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(1.6) b . . = 0 if i > j + 2 or j > i + 2.
ID

Let A be a real non-symmetric matrix in block diagonal

form

T + Ce^(1.7) A = ^n^i^ + e1R
T + Ce^ + A

T
where R and C are the truncated first row and column. If

one applies the Householder Transformation corresponding to R

and continues working on truncated rows of the reduced matrix the

final result is a matrix B in upper Hessenberg form, that is

(1.8) b ±. = 0 if j I i + 2.

Similarly by working from the left one obtains a similar matrix B

in lower Hessenberg formf that is

(1.9) bij = ° i f i 2 j + 2.

Wilkinson [1] gives a method for starting with a matrix in

lower Hessenberg form with a-2 4
s 0 and obtaining a similar matrix

satisfying (1.3) and which retains its lower Hessenberg form. The

method can be continued until the second element of the top row of

the reduced matrix is zero. He then suggests applying a similarity

transformation.

For practical numerical purposes, when a-2 is small relative

to the norm of the truncated first row, one is little better off

than if a ^ = 0.



It is the purpose of this paper to obtain a stable

tridiagonalization procedure for real non-symmetric matrices.

For theoretical purposesf the method extends easily to complex

matrices. However, it appears that the stabilization procedures

need additional work. We therefore confine our attention to

real matrices.



2. Conditions for the Tridiagonalizing Step

Let us define a matrix to be of type k if it has the

block diagonal form

(2.1) P = (P. .) P. = P.. = 6. . if i < k or j < k.
ij ij ji ij — —

We shall in the sequel denote column vectors by letters and row

vectors as transposes of column vectors. An n x n matrix A

may then be represented by

(2.2) A = A + e^R1 + Ce^ + a ^ ^

where

(2.3) RT = (0,a12,...,aln), C = (0,a21,...,anl)
T

and where A is the matrix obtained by replacing the elements of

the first row and column of A by zeros.

Definition. We shall call a similarity transformation P

of type 1 a tridiagonalization step for the matrix A _if

B = P AP = (b. .) satisfies

(2.4) b x j = bj;L = 0, j = 3,..., n.

The condition that a tridiagonalization step can be performed

has a remarkably simple form.

Theorem 2.1. There exists a tridiagonalizinq step for the

matrix (1.2) if and only if[

(2.5) RTC 4= 0.



Proof: Let P be the transpose cofactor matrix of a

matrix P of type 1. Let

(2.6)
V V
B = PAP = (b.j.)

and let us determine conditions under which

(2.7) j = 3 f. . . f n.

Since P is of type one the first row of is that of AP

and the first column is that of PA. Hence the condition (2.5)

is equivalent to the conditions

n
(2.8)

and

k=z
alkPki = j = 3,... , n

(2.9) det

22

32

XPn2

l21 2nl

= 0, j = 3,. . . , n

nn

.th
the above notation indicating that the j column of P has

been replaced by C. The condition that (2.8) be satisfied is

that the third through the n columns of P are orthogonal

to R. The condition (2.9) can then be satisfied by letting the

second column of P be proportional to C. Hence if (2.5) is

satisfied a matrix P whose last n - 3 columns span the

orthogonal complement (in R
n_i)

 o f R a n d whose second column

is proportional to C will be non-singular. This proves the "if"



part of the above theorem. The only if part follows from the

following lemma from linear algebra.

Lemma 2.2. Let V - be an n - 1 dimensional subspace of
"•"•———————— — — — n~* J. — — — — ,.. *• -

an n-dimensional vector space V . Suppose that {v-,...,v }

is a basis for V n - 1 and that u^i^ € V n -
 v

n - 1- Then each of_

the sets

(2.10) {u1#u2,vlf...f
 vj-l'

i£ linearly dependent if_ and only if_ u.. and u 2 are linearly

dependent.

Proof: Let u.. , U2' vi' • • • * v -i satisfy the stated conditions,

Then there exist constants a, ,b, fc, . not all zero such that

(2.11) a u + b,u + Z c,.v. = 0
k 1 k 2 K] ]

for each k = l f 2 f . . . f n - l . If k=j=-t the vector (ak/b,) and

(a.,b-) must be proportional. Otherwise u- and uo would be in

V - contrary to the hypothesis. It follows that for each pair

(k^) , k 4s 4* there exists a constant d,» + 0 such that

(2.12) L c v - d 2 c v. = 0.

Since {vlf...f v _-} is linearly independent it follows that

But since k and I are arbitrary it follows from (11) that

u.. and u 2 are linearly dependent. This completes the proof of

the lemma and the theorem.



The proof of the above theorem yields a precise characterization

of a tridiagonalizing step.

Theorem 2.3. A matrix P of_ type 1 iŝ  â  tridiagonalizing

step for the matrix (2.2) satisfying (2.5) If and only if its

second column is proportional to C and its last n - 2 columns

form a basis for the orthogonal complement of R.



3. Construction of a Tridiagonalizing Step

Let A be a matrix of the form (2.2) which satisfies (2.5)

and define the unit vectors

(3.1) r = R/||R||, C = C/||c||.

The Householder matrix of r

(r+e9) ( r+e 9 ) T (r+e2) ( r+e 2 ) T

(3.2) H = I - 2 - ^ — = 1 x^?
l|r+e2||2 1 + r2

is orthogonal and symmetric and satisfies

(3.3) He2 = -r, Hr = -e2-

The third through n columns of H therefore span the orthogonal

complement of r so we can obtain a tridiagonalizing step by

replacing the second column of H by C. Hence for any X 4= 0

(3.4) P = H + (r-Xc)e2

2
is a tridiagonalizing step for A. Moreover, since H = I,

T T 2 T

(3.5) e 2 = e2H
z = -r H.

Hence we may express (3.4) in coordinate free form by

(3.6) P = (i - (r-Xc)rT)H.

We now resort to the Sherman-Morrison Theorem.

Theorem 3.1. If a and b are column vectors satisfying

bTa 4= 1/ then



(3.7) I - abT

is non-singular and its inverse is given by

T
(3.8) I + - a b

T
l-b a

It follows that the inverse of P is_ given by

(3.9) Q = P-* = H|I + ( r" X£ ) r 1
Xr c

1 = H[I

We now have a specific construction of a matrix

(3.10) B = QAP

satisfying

(3.11) b ± j = bj;L = 0, j = 3,..., n.

Since the elements b-2/ b2-, and b 2 2
 a r e invariant under

similarity transformations of type 2, it seems worthwhile to

compute them. It follows from (3.3)f (3.5) and (3.8) that

T
(3.12) Pe = -Xc, e^Q = - -^r~

\r c
L

Hence

(3.13) bl2 = ei Q A P e2 = "^ ei A c/

T
r Ae

(3.14) b o 1 = e^QAPe, = -
 1

21 - 2
W^^1 . T

Ar c
and

(3.15) b 2 2 = e2QAPe2 = - ^
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It now follows from (3.12) to (3.15) that

(3.16) b 1 2 = -\R
Tc = -XrTc||R||,

T

(3.17) b21 = - -*-£- = -||C||A

and

rTAc
(3.18) b

2 2 rTc

For theoretical purposes it make no difference which non-zero

value of X we choose. The choice X = 1 gives the simple

expression (3.6) for the matrix P. The value X = -||c||

Tachieves putting a 1 in the subdiagonal position and R C in

the superdiagonal position. The sums of the squares of the matrix

norms of P and P are seen from (3.6) and (3.9) to be

(3.19) tr{PPT + (P"1)V1}= 2n - 1 + (l + -^) * 2 - -§- + X
2

X (r c) re

a n d t h e v a l u e X = | r c | ~ m i n i m i z e s t h e q u a n t i t y ( 3 . 1 9 ) . The

c h o i c e X = [ l | R l | / I | c | j r T C ] 1 / 2 a c h i e v e s 11>121 = l b
2 i ' -
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4. The Condition for a Second Tridiagonalization Step

Let us suppose that the matrix A given by (2.2) satisfies

(2.5). Then with P and Q = P"1 given by (3.6) and (3.9) the

matrix

(4.1) B = QAP

satisfies (2.4). If P- is another non-singular matrix of type 1

for which

(4.2) B1 =

satisfies (2.4), then Theorem 2.1 implies that there exists a

non-singular matrix T of type 2 such that

(4.3) P1 = PT.

