement (in Rn_l) of R and whose second column

is proportional to C will be non-singular. This proves the "if"



part of the above theorem. The only if part follows from the

following lemma from linear algebra.

Lemma 2.2. Let V-1 be an n - 1 dimensional subspace of

}

Then each of

an n-dimensional vector space Vn' Suppose that {vl,...,v

n-1

is a basis for Vh-1 and that u,,u, € Vo -V,

the sets

-1

}l j=1]-o',n"1

(2.10) {ul,uz,vl,..., Vioqe Vj+1""' Vi1

is linearly dependent if and only if u and u, are linearly

1

dependent.

Proof: Let Uq Uy Vyigeeer Vo o satisfy the stated conditions.
Then there exist constants ak’bk'ckj not all zero such that
(2.11) au, + bu, + X c,.v. =0

k71 k2 4k ki ' 3j
for each  k =1,2,..., n-1. If k # £ the vector (ak,bk) and
(aL’bL) must be proportional. Otherwise U, and u, would be in

Vn_1 contrary to the hypothesis. It follows that for each pair

(k,2), k # 4, there exists a constant dkL ¥ 0 such that

(2.12) X ¢, .v. = d X c,.v. = 0.
¥k kj'j kd ¥4 1373

Since {vl,..., Vn—l} is linearly independent it follows that
(2.13) c = c = 0.

But since k and 4 are arbitrary it follows from (11) that

uy and u, are linearly dependent. This completes the proof of

the lemma and the theorem.



The proof of the above theorem yields a precise characterization

of a tridiagonalizing step.

Theorem 2.3. A matrix P of type 1 is a tridiagonalizing

step for the matrix (2.2) satisfying (2.5) if and only if its

second column is proportional to C and its last n - 2 columns

form a basis for the orthogonal complement of R.




3. Construction of a Tridiagonalizing Step

Let A be a matrix of the form (2.2) which satisfies (2.5)

and define the unit vectors
(3.1) r = R/|R|, c =c/|c].

The Householder matrix of r

T
(r+e.) (r+e )T (r+e,) (r+e,)

2 2 2 2
(3.2) H=1I-2 2 = l+r

l[x+e, |l 2
is orthogonal and symmetric and satisfies
(3.3) He2 = -r, Hr = -e,.
The third through nth columns of H therefore span the orthogonal

complement of r so we can obtain a tridiagonalizing step by

replacing the second column of H by C. Hence for any A % 0

(3.4) P=H+ (r—lc)eg

is a tridiagonalizing step for A. Moreover, since H I,

T_ T.2 _ _T
(3.5) e, = e;H” = -r'H.
Hence we may express (3.4) in coordinate free form by
T
(3.6) P = (1 - (r-Ac)r’)H.

We now resort to the Sherman-Morrison Theorem.

Theorem 3.1. If a and b are column vectors satisfying

bla ¥ 1, then




(3.7) I - ab’

is non-singular and its inverse is given by

abT

(3.8) I+
l—bTa

It follows that the inverse of P is given by

T

(3.9) o =p1 =H(I +
Ar-c

(r-lc)rT)

We now have a specific construction of a matrix
(3.10) B = QAP
satisfying

(3.11) byy = by; =0, 3 =3,..00 n,

Since the elements b12’ b21' and b22 are invariant under
similarity transformations of type 2, it seems worthwhile to

compute them. It follows from (3.3), (3.5) and (3.8) that

T rT
(3.12) Pe, = =-Ac, e.Q = -
2 2 N T
rc
Hence
- T - 1T
(3.13) b12 = eIQAPe2 = AelAc,
T rTAe1
(3.14) b,, = e,0APe; = - T
rc
and
rTAc
(3.15) b22 = eZQAPe2 == TF .

r C
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It now follows from (3.12) to (3.15) that

(3.16) by, = -AR'c = -Ar c|R[,
rTC
(3.17) by, =~ oTe =lleliza
r C
and
Te~
r Ac
(3.18) b22 T
rc

For theoretical purposes it make no difference which non-zero
value of A we choose. The choice A =1 gives the simple
expression (3.6) for the matrix P. The value A = -|c|
achieves putting a 1 in the subdiagonal position and RTC in

the superdiagonal position. The sums of the squares of the matrix
1

norms of P and P - are seen from (3.6) and (3.9) to be
(3.19) tr{epT + ETHTFY=2m - 1+ @+ H—F— - 2 + A
AT (r7c) rc
and the value A = IrTcl_l/2 minimizes the quantity (3.19). The

choice A = [URU/HC"rTC]l/2 achieves lblzl = lb21|.
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4. The Condition for a Second Tridiagonalization Step

Let us suppose that the matrix A given by (2.2) satisfies
(2.5). Then with P and Q = P ' given by (3.6) and (3.9) the

matrix
(4.1) B = QAP

satisfies (2.4). 1If P1 is another non-singular matrix of type 1

for which

_ o—1
(4.2) B' = P1 AP1

satisfies (2.4), then Theorem 2.1 implies that there exists a

non-singular matrix T of type 2 such that

(4.3) P1 = PT.

As a consequence of (4.1), (4.2) and (4.3) we then have

(4.4) B' = T lpr.

It is easily verified that the condition (2.5) for the matrix A
is invariant under similarity transformations of type 1. Hence
the condition that there exist a tridiagonalization step for the
matrix (4.1) is invariant under similarity transformations of
type 2. It follows from (4.4) that the conaition that a second
step can be performed is independent of the choice of the trans-
formation which satisfies the condition of Theorem 2.3.

It follows from the remarks at the end of the previous

section that we may as well work with the matrix
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(4.5) A, = QAP

since the computed entries (3.16) and (3.17) will not be affected
by similarity transformations of type 2. At this point it is

convenient to introduce the quantities

Tev
(4.6) Q=rTXr A=r,1?‘c
rc

We than have as a consequence of (1.7) and (1.9)

(4.7) A1 T

T
H(l + lE:ELE—)X(i - (r-c)rT)H
rc

T
r cC rc

H[K + 15%91 r'& - X(r-c) T - (_9_ - A)(r-c)rT]H.
Note that Q and P are of type 1 and A has zeros in its first
row and column; so does Al’

It now follows from (3.3), (4.6) and (4.7) that

T
T, _ _ I (& T
(4.8) elA1 = T (A-Q)H + Ae2
rc
and
(4.9) Ale1 = -H(A-c) + Aez.
Hence the truncated second row and column vectors of A1 are
given by
T
T _ _ X (%
(4.10) R1 = T (A-Q)H
rc
and
(4.11) | c, = -H(E-Mec.

1




13

It now follows from (4.10), (4.11) and the fact that a1 99 = A
r

that
& T _ T _ T
(4.12) Al = A1 - ele Cle2 Ae2e2
. . T T .
After substituting e, = -Hr and e, = -r H into (3.12) and

substituting the values (3.10) and (3.11) for Rf and C1 we have

T
(4.13) X, = HA H - H[E-I—-(X-m + (B-Mert + ArrT}H.

1 1 rTc

We now substitute (4.7) into (4.13) to obtain

T
(4.14) Kl = H[X(I-rr'r) - %’—(K-Q)}H.
r C

It now follows from (4.10) and (4.11) that the condition that a

second tridiagonalization step can be performed is that

T
T _ r_ ~_ -
(4.15) RICy = rTc(A £) (A-A)c # 0.

Since the definition (3.6) of A implies that
T e~

(4.16) r (A-A)c =0

the condition (4.15) can be simplified to
Tev &~

(4.17) r'A(A-A)c # 0.

We note for future reference that the expression (4.14) for
(Kl) can also be written

T
(4.18) Kl = H[( —%— A - (Xr-—“—c— rT]H.

T
r c r C

It is now clear from (4.14) and (4.18) respectively that

= eTK = 0.

