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Elementary Order Varieties

Abstract

We show that the smallest order variety ccmtaining the two element chain which is also an

elementary class is the class of bounded lattices. On the other hand, all countable lattices

belonging to the smallest order variety containing the two element chain and closed under

ultraproducts, are complete. We also discuss the general relationships among the operations

of taking elementary substructures, retracts, products, and ultraproducts in classes of

ordered sets.
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0. Introduction

The central purpose of this paper is to answer two questions posed by R.W. Quackenbush

at Molokai in January 1987, and Oberwolfach in February 1988. Specifically, the

questions are:

Question 1 (Molokai): Is the smallest order variety containing the two element chain 2,

and closed under ultraproducts equal to the variety £ of bounded lattices!

Question 2 (Oberwolfach): Is the smallest order variety containing the two element chain

2, which is also an elementary class equal to the variety £ ?

We will also use this as an opportunity to discuss the relationships between the operators R

(retracts), P (products), S^ (elementary substructure), and P u (ultraproducts) in the class

of ordered sets.

1. Definitions and basic results

In this section we collect together the basic definitions and results of both order theory and

model theory which we require to answer the two questions. Our definitions are necessarily

somewhat short and incomplete. We recommend [1], [3], and [4] as an introduction to

model theory and [2] as an introduction to order varieties. First we will define our four

basic operations:



Definition: Let P = (P,<) be an ordered set. Then,

i) Q is a retract of P if QcP and there is an order preserving map f:P—»Q

which restricts to the identity map on Q,

ii) Q is an elementary substructure of P (written Q^P) if QcP, and every first

order sentence with parameters from Q which is true in Q, is also true in P.

Definition: Suppose I is a set, that Aj (ie I) are ordered sets, and that I t is an ultrafilter

on I. Then,

i) the Cartesian product II Aj is the ordered set whose underlying set is IlAi, and

which is ordered coordinatewise,

ii) the ultraproduct (ITA^/ll is the ordered set whose underlying set is IlAi

modulo the equivalence relation which identifies any pair of elements whose

coordinates agree on Ti-many indices (that is, on a subset of I which belongs to Ii),

and whose order relation is also the order relation of IIAj modulo this equivalence

relation.

Definition: Let X be a class of ordered sets. Then,

i) R3C is the class of ordered sets which are isomorphic to retracts of elements of 3£,

ii) P3C is the class of ordered sets which arc isomorphic to (Cartesian) products of

elements of 3C,

iii) PU3C is the class of ordered sets which are isomorphic to ultraproducts of elements

o fX,

iv) S<X is the class of ordered sets which are isomorphic to elementary substructures

of elements of 3C .



Definition: 1) An order variety is a class of ordered sets which is closed under both

R and P.

2) An elementary class (of ordered sets) is a class of ordered sets closed

under both Pu and S^.

3) An elementary order variety is a class of ordered sets which is both

elementary, and an order variety.

This definition of an elementary class is somewhat disingenuous. In fact, an elementary

class of structures in general is the class of structures satisfying a certain collection of first

order axioms. In this setting though, it is more natural to think of an elementary class as

being defined by some closure conditions, which bear at least a superficial similarity to the

closure conditions used to define an order variety.

One final definition:

Definition: We say that Q is elementarily equivalent to 33, and write Q s 33, if

We will need the following two results from the theory of order varieties and model theory

respectively:

Theorem ([5]): Every countable lattice is in the order variety generated by Q.

The Lowenheim-Skolem Theorem (see [4]): IfQ is an infinite structure then for

every infinite cardinal K, there exists a structure 33, with G s 33, and 133 I = K.



2. Order varieties containing 2

We will now answer the two questions posed in the introduction. To answer the first

question (in the negative) we will define a property (*) of ordered sets which is preserved

by R, P, and Pu such that any countable lattice satisfying (*) is complete.

Definition: We say that an ordered set P has property (*) if for any subset A of P, of

d
order type co © co , there exists an element d of P such that Au{d } has order type

d
co © 1 © co . Such an element d will be called an interpolating element (for A).

Lemma 1: Property (*) is preserved by R, P, and Pu.