As a consequence of (4.1) , (4.2) and (4.3) we then have

(4.4) B1 =

It is easily verified that the condition (2.5) for the matrix A

is invariant under similarity transformations of type 1. Hence

the condition that there exist a tridiagonalization step for the

matrix (4.1) is invariant under similarity transformations of

type 2. It follows from (4.4) that the condition that a second

step can be performed is independent of the choice of the trans-

formation which satisfies the condition of Theorem 2.3.

It follows from the remarks at the end of the previous

section that we may as well work with the matrix
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(4.5) A± = QAP

since the computed entries (3.16) and (3.17) will not be affected

by similarity transformations of type 2. At this point it is

convenient to introduce the quantities

(4.6) G = rTAr A = ^
r c

We than have as a consequence of (1.7) and (1.9)

(4.7) A. = H(l + i £ ^ £ W i - (r-c)rT)H
I r c J

= H[A + SE^L rTK _ X(r-c>rT - f 0 - Al(r-c)rTlH.
L r c Vr c J J

Note that Q and P are of type 1 and A has zeros in its first

row and column; so does A-.

It now follows from (3.3), (4.6) and (4.7) that

T
(4.8) e^Aj = J L

r c

and

(4.9) A 1e 1 = -H(A-c) + Ae2.

Hence the truncated second row and column vectors of A- are

given by

T
(4.10) Rl = ~ -4rr-(A-Q)H

r c

and

(4.11) C 1 = -H(A-A)c.
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It now follows from (4.10), (4.11) and the fact that ai 22 = A

that

(4.12) ^1 = Al ~ e2Rl " Cl e2 " A e2 e2

After substituting e 2 = -Hr and e^ = -rTH into (3.12) and

substituting the values (3.10) and (3.11) for R^ and C 1 we have

(4.13) S x = HA1H - H ^-(&-Q) + (A-A)cr
T + ArrT H.

Lr c J
We now substitute (4.7) into (4.13) to obtain

(4.14) A = HA(I-rrT) - ̂ r-(A-Q) 1 H.

L r c J

It now follows from (4.10) and (4.11) that the condition that a

second tridiagonalization step can be performed is that

T

(4.15) R^C1 = JL-(X-n) (A-A)c + 0.
r c

Since the definition (3.6) of A implies that

(4.16) rT(A-A)c = 0

the condition (4.15) can be simplified to

(4.17) rTA(A-A)c 4s 0.

We note for future reference that the expression (4.14) for

(A-) can also be written

*1 = 4-P;l
s-

It is now clear from (4.14) and (4.18) respectively that

(4.19) A ^ = e ^ = 0.



14

5. The Recursion Formula

The conditions of the previous sections for being able to

perform two tridiagonalization steps yield a recursion formula

for finding the number of steps that can be performed by a

similarity transformation of type 1. Let

(5.1) rQ = r, cQ = c

and for j J> 1,

(5-2)

(5.3)

(5.4) A ^ n = I-

5 + 1 I A . p p": rTo.

Then the number of tridiagonalization steps that can be performed

is

(5.5) min{j : R^C. 4= 0] .

Moreover if

(5.6) RTC. ± 0, j = 0 , l , . . . , n - 3

then the matrix A is similar to a tridiagonal matrix B with
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r A. c.
(5.7) b u = a11# b ± i = i'l i-l i-l f ± = 2,..., n,

(5.8) b. . - = -1, i = 2f..., n and
l, 1-1

(5.9) bi

This follows from the fact that (3.16), (3.17) and (3.18) imply

that we can achieve (3.18) and

A diagonal similarity transformation can now be used to divide

bi,i-l by HCi-lll and to m u l t iP!y bifi+i
 hy Hci-ill Yielding

(5.8) and (5.9).

It is clear that the expressions(5.7) and (5.9) for b..

and b. . - can be expressed in terms of the preceding elements
l f i*» l

of the recursion formulas. Let us now define

(5.11) A±j = -A

and

- i

The results of the previous section now show that

In order to solve the recursion formula (5.12) we note that the

source of the sequence A. ., j = 1,2,..., is irrelevant.
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Therefore it suffices to solve suppress the first subscript and solve

<5'14) Pk - - ^ V k - * ' P0 = *'

The solution is

(5.15) p = Z (-1) X T ^ T ^ i ~ T - A l A 2 f - - - A k -
J + 2 J + + k j = k D l ° 2 Dk* x ^ K

The above is certainly true for k = 1. Supposing it to be true

up to a given value of k we may substitute for p, ,- . in
K T 1— j

k+l

It follows that each expression

(5.17) "\ Pk+l-^ f * = 1,...,

is obtained by increasing the index j., in the exponents by one

That is

(5.13)

ik+l--t

Because the coefficient of j in the weighted sum

(5.19) j x + 2j 2 +...+ Ij^ +...+ (k+l-£)jk+1_^ = k + 1 - I

the change of index j -• j - 1 will yield in each case a weighted sum
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summing to k + 1. Hence by introducing k + 1 - I indices all

equal to zero, we may rewrite (5.1 ) as

k+1
(5.20) 3 = I

£ (-1)
j1+2j2+...+(k+l)Jk+I=k+1

The proof now follows immediately from the multinomial identity

k+1 (i +. . .+iwn-l) ! (i1 + . . ,+i w 1 ) !
(5.21) L .. , L ,.—

il !"* ( ik+l ) !*

If we introduce the vector of integers

(5.22) I = (1,2,... , n,...).

the solution (5.15) can be expressed using multi-index notation as

(5.23) p = I (_i,lalMi Aa
K a-l=k a'

and the solution of (5.12) is then

(5.24) 3 = I (-i,lalMiAa
l f X a-l=k a ! 1

We now note that if in the recursion formula (5.12) we replace

that summation index j by k - j, we have

k-1 k-1
(5.25) 3± k = - 2 A. . 3. . = - 2 A. . 3., - A

Hence if we define A. n = 1 we have
1 r u
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(5.26)

That isf the f3fs satisfy the recursion formula with the roles

of the p's and A's interchanged. Hence, analogous to (5,24),

we have

(5.27) A . k = Z
X'K a-l=k

We also have

(5.28)

in view of (5.11)
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6. Stabilization of Realignment Procedure

Since the Realignment Procedure involves a similarity

transformation with large elements, it seems worthwhile to reduce

the procedure to small matrices, thus minimizing the build-up of

round-off errors.

We begin with the observation that in the notation of section 2

we remove the condition that the third column of P be orthogonal

to R, we can achieve the condition

(6.1) b ^ = 0, j = 3,..., n, b][. = 0 , j = 4,..., n.

Hence by replacing the third column of P(1.6) by a vector

orthogonal to C in the span of R and C and then replacing

the remaining rows by an orthonormal basis for the orthogonal

complement of the span of R and C, we may achieve the form (6.1)

by a unitary transformation. In order to explicitly construct

such a transformation, consider an arbitrary unit vector

x = (XjjXjr••./X ). Its Householder transformation then is

(x+e..) (x+e-)T

(6.2) H = I - 2 ± =±—.

tix+ej2

For k > 2, the k column of H, then is

x. (x+e.)
(6.3) He. = e. - -k 1

If we rewrite (6.3) in the coordinate free form

(x,e, ) (x+e..)
(6-4) ek - i+u./
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this gives a method for extending a unit vector for which

(6.5) (x,ei) 4= -1

to an orthonormal basis. Moreover, since there is then no loss

of generality in assuming that

(6.6) xx = (x f e±) I 0

the extension is numerically stable. Moreover, we note that for

a given x we can construct the vector (6.4) for any orthonormal

system (e^,...,e ) for which (6.6) is valid.