(4.19) Aje, 281
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5. The Recursion Formula

The conditions of the previous sections for being able to
perform two tridiagonalization steps yield a recursion formula
for finding the number of steps that can be performed by a

similarity transformation of type 1. Let
(5.1) r.=r, c, = ¢C

and for j > 1,

T 1 Ty Te
5.2 R = - r.{A. ~r.A.r. r. = R. R.
(5.2) j+1 rTe. J( i 3733 j+1 J+1/” J+1”'
1)
- ri&.c.
(5.3) 4 = |5y -—l—J—erc ¢y ey = CJ+1/NCJ+1N,
373
~ c.r'l.‘ ~ K (I‘TKI’ICJ T
(5.4) A. = [1-—323}|%. - .r. - r..
J+1 rTc. J 33 rTc. J
J 3 J
Then the number of tridiagonalization steps that can be performed
is
. . T
(5.5) min{j : chj £ 0].
Moreover if
T .
(5.6) chj £ 0, j=20,1,..., n -3

then the matrix A is similar to a tridiagonal matrix B with
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T K. ¢
i-183-1%3-1 .
(5.7 by, =ay;, by = i % i-173-1 " 4y _2,..., n,
r. C.
i-17i-1
(5.8) bi,i-l = -1, i=2,...,n and
T . )
(5.9) by 441 = “Ri-1Cy_qr i=1,2,...,n -1

This follows from the fact that (3.16), (3.17) and (3.18) imply

that we can achieve (3.18) and

T
(5.10) b “lleg ol Py s = -IRy e _gei -

i,i-1 ~
A diagonal similarity transformation can now be used to divide

b by “Ci-lu and to multiply b,

i,i+41 PY Hci_ln yielding

i,i-1
(5.8) and (5.9).

It is clear that the expressions (5.7) and (5.9) for bii

and bi,i+1 can be expressed in terms of the preceding elements
of the recursion formulas. Let us now define

rixgci
(5.11) Aij = _;TET—

"iT1
and
k

(5.12) Bix = 'jflAl,g ik-3, By o= 1.

The results of the previous section now show that

T o5 _
(5.13) Ri+18341C541 = B

i, j+2°
In order to solve the recursion formula (5.12) we note that the

source of the sequence Ai 57 j=1,2,..., is irrelevant.
’
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Therefore it suffices to solve suppress the first subscript and solve

k
1=1

The solution is

_ 31+...+Jk(31+32+...+jk)! 1 j2 Iy
(5.15) Bk— z (-1) 13T — A1A2...Ak.

31423 %« ¥k, =k 31732703’
The above is certainly true for k = 1. Supposing it to be true
up to a given value of k we may substitute for Bk+1—j in
k+1
(5.16) Brer = 7 E ARyt
1=1
It follows that each expression
(5.17) -ALBk+1-L’ L =1,..., k+1
is obtained by increasing the index jL' in the exponents by one.
That is
=z PPT S R % B A Rty T3 Y Al
123 b e et (R 1=0) Gy, =kt1=2 pteee Gy
i, i i
1 14+1 k+1-4
Al OOOA IQ.Ak+1-L L3

Because the coefficient of in the weighted sum

Iy
(5.19) j1 + 2j2 +...+ Lj& +...4+ (k+1’L)jk+1—L =k +1-4

the change of index j& - jL - 1 will yield in each case a weighted sum |,
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summing to k + 1. Hence by introducing k + 1 - 4 indices all

equal to zero, we may rewrite (5.1 ) as

k+1
(5.20) B = Zz
k1~ 20
. . . . . . .
: (-1)31+...+jk+1 (11+...+1k+l 1)! All A1k+1
. 11!"'(1L—1)!"'lk+1! 1 k+1

31+2j2+...+(k+1)jk+1=k+1

The proof now follows immediately from the multinomial identity

. . . .
k;l (1l+...+1k+1 +lk+1)'

=1 ill...(lL—l)!...lk+1! 11!...(1k+1)!

-1)! (i1+...

(5.21)

If we introduce the vector of integers
(5.22) I =¢(,2,..., n,...).

the solution (5.15) can be expressed using multi-index notation as

(5.23) B, = I (_1)|a|J§!!Aa
a-I=k :

and the solution of (5.12) is then

(5.24)

We now note that if in the recursion formula (5.12) we replace

that summation index j by k - j, we have

k-1 k-1
5.25 . = - X A. . B. .= - X A. .B.. - A.. .
( ) Bl,k 5=0 i, k-3 Bl,] j=1 i k-3 Blj ik
Hence if we define Ai 0= 1 we have
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(5.26) A., = - X A,

That is, the B's satisfy the recursion formula with the roles

of the B's and A's interchanged. Hence, analogous to (5.24),

we have
lalla]! Lo
.2 . = z -1 .
(5.27) Al,k i (-1) ol Bl
We also have
(5.28) RY . .C = -B = ~-A rRY .C
° j+17j+175+1 j, k+2 j+1,k 3+17j+1

in view of (5.11).
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6. Stabilization of Realignment Procedure

Since the Realignment Procedure involves a similarity
transformation with large elements, it seems worthwhile to reduce
the procedure to small matrices, thus minimizing the build-up of
round-off errors.

We begin with the observation that in the notation of section 2
we remove the condition that the third column of P be orthogonal

to R, we can achieve the condition

(6.1) bji =0, j=3,..., n, b.. =0, j=4,..., n.

Hence by replacing the third column of P(1.6) by a vector
orthogonal to C in the span of R and C and then replacing
the remaining rows by an orthonormal basis for the orthogonal
complement of the span of R and C, we may achieve the form (6.1)
by a unitary transformation. 1In order to explicitly construct
such a transformation, consider an arbitrary unit vector

X = (xl,xz,...,xn). Its Householder transformation then is

T
(x+e.) (x+e,)
(6.2) H 1 1

2
lx+e, |
th .
For k > 2, the k column of H, then is
X, (x+e.)
_ _ _k 1
(6.3) He, = e, Trx;

If we rewrite (6.3) in the coordinate free form

_ (x,ek)(x+e1)
k 1+(x,e1)

(6.4) e
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this gives a method for extending a unit vector for which
(6.5) (x,09) # -1

to an orthonormal basis. Moreover, since there is then no loss

of generality in assuming that
(6.6) X = (x, el) >0

the extension is numerically stable. Moreover, we note that for
a given x we can construct the vector (6.4) for any orthonormal
system (el,...,en) for which (6.6) is wvalid.

Thus, if x and y are orthonormal and
(6.7) (x,el) >0

the vector x together with

(x,e,) (x+te,)
(6.8) £ =e k 1 kK =2,..., n

k k ~ (1+(x,e;)) ’

form an orthonormal system with y in the span of f2""' fn.

The vectors

(v,£,)
(6.9) gk—fk—-l—_'_(—y—,—?z—)(y+f2),k=3,...,n

then extend y to an orthonormal basis for the span of f2,..., fn'
Note that by changing the sign of y, if necessary, we may assume

that (y,f,) > 0. The transformation

= —wol _ T T
(6.10) P = -xej ye, + z 98k
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then serves our purpose. The above expression is inefficient
from a computational point of view. In order to simplify the
computational complexity, we rewrite (6.10) as

T

T n
- yEy + IxFx

k=3

(6.11) P = -xef

x2y(x+e1)T n (X+el)T
- + T g x, ——a—.
1+x1 k= kk 1+x1

3

The second and third terms on the right side of (6.1) are the
Householder transformation of y on the span of f2,..., fn.
Hence on the span of -x, f2,..., fn’ we have

T

n
g . f., =1 - xx
2 k=3 k7k 1+(y1f

(6.12) -yf

5)
After substituting (6.12) into (6.11), we have

(Y+E,) (y+£,) "

(6.13) P=1I-

X,¥ X, 9
2 k9 T
¥ [ * T Ty T 1+x1](x ey

We observe from (6.8) and the orthogonality of x and vy
that
*k¥1

Tax ! k=2,..., n.

