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For k randomly chosen subsets of [n] = {1,2,...,n} we consider the
probability that the Boolean algebra, distributive lattice, and meet
semilattice which they generate are respectively free, or all of 2[n]. In
each case we describe a threshold function for the occurrence of these events.
The threshold functions for freeness are close to their theoretical maximum

values.



§1. Introduction

In this note we consider various algebras generated by k randomly
chosen subsets of [n] = {1,2,...,n}. As in the study of random graphs (Erdos
and Rényi [2], Bollobas [1]) we focus on the threshold for the occurrence of
various events.

To be specific consider ,n = 2[n] to be a probability space in which
each subset of [n] has the same probability 2 ™. Now select Al’Az""'Ak
independently and randomly from Qh (with replacement). Let é‘k)denote

ALA,. . LA

We consider

(i) Q(A(k)) = the Boolean algebra generated by A‘k).
(ii) Q(A‘k)) = the distributive lattice generated by A‘k).
(iii) u(é(k)) = the meet semi-lattice generated by A(k).

In each case we determine the asymptotic probability that the algebras

generated are (a) free, (b) the whole of On. We prove the following

Theorem

(a) Let € >0 be fixed and let «k = logzn - logzlogen + logzloge2. Then

lim P(Q(A(k)) is free) =
n-m»

|
[

for k < k-e

lim P(S(A‘k)) is free) =
n—x

|
o

for k 2 kte



(b) Let k=2 logzn +a. Then

0 a - -
) _~(a+1) n

lim P(B(A'"’) isall of ®# ) =1{ e a =2a
n n

1 a 2o
n

(c)

lim P(Q(Q(k)) is free) = lim P(Q(é(k)) is free)
n— n-

(d)

1im P(9(A%)) = ) = 11m P34y = 5 ).
n- n—™

(e) Let k = logzn - logz(logelogzn + bn). Then

0 b - -
-b n
lim P(p(A(k)) is free) = e ® bn -b
n—o
1 b - 4w
n

(f) We deviate from our probabilistic model by assuming the k sets are

c
chosen without replacement. Let now k = 2n(1 - -;-:-1-) where < 2 0. Then

0 cC_ -®
n
lim P(u(ﬁ(k)) = ’n) ={e® c, ¢
n—¥o
1 c -0
n



§2. Preliminaries

For S C [k] we define

and note that the sets AS’ S C [k] partition [n].
It is useful to consider the kxn O-1 matrix X = "xij" where

X = 1(0) whenever j € Ai (J € Ai). Our probability assumption is

J
equivalent to

(2.1) X11%190 X form a sequence of independent
Bernoulli random variables where for all 1i,j
1
P(xiJ =0) = P(xij = 1) =3
Now let SJ ={i1€[k]: j€ Ai}' It follows from (2.1) that
(2.2) P(S;= §) = 27k for all S C [k].
and that
(2.3) the random variables Sl,Sz. e ’Sn are independent.
Now we can view the construction of AI’AZ' ves 'Ak as the construction of

Sl’ 2""’Sn' Then since j € AsJ we have the following situation.

We have m = 2k boxes each labelled by a distinct subset of [k]. We
have distinct balls labelled 1,2,...,n which are independently placed

randomly into boxes. (We keep m = 2k throughout the paper.)



Placing j into box S is to be interpreted as putting S:j = S.

We refer to this as the Balls-in-Boxes construction and usé PBB to
refer to probabilities defined on this space.

It follows from (2.2) and (2.3) that in this space we determine a matrix

X with the same distribution as in (2.1).

§3. Boolean Algebras

Let us now consider S(ﬁ(k)). We have the following simple result.

Proposition 3.1

Q(A(k)) is free if and only if AS #¢ for all S C [k].

Proof
I1f AS = ¢ for some S C [k] then clearly Q(A_(k)) is not free.
Conversely, suppose S(A_(k)) is not free. Then there exist S,T C [k],

SNT=¢ such that ¢ = NA N NA DA
ies i€T

It follows from 82 and Proposition 3.1 that
(k)
P(B(A'"/) is free) = PBB (each box is non-empty).

Now the latter probability has been studied under the guise of the Coupon

Collector Problem (Feller [3]).

n-mlogm

Assuming k = k(n) let d(n) = (Recall m = 2k.) It is

m
well known that



0 d(n) - -
lim PBB(each box is non-empty) = { e d(n) » d
n—o

1 d(n) = +=

Thus if z satisfies n = 2%z loge2 and € > 0 is fixed then

k{z-¢€e= P(S(_A_(k)) is free) » 1

k2z+e= P(Q(A(k)) is free) = 0.
Since z = (logen - logelogen + logeloge2)/loge2 + o(1) we have part (a)
of the Theorem.

Another simple remark,

Proposition 3.2

#(A™)) 1s all of #_if and only 1f |Ag] <1 for all S ¢ [k].

Proof
S(A(k)) is all of ’n if and only if there exist Sj'Tj' j=12,....n
such that {j} = N Ai N N A,. This implies the proposition.
i
i€s i€T
J J
O
Thus

P(Q(A(k)) is all of ,n) = PBB(each box contains at most one ball).

Now let z, = the number of boxes containing exactly t balls. Let

a
k=2log2n+an so that m=2nn2.



Case 1: a = o,
— n

n -(a_+1)
Egp( 22,) <mp)E° <2 " o,

Case 2: an - a.