Thus, if x and y are orthonormal and

(6.7) (x,e;L) >_ 0

the vector x together with

k 1

(6-8) fk = ek (l+(x/ei)) '
 k = 2'---' n

form an orthonormal system with y in the span of f2,...f f .

The vectors

(y,fk)
(6.9) gk = fk - 1 + ( y y f 2 ) (Y + f2h k = 3f...,n

then extend y to an orthonormal basis for the span of f2,...f f «

Note that by changing the sign of yf if necessary, we may assume

that (y,f2) 2
 Q* T h e transformation

(6.10) P = -xe^ - ye2 + Z gkek
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then serves our purpose. The above expression is inefficient

from a computational point of view. In order to simplify the

computational complexity, we rewrite (6.10) as

(6.11) P = -xej - yf2 + 2 gkf£

x2y(x+e1) n
I ^ +

 kf 3
 gkxk

The second and third terms on the right side of (6.1) are the

Householder transformation of y on the span of f2,..., f .

Hence on the span of -x, f„,..., f , we have

T n (y+f9) (y+f9)
T

(6.12) -yf* + ̂ f * = I - xxT - J^J .

After substituting (6.12) into (6.11), we have

(6.13) P = I -
(y+f,) (y+f->)T

l+(y,f2)

x2y
 xk gfr -

We observe from (6.8) and the orthogonality of x and y

that

x, y.
(6.14) (Y'V = y> - r!hr> k = 2,..., n.

Hence, after putting (6.14) into (6.9), we have
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It follows that

n
(6.16) 2 x

x - x 1 e 1 - x 2 e 2 (x

X l ylyl

It follows from (6.8) that

X2y2

(l-x2-x2)Yl

1+x,

(y+f2)

x.
(6.17)

l+x
(x " "X2f2

After putting (6.17) into (6.16), we have

n
(6.18)

k=3
XlrSlr = X - - (1 - x^) (x +

- x2f2

Hence, after simplifying,

X l yH I
X2 y2 +

-x2-x2
Xl X2
1+x,

(y+f2)

l+(y,f2)

(6 . 19) ~x — .

(x + e

<oy n
i Tx l k=3

1> X2
1+X (y + f2) WV2

1 + X

(y+f2>
i+(y,f2)

The c o e f f i c i e n t of y + f2 in (6.19) may be wri t ten

m

(6.20) flJ.w } 1^( f . -x2(l +(y,f2)) + x l Y l + x2y2 H

2 2
(1-x -x )y

^ 2

I t fo l lows from (6.8) with k = 2 that



X
(6.21) -x2(l + (y, f2)) = -x2 - x2y2

We see from (6.21) that (6.20) reduces to

23

2

(6.22)
(l+(y,f2))*

It follows from (6.19) and (6.22) that the coefficient of

(x + e^"1 in (6.13) is

(x+e,) (y-.-x,,)
<6-23> " + ^ (y + f »

It follows that

(Y+fo) (y+f?)T (x+eT) (x+ e i)
T

2 ^

y i X2 T

1 n + f v f n (Y + f 2) (x + e-) .

In order to put the above expression in coordinate free form,

we note that

(6 .25) ||x + e j 2 = 2 (1 + x ^ , ||y + f2||2 = 2 (1 + < y , f 2 ) )

and

TF x

(6.26) (x + &1, y + f2) = (x + e j ) 1 ^ + e2 -

= yl + X2 " 2 x2 = yl " X2*
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Hence, if we define the unit vectors

x+e- y+f-
(6.27) u = », *,i, v =

we may rewrite (6.24) as

(6.28) P = I - 2uuT - 2vvT + 4uTvvuT.

T T
Since this factors into (u v = v u)

(6.29) P = (I - 2vvT)(I - 2uuT)

we see that P is just the product of two Householder transforma-

tions.

The preceding paragraphs yield the following theorem.

Theorem 6.1. Let x and y b_e orthogonal unit vectors

with x- 2. ° and, with e1f...,e the canonical basis vectors,

f2 = e 2 -

(x,ej (x+e-)

(6.32)

Then with u = (x + ê )̂ /||x + e-J and_ v = (y + f 2) / ||y + f2j | ,

the linear transformation

(6.33) P = (I - 2vvT)(I - 2uuT)

has the properties that

(6.34) The first column is -x, the second is -y
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and

(6.35) The third through n columns are orthogonal to x and y,

By promoting the subscripts we obtain from Theorem 6.1 the

following theorem.

Theorem 6.2. Let A be a real symmetric matrix in block

diagonal form.

(6.36) A = A + e1R
T + Ce^ + ^ ^ e ^ , Rl = Cl = °'

with R and C linearly independent. Define

(6.37) x = l f § 1 if C 2 > 0, * = -]{§![ if C 2 < 0,

and with

(6.38) f-. = e.. -
(x,e.J

"3 C3 l+(xfe2)

choose y orthogonal to x in the span of R and C. Then,

with u = (x + e2)/||x + e2|| and v = (y + f3) /|{y + f3||, the linear

transformation

(6.39) P = (I - 2vvT)(I - 2uuT)

Thas the property that B = P AP satisfies

(6.40) b j x = 0, j = 2,..., n, b^ = 0, j = 4,..., n.

In contrast to the tridiagonalizing step if we apply the

above theorem to the reduced matrix we will, in general, interfere
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with the structure of the first row of B. The question arises as

to whether a different choice of the third through n columns

of (6.10) would make it possible to extend the method. We

Tobserve that the factor I - 2uu in (6.39) serves to achieve

one lower Hessenberg step for the matrix A. Thus suppose that

we have a matrix A satisfying

(6.41) a ^ = 0, j = 3,..., n.

The condition that a similarity transformation P of type 1

achieves the condition for B = P AP that

(6.42) b x. = 0, j = 4,... , n

is that the third through n columns of P be orthogonal to R.

The condition that (6.41) be retained for B is that the second

column be proportional to e2. This means that we can set the

Tsecond row of P equal to e~ and impose the condition that the

th '

fourth through n columns of P be orthogonal to (0,0,a-3,...,a- )

The Householder matrix of this vector then serves the purpose of

filling out the lower right (n - 2) x (n - 2) corner of P. The

formal result is then given by the following theorem.

Theorem 6.3. Let A be_ a matrix satisfying (6.41) and let

'3'
H be the Householder matrix of (0,0fa13/...#aln)

T and e3. Then B =HAH

satisfies

(6.43) b-. = 0, j = 4,..., n, b.- = 0 , j = 3,..., n.
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In particular, the matrix of Theorem 6.3 is the product of

two Householder matrices with the factor (I - 2uuT) appearing

on the left in contrast to 6.39 where it appears on the right.

As remarked earlier, the above transformation, if applied to

the promoted matrices, destroys the form (6.41) and (6.43).

However; if the first row and column are in tridiagonal form,

we can proceed to the next step and achieve

(6.44) a.o = 0 for j > 4
3* —

and

(6.45) a2. = 0 for j > 5.

One can also promote the indices in Theorem 6.3 twice and

obtain a matrix satisfying

(6.46) a. o = 0 for j > 5 and ao . = 0 for j > 6

in addition to (6.41) and (6.43).

In practice, however, it is not important to have the second

column in Lower Hessenberg form. This allows us to have one more

zero in the second column. The promoted version of their first

is contained in the following theorem.