Proof: a) This is obvious for retracts since the only retract of CD © 1 © CD which contains

co©co iso)©l©co .

b) Suppose that {Pi: ie I } is a collection of ordered sets each satisfying (*), and

that AC ITP| is of order type co © CD . For each i in I, the projection K{(A) is of

one of the following five types: i) n©m (n denoting the chain with n elements),

d d

ii) n © CD , iii) CD©m, iv) CD© CD , or v) 1. Here the first term in each sum

represents the image of the CD component of A, so in particular n>0, and in iii)

m>0. Now choose an element d in IIPi such that n^d) = max(n) in cases i) and

ii), Ki(d) = min(m) in case iii), 7q(d) is an interpolating element for 7Cj(A) in case

iv), and in the only way possible in case v). Such an element d is an interpolating

element for A in ITPi so P preserves (•) as required.



c) Suppose that {Pi: ie I } is a collection of ordered sets each satisfying (*) that
d

VL is an ultrafilter on a set I, and that AC IlPj/tl is order isomorphic to G>© 0) .

Write A = {a :̂ j e co}u{bk: ke ©} with ao < aj < ... < 2^ < ... < bm < ... < b0 <

bi where the aj and b^ are chosen representatives of their equivalence classes in

rnyu Put
A n={i€l : (b 0) i>(b 1) i> ...

Then A^E VL for all ne CD. The remainder of the proof breaks down into two

cases.

Case 1: n { A^ : ne co}e V . In this case IL-many of the representatives actually

form chains isomorphic to GO© CO . We can find interpolating elements on these

coordinates, and choose arbitrary elements on all other coordinates to produce an

interpolating element for A.

Case 2: n { An : ne ©}£ VL. In this case assume, without loss of generality that

n{An: ne co}= 0 . Define d by setting (d)x = (bj)i for i e Aj\Aj+1 and defining

d arbitrarily on other coordinates. Then for all i e An, (d)i < (bn\ sod< bn.

Similarly ^ < d as required. •

Let C be the smallest order variety which contains the two element chain and is closed

under ultraproducts. Then since 2 satisfies (*), so does each ordered set in C. Moreover it

is also clear that C C C, where £ is the variety of bounded lattices. However, we will now

show that the inclusion is proper.



Theorem 2: Any countable ordered set in C is a complete lattice. In particular; C

Proof: Let P be countable, and S C R If S is finite or empty then supS exists since P is a

bounded lattice. Suppose S = {^: ne co} is infinite, and let T be the set of upper

bounds for S. Again, if T is finite or empty then supS exists so suppose that T =

{t^ ne co}. For je co let:

aj = v{s n :O<n<: j} , bj = A ^ : 0 < n < j } .

If {aj: je co}or {bj: je co} is finite then supS exists. Otherwise,

d
A = {aj: je co}u{bj: je co} = co © co .

Since P satisfies (*) an interpolating element d for A exists. But such a d is an

upper bound for S, hence an element of T. This contradiction completes the proof

that P is a complete lattice. •

Now we shall see that if we are also allowed to take elementary substructures then we do in

fact obtain the entire order variety £ .

Theorem 3: The smallest elementary order variety containing 2 is £ . In fact, £ is the

smallest order variety containing 2 and closed under elementary equivalence.

Proof: Let I denote the unit interval [0, 1] nIR, and let Q = I n Q . Then le RP(2),

since I is a complete lattice. Hence Qe S^ RP(2) since the theory of dense linear

orders is model complete. But any bounded countable chain is a retract of Q, and

so by the result of [5] quoted above, any countable bounded lattice is in

RPS^RP^). Finally, by the upward Lowenheim-Skolem Theorem (see [4]),

any infinite bounded lattice is elementarily equivalent to a countable one and so

we obtain:

£ = S^JRPS* RP(2). •



3. Relationships among the operators

In this section we wish to consider the relationships between the operators R, P, S^, and

P u as applied to classes of ordered sets.

Remark : £ = S^RPS^RP^), but £ is not the smallest order variety which

contains 2 and is closed under Pu, and £ * S^PURP(2).

The first two parts of this remark are simply Theorems 2 and 3 above. The final part says

that there exist bounded lattices which do not satisfy the first order theory of complete

lattices. This is true because in any ordered set satisfying the first order theory of complete

lattices, all definable subsets must have both a supremum and infimum, and in the bounded

lattice GA&G*1, the collection of left-dense elements (which is first order definable) has no

supremum.

Corollary 4: RPS< cc S<RP, and S<RP <Z RPS< .