(6.14) (75 = ¥y - Tixe

Hence, after putting (6.14) into (6.9), we have

X X,y (y+£,)
. i, - k1 2
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It follows that

2 .2
n 1-x1-x2
(6.16) LXK gy = X - xie) - X,e, - |—gro— (x + e;)
k=3 1
'(l—xi-xg)yl (y+f2)
o)XYy XY, T+, I+(y, £, "
It follows from (6.8) that
2
%2
(6.17) -X,e, + 1+x1 (x + el) = —xzfz.
After putting (6.17) into (6.16), we have
n
(6.18) kf3xkgk =X - xe; - (1 - xl)(x + el)

2 2
l-xl—x2 (y+f2)

- Xpfy F XYyt Xy, Trx; | TF(y/E,)"
Hence, after simplifying,
X,y n x.g
2 k°k
(6.19) -x = —/—— + I ——r—
1+xl k=3 (1+x1)
(x+e,) X X.Y,+X,Y (l—xz-xz)y (y+£,)
- _ 17 2 (y + £,) + 171 7272 1 72'1) 2
1+x4 1+x, 2 1+x1 (1+x1)2 1+(y,f2)

The coefficient of y + f2 in (6.19) may be written

1

(6-20) (T Ty E,) -x, (1 +(y,£,)) + %y, + x,y, + Trx;

It follows from (6.8) with k = 2 that



23

2
X5¥

e 21

(6.21) X (L4 0 £))) = =xp - Xp¥y + Tig

We see from (6.21) that (6.20) reduces to

Yi17%5

(6.22) (1+x,) (1+(y,£,)) "

It follows from (6.19) and (6.22) that the coefficient of

(x + el)T in (6.13) is
(x+e,) (y,-x,)
1 17%2
(6.23) T+x, + (T+x) 1+ (v, £ ly + £5).

2)
It follows that

(Y+E,) (y+£,) T (x+e;) (x+e) T

(6.24) P=1I- THy,5, T+x,
¥Y7%; T
O (I (y g0 W ¥ ) x+ep)

In order to put the above expression in coordinate free form,

we note that

(6.25) fx + e® =20+ x), |y + £,0° = 21 + (¥,£,))

and

X, (x+e,)
T 2 1
(6.26) (x + el, y + f2) (X + el) [y + ez - __lTx_l_—]

yl + x2 - 2x2 = y1 - x2.
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Hence, if we define the unit vectors

xt+e, y+f2
(6.27) u = ’ v = '
xteq y+f2
we may rewrite (6.24) as
(6.28) P=1I-2uul - 2vv® + 4ulvvur.

Since this factors into (uTv = VTu)
T T
(6.29) P = (I - 2vv ) (I - 2uu’)

we see that P is just the product of two Householder transforma-
tions.

The preceding paragraphs yield the following theorem.

Theorem 6.1. Let x and y be orthogonal unit vectors

with Xq > 0 and, with S AR the canonical basis vectors,

) (x,ez)(x+el)
2 1+(x,e

(6.31) f2 = e

14

1)

(6.32) (v,£,) > 0.

Then with u = (x + el)/ux + elﬂ and v = (y + fz)/ﬂy + fzﬂ,

the linear transformation

(6.33) P = (I - 2vv¥) (I - 2uu’)

has the properties that

(6.34) The first column is -x, the second is -y
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and
(6.35) The third through nth columns are orthogonal to x and vy.

By promoting the subscripts we obtain from Theorem 6.1 the

following theorem.

Theorem 6.2. Let A be a real symmetric matrix in block

diagonal form.

I g T T T
(6.36) A=A+ elR + Ce1 + allelel'

with R and C 1linearly independent. Define
(6.37)  x = q=n 4if C, >0, x=-75r if C, < 0
) Iicl 2 = 7! Il 2 !

and with

_ (x,e3)(x+e2)
3 1+(x,e

(6.38) f, =e )
2

choose y orthogonal to x in the span of R and C. Then,

with u = (x + ez)/ux + ezﬂ and v = (y + £3)/|ly + £5], the linear
transformation
(6.39) P = (I - 2vv?) (I - 2uu’)

T

has the property that B = P AP satisfies

(6.40) bj1 = 0, j=2,..., n, b.. =0, j=4,..., n.

In contrast to the tridiagonalizing step if we apply the

above theorem to the reduced matrix we will, in general, interfere
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with the structure of the first row of B. The gquestion arises as
to whether a different choice of the third through nth columns
of (6.10) would make it possible to extend the method. We
observe that the factor I - 2uuT in (6.39) serves to achieve

one lower Hessenberg step for the matrix A. Thus suppose that

we have a matrix A satisfying

(6.41) a., =0, 3 =3,..., N.
The condition that a similarity transformation P of type 1

achieves the condition for B = P_lAP that

(6.42) blj =0, j=4,..., n

is that the third through nth columns of P be orthogonal to R.

The condition that (6.41) be retained for B is that the second

column be proportional to e,. This means that we can set the

second row of P equal to eg and impose the condition that the

T
13""'a1n) .

The Householder matrix of this vector then serves the purpose of

fourth through nth columns of P be orthogonal to (0,0,a

filling out the lower right(n - 2) x (n - 2) corner of P. The

formal result is then given by the following theorem.

Theorem 6.3. Let A be a matrix satisfying (6.41) and let

H gg the Householder matrix of (0,0,a13,...,a1n)T and e.. Then B = HAH

3
satisfies

(6.43) b

n
o
-
(W}
i
1N
-
.
.
~
o]
-
o
|
o
-
(.}
Il
w
-
.
.
.
-
=]

13
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In particular, the matrix of Theorem 6.3 is the product of
two Householder matrices with the factor (I - 2uuT) appearing
on the left in contrast to 6.39 where it appears on the right.

As remarked earlier, the above transformation, if applied to
the promoted matrices, destroys the form (6.41) and (6.43).
However; if the first row and column are in tridiagonal form,

we can proceed to the next step and achieve

(6.44) aj2 0 for 3j > 4

and

(6.45) a2j =0 for 3j > 5.

One can also promote the indices in Theorem 6.3 twice and

obtain a matrix satisfying

(6.46) aj,2 =0 for j > 5 and a2,j =0 for 3j > 6

in addition to (6.41) and (6.43).

In practice, however, it is not important to have the second
column in Lower Hessenberg form. This allows us to have one more
zero in the second column. The promoted version of their first

is contained in the following theorem.

Theorem 6.4. If the first k - 1 rows of a matrix A

are in tridiagonal form, then there is an orthogonal similarity

transformation which insures in addition that

(6.47) ajy = 0 for 3j >k + 2,
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(6.48) ak"j =0 for j >k + 4
and
(6.49) 341,45 =0 for j >k + 5.

We shall find in section 8 an application where Theorem 6.3

is superior to Theorem 6.4.
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7. Realignment

Let us suppose that the first column of A is in lower

Hessenberg form
(7.1) a.

By transposing, if necessary before achieving the above condition,

we may assume that

(7.2) a

Let us denote the truncated rows by

(7.3) uj = (O’O,aj'3’~oo,ajn)-

The condition of instability than taken the form

and (7.2) becomes

2 2

2
(7.5) ay 12 fu, I + a7,.

Let us now apply the similarity transformation

_ T
(7.6) P = (I-aelez).
We find that
-1 _ T _ T
(7.7) B =P AP = (I+aele2)a(l aelez)

_ T, _ T _ 2 T
= A + ael(ezA) u(Ael)e2 a azlelez.



It follows that if we assume that a;; = 0,

_ _ 2
(7.8) B12 = a12-+aa22 a asq
and that the truncated first row is

(7.9) vy = u, + au.,.

By choosing the sign of a so that

(7.10) sign @ = -sign a51355
we have
(7.11) 1B..1 > lalla,, | + a?la,. |

* 12' £ 22 21

For some O,

(7.12) = 0]

lay,! 3l

0 <o < €/]1+€°

30

Hence, as a consequence of (7.9), (7.11), (7.12) the critical

ratio for the matrix 13 has the lower bound

2
IB. .| (a“-0) |la,, l+]al]a
(7.13) 12 21

22I

v, luy l+allu, |

since, by (7.5) and (7.12), we have

(7.14) oyl < J1-62 la,, |

we can replace (7.13) by

2
|B12| (a -0)l321|+|a|'a

22

(7.15)

leu > Jl-02|a21|+la|Uu2U
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Hence, if the second row of A satisfies
(7.16) lu, bl < Aa,,l

we have when az > 0

(7.17) > min {& =9, %3.

uv1u 1—02
Also if
(7.18) Uuzﬂ < mulay,l
we have

B, | 2
(7.19) 12 > o -0 .

v, I J1—02+Ia|u
Hence, with

2 2
(7.20) A = %, @ >0 + €i-0?, p = & =9-€ll-0
: €lal

we may assume that a matrix satisfying (7.4) also satisfies

| flu, | flu, |
2 2
(7.21) |a21| < — |a22-alll < ——-

We note that the presence of (azz-all) in place of |a22| in (7.16)

is due to the fact that in the proof we assumed that a;; = 0.



