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The paper [1] contains a numerical method using the method of successive

approximations with initial guess the inner product

(1) <Ce,f>

where

(2) C = ATA - AAT,

the commutator of a non-normal real matrix A and its transpose. The vectors

e and f are arbitrary orthogonal unit vectors. The speed of convergence is

enhanced by having (1) be as large as possible. In this note we derive an

algorithm for finding the optimum pair e and f.

There is no loss of generality in assuming that f is the unit component

of Ce in the orthogonal complement of e. That is, f is the unit vector

corresponding to

(3) F = Ce - <Ce , e> e.

Then, since substitution of (3) into (1) gives

(4) <Ce ,f> = ||Ce||2 - <Ce ,e>2



and direct computation gives

(5) ||H|2 = ||Ce||2-<Ce,e>2

the problem is equivalent to maximizing (5) subject to the constraint

(6) IN|2 = 1.

We may forget about the fact that C has the special form (2) and assume

that C is an arbitrary symmetric matrix with eigenvalues

(7) drd2,....dn.

We may also assume that C is diagonal. Our problem then reduces to

maximizing

subject to the constraint

(9) 2?=1 x
2 = 1.

The method of Lagrange multiplier then gives

(10) d2
Xi - 2 (Z^djX^d.Xj - X x. = 0

for i = 1,2,...,n. For each i for which x. * 0, we then have



(11) d2 - 2(5*=1 djX^dj - X = 0.

If x has another component x, / 0, we have also

(12) d2 - 2(2n
=1 djx

2)dk - X = 0.

Substituting (12) from (11) gives

(13) d2 - <£ - 2(2^ d^Xd, - V = 0.

If d. # <L , we may deduce from (13) that

(14) d. + dk - 2 2jBl d.X2 = 0.

If there is a thrid component of x with x^ ? 0, it follows from (14) that

(15) ^ = d,.

If the eigenvalues are distinct then (14) reduces to

(16) d. + c^ - 2(d.x
2
 + 4^) = 0

2 2
so, since x, + x, = 1,

(17) (d. - dk)(l - 2 x p = 0.

Now, if all of the eigenvalues of C are equal, the form (5) is identically



zero. Otherwise, for distinct eigenvalues d. and d, we obtain

(18) X ± J L , ,, = ± _L .
1 >f2 K 42

This leads to the extreme vectors

(v, ± v,)
(19) e = ± » k

>T2

where v. and v, are the eigenvectors corresponding to d. and d, . The

extreme value of (5) corresponding to (19) is

(20)

Since (5) is the square of (1) the maximum value in the case of distinct

eigenvalue is

(21) * o

The reader will verify that, in the case of multiple eigenvalues, with d.

and d, corresponding to v and ]i non-zero components of x, the same

maximum is attained. Thus the maximum is obtained by choosing d. and d,

to be the maximum and minimum eigenvalues. It is proved in [1] that a

commutator (2) can't be diagonal with equal eigenvalues unless it is zero.
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