Theorem 6.4. If the first k - 1 rows of a matrix A

are in tridiagonal form, then there is an orthogonal similarity

transformation which insures in addition that

(6.47) a., = 0 for j > k + 2,
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(6.48) a, . = 0 for j > k + 4

and

(6.49)

We shall find in section 8 an application where Theorem 6.3

is superior to Theorem 6.4.
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7. Realignment

Let us suppose that the first column of A is in lower

Hessenberg form

(7.1) a ± 1 = 0 , i 2 3.

By transposing, if necessary before achieving the above condition,

we may assume that

2 n 2
(7.2) at. > 2 a, ..

^x j=2 ±3

Let us denote the truncated rows by
(7.3) u. = (0,0,a. ,...,a ).

J J f ° J11

The condition of instability than taken the form

(7.4) |a12l i eljuj

and (7.2) becomes

(7.5) a22fl > ||u1U
2 + *l2.

Let us now apply the similarity transformation

(7.6) P = (I-ae^) .

We find that

(7.7) B = P^AP = ^ ^ )

= A + ae
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It follows that if we assume that a,, = 0,

and that the truncated first row is

(7.9) vl = ul + a u 2 *

By choosing the sign of a so that

(7.10) sign a = -sign a2i
a22

we have

(7.11) |B19I _> |al|a9j +a
2|a 9 1l - |a |.

For some o,

(7.12) |a12l = o | a211 , 0 <_ a £ €/Jl+€
2

Hence, as a consequence of (7.9), (7.11), (7.12) the critical

ratio for the matrix 13 has the lower bound

IB 2I (a2-o)|a21l+|a||a22l

s i n c e , b y ( 7 . 5 ) a n d ( 7 . 1 2 ) , we h a v e

(7.14) UuJ 1 J l - a 2 |a2 1 l

we can r e p l a c e (7.13) by

(7.15)

, ( a 2 - a ) | a 2 1 l + l a | | a 2 2 l

if
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Hence, if the second row of A satisfies

(7.16) ||u2H < X|a22l

2
we have when a > o

(7.17) > min {̂  ""g , —}.

Also i f

(7.18) ||u2 | | < |JL I a2 11

we have

(7.19) ^ - 2 tt " g *
II iI I <\

"v l" Jl-o +|a|n

Hence, with
(7.20) X = 4' a > ° + dl-a2, n = a g 6j

2 2
r

€|a|

we may assume that a matrix satisfying (7.4) also satisfies

(7.21) |a21l < -+-, Ia22-aul < -f-.

We note that the presence of (a22~all* i n P l a c e o f 'a22' i n ̂

is due to the fact that in the proof we assumed that a... = 0
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8. Conditioning of Realignment

Let us now start over again with the similarity trans-

formation (7.6). The elements of B, (7.7), outside the

tridiagonal structure that differ from those of A are

{8.1) b, . = a.. . + aao 4, j = 3,...,n.
J-D J-D ^f ]

Hence if we define

u = (0,0,a13,.. . ,a.. )

(8.2)

v = (0f0fa23f.../a2n)

the change in the square matrix norm of the non-tridiagonal

elements i s

(8.3) ||u+av|j2 - ||u|j2 = 2a(ufv) + la|2 | |v|J2

and the choice

/o A\ <v - (ufv) _
(8.4) a = £-2

z- = -

reduces the sum of squares of the off-tridiagonal elements

(8.5)

By interchanging the first and second rows and columns, if

necessary, we may assume that

( 8 . 6 ) | |u|| 2 UVU-

1 w h e t h e r o r n o t a . ^ = 0 , i 2 3 .
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If we assume in addition that

(8.7) cos 6 = (u'v) satisfies |cos 6| > -L

we can achieve a reduction of at least

(8.8) - ̂ IJu|j2

2

in the sums of squares of the non-tridiagonal elements.

We could also precondition the matrix A by applying

similarity transformation based on the upper left two by two

cross section

(8.9) /a b\

\c d/

with exactly three elements not zero so that the inverse exists.

It is easy to program the computer to determine which reduce the

nontridiagonal norm and do not introduce overflow on the tri-

diagonal elements.

Now we may be apply a permutation matrix and transpose if

necessary so that the truncated first column dominates all off

diagonal row and column norms. Next we apply the Householder

transformation that achieves the condition

(8.10) a±1 = 0 , i 2 3

This preserves the first row norm so that we may assume that

the vector u, (8.3) satisfies
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(8.11) ||u|| £ |a21l

If i t is false that

(8.12) ||v|| 1 |a21l

we may interchange the first two rows and columns and achieve a

matrix whose truncated first row has norm at least

(8.13) f2 la2i'-

Thus, since orthogonal linear transformation preserve the matrix

norm, we may achieve (8.11) and (8.12) by a finite number of

repetitions of the above procedure.

Now, we apply the first procedure again rendering u and v

orthogonal. Now we apply the promoted version of Theorem 6.3 with

x = I uljjujj, y = ± v/||v||. This achieves a matrix of the form

all

a21

0

a12

a22

a31

0

a23

a14

0

0

0

. .

0

0

a3n

0 a o a
n2 nn

Now, we exploit the fact that the matrix

(8.15) (I+ae^jAd-ae^)

is also linear outside of the tridiagonal structure. Thus we
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may apply the first method to it and destroy the orthogonality

of the first two truncated rows. If there is danger of over-

flow on the element a 2 3 we may settle for less than the optimal

off-tridiagonal norm reduction. We may now apply the trans-

formation

(8.16) (I"ae3J

and start over again. In the cases, where we have prevented

over-flowf we shall put non-zero elements in the 1 - 3 and 2 - 4

positions of the matrix (8.14) but we shall still destroy the

orthogonality.

We can also exploit the fact that under condition (8.10)

the matrix

(8.17) (I+ae-eT)A(I-ae-eT) , j > 3
l 3 ± 3 —

differs from A only in the first two rows and is linear in a.

In any case we see that we can start the realignment procedure

using \i = 1 in 7.18. This allows us to put the first row and

column in tridiagonal form with

(8.18) a = -{€ + |l+ 8 € }, € < 1

and

= i { € + j€2+4jl+62(8.19) a = ±{€ + J€^+4jl+6z } ,
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9. Further Realignment

TLet A be a matrix in lower Hessenberg form with rows R.

and columns C..

(9.1) Rj = ̂ ^ j i ^ i ' Ci = 4+=l aijei'

We may use either of the following expressions for A.

(9.2) A = 2j=1e±R^ = 2
n
=1Cie^.

Let

and define

Then $ is invertible and

(9.5) 5""1 = ( I + e
n > 1

c P n - l ) # # 2 2 l ^

The matrix

(9*6) B = i^Ai

is in lower Hessenberg form and has the same subdiagonal elements

as A. This is a simple consequence of the following

Lemma 9.1. Let A = (a..)f B = (b..) be n x n matrices

satisfying Q . . = 0 if i ); j + i + 1 and b . . = 0 if i >_ i + r + 1.

Then the product matrix C = (C. .) = AB satisfies C . = 0 if
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i > j + r + i 1.

n 3
P r Q Q f : cij = Ev=laivbvj = v =i^

aiv bvj H e n c e i f i - J f

e^. = 0. Note that r and t may be positive or negative

intergers.

We now suppose that the matrix A has had k tridiagonalization

steps performed so that

(9.7) ai. = 0 if j > i + l and i < k.

We shall also assume, as we may, that

(9.8) l l

and that

(9.9) aij = ° i f J > i + 2.

Let us also suppose that A is in unstable condition for another

tridiagonalization step. That is

,k+3

is small. We then apply the similarity transformation (41 and

attempt to choose the cp's so that the term corresponding to the

matrix B, given by (6), is reasonably bounded away from zero.

We note that

rn ^ T rn vn

(9.11) e^i = e^ + cp̂ .

It follows that the condition that the tridiagonal form be
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restored is then that

(9.12) (e^+cp^)A$ex = 0, v > I + 2, I < k.