8. Conditioning of Realignment

Let us now start over again with the similarity trans-

formation (7.6). The elements of B, (7.7), outside the

tridiagonal structure that differ from those of A arel

{8.1) b,. = a,. + aa

13 j=3,...,n.

Hence if we define

u = (0,0,a13,...,aln)

(8.2)
(0,0,a

<
I

23,...,a2n)

the change in the square matrix norm of the non-tridiagonal

elements is
(8.3) >Uu+avu2 - uuuz = 2a(u,v) + Ialzﬂvuz

and the choice
- "(ulv) = - u
(8.4) a = —H;HE_ ﬁ;ﬁcos 0

reduces the sum of squares of the off-tridiagonal elements

2
(8.5) - iﬁLi%— = -Uuuzcosze
v

By interchanging the first and second rows and columns, if

necessary, we may assume that

(8.6) bl 2 Wl

lywhether or not a;; =0, i>3.

32
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If we assume in addition that

(8.7) cos 0 = —4rVv) satisfies |cos 6] > 1
ulliv] 3z

we can achieve a reduction of at least

1p..412
(8.8) - Euuﬂ

in the sums of squares of the non-tridiagonal elements.

We could also precondition the matrix A by applying
similarity transformation based on the upper left two by two

cross section

- (8.9) (a b)
c 4

with exactly three elements not zero so that the inverse exists.
It is easy to program the computer to determine which reduce the
nontridiagonal norm and do not introduce overflow on the tri-
diagonal elements.

Now we may be apply a permutation matrix and transpose if
necessary so that the truncated first column dominates all off
diagonal row and column norms. Next we apply the Householder

transformation that achieves the condition
(8.10) a;, = 0, i >3

This preserves the first row norm so that we may assume that

the vector u, (8.3) satisfies
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(8.11) full < la
If it is false that

(8.12) vl < la,, |

we may interchange the first two rows and columns and achieve a

matrix whose truncated first row has norm at least

(8.13) Ii‘lazll.

Thus, since orthogonal linear transformation preserve the matrix
norm, we may achieve (8.11) and (8.12) by a finite number of
repetitions of the above procedure. |

Now, we apply the first procedure again rendering u and v
orthogonal. Now we apply the promoted version of Theorem 6.3 with

x =1Iulfull, vy =+ v/|lvl. This achieves a matrix of the form

all a12 0 a14 0 e 0

81 %22 823 0 0 0
0 a31 . . a3n
0 an2 ann

Now, we exploit the fact that the matrix

T T
(8.15) (I+ae2e3)A(I-ae2e3)

is also linear outside of the tridiagonal structure. Thus we
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may apply the first method to it and destroy the orthogonality
of the first two truncated rows. If there is danger of over-
flow on the element a,, we may settle for less than the optimal
off-tridiagonal norm reduction. We may now apply the trans-

formation

T .
(8.16) (I—aejej+l), j=3,4..., n

and start over again. In the cases, where we have prevented
over-flow, we shall put non-zero elements in the 1 - 3 and 2 - 4
positions of the matrix (8.14) but we shall still destroy the
orthogonality.

We can also exploit the fact that under condition (8.10)

the matrix

(8.17) (I+ae e?)A(I—aeleg), j >3

1

differs from A only in the first two rows and is linear in «.
In any case we see that we can start the realignment procedure
using M =1 in 7.18. This allows us to put the first row and

column in tridiagonal form with

1 8¢
(8.18) @ = 1{e + |1+ }, €<1
2 —_
.Jl+€2
and
(8.19) « = 3{e+ Je2+4J1+e2 3}, €> 1.
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9. Further Realignment

Let A Dbe a matrix in lower Hessenberg form with rows Rg

and columns Cj'

n .
_ T _ I+l
(9.1) Rj = i=}J;-lajiei, Ci = Zi=l aijei’

We may use either of the following expressions for A.

_n T _ on T
(9.2) A =31} jeR] = I c.el.
Let
(9.3) T _y0 T

and define
. _ e T e o) e (T T
(9.4) ¢ = (I-eq9]) (I-e,p,) - (I-e 1o _,).

Then ¢ is invertible and

-1

= T T T
(9.5) ¢~ = (I+e 1% _1) .- (I+e,05) (I+e 7).

The matrix
(9.6) B =29

is in lower Hessenberg form and has the same subdiagonal elements

as A. This is a simple consequence of the following

Lemma 9.1. Let A = (aij), B = (bij) be n x n matrices
satisfying Qij =0 if i > j+4 + 1 and bij =0 if i > i +r + 1.
Then the product matrix C = (C,.) = AB satisfies C,. =0 1if

1] 1]
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i>j+r+41.

j+R
_ N _ . . .
Proof: Cij = Zv=laivbvj = 2 aivbvj Hence if i -4 > j + r,
v=i-{
eij = 0. Note that r and 4 may be positive or negative
intergers.

We now suppose that the matrix A has had k tridiagonalization

steps performed so that

(9.7) aij =0 if 3 > i+ 1 and i < k.

We shall also assume, as we may, that

(9.8) |ai+l,i‘ = lai,i+l| when i < k
and that
(9.9) aij =0 if 3 > i + 2.

Let us also suppose that A is in unstable condition for another

tridiagonalization step. That is

2 2
(9.10) ak+1,k+2/ygk+1,k+2+ak+l,k+3

is small. We then apply the similarity transformation (4) and
attempt to choose the ¢'s so that the term corresponding to the

matrix B, given by (6), is reasonably bounded away from zero.

We note that

T _ T
(9.11) eLQ =e;, +9,.

It follows that the condition that the tridiagonal form be
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restored is then that

L, T, T _ -
(9.12) (eL+ch)A§eV =0, v>1+ 2, 4 £ k.
This is equivalent to the existence of constants Y&v such that
R S | T
{9.13) (eL+¢L) A% = 2j=lYL,vev’

Upon multiplying (9.13) on the right by & ' we obtain

T A+l T, T
(9.14) (eL+¢&) A= zv=lY£v(ev+¢v)

Since A has had k tridiagonalization steps completed and

Py = 0 for v <1, it follows that
14

T, _ : _
(9.15) (e +9;) "Aey = 0 for j & k - 2.

It follows then by induction from (14) and (15) that

T, T, _ A+l T T
(9.16) (ey+@ )A = ZU77 Y, (el+p))

must be satisfied for some constants and Y

Yo, 0-17 Yp, 07 L,A+1°

In order that the wv's have the form (9.3) we must have

T T _
(9.17) (eytoplBe, 1 = Yy, 117
T —
(9.18) (e @ ) Aey =Y, o + Y, 2 1%-1,21
and

T
(9.19) (eL+mL) Ae + Y +

41 = Y1041 2P, 41 T Y, 4-1%0-1, 041"
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The above three conditions show that Y and Y can be

11 12
determined uniquely as functions of (@lz, Pygrecer®y n). For

any choice of the wij's for which

(9.20) | le #0

we may use (9.16) with 4 =1 to define mg uniquely in terms
of m{. Similarly, if w{,..., mi_l have been determined so that
(15) is satisfied, then the formulas (17), (18), and (19) serve

to define Y&,L—l’ YL,L and YL,L+1 uniquely. When Y&,L+1 #0

T
v+1°

choose the first row w{ so that (9.17), (9.18), and (9.19) are

we may then use (16) to define ¢ Thus our strategy is to

satisfied for 4 =1, 2,...,k with

(9.21) YL,L+1 #0, =1, 2,...,k

and then to furthur adjust the first row w{ so that the term

(9.22) b1, k42

n .
\/2j=k+2bk+1’ 3j

is reasonably bounded away from zero. When 4 < k + 1, the

tridiagonal form of A implies that

(9.23) AeL = a&—l,LeL-l + a,,e, + a&+1,&eb+l‘

Hence it follows that (11), (18), and (19) reduce to

(9.24) ar,4-1 = Yi,4-17
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(9.25) A Y1, T YL,¢+1 = YL7L + YL,L—lmL—l,L
and
(9.26) a, 441 * Qa1,e41%0, 2041 T Yo, 041 Y Ya®r, 041 Y Ve, 4-1%0-1, 0410

Hence we have

(9.27) Ye,4-1 = %, 4-1
(9.28) Yo, 0 = 20 b 341 ,1%0, 041 T 2, 0-1%0-1,0
and
(9.29) Y = a - a wz
. 41 T 2,041 T 241,4%, 041
tlag iy, 41 7 % T3, 0-1%0-1,41% 041 T 2, 0-1%0-1, 441

In order to study the term (9.22) we shall need to compute the

(k+l)T row of B which is

T
(9.30) (ek+l+mk+1) Ad.

