NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

APPLICATION OF AVERAGE EIGENVECTORS

by

R. N. Pederson
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 88-15 2
May 1988

Application of Average Eigenvectors

by
R.N. Pederson

Application of Average Eigenvectors

R.N. Pederson

The paper [1] contains a numerical method using the method of successive approximations with initial guess the inner product

〈Ce,f〉
where

$$
\begin{equation*}
\mathbf{C}=A^{T} A-A A^{T} \tag{2}
\end{equation*}
$$

the commutator of a non-normal real matrix A and its transpose. The vectors e and f are arbitrary orthogonal unit vectors. The speed of convergence is enhanced by having (1) be as large as possible. In this note we derive an algorithm for finding the optimum pair e and f.

There is no loss of generality in assuming that f is the unit component of $C e$ in the orthogonal complement of e. That is, f is the unit vector corresponding to

$$
\begin{equation*}
F=C e-\langle C e, e\rangle e \tag{3}
\end{equation*}
$$

Then, since substitution of (3) into (1) gives

$$
\begin{equation*}
\langle C e, f\rangle=\|C e\|^{2}-\langle C e, e\rangle^{2} \tag{4}
\end{equation*}
$$

and direct computation gives

$$
\begin{equation*}
\|F\|^{2}=\|C e\|^{2}-\langle C e, e\rangle^{2} \tag{5}
\end{equation*}
$$

the problem is equivalent to maximizing (5) subject to the constraint

$$
\begin{equation*}
\|\mathrm{e}\|^{2}=1 \tag{6}
\end{equation*}
$$

We may forget about the fact that C has the special form (2) and assume that C is an arbitrary symmetric matrix with eigenvalues

$$
\begin{equation*}
d_{1}, d_{2}, \ldots, d_{n} \tag{7}
\end{equation*}
$$

We may also assume that C is diagonal. Our problem then reduces to maximizing

$$
\begin{equation*}
\Sigma_{j=1}^{n} d_{j}^{2} x_{j}^{2}-\left(\Sigma_{j=1}^{n} d_{j} x_{j}^{2}\right)^{2} \tag{8}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
\Sigma_{j=1}^{n} x_{j}^{2}=1 \tag{9}
\end{equation*}
$$

The method of Lagrange multiplier then gives

$$
\begin{equation*}
d_{i}^{2} x_{i}-2\left(\Sigma_{j=1}^{n} d_{j} x_{j}^{2}\right) d_{i} x_{i}-\lambda x_{i}=0 \tag{10}
\end{equation*}
$$

for $i=1,2, \ldots, n$. For each i for which $x_{i} \neq 0$, we then have

$$
\begin{equation*}
d_{i}^{2}-2\left(\sum_{j=1}^{n} d_{j} x_{j}^{2}\right) d_{i}-\lambda=0 \tag{11}
\end{equation*}
$$

If x has another component $x_{k} \neq 0$, we have also

$$
\begin{equation*}
d_{k}^{2}-2\left(\Sigma_{j=1}^{n} d_{j} x_{i}^{2}\right) d_{k}-\lambda=0 \tag{12}
\end{equation*}
$$

Substituting (12) from (11) gives

$$
\begin{equation*}
d_{i}^{2}-d_{k}^{2}-2\left(\sum_{j=1}^{n} d_{j} x_{j}^{2}\right)\left(d_{i}-d_{k}\right)=0 \tag{13}
\end{equation*}
$$

If $d_{i} \neq d_{k}$, we may deduce from (13) that

$$
\begin{equation*}
d_{i}+d_{k}-2 \Sigma_{j=1}^{n} d_{j} x_{j}^{2}=0 \tag{14}
\end{equation*}
$$

If there is a thrid component of x with $x_{\ell} \neq 0$, it follows from (14) that

$$
\begin{equation*}
d_{k}=d_{\boldsymbol{l}} \tag{15}
\end{equation*}
$$

If the eigenvalues are distinct then (14) reduces to

$$
\begin{equation*}
d_{i}+d_{k}-2\left(d_{i} x_{i}^{2}+d_{k} x_{k}^{2}\right)=0 \tag{16}
\end{equation*}
$$

so, since $x_{k}^{2}+x_{k}^{2}=1$,

$$
\begin{equation*}
\left(d_{i}-d_{k}\right)\left(1-2 x_{i}^{2}\right)=0 \tag{17}
\end{equation*}
$$

Now, if all of the eigenvalues of C are equal, the form (5) is identically
zero. Otherwise, for distinct eigenvalues d_{i} and d_{k} we obtain

$$
\begin{equation*}
x_{i}= \pm \frac{1}{\sqrt{2}}, \quad x_{k}= \pm \frac{1}{\sqrt{2}} \tag{18}
\end{equation*}
$$

This leads to the extreme vectors

$$
\begin{equation*}
e= \pm \frac{\left(v_{i} \pm v_{k}\right)}{\sqrt{2}} \tag{19}
\end{equation*}
$$

where v_{i} and v_{k} are the eigenvectors corresponding to d_{i} and d_{k}. The extreme value of (5) corresponding to (19) is

$$
\begin{equation*}
\frac{\left(d_{i}-d_{k}\right)^{2}}{4} \tag{20}
\end{equation*}
$$

Since (5) is the square of (1) the maximum value in the case of distinct eigenvalue is

$$
\begin{equation*}
\frac{\left|d_{i}-d_{k}\right|}{2} \tag{21}
\end{equation*}
$$

The reader will verify that, in the case of multiple eigenvalues, with d_{i} and d_{k} corresponding to v and μ non-zero components of x, the same maximum is attained. Thus the maximum is obtained by choosing d_{i} and d_{k} to be the maximum and minimum eigenvalues. It is proved in [1] that a commutator (2) can't be diagonal with equal eigenvalues unless it is zero.

References

[1] Hager, W.W. and Pederson, R.N. Norm-Bounded Tridiagonalizing Similarity Transformations for Matrices. CMU Research Report No. 88-10, April 1988.