This is equivalent to the existence of constants Y. such that

rn

Upon multiplying (9.13) on the right by $" we obtain

Since A has had k tridiagonalization steps completed and

cp. X1 = 0 for v < I, it follows that

(9.15) (e^+cp^)TAe. = 0 for j <_ k - 2.

It follows then by induction from (14) and (15) that

(9.16) (eJ-HpJ)A = <:i_l Y*v ( e>v>

must be satisfied for some constants Y« . n, Y« ,, and Yp

In order that the cp̂ 's have the form (9.3) we must have

(9.18)

and

(9.19)
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The above three conditions show that Y.... and Y 1 2 can be

determined uniquely as functions of (cp19, cpn-,..., cp- ). For

any choice of the cp. .' s for which

(9.20) Y 1 2 * 0

Twe may use (9.16) with I = 1 to define cp2 uniquely in terms
rj\ T T

of cp,. Similarly, if cp..,..., cp.̂ , have been determined so that

(15) is satisfied, then the formulas (17) , (18), and (19) serve

to define Y ^ ^ , Y ^ and Y ^ + 1 uniquely. When YTwe may then use (16) to define cp . . Thus our strategy is to

T
choose the first row cp.̂  so that (9.17), (9.18), and (9.19) are

satisfied for I = 1, 2,...,k with

(9.21) Yll+± ^ 0, >C = 1, 2,...,k

T
and then to furthur adjust the first row <p, so that the term

(9.22) bk+l,k+2

is reasonably bounded away from zero. When -t _<_ k + 1, the

tridiagonal form of A implies that

(9.23)

Hence it follows that (11), (18), and (19) reduce to
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(9.25)

and

Hence we have

<9-27)

(9.28) Y

and

( 9 # 2 9 )

In order to study the term (9.22) we shall need to compute the

T(k+1) row of B which is

(9.30) <

T
Let us now assume that cp. = 0 for j >_ k + 2. That is

(9.31) $ = (I-e^ # £

It follows that

(9.32)

T T
" e k " ̂ k
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(9-33> eLi« • e L i

and

(9.34) eT.i = e*, j :

Hence, since

(9.35)

and

(9.36)

we have, writing for the moment

(9.37) *ek+l+Cpk+l*A = 2^=

' v+1

Let us rewrite (9.37) as

n

fk+l

n

(9.38) ( ek+l+ (Pk+l ) A - a k + l , k e k

JL
+ [ak+l,k+l+ak+l,k+2cpk+l,k+2 l ek+l

-n
v=k+2 [Ji=max{k+l,v-2 -H

I t n o w f o l l o w s f r o m ( 9 . 3 2 ) , ( 9 . 3 3 ) , ( 9 . 3 4 ) , a n d ( 9 . 3 8 ) t h a t

(9.39) CP
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^

j=max{k+l,v-2}';pk+l,jaivJeV
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10. Uncoupling

Let us now suppose that, the first k - 1 rows of A

are in tridiagonal form

(10.1) a ±. = 0 if i < j - 1 or i > j + l

when i £ k - 1

and that

(10.2) a i ± + 1 = a ± + l f i when i < k - 1.

We assume also that the k rows and column satisfy

(10.3) a., = 0 for i > k + 1, a, . = 0 for j > k + 2
IK Kf J

with

an,n+l
 + an,k+2 <

 an+l,k
k k k k

but

(10.

that

5) J an

ak,k+l

2
,k+l+an,k+2

is small

so that the matrix is in unstable condition for another tri-

diagonalizing step. We now apply the similarity transformation

(10.7) i = ( I - £ £

with
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l-l
(10.8) tpt = Z 9-^e., 4, = k, k + 1.

j=l D 3

and impose the condition on

(10.9) B = i'^i

that the k and (k+1)s column satisfy

(10.10) Bit = 0, i £ I - i, I = k, k + 1.

This translates into

i n

(10.11) Be. = i~ A(e.-cp.) = Z B..e.

for t = kf k + 1. After multiplying (10.11) on the left by $,

we obtain

(10.12) A(e,-cp, ) = B, , ,e, n

n
+ Z B. ,e

i=k+2 llk x

and

(10.13) A(

n

It follows from (10.1), (10.2) and (10.3) that
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(10.14) e TtA = Z a. .e., for j £ k - 1
J i=j-l i:j x

T k+2
(10.15) e?A = L a e

K i = k - l 1 / K K

T n
(10.16) e^A = I a . , j e . , j > k + 1

3 i=k+2 1 x

Hence the conditions that (10.12) and (10.13) be satisfied

require

(10.17) B. = a , j > k + 1

(10.18) B k A = ak^k - A k f k _ l t p k _ l r k -

(10.19) B k _ l k = a k _ l k - a k _ l k _ 2 cp k _

Bkkvk-l,k

(10.20) B^ V A l = V . V4.ir j > k + 2

(10.21)

(10.22)

" akfk
vkfk+l

These can be satisfied for arbitrary choices of cpk and

tp, . . In addition, we must have

(10.23) aii-l»i-lk + aii»ik + ai
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for i _<_ k - 2 and

(10.24) a, . ,ip.

for i l k - 1.

The conditions (10.23) and (10.24) from backwards recursion

formulas which require division by

(10.25) a. . -. , i < k - 1.

The stability would be maximal if they were decreasing as i

increases. We could achieve this by interchanging the i

and i rows and columns each time whenever the i cross-

product is greater than a predecessor. This would, of course,

require backing up an appropriate number of steps.

In any case, we can achieve our objective (10.10) for

arbitrary values of

(10.26) *k-2,k'

Now we have added non-zero elements to the final k - 1

rows of the columns indexed by k + 2,...,n. Now suppose we

consider a similarity transformation of the form

(10.27) <I"
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with

k+1
(10.28) cp. = 2 cp,.e;

Then, if we follow (10.9) by the similarity transformation

(10.22), since we impose only that the first k - 1 elements

of columns (k+2),...,n vanish. We will obtain recursion formulas

analogous to (10.20)- (10.22) for each of these.

Hence it is possible to achieve a matrix so that we can

apply tridiagonalization steps toward either the lower right

or the upper left corner with the elements (10.26) and

(10.29) (pk_lfj, V j

arbitrary.

One can first choose (10.26) to achieve stability and then

use (10.29) to minimize the amount of arithmetic. This allows

us to proceed toward the lower right corner and achieving a

similar matrix whose elements outside the tridiagonal structure

have been reduced. It is our opinion, however, that the

analytical method is more efficient.
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11. Preparation for Programing

The recursion formulas (5.2), (5.3), and (5.4) , while good

for theoretical purposes, are not the most efficient for computa-

tion. This is because, at each stage, we need only to compute

(11.1) Rj Xj Cj a n d R j C j '

In order to be able to store the matrix A., we would have, in

addition, to carry out all of the indicated operations. In this

section we shall re-write them so that the j step can be com-

pleted by deflating the original matrix and storing the remaining

data in projections. For this purpose there is no need for sub-

scripts so we shall work with (4.10), 4.11), and (4.14). Let us

write

rsj £3 T T T

(11.2) A = A + 622
e2e2 + e 2 s + d e 2 *

It follows from (4.10) and (4.14) that

(11.3) Ax = HA(I-rr
T)H + "̂

and from (3.2) that

We next substitute

(11.5) rTA =

mm m

= -r cRJH + flr
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into (11.4) to obtain

~ ~ lr+e2
] T~ ( r + e 2 ) T(11.6) HA = A - Z e^A + ^ [rc

TWe now substitute (11.6) into (11.3), noting that R,Hr = 0 and

T Tr (I-rr ) = 0, and obtain

(r+e ) T
(11.7) Ax = [A- 1+r

2 e^AHl-rr^H + [Hc^pp (r+e2)]R^.