Let us now assume that mg =0 for j >k + 2. That is
— - T - T * o o — T

(9.31) ¢ = (I elwl)(I ezwz) (1 ek+l¢k+l)'

It follows that

_ T_ T _ T
(9.32) ek§ = (ek wk)(I ek+1¢k+l)

T T T
x T %kt P k+1%k41’



T . _ T T
(9.33) Sk+1? T Ck41 T P41
and

(9.34) e?@ = eg, j > k + 2.

Hence, since

(9.35) i1 * Pea1 = Cpap * j=§+2¢k+l,je§
and
(9.36) S zgzg_laj'vez; >k + 1
we have, writing for the moment ¢k+1,k+1 =1
T T n a T
(9.37) Crr™iee ) 7 By | 2 B, 37500y
Zoek j:§i1¢k+1,jajv ey
Let us rewrite (9.37) as
(9.38) (Cy1*Ppp1) B = ak+1,ke£

T
+ 1301, k41 2K+1, k+2%+1, k+21 Sk41

n v+1 T
I ke2 [zi=max{k+1,v—2}°"k+1, jaiv} €y
It now follows from (9.32), (9.33), (9.34), and (9.38) that

T T _ T_ T T
(9.39) (C41%Phs1) BE = Ay Lo Pty 1041 %k ]

40



+

T T
(3 sy, ke1 3%k41, ke 1%k+1, k42 [Cka1™Pk41]

n v+1 T
+ zv=k+2 [zj=max{k+1,v—2}q)k+l,jaiv] €y-

41



42

10. Uncoupling

Let us now suppose that, the first k - 1 rows of A

are in tridiagonal form

(10.1) a,. =0 if i< j-1 or i> 3j+1

(10.2) a =

i,i+l 3i41,i when i < k - 1.

th

We assume also that the k rows and column satisfy

(10.3) aix < 0 for i > k + 1, ak,j =0 for j >k + 2
with

2 2 2
(10.4) an,n+1 T 3n,kx+2 < 2n+41,k

k k X X
but that

a

(10.5) k ktl is small

da? | +a?
n,k+1 "n,k+2

so that the matrix is in unstable condition for another tri-

diagonalizing step. We now apply the similarity transformation
T T
(10.7) ¢ = (I—¢k+lek+l)(1—mkek)

with
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14-1

(10.8) p, = Z p.,e., L =%k, k + 1.
< j=1 473

and impose the condition on

(10.9) B = & 1ag
that the k™ and (k+1)5% column satisfy
(10.10) Bi& =0, i < L -1i, 4 =k, k + 1.
This translates into
-1 n
(10.11) BeL = @ A(eL~¢L) = i=i!_lBiLei

for 4 =k, k + 1. After multiplying (10.11) on the left by ¢,

we obtain
(10.12) A(ek—mk) = Bk—l,kek-l

+ By (e ) + By x(Cpi17Pryn)

n
+ z B, .e.

i=k+2 trk1
and
(10.13) Aley 179 1) = B y1 (e 9y
n
S B,

+ By, k+1 (Cke1 %k42) i, k+1%i°

i=k+2

It follows from (10.1), (10.2) and (10.3) that
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T j+1
(10.14) e.A = z a;.e.y for j <k -1
J i=j-1 J
T k+2
(10.15) eA = I a, ,e
k i=k-1 i,kk
T n
(10.16) e.lA = I ai,je., j>k+1
] i=k+2 *

Hence the conditions that (10.12) and (10.13) be satisfied

require

(10.17) By =350 32k +1

(10.18) B,k = %%,k T Pk, k-1%k-1,k T 2k+1,%k%k, k+1

(10.19) Br-1,k = ®%-1,k ~ ®k-1,k-2%-2,k ~ 2k-1,k-1%k-1,k
* Brk®x-1,k t Bral,k%Pk-1,k+1

(10.20) Bj’k+l ='aj,k+l’ >k + 2

(10.21) Bitl,k+1 = %k+1,k+1 ~ %k+1,kPk,k+1°

(10.22) By, k+l = %k,k+1 T %k, k-1%k-1,k+1
= 3 k%Px,k+1 b Bral,k+1%k, k+1

These can be satisfied for arbitrary choices of Py and

Pi1e In addition, we must have

(10.23) a; 0 3-1%5-1 % Y 255%5 % 35, 141%541,x
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+

= Byg®i,x 7 Bra1, k%5, k41

for i < k - 2 and

(10.24) a + a

i,i-1%i-1,k+1 t 2ii%®i, k41 i,i+1%i+1,k+1

= By k+1%i,kx T Bxa1,k+1%i, k41

The conditions (10.23) and (10.24) from backwards recursion

formulas which require division by

(10.25) a i<k-1.

i, i-1'

The stability would be maximal if they were decreasing as i

increases. We could achieve this by interchanging the ith

and ith rows and columns each time whenever the ith cross-
product is greater than a predecessor. This would, of course,
require backing up an appropriate number of steps.

In any case, we can achieve our objective (10.10) for

arbitrary values of

(10.26) Pr-2,k’ Px+1,k’ Pk-1,k+1’ Pk, k+1

Now we have added non-zero elements to the final k -1
rows of the columns indexed by k + 2,...,n. Now suppose we

consider a similarity transformation of the form

T T
(10.27) (I-mk+2ek+2)...(1-¢nen)
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with

k+1
(10.28) . = I @..e..

Jooi=1 1302
Then, if we follow (10.9) by the similarity transformation
(10.22), since we impose only that the first k - 1 elements
of columns (k+2),...,n vanish. We will obtain recursion formulas
analogous to (10.20)-(10.22) for each of these.
Hence it is possible to achieve a matrix so that we can
apply tridiagonalization steps toward either the lower right

or the upper left corner with the elements (10.26) and

(10.29) wk—l,j' mk,j

arbitrary.

| One can first choose (10.26) to achieve stability and then
use (10.29) to minimize the amount of arithmetic. This allows
us to proceed toward the lower right corner and achieving a
similar matrix whose elements outside the tridiagonal structure
have been reduced. It is our opinion, however, that the

analytical method is more efficient.
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11. Preparation for Programing

The recursion formulas (5.2), (5.3), and (5.4), while good
for theoretical purposes, are not the most efficient for computa-

tion. This is because, at each stage, we need only to compute'

To T
11.1 R.A.C. and R.C..
( ) J 33 J 3
In order to be able to stdre the matrix Xj’ we would have, in
addition, to carry out all of the indicated operations. In this
section we shall re-write them so that the jth step can be com-
pleted by deflating the original matrix and storing the remaining

data in projections. For this purpose there is no need for sub-

scripts so we shall work with (4.10), 4.11), and (4.14). Let us

write
~ ® T T T
(11.2) A=A+ Gzzeze2 + e,s” + dez.
It follows from (4.10) and (4.14) that
(11.3) A1 = HA(I-rr )H + Hch.
and from (3.2) that
(r+e.) (r+e,)
(11.4) HA = A l+r2 ezA 1+r r'A.
2
We next substitute
(11.5) r’A = rT(R-Q) + Qrt

= —rTcRiH + QrT
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into (11.4) to obtain

~ (r+e,) o  (r+e,) . o

- __ e I _ 2 _0eT
(11.6) HA = A e2A + 1+r2 [rchH Qr-1].