Observe first that

2

n n,,1,3 -
Egp( 2 2,) < n(3)() = 0@ ™)

n
and so P, .( 2 z_ > 0) = o(1).
BB' 5t

Thus we only have to show that

-A

lim P where A = 2 (a*1)

(Z, >0) =e
n—mBB 2

let r 2 0 be a fixed integer. We show

11 Z =A".
Lim Egp((Z5);)

It follows (see e.g. Bollobas [1], Theorem 1.20) that Z is asymptotically

Poisson with mean A. This will complete this case.

Now

Ega((Zy).) = (m)_ (D) lel G2 (1 - Ly T

T
m

and we are done.



Case 3: a -
This follows from Case 2 by a simple monotonicity argument. (Ultimately

we are throwing n balls into more boxes than the case of any fixed a.)

§4. Distributive lLatices

Let us now consider E(A(k)). We have the following:

Proposition 4.1

9(AX)) 1s free 1f and only if Ag# ¢ for ¢ %S C [k].

Proof

Assume E(A(k)) is freeand ¢ #S C [n]. Now the two sets

C=NA ., D=CN UA,
ies j€s

must be distinct. That is, there exists an element belonging to N Ai but
i€s

not to any Aj, for j € S. Put another way, AS £ ¢.

Conversely, given any two distributive lattice polynomials in k
variables which have different disjunctive normal forms, then their symmetric
difference (as a Boolean polynomial) contains a term with at least one
positive instance of a variable. Thus if AS P ) forl S # ¢, the sets

obtained by evaluating these polynomials are distinct and hence ﬂ)(é(k)) is

free.



It follows from §2 and Proposition 4.1 that
P(Q(A(k)) is free) = PBB(box S is non-empty, V S # ¢)
= PBB(box S is non-empty, V S) + PBB(box ¢ is the only empty box).
Thus, by Proposition 3.1, in order to prove (c) we need only show that

lim PBB(box ¢ is the only empty box) = O for all k > O.
)

But

(4.1) PBB(box ¢ is the only empty box) =

(1 - %)n PBB (box S is non-empty V S # ¢| box ¢ is empty).

Now if n/m - @ then (1 - %)n - 0 otherwise (n - (m—l)loge(m—l))/(m—l) - -
and the conditional probability in (4.1) tends to zero. This completes the

proof of (c). Now to part (d) of the theorem.

Proposition 4.2
9(A)) = #_ 1f and only is Ay=+ and |Ag] <1 forall S x4
Proof

Clearly 9(A(%)) =8 1f and only 1s

{§3} = n A for all j € [n].
JeA,



or equivalently
vV j € [n] {i} = A{iijeAi} and {i:j € Ai} £z 9.
As the sets AS partition [n] this condition is realised if and only if

A, =¢ and |AS|_<,1 for S #£ ¢.

o
Hence
Po(A()) = #) = Ppp(A, =4 and Al <1 for S ¢)
(4.2) = Ppy(lagl < 1. v S) - Ppp(lAgl < 1. for s % ¢ |AL] = DP(IA] = 1)
Now P( |A¢| =1) = % (1 - %)n—l and this tends to zero if %—»0 or . But
n

if n>c > O then the conditional probability in (4.2) goes to zero in view

of (b). This completes the proof of (d).

§5. Semi-Lattices

We now consider u(é(k)). We have the following

Proposition 5.1

u(é(k)) is free if and only if A[n]‘(.ﬂ #¢ for all j € [n].

Proof

The covering pairs in a free semilattice generated by X 1 Xg. o o0Xy  are

exactly those pairs



I\xi>(Axi)l\x

¢2IC[k], jelI.
i€l i€l J

So the semilattice p(A_(k)) is free if and only if for ¢ £ I C [k], j €1

-

NA CA,.
jex 17 J

For this to be true, it is necessary and sufficient that

n Ai 14 Aj for j € [k]
i€[k]-{J}

which is equivalent to the statement in the proposition.

Thus

(5.1) Pe(A®)) is free) = Pan(Apg_(gy * ¢ for 4 € [KD).
Now for T C [k]., IT| = t we have

(5.2) P(Ary(e) = ¢ for J€T) = (1 - i)“.

Recall that k = logzn - logz(logelogzn + bn)'

Case 1: bn-b+°°

(5.1) and (5.2) imply

10



P(p,(é(k)) is not free) < k(1 - %)n

<k e—n/m

(m = 2k = n/(logelogzn + bn))

-b
ke nllogzn

= 0(1).

Case 2: b_ =b.
_— n

Let Z = the number of boxes [k]-{j} which are empty, and let T = e

-b

11

and let t 2 1 be a fixed integer. Proceeding as in Case 2 of (b) we prove

1i Z =7
lim Egy((),) = 7

and we are done. Now

(), (1 - D"

Egp((2),)

13
L
P
]
=)
g
o

completing the proof of this case.



12

Case 3: b - - o,
- n

Use a monotonicity argument as in Case 3 of (b).

Finally we have

Proposition 5.2

p(é‘k)) = ,n if and only if

{[n]} U {[n] - {J} : J € [n]} C {A;: 1 € [Kk]}.

Proof
The sets [n] and [n] - {j}. § € [k]. are the meet irreducibles of 9n,
which must be contained in any set which generates ,n as a meet-semilattice.

o

ppose now t t we choose = - —) sets without rep acement.
Su ha h k = 2"(1 : i th 1

n

Let N =2". It follows from Proposition 5.2 that

Pea™) =5 ) = /)

n+l

~ (%) if c = o(N)

and the result follows.
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