V V

Let us now define r and c to be the vectors obtained by re-

placing the second components of r and c by zero. It then

follows that

(11.8) (1-rr )H = I - e ^ T£T~ r *

After some routine computations we then have from (11.2), (11.8)

that

_ (r+ej „ T
(11.9) ( A ^ ^ A ) ( l ) H

. X -

c r

and

(11.10) He +

It now follows from (11.6) - (11.10) that

(11.11) Ax = A -[j^- + d + ( ^ _ x 2 + 7 iTr7r ) r ] r

v
r Tfe)RI
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It will also be convenient to have the vector R., and C,

expressed as sums each of whose first two components are zero,

It follows from (4.10), (4.11), (11.2), and (3.2) that

(11.12) R T = 1_[VTA+ T[ A +

re x r2

and

«v v
(11.13) C l - " A C " C 2 d + A C

+ (e2Ac - c2A) ^

We also have the following expression for two of the scalars

that appear in (11.12) and (11.13).

(11.14) r+£(r+e 2 ) = r 2 a 2 2 + rTd + il

and

(11.15) e 2 ^ c = a22C2 + S C
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12. Matrix Norm Reduction.

For a symmetric matrix, the square matrix norm is the sum

of the squares of the eigenvalues. By using a non-orthogonal

similarity transformation one can increase the matrix norm

arbitrarily. This fact implies that a non-symmetric matrix

with simple eigenvalues is similar to a symmetric matrix. It

therefore seems reasonable to find similarity transformations

which reduce the matrix norm. Let us consider a unit vector

of the form

(12.1) cp. = E cp. .e.
1 j*i 1 D D

and apply to a fall matrix A the similarity transformation

(12.2) P = I - c^cpT, P"1 = I + ae±cp^

The i row of

(12.3) B = P^AP

i s then

ITI rn fji O rn rri

(12.4) eTB = e.A + acp.(A-a..I) - a (cp.Ae.)cp.
I l i n i l l

and for j ̂  i the j row is

mm p̂

(12.5) e^B = e.A - aa^cp^

The rows (12.5) are linear in a and if we impose the condition



51

(12.6) *iAei = 0

so will the i

(12.7) e?B = e^A +

Under condition (12.1) and (12.6), we then have

(12.8) UB|J2 - UAU 2 = 2a[eTA(AT-a..I)cp - E a e

Let us define the matrix C by

(12.9) C . e.^A-a^I) -

Thus (12.8) can be written

T + a2 trCCT(12.10) 1|BJ|2 - 1]A||2 = 2atrACT + a 2 trCC

Since

(12.11) trACT = (AfC)

i s an inner product on the real n x n matrices, we

may rewrite (12.10) as

(12.12) 1|B||2 - ||A|j2 = 2a(A,C) + a2|Jc|l2.

The choice
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(12.13) o * -
llcll2 Del

then gives

(12.14) IJBIJ2 - UAU2 = -UAl|2cos2e .

Hence whenever it is possible to find a vector cp for which

(12.15) (A,C) ± 0

the matrix norm of B will be less than that of A. We see

from (12.8) that (12.15) can be written

(12.16) (eTAAT-ZijajiCjA)cpi # 0

But

(12.17) «j aJi Ci" eI A

Hence (12.16) reduces to

(12.18) e? (AAT-ATA) cp± ̂  0

or in terms of the canonical inner product

(12.19) <(AAT-ATA)eifcpi> ^ 0.

Hence, by (12.1) and (12.6), we may reduce the matrix norm of

A by a similarity transformation unless the vector

(12.20) (AAT-ATA)ei
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is in the span of the vectors

(12.21) e. and Ae.

for each i=l,2,...,n.

The condition (12.6) is only for the convenience of achieving

a quadratic for the square matrix norm of B. The assumption that

e. is a cononical basis vector is also only a computational

convenience. We could therefore also consider a linear transformation

(12.22) P = I - ecpT

with e and cp arbitrary orthozonal unit vectors

(12 .23) <e,cp> = eTcp = cpTe = 0

Before doing either let us make the observation that

(12.24) tr(A+\I)(A+\I)T = tr(AAT) + 2trA + n\2

Hence, if B and A are similar matrices, we have

(12.25) trBBT - trAAT = tr(B+\I)(B+\I)T - tr(A+\I)(A+\I)T
u

It follows that

(12.26) U B U 2 - iJAl|2

is independent of shifts. Thus, let us define

(12.27) A = A - (eTAe)I; hence eTAe = 0
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or, if e is the canonical basis vector e., that

(12.28) e±± = 0

The similar matrix

(12.29) S = (I+aeq>T)A(I-uecpT)

may then be written

(12.30) B = A + aewT - accpT - a <cpfe>ecp
T

with

(12.31) c = Ae, w = K^y, r =

For future reference, we note that

(12.32) (c,e) = 0, <r,e> = 0, and <w,e> = <f,c>

As a consequence of (12.26), we have

( 1 2 . 3 3 ) llBlJ2 - ||AJ12 =

It follows from (12.20) that

(12.34) B^ = A^ = aweT - acpeT

For any two vectors u and v we have

(12.35) truvT = vTu = <v,u>
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I t f o l l o w s f r o m ( 1 2 . 2 2 ) , ( 1 2 . 2 0 ) , ( 1 2 , 2 1 ) a n d ( 1 2 . 2 4 ) t h a t

(12.36) iJBll2 - UAH2 = -2<(ATA-ASfr)efq»a

+ LiiA^li2 + lic||2 - 2 <r
- 2 <c,cpXA Tcp,q»a3 + <c,q>>2a4.

The following theorem now shows that we may always reduce the

norm of a non-normal matrix without the assumption (12.6).

Theorem 12.1. If A is not a normal matrix/ then there exists

orthogonal unit vectors e and q> such that the matrix

(12#37) B = (I + cuecpT)A(I - ae<pT)

has a smaller norm than A for some a.

Proof: Since the commutator is invariant under shifts, it follows

from (12.25) that it is sufficient to find an e such that

(12. 38) (ATA - AAT)e

has a non-zero component in the orthogonal complement of e for

we may then take for cp the component of (12.27) in the orthogonal

complement of e. If not, every vector is an eigenvector of

T T T T

A A - AA . But then the matrix of A A - AA is diagonal in every

coordinate system. It follows that the eigenvectors are all

equal, say to \, and hence

(12. 39) (ATA - AAT)e = \e

for all e. Since the trace of a matrix in the sum of the eigenvalues
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and the trace of the commutator is zero it follows that A is

normal. This completes the proof.

The following example shows that we must let e range over

a set larger than a single orthonormal basis.

(12.40) j a b| , c * + b.

\° ai
The following theorem show that if we impose the condition

that the polynomial be a quadratic we may still always reduce

the norm of a non-normal matrix by a similarity transformation of

the form (12.41) .

Theorem 12.2. If A is a non-normal matrix, then there exist

orthogonal unit vectors e and cp such that

(12.42) <q>,Ae> = 0

and such that the similarity transformation (12.43) reduces the

matrix norm.

Proof; If the matrix norm reduction is not possible in the form

stated in the text, then

(12. 44) (ATA - AAT)e

is in the span of

(12.45) e and Ae
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for all vectors e. The condition (12.28) is, of course, equivalent

to

(12.46) <e,ATcp> = 0

which corresponds to applying the method to the transpose of A.

But then if we can't reduce the matrix norm the vector (12.29)

is in the span of

(12.47) e and ATe

for all e. If we write

(12.48) A = B + C

where B is symmetric and C is anti-symmetric it follows from

(12.30) and (12.32) that Ce is in the span of e and Be for

all e. But since <Ce,e> = 0, Ce is then in the span of Be so

C = 0. This complets the proof of Theorem 12.2.
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13. The Quadratic Algorithm.