We now substitute (11.6) into (11.3), noting that R?Hr = 0 and

rT(I-rrT) = 0, and obtain

~ o~ (r+e2) To T rTc T
(11.7) Al = [A- —]:_'_—r—z-— eZA] (I-rr " )H + [HCT;?z (r+e2)]Rl.

. \A Vv .
Let us now define r and ¢ to be the vectors obtained by re-
placing the second components of r and ¢ by zero. It then

follows that

(e2+r) VT

. T _ _ T _ 2"
(11.8) (l-rr')H =1 e e, 1+r2 r.

After some routine computations we then have from (11.2), (11.8)

that

(r+e.) T
(11.9) (A- ——=eLA) (1-—=)H

(1+r2) 2 rrT

N ir rTs G22 V.VT ¥ST
= N [l+r +d+ 2 T+r yrlr” - 1+r
2 (1+r2) 2 2
and
A
T c,T
: rc _ v 2
(11.10) Hc + l+r2(r+e2) = C l+r2'
It now follows from (11.6) - (11.10) that
sV T Q v T
~ ~ Ar r's 22 V., VT rs
(11.11) A, = A - + 4d + ( + )rlr® -
1l 1+r2 (1+r2)2 (l+r2) 1+r2
c.¥
\ 2 T
+ (c 14r )Rl'
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It will also be convenient to have the vector Ry and Cy
expressed as sums each of whose first two components are zero.
It follows from (4.10), (4.11), (11.2), and (3.2) that

T~
r A(r+e2) ¥T

(11.12) R} =-r—r%.—c[¥T§ + st - T, ]
and
(11.13) Cl = -ﬁg - czd + Ag

+ (ejhc - c,h) -171\%

We also have the following expression for two of the scalars

that appear in (11.12) and (11.13).

(11.14) r+K(r+e2) = r2a22 + er + Q
and

+ _ T
(11.15) eng = a,,C, + s c.
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12. Matrix Norm Reduction.

For a symmetric matrix, the square matrix norm is the sum
of the squares of the eigenvalues. By using a non-orthogonal
similarity transformation one can increase the matrix norm
arbitrarily. This fact implies that a non-symmetric matrix
with simple eigenvalues is similar to a symmetric matrix. It
therefore seems reasonable to find similarity transformations
which reduce the matrix norm. Let us consider a unit vector

of the form

(12.1) ¢, = I o,

and apply to a fall matrix A the similarity transformation

- T -1 _ T
(12.2) P=1I ae 9., P =1 + ae. @,
The ith row of
-1
(12.3) B =P AP
is then
T, _ T T a _ .2, T T
(12.4) eiB = eiA + awi(A aiiI) a (wiAei)¢i
and for Jj # i the jth row is
T T T
. .B = e.A - aa..p..
(12.5) eJ F Jlml

The rows (12.5) are linear in a and if we impose the condition



(12.6) mIAe. =0

so will the ith

Ty _ T T
(12.7) eiB = eiA + uwi(A aiiI).

Under condition (12.1) and (12.6), we then have

2 2 _ o T, T _ T
(12.8) Il - lal© = 2ale;A(A"-a, Ty, jii ajiejAmi]

+ qz[ﬂvz(AT—aiiI)uz + 'i'agiUwiuzl.
j#i

Let us define the matrix C by

T T T
(12.9) C = eiwi(A—aiiI) - L a..e.p, = e-w.A-;a..e.m.

j#i ji j7i ivi

Thus (12.8) can be written

(12.10) IB)? - |a)? = 2atract + a® trecT.
Since

T _
(12.11) trACT = (a,C)

is an inner product on the real n x n matrices, we

may rewrite (12.10) as
(12.12) UBHZ - MAHZ = 2a(A,C) + QZUCUZ.

The choice
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(12.13) o= - {20 = _Ial o5 ¢
el el

then gives

(12.14) HB”2 - UAHZ = —UAU200526 .

Hence whenever it is possible to find a vector ¢ for which

(12.15) (A,C) # 0

the matrix norm of B will be less than that of A. We see

from (12.8) that (12.15) can be written

T,.,.T T
But
T T
(12.17) Zjajici - eiA

Hence (12.16) reduces to

(12.18) e} (aaT-aTa)g, # 0
or in terms of the canonical inner product
(12.19) <(AAT-ATA)ei,¢i> # 0.

Hence, by (12.1) and (12.6), we may reduce the matrix norm of

A by a similarity transformation unless the vector

(12.20) (AAT-ATA)ei
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is in the span of the vectors

(12.21) e. and Aei

for each i =1,2,...,n.
The condition (12.6) is only for the convenience of achieving
a quadratic for the square matrix norm of B. The assumption that

e is a cononical basis vector is also only a computational

convenience. We could therefore also consider a linear transformation
_ T
(12.22) P=1I-e¢

with e and ¢ arbitrary orthozonal unit vectors

(12.23) e, > = elp = gle = 0

Before doing either let us make the observation that
(12.24) tr (A+AI) (A+AI) T = tr(aAT) + 2tra + nA2
Hence, if B and A are similar matrices, we have
(12.25) trBBT - traaT = tr(B+AI) (B+AI)T - tr(A+AI) (A+AI) Tu
It follows that
(12.26) sl? - lall?
is independent of shifts. Thus, let us define

~

(12.27) A=A - (eTAe)I; hence eTKe = 0



or, if e 1is the canonical basis vector ei, that
(12.28) e,. =0

The similar matrix

(12.29) 8 = (I+aep )X (I-uvep’)

may then be written

(12.30) BE=2%+ aewT - acmT - a2<¢,e>e¢T
with
(12.31) c = Xé, w = KT¢, r = ﬁTe

For future reference, we note that

(12.32) (c,e) = 0, <r,e> = 0, and <w,e> = <f,c>

As a consequence of (12.26), we have

(12.33) IBl? - l2l% = [Bl% - I&}® = tr B8T-8%T) .

It follows from (12.20) that
(12.34) 8T = &7 = awe® - upe’
For any two vectors u and v we have

(12.35) truvT = vTu = <v,u>

54
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1t follows from (12.22), (12.20), (12,21) and (12.24) that

f f o~ maT
(12.36) uBn2 - uAuz = —2¢< (FTR-ERT) e, poa

+ {u'zi'rcpuz + uc[{2 -2 <r,cp><c,q>>}u2

- 2 <c, & Tg,0a> + <>l

The following theorem now shows that we may always reduce the

norm of a non-normal matrix without the assumption (12.6).

Theorem 12.1. If A is not a normal matrix, then there exists

orthogonal unit vectors e and ¢ such that the matrix
T T

(12,.37) , B = (I + ae@ )A(I - uep’)

has a smaller norm than A for some .

Proof: Since the commutator is invariant under shifts, it follows

from (12.25) that it is sufficient to find an e such that
(12. 38) (aTa - aaT)e

has a non-zero component in the orthogonal complement of e for

we may then take for ¢ the component of (12.27) in the orthogonal
complement of e. If not, every vector is an eigenvector of

ala - aaT. But then the matrix of ATA - AAT is diagonal in every

coordinate system. It follows that the eigenvectors are all

equal, say to A, and hence
(12. 39) (aTa - AAT)e = Ae

for all e. Since the trace of a matrix in the sum of the eigenvalues
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and the trace of the commutator is zero it follows that A 1is

normal. This completes the proof.

The following example shows that we must let e range over

a set larger than a single orthonormal basis.

(12.40) a b} c # + b.
C

a

The following theorem show that if we impose the condition
that the polynomial be a quadratic we may still always reduce
the norm of a non-normal matrix by a similarity transformation of

the form (12.41).

Theorem 12.2. If A is a non-normal matrix, then there exist

orthogonal unit vectors e and ¢ such that
(12.42) {¢,Ae> =0

and such that the similarity transformation (12.-43) reduces the

matrix norm.

Proof: If the matrix norm reduction is not possible in the form

stated in the text, then
(12. 44) (aTa - anT)e
is in the span of

(12. 45) e and Ae
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for all vectors e. The condition (12.28) is, of course, equivalent

to
(12.46) <e,ATp> = 0

which corresponds to applying the method to the transpose of A.
But then if we can't reduce the matrix norm the vector (12.29)

is in the span of

(12.47) e and A'e
for all e. If we write

(12.48) A =B +C

where B 1is symmetric and C is anti-symmetric it follows from
(12.30) and (12.32) that Ce is in the span of e and Be for
all e. But since <Ce,e> = 0, Ce 1is then in the span of Be so

C = 0. This complets the proof of Theorem 12.2.
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13. The Quadratic Algorithm.