Proof: If the first containment were valid, we would get £ = S<PUS^RP(2) =

S<PURP(2), which by the remark above is not correct, while if the second were

valid we would get £ = S<PURPS<(2) = S<PURP(2), since the only

elementary substructure of 2 is 2, and this is also not correct. •

Note that the general effect of the operators S^ and R is to make ordered sets "smaller"

while P u and P generally make things "larger". The following theorem show that in
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Note that the general effect of the operators S^ and R is to make ordered sets "smaller11
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constructing elementary order varieties we may first make things larger and then smaller,



but that neither the process of making things larger, nor that of making things smaller is so

nicely balanced

Theorem 5: The only relationships A B Q B A which hold for A, B € {Pu, S^, R, P},

are P ^ £ S<PII, PS < £ S<P, PUR c RPU , and PR £ RP.

Proof: The four stated containments are quite well-known, and the first and last have

been discussed above. For the rest, the proof consists of a sequence of examples

violating or substantiating each of the possible containments in turn.

i) 2<° has a countable elementary substructure, while the only elementary

substructure of 2 is 2. Therefore, S^P cz PS^ .

ii) If I is an index set and A| and B| arc ordered sets with A| £ B{ for all ie I,

then the natural embedding of IIA| into IIBi is also elementary. Therefore,

iii) aPGofl € RS^(I), but is not in S^ROD since it is not elementarily equivalent

to a complete lattice. Therefore, RS^ cz S ^R.

iv) (Oj € S^R(co1©(2xco)) where 2 is the two element antichain, and % is the

first uncountable ordinal, since cOjGfco e R(co1©(2xco)) and (01<CI)1©CD.

However, any uncountable elementary substructure of co1©(2xco) is isomorphic

to O)1©(2xco) since: a) it must contain a pair of incomparables, and b) every

element must have a unique successor. Finally, co^ R(co1©(2xco)) since its

cofinality is too large. Therefore, S^R <Z RS^.

v) A non-principal ultrapower of 2^ over a countable index set has 2^ elements

and also has 2^ atoms, hence is not isomorphic to 2^. On the other hand, 2 has

no non-trivial ultrapowers. Therefore, PUP <Z PPU.

vi) PPu{n : ne co} contains an element that has countably many atoms but is not a

complete lattice. On the other hand, any ultraproduct of products of chains has

either finitely many, or uncountably many atoms. Therefore, PPU <z PUP.
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vii) Q belongs to RPU(CD®1), but is not in PUR(G>© 1) since any element of an

ordered set in this class (except the top) has a unique successor. Therefore,

RPU (Z PUR.

viii) If I is an index set and A| and B| are ordered sets with Ai € R(B|) then for

any ultrafilter 11 on I the ultraproduct of the A| modulo VL is a retract of the

ultraproduct of the B| modulo VL via the obvious map.

Therefore, P t t RcRP u . •

The next proposition and its corollary show that if we begin with an elementary class of

orderings, then the retracts of the countable chains in the class already encompass all

countable chains (with suitable bounds).

Proposition 6:1ft, is an elementary class of bounded linear orderings, containing an

infinite chain, then 1©TJ©1 is in R{C € E: C is countable}.

Proof: If E contains a countable model in which all discrete intervals are finite then

1©T|©1 is a retract of this model. Otherwise, there is certainly a model C e E

containing an interval isomorphic to either © or afl. Then some non-principal

ultrapower of C contains an interval isomorphic to the sum of copies of £ (the

order type of the integers) over a dense chain. This model contains a countable

elementary substructure (which must be in E) also having such an interval. By

collapsing each copy of C, to a point, and sending all other elements to 0 or 1 as

appropriate, we obtain the desired retraction. •

Corollary 7:IfZ is an elementary class of bounded orders which contains an infinite

chain, then R{C € E: C is countable} contains all countable bounded chains.



In fact it is possible to show by a similar, but slightly more delicate argument that the

bounds above may be removed unless all the chains in E have such bounds.

In constructing elementary order varieties it would probably be most appropriate to work

with the operators E = S^PU (elementary closure) and V = RP (formation of order

varieties). Each of these operators is idempotent We have seen (Corollary 4) that

VEV* EVE. Also in view of Theorem 5, relationships between the operators P and Pu;

and S^ and R could be studied. This suggests the question: are the three semigroups of

class operators generated by {V,E}, {P,PU}, and {S^,R} respectively all infinite?
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