Under the conditions

(13 .1) <cp,e> = 0, <<p,Ae> = 0,

i n the n o t a t i o n ( 1 2 . 2 ) , the s i m i l a r matrix (12 .2) of

(13.2) A = A - XI, X = <e,Ae>

reduces t o

(13.3) B = A + aewT - aCqpT

and the matrix square norm increment i s

( 1 3 . 4 ) i|BJj2 - jJAll2 = -2a<ATA - AAT ,q»

+ a 2

and the choice

(13 5) a - <<ATA - AAT)e,q»

Mi2
 + icy2

yields the minimum increment

(13.6) I I B I I 2 - JlAJi2 = - -

The numerator will have the largest possible magnitude if we take

cp to be the unit component G of
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(13.7) G = (ATA - AAT)e

in the orthogonal complement of e and Ae = C. Since e and

C are orthogonal, we then have

( 1 3 . 7 ) q> = G1/|JG111

with

(13.8) Gn = G - <G1e>e - < G ' e > c

1 lie ||2

Of course, it is not necessary that q> be a unit vector, since it

is only the product acp that is relevant. However, making it a

unit vector gives very good control over the magnitude of the

quantities that are to be computed.

Thus once cp has been computed, we have only to compute

(13.9) w = ATq>

and substitute into (13.3). We can then apply the method over

again with the same e. When the increment has been reduced to a

predetermined size, we can shift back

(13.10) C = £ + XI

and the matrix C is similar to the original matrix A and with a

smaller matrix norm. We can then pick another e and start over

again.
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One method for the choice of e that has worked well is

to simply loop over the canomical basis vectors e.f...f e until

several adjacent increments are sufficiently small.

Another method that works even better is to choose a random

e and then loop on it until the increments become small. We now

use the fact that for two admissible cp's, say cp and cp2, the

product of the similarity transformation corresponds to adding the

cp's by virtue of the orthogonality of cp and q>2 with e:

(13.11) (I - ecp*) (I - eq>2) = I - e(cp± + q>2)
T

Then when the stopping condition has been reached,

(13.12) cp =

give close to the best reduction for the given e. We that use

this value of cp as the value of e for the method applied to

the transpose of the similar matrix. We then alternate between

TA and A until the reduction increments are both small. We

may then pick another random e and start over again. Here we

remark that is not advisable to reduce the matrix norm to a minimum.

This is because, if the matrix is deficient, the deficiency will

eventually disappear at a given floating point accuracy.
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14, An Improved Quadratic Algorithm,

In this section we shall obtain a recursion formula for the

<pi's in (12.9) thus making it unnecessary to make the similarity

transformation until the desired sum has been found. This shall

save computing time and reduce the accumlation of round-off errors,

To achieve this end we apply the algorithm of the previous section

to the matrix

(14.1) B = A + e(ATf)T - CfT

with

(14.2) f = cup, C = Ae

with a and cp having been chosen by the preceding algorithm.

Since

(14.3) <ATf,e> = <f,Ae> = 0 and <f,e> = 0

we have

(14.4) Be = Ae = C

so we do not have to shi f t again. Since

(14.5) B T = AT + A W - fCT,

we then have

(14.6) STB*e = B T C = ATAe - jjc||2f
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I t fo l lows from (14.5) that

(14.7) £ T e = A T e + A T f

after substituting (14.7) with (14.1), we find that

(14.8) BB l e = A ^ x e + %K l f

+ <ATf,B -Te>e - <Atf,f>C

Now l e t U and G be the components of

(14.9) <~TA - A A T ) e

and

(14.10)

in the orthogonal complement of e and c. Then we find from

(14.6), (14.8) - (14.10) that the new cp is the unit vector of

(14.11) * = U - G - JlCJl2f;

that in

(14.12) cp = ft/U*Jt.

Since <p is orthogonal to both e and c, it follows from (14.5)

that

(14.13) BTcp = A %
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By (13.5), it follows that the new a is

( 1 4 . 1 4 ) a = 1M ; 2
jJA cpjj + llcll

Now we need only to replace f and w by

T
(14.15) f + acp and w + aA qp

and loop back to the beginning or making the similarity transform-

ation and shift. Note that the vector U defined by (14.9) need

be computed only once for each e.
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15, The Quartic Algorithm,

Let us now consider the derivation of the coefficients of

the quartic in (12.25) with A replaced by

(15.1) B = (I + efT)A(i - efT)

for arbitrary orthogonal unit vectors e and f. We first

observe that

(15.2) eTBe = eTAe + fTAe

Hence the shifted matrix is

(15.7) B = (I + efT)A(i - efT) - <f,c>I

with ^ defined as before in (13.2). If we now define

(15.8) A = A - <f,e>T

we have

(15.9) B = A + efTA - cfT.

Let us now define

(15.10) w =

We then have

(15.11) f = A + ew1 - Cf1
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(15.11) B^ = A T + weT - fCT

We now define the similar matrix

(15.12) M = (I + aeq>T)B(I - aecpT)

with cp the unit component of

(15.13) (BTB - £ET)e

in the orthongonal complement of e. We first note from (15.11)

that

(15.14) Be = c

T T
since w e = f c. Hence

(15.15) tffce =%TC - jlcjj2f

= ATC - <f,OC

Next we find from (15.12) that

(15.16) K Te = ATe + w = r - <f,e>e + w

and hence

(15.17) f ^ e ) = £r - <f,.c>c + Bw

It now follows from (15.11) and (15.17) that
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(15. 18) Bd^e) Ar = <f,c>r + <w,r>e - <f,r>C

- <f,OC + Aw + l|wjj2e - <f,w>C

As a consequence of (15.15) and (15.18) we now have

(15.19) (BTB - BB^Je = A^C - £r - Sw

- ||c||2f + <f,r>C = <f,w>C + <ffc>r

- l<w,r> + ||wH2}e

Now let us denote by U the unit component of A c - A*r in the

orthogonal complement of e:

(15.20) U = ATe - Ar - <ATc - Ar,e>e

We note that U need be computed only once. Let us store in

G the component of Aw in the orthogonal complement of e:

(15.21) G = Aw - <Aw,e>e.

It now follows from (15.19) - (15.21) that

(15.22) q> = 4/||iH

with

(15.23) ft = U - G - ilc||2f

+ <t,r+w>c + <f,c>r.
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In order to compute the coefficients of the polynomial on the

right sides of (12 25) , we need to compute

(15.24) R = I^e and V = BTq>

It follows from (15.12) that

(15.25) R = A e + w = r + w - <f,c>e

Hence

(15.26) <R,q» = <r + w,cp>

since op i s orthogonal to e. i t also follows from (15.12) that

(15.27) V = B q ) = A ( p - <q>,c>f

We now compute the coefficients

p i = - 2il*ll? p o = ilvii2 + 1ICIJ2 - 2<cp /cXR /q»

P 3 = - 2<CfqpXVfC>; P . = <qp,c>

and then compute the a that minimizes

(15.28) P(a) = £ j = 1
 pjttj

Then with

(15.29) g = a*,

we compute the shifted form of the matrix (15.16),

(15.30) M = (I + egT)B*(I - egT) - <g; c>I
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After putting (15.11) into (15.30), we have

(15.31) fl = (I + egT)(A - <g,c>I + ewT - efT)(I - egT)

It now follows from (15.9), (15.10) and (15.11) that

(15.32) ff = B + egTf - CgT

with

(15.33) B = B - <g,c>l.

It now is a consequence of (15.9), (15.32) and (15.33) that

(15.34) ft = A - <g,e>I + e [A - <g,e>I]T(f + g) - c(f + g ) T

The promoted values of f and w are therefore

(15.34) (f + g) and (A - <g,OI)T(f + g)

Let us re-write the second term in (15.34) as

(15.35) A^f - <g,c>(f + g) + A^g

and note that the first term in (15.35) is the old value of w.