Under the conditions
(13.1) {g,e> =0, {¢,Re> = 0,
in the notation (12.2), the similar matrix (12.2) of
(13.2) R=2a-1AI, A =<e,re>
reduces to
(13.3) B=3+ aewT - aC@T
and the matrix square norm increment is

(13.4) isli® - iall?> = -2a<a®a - aaT,¢>

+ o Wwﬂz + Heﬂﬂ
and the choice

<(ATA - AAT)e,@>

Il + fcil?

yields the minimum increment

(13.5) a =

T. T 2
uBuz _ uAIiZ - _ <(A"A - AA")e,®> .

li® + licy?

The numerator will have the largest possible magnitude if we take

(13.6)

@ to be the unit component G1 of
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(13.7) G = (A°A - AAD)e

in the orthogonal complement of e and Ae = C. Since e and

C are orthogonal, we then have

(13.7) P = Gl/uGlu
with
<G,e>C
(13.8) G, = G - <G,e>e - &~
1 1 HCH2

Of course, it is not necessary that ¢ be a unit vector, since it
is only the product @ that is relevant. However, making it a
unit vector gives very géod control over the magnitude of the
quantities that are to be computed.

Thus once ¢ has been computed, we have only to compute
(13.9) w=AgQ

and substitute into (13.3). We can then apply the method over
again with the same e. When the increment has been reduced to a

predetermined size, we can shift back
(13.10) c="F8+2a1

and the matrix C is similar to the original matrix A and with a
smaller matrix norm. We can then pick another e and start over

again.
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One method for the choice of e that has worked well is
to simply loop over the canomical basis vectors e.,..., e until
several adjacent increments are sufficiently small.

Another method that works even better is to choose a random
e and then loop on it until the increments become small. We now
use the fact that for two admissible ¢'s, say ¢I and Py the
product of the similarity transformation corresponds to adding the

@'s by virtue of the orthogonality of Py and ®, with e:
T P T

(13.11) (I - eg))(I - eq,) =1 - e(p, + @,)

Then when the stopping condition has been reached,

(13.12) cp = q‘;l + mz +... + q“m

give close to the best reduction for the given e. We that use
this value of ¢ as the value of e for the method applied to

the transpose of the similar matrix. We then alternate between

A and AT until the reduction increments are both small. We

may then pick another random e and start over again. Here we
remark that is not advisable to reduce the matrix norm to a minimum.
This is because, if the matrix is deficient, the deficiency will

eventually disappear at a given floating point accuracy.
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14. An Improved Quadratic Algorithm.

In this section we shall obtain a recursion formula for the
pi's in (12.9) thus making it unnecessary to make the similarity
transformation until the desired sum has been found. This shall
save computing time and reduce the accumlation of round-off errors.
To achieve this end we apply the algorithm of the previous section

to the matrix

(14.1) T=8+e@af)?T - cfT
with
(14.2) f=ap, C=328e

with o and ¢ having been chosen by the preceding algorithm.

Since

(14.3) <ATf,e> = <f,Ae> = 0 and <f,e> = 0
we have

(14.4) Be =% =cC

so we do not have to shift again. Since
(14.5) 8T = &7 4+ ateeT - 2T,

we then have

(14.6) T8 =8Tc =&8T%e - |c|%t
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It follows from (14.5) that
(14.7) BTe =8Te + 87T
after substituting (14.7) with (14.1), we find that
(14.8) BB Te =8%Te + 88T
+ aTe,BTere - <ats, e

Now let U and G be the components of

(14.9) T -7 e
and
(14.10) £ Tr = Rw

in the orthogonal complement of e and ¢. Then we find from

(14.6), (14.8) - (14.10) that the new ¢ is the unit vector of

(14.11) 2 =U -6 - |cl’s;
that in
(14.12) e = &/[=].

Since ¢ is orthogonal to both e and ¢, it follows from (14.5)

that

(14.13) BTe =RTg
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By (13.5), it follows that the new a is

_ 2
“TIE el + Ial?

Now we need only to replace £ and w by

(14.14)

(14.15) £+ ap and w + aAlg

and loop back to the beginning or making the similarity transform-
ation and shift. Note that the vector U defined by (14.9) need

be computed only once for each e.
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15. The Quartic Algorithm.

Let us now consider the derivation of the coefficients of

the quartic in (12.25) with A replaced by
(15.1) B = (I + ef )A(T - ef’)

for arbitrary orthogonal unit vectors e and f. We first

observe that
(15.2) e B = e Ae + fTAe

Hence the shifted matrix is

(15.7) B = (1 +ef)R(1 - ef’) - <f,o>I

with & defined as before in (13.2). If we now define
(15.8) A =%-<,er

we have

(15.9) B =X+ effa - cfT.

Let us now define
(15.10) w =
We then have

(15.11) =%+ ew -cf
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8T = KT + weT - T

(15.11)
We now define the similar matrix

(15.12) M= (I + aep )B(I - aeg )
with ¢ the unit component of

(15.13) @8 - 880)e

in the orthongonal complement of e. We first note from (15.11)

that

(15.14) Be = ¢

since wTe = ch. Hence

(15.15) 88e = XTc - |l
~T

<£,05C - Jicf’s

]
b
Q

]

(15.16) BTe =%Te + w=r - <f,ede + w
and hence
(15.17) T®Te) = Br - <f,00c + Bw

It now follows from (15.11) and (15.17) that
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(15. 18) ﬁ%gme) &r = <f,c>r + <w,r>e - <f,r>C

- <£,05C + Aw + [w]j%e - <£,w>C
As a consequence of (15.15) and (15.18) we now have

(15.19) 3BT - 88T)e = §%c - & - Bw
- lcl?s + <£,r>C = <£,w>C + <£,c>r

- {<w,r> + uwﬂz}e

Now let us denote by U the unit component of KTC - & in the

orthogonal complement of e:
(15.20) U = XTe - &r - (XTC - 3};e>e

We note that U need be computed only once. Let us store in

G the component of Aw in the orthogonal complement of e:

(15.21) G = Aw - <Bw,eve.

It now follows from (15.19) (15.21) that

(15.22) o = &/|2]
with

L2
(15.23) @ =U -G - |cf|°f

+ <t,r+w>c + <f,cir.
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In order to compute the coefficients of the polynomial on the

right sides of (1225), we need to compute

(15.24) R =BTe anda v =BTy
It follows from (15.12) that
~T
(15.25) R=A"e+w=1r +w - <f,cle
Hence
(15.26) <R,®> = <r + w,p>

since @ 1is orthogonal to e, It also follows from (15.12) that

(15.27) v =B8Tp = A%p - <p,c>f

We now compute the coefficients

P, = - 2jef; p, = vi? + UCu2 - 2<¢p,c><R,p>

P, = - 24C,@>X<V,C>; P, = <, c>?

and then compute the « that minimizes

- o j
(15.28) Pla) = E_; Pia
Then with
(15.29) g =ad?

we compute the shifted form of the matrix (15.16),

(15.30) M= (I +eg )B(I - eg?) - <g; o>I
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After putting (15.11) into (15.30), we have
(15.31) M = (I + eg?) (R - <g,c>I + ew’ - ef ) (I - egl)

It now follows from (15.9), (15.10) and (15.11) that

(15.32) #=F8+egB - cgT
with
(15.33) B =8- <, oI.

It now is a consequence of (15.9), (15.32) and (15.33) that
(15.34) M = & - <g,e>I + e [& - <g,e>I1 (£ + g) - c(f + g)T
The promoted values of f and w are therefore
~ T
(15.34) (f + g) and (A - <g,c>I) (f + qg)
Let us re-write the second term in (15.34) as
T

(15.35) ATf - <g,c>(f + g) + Alg

and note that the first term in (15.35) is the old value of w.