In the notation (15.21), (15.24)

(15.36) Ag = aAcp

Thus if we denote the promoted values of f and w by f and

w», we have



69

(15.37) f1 = f + oq>

and

(15.38) w- = w - <gfe>f + oAq>

We now replace A by

(15.39) A - <g,c>I

and are ready for the next loop.
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16, An Application of Constrained Maxima and Minima,

Our results on Realignment in section 6 and 7 were obtained

without considering their effect on the matrix norm. Moreover,

they are not complete since they depend on bounds for function of

matrix elements which need not be satisfied. Let us now consider

satisfying these bounds by reducing the sum of the square of certain

subsets of the matrix elements. For example, we might try to

reduce the sum of the squares of the non-tridiagonal elements or

the non-tridiagonal elements of a row or column. Moreover, let us

impose the additional condition that the matrix norm remain below

a fixed bound, say a prescribed constant multiple of its initial

vlaue. If the matrix is normal, this multiple, of course, would

have to be greater than one. We can use the results of the first

few iterations to let the compute decide what' this multiple

should be.

Let us denote the increment of the swuare of the (£,j)

element by D*.. Then according to (12.4) and (12.5) we find that

for the matrix A with G,, = 0.

(16.1) Dkl = 2aGkt<g,C^> + a
2 [<g,C^>2 - 2a

k^<9^
c
k>g^]

- 2a3<g,CkXg,C^>g^ + a
4<g,Ck>

2g2

and for j =# k
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(16 2) D.. = -

In the notation of Section 15, let

(16.3) P(a) = £ 4
= 1 P.c^

denote the sum of the increments (16.2), (16.3) summed over the

whole n x m arrays. Suppose further that K has been determined

so that

(16.4) P(a) + K

assumes negative values so that

(16.5) P(a) + K = 0

has a non-zero real root for some pair e and f.

Now let S be a proper subset of the pairs of integers

(16.6) [(i,j):1 £ i,j £ n}

and let S1 be the complementary set. Now let

(16.7) Q(a) = £ D±. = £
4
= 1 Q.a

j

and

(16.8) Q'(a) = £ D
 S-£j=l QI>aJ-
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Since

(16*9) P(a) = Q(a) + Q' (a) ,

minimizing Q(a) subject to the constraint (16.5) is equivalent to

minimizing

(16.10) - K - Q1(a)

over the same constraint (16.5). It is clear from (16.1) and

(16.3) that

(16.11) Q4 < °

The set of a's satisfying (16.5) is compact for a given orthogonal

pair {e,f}. If we compare the condition that the linear term in

P be negative and the corresponding term in Q1 be positive,

the set of a1 satisfying (16.5) for which (16.10) is negative

will always be non-empty.

Let us denote the linear term in P and Q1 by <x,f> any

<y,f>. That is

(16.12) P(a) = -2<x,f>a + 0(a2) in a - 0,

and

(16.13) Q'(a) = 2<yff>a + 0(a
2) in a - 0.

Then by choosing

(16.14) f = ax + by
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for constants a and b for which

(16.15) <x,f> > 0, <y,f> > 0

we reduce the problem to constraints depending only on the variables

a, b, and a. The feasibility of solving it with little computing

is great.

Let us denote the unit vectors of x and y by

(16.16) g = x/JlxJI and r, = y/||yj|.

and denote the unit component of r\ in the orthogonal complement

of g by

(16.17) |

Vl - <S,t»>2

Now let us choose f to be the unit vector

(16.18) f = a| + b§, a2 + b2 = 1

The condition (16.15) then reduce to

(16.19) a 2 0

and

(16.20) a<§,T)> + b<£,Tj> 2 0

Since , by (16.17)
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(16.21) <S,T]>

the condition (16.20) reduces

-2
(16.22) a<S,Tj> + b y i - <|,T]> > 0

which, by (16.19), i s equivalent to

(16.23) <%,r\> b

1 - <%,r\>z a

Hence, i f we s e t

(16.24) <%,r\> = s in 9 , - TT/2 < 0 < ir/2,

and

(16.25) a = cos 0 , b = s i n 0

we may re-write (16.23) as

(16.26) tan 0 _> - tan 6.

Now, using (16.17) and (16.18) we have

(16.27) f = (cos 0)5 + (gp" l] [T\ - (sin 6) §]

or

/ i c oQi i= - ( co s (Q + 0 ) ) % + ( s i n 0 ) n
( 1 6 . 2 8 ) f 3 ^ - Q ».
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The conditions (16.24) and (16.26) now reduce to

(16.29) cos 0 2 ° a n d c o s (© + 0) J> 0

For programming purposes, though, it is better to use the ortho

gonal decomposition (16.18). The coefficients of a? in P

and Q1 there are homogeneous of degree j. If we set

(16.30) x = a cos 0; y = a sin 0,

we then have the problem of minimizing

(16.31) QV(x,y) = £ Q ^ X V

subject to the constraint

(16.32) P(x,y) £ K; P(x,y) = £ P,.xV
i j 4 13

This can be solved quickly by choosing an initial value of 0O

consistent with (16.29) and these substitutive

(16.33) x = y tan 0O

in (16.31) and (16/32) to reduce them to polynomials of degree 4

in y. We then compute the roots of P - K to determine the

interval [0,yo] on which P - K is negative. We then find the

value of y in this interval for which Q1 is minimal. We then

substitute this value of y into (16.31) and (16.32), and repeat

the preceeding algorithm. By alternating the roles of x and yf
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the precedure converges quickly.

It can be shown that if A is sufficiently close to a normal

matrix, the polynomial P has only one local minimum. It there-

fore seems reasonable not to write the algorithm to include the

case when P • K has three real roots.
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17, An Algorithm for the Constrained Problem,

Let us follow the lines of Section 15, but summing only over

a subset Q of the matrix elements. Let us denote the elements

of Q by the column induces

(17.1) Ij

of the elements of Q in the j row of the matrix. The

analogue of formula (16.1) and (16.2) for the matrix B, (15.11),

Tcan be written using (15.14) and <g,c«> = <A g,e«>,

(17.2) Dkl =

and

(17.3) D j 4 = - 2obj4cjg<t + a
2c2g2

The coefficient of a in the polynomial

(17.4) £ D w + £ £ D..

is the inner product

(17.5) -2<g,x>
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with

(17.6) x = - 5 b Be +
~ -tec, k * *

By s u b s t i t u t i n g ( 1 5 . 1 1 ) i n t o ( 1 7 . 6 ) , we o b t a i n

(17.7) X = -£ A(G ,e.) + 2 C. .£ G.,e,

K

£ A(w.e.) -

<c,f> £ 6 p<Ae

C k + < c k ' f >

c

(mod e, ) . If for each j, I. = [1,2,.., n}, the first six termsK 3

above reduce directly to (15.19) and the seventh is zero. We

note that if the diagonal element is in each I. the term within

the braces on the right side of (17.7) reduces to

(17.8) Ae, - £ C..e. = C, - C, = 0

Also, if the diagonal element is in the complementary set for each

j the term within the braces is zero.

If we define, for an arbitrary vector

u =
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the operator T. has

(17.10) T. (u) = £ u.e.
3 ^

we have the following theorem.

Theorem: If the diagonal belongs either to the set Q or the

complementary set Q1 then the coefficient of the -inear term

(17.6) is -2<q,x> with

(17.11) x = A ( T (r)) - £ C T (r )
k k Dk j 3

- A(T,(w)) -
k

+ <TR(r + w),f>Ck + <Ck,f>Tk(rk),

and the sum of the second through fourth power of a is

(17.12) a 2 {jJT,(BT )jj2 - 2<g,C, ><g,T, (r + w) > + £ C 2 JjT.gjj2}

- 2a2<g,CkXTk(Ag - <ck,g>f,g>

+ a4 £ <g,c >21JT g|j2

j/k k =>
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