In the notation (15.21), (15.24)
(15.36) Ag = 0AQ

Thus if we denote the promoted values of £ and w by f1 and

Wy we have



(15.37) fl =f + ap
and
(15.38) w1 =

We now replace A by

(15.39) A - <g,c>I

and are ready for the next loop.
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16. An Application of Constrained Maxima and Minima.

Our results on Realignment in section 6 and 7 were obtained
without considering their effect on the matrix norm. Moreover;
they are not complete since they depend on bounds for function of
matrix elements which need not be satisfied. Let us now consider
satisfying these bounds by reducing the sum of the square of certain
subsets of the matrix elements. For example, we might try to
reduce the sum of the squares of the non-tridiagonal elements or
the non-tridiagonal elements of a row or column. Moreover, let us
impose the additional condition that the matrix norm remain below
a fixed bound, say a prescribed constant multiple of its initial
vlaue. If the matrix is normal, this multiple, of course, would
have to be greater than one. We can use the results of the first
few iterations to let the compute decide what this multiple
should be.

Let us denote the increment of the swuare of the (&,j)th
element by DLj' Then according to (12.4) and (12.5) we find that

for the matrix A with Gkk = 0.

(16.1) D,, = 2aG, ,<g,C,> + a’ [<g,CL>2 - 2G,,<q,C

ki k4 2 k9]

- 2a3<g,Ck><g,CL>gL + a4<g,Ck>zgi

and for Jj # k
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2.2 2

(16 2) D., = - 2aG.,G 65,9%

it je49k9 @

In the notation of Section 15, let
- 5 3
(16.3) P(a) = &. Pja

denote the sum of the increments (16.2), (16.3) summed over the
whole n X m arrays. Suppose further that K has been determined

so that

(16.4) P(a) + K
assumes negative values so that

(16.5) P(a) + K =0

R has a non-zero real root for some pair e and £.

Now let S be a proper subset of the pairs of integers
(16.6) {(i,3):1 < i,j < n}

and let S' be the complementary set. Now let

_ 4 j
16.7 = & bp.,.=g .
(16.7) Q) = I D5 =2, o

and

(16.8) 0'(a) = & .. =gt ) Qﬁaj.

i,j€s’ 1] 3=
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Since
(16.9) P(a) = Q(a) + Q' (),

minimizing Q(a) subject to the constraint (16.5) is equivalent to

minimizing
(16.10) - K - Q'(a)

over the same constraint (16.5). It is clear from (16.1) and

(16.3) that

(16.11) Q& <0

The set of u's satisfying (16.5) is compact for a given orthogonal
pair {e,f}. If we compare the condition that the linear term in
P be negative and the corresponding term in Q' be positive,
the set of a' satisfying (16.5) for which (16.10) is negative
will always be nohn-empty.

Let us denote the linear term in P and Q' by <x,f> any

<y,£f>. That is

(16.12) P(a) = -2<x,£>a + 0(a’) in « = 0,
and
(16.13) Q' () = 2<y,£>a + 0(a®) in a - oO.

Then by choosing

(16.14) f = ax + by
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for constants a and b for which
(16.15) <x,f> > 0, <Ky,£f> > 0

we reduce the problem to constraints depending only on the variables
a, b, and a. The feasibility of solving it with little computing
is great.

Let us denote the unit vectors of x and y by
(16.16) g = x/|x]| and 7 = y/lyl.

and denote the unit component of 1 in the orthogonal complement

of & by

(16.17) g = L= 5,125
Vi - <g,m?

Now let us choose f to be the unit vector

(16.18) £ = at + bE, a% + b2 = 1.

The condition (16.15) then reduce to

(16.19) a>o0
and
(16.20) a<g,n> + b<g,m> > 0

Since, by (16.17)



74

(16.21) g, m> =V1 - <g,m?

the condition (16.20) reduces
(16.22) a<g,m> + b1 - <§,n>2 > 0
which, by (16.19), is equivalent to

(16.23) <E, w2 b
V1 - <g,mp? a

Hence, if we set

(16.24) <¢, > =sin ® , - 1/2 <0< 7/2,
and
(16.25) a=cos @, b==sin ¢

we may re-write (16.23) as
(16.26) tan ¢ > - tan 6.

Now, using (16.17) and (16.18) we have

(sin @)

(16.27) f = (cos @)% + o5 6

[n - (sin 9)§]

or

(cos(8 + @))E + (sin @)1
cos 6 °

(16.28) f =
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The conditions (16.24) and (16.26) now reduce to
(16.29) cos § >0 and cos (8 + @) > 0

For programming purposes, though, it is better to use the ortho-
gonal decomposition (16.18). The coefficients of ol in P

and Q' there are homogeneous of degree j. If we set
(16.30) X =a cos @§;'y = G sin @,

we then have the problem of minimizing

(16.31) Q' (x,y) = z Qi.xlyj
1<i+jca )
subject to the constraint
(16.32) P(x,y) < K P(x,y) = & P .xy’
1<i+j<a Y

This can be solved quickly by choosing an initialvvalue of @,

consistent with (16.29) and these substitutive
(16.33) X =y tan @,

in (16.31) and (16/32) to reduce them to polynomials of degree 4
in y. We then compute the roots of P - K to determine the
interval [0,y,] on which P - K is negative. We then find the
value of y in this interval for which Q' is minimal. We then
substitute this value of y into (16.31) and (16.32), and repeat

the preceeding algorithm. By alternating the roles of x and vy,
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the precedure converges quickly.

It can be shown that if A is sufficiently close to a normal
matrix, the polynomial P has only one local minimum. It there-
fore seems reasonable not to write the algorithm to include the

case when P °* K has three real roots.
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17. An Algorithm for the Constrained Problem.

Let us follow the lines of Section 15, but summing only over
a subset Q of the matrix elements. Let us denote the elements

of Q by the column induces

(17.1) Ij

of the elements of Q in the jth row of the matrix. The

analogue of formula (16.1) and (16.2) for the matrix B, (15.11),

can be written using (15.14) and <g,cL> = <ATg,e£>,
(17.2) D,, = 2u<g,B, ,Be,> + a’[<BTg,e,>> - 2B ,<g,C.>g
. k4 P S k9 k79
3 T L 2 L
- 2a <g,ek><B g,eL>gL + aQ <g,Ck> I
and
_ . 222
(17.3) DjL = 2abchng + a cng.

The coefficient of a in the polynomial

(17.4) T D
keI

+ & & D,

kU per,

is the inner product

(17.5) -2¢g,x>
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with

(17.6) x= -% b Be, + & & b.,c..e
L€1, L S WIR very 373k

By substituting (15.11) into (17.6), we obtain

(17.7) X= -Z A(G_,e,) + & C. & G,,e,
ver, MY g ) e MY
: J
~ 2
- & A(w,e,) - & c. z £,e
ver, Y gax e, t*
S
+ & (r + w,)f C, + <c,_,B> & r, ,e
N R e, St
+<c, &> & 6,,Be,) - T c.. T &,.e
per, KO T L S e, 1552
(mod ek). 1f for each j, I. = {1,2,.., n}, the first six terms

J
above reduce directly to (15.19) and the seventh is zero. We

note that if the diagonal element is in each I. the term within
the braces on the right side of (17.7) reduces to

(17.8) Ae, - & C.,e. =C,_ -¢C_=20
k 3#k k7 j k k

Also, if the diagonal element is in the complementary set for each
j the term within the braces is zero.
If we define, for an arbitrary vector

(17.9) us=3,_, ye,
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the operator Tj has

(17.10) Tj(u) = & ue,

we have the following theorem.
Theorem: If the diagonal belongs either to the set Q or the
complementary set Q' then the coefficient of the -inear term

(17.6) is =-2<q,X> with

(17.11) X = A(T (r,)) - & C.. T.(r.)
k' 7k i#k jk73 73
AT, (w) - & c321.(f)
k 5#x  JK73
+ <Tk(r + w),f>Ck + <Ck,f>Tk(rk),

and the sum of the second through fourth power of a is

2

2 T | 2 02
(17.12) a® {jr, (B J U7 - 2¢g,00¢q, T (x + WS + jkuTjgﬂ 3

C
j#k

- 2a2<g,ck><Tk(§g - <c,,9>E,g>

4 2 i2
+a’ & <g,cp> HTjgh

j#k
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