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(1.5) h(t,v): = (N - 2) V k f ( t 1 / ( 2 N). v).

with k = (2N - 2)/(N - 2).

The existence of positive radial solutions of (1.1) has been studied in

[BCM] and [BP] for functions f which are indepndent of r and satisfy the

following conditions,

(1.6) lim f(u)/u = », lim f(u)/u = 0.
U-O

In both works, additional assumptions were used in establishing the existence

result. (In [BCM] it was assumed that f is monotone increasing. This was

replaced by a somewhat weaker assumption in [BP].) In the present note we

shall show that conditions (1.6) are sufficient to guarantee the existence of

a p.r. solution of (1.1). For a more precise statement of the result we must

2-N 2-N
introduce some additional notation. Let t- = rQ and tQ = r- and set,

(1.7) h(s) = maxh(t.s) , h(s) = minh(t.s) .

Denote by A- the first eigenvalue of the problem,

V" + \<p = 0 in

(1.8)

Assume that



 



(1.9) lim sup h(s)/s < A1 ,
s-O l

(1.10) lim inf h(s)/s > A-.

Then the following result holds.

Th. I Assume (1.2), (1.9). (1.10). Then problem (1.1) possesses a positive

radial solution in f^r^.r-).

If f is independent of r, the result remains valid even if the

continuity assumption on f is replaced by the assumption that f is a

locally bounded Borel function.

In general the solution is not unique. However uniqueness holds in the

following special case.

Suppose that

(1.11) f(r,u) = r"2"p fQ(r
Pu) for some real p

and that fQ satisfies the following conditions:

fft € C(R) , fft(0) m 0 . fo(s) > 0 for s > 0

fQ is locally Lipschitz and fQ is odd,

(1.12)2 fQ(s)/s -> 0 as s -> 0+ ,

(1.12)3 fQ(s)/s -̂  « as s -> » ,

(1.12)4 the function s -• fQ(s)/s is strictly monotone increasing.



 



Th. II Assume (1.11) and (1.12). Then problem (1.1) possesses a unique

positive radial solution. Furthermore given an integer k > 1 there exists

exactly one solution v of (1.4) in [t0>tj] such that v(tQ) = v(tj) = 0,

vf(t0) > 0 and v vanishes exactly k-1 times in (t^.t-).

Given p > 1 and an arbitrary real number v , consider the case

f (s) = sp and p = (u + 2)/(p - 1). In this case the function f in (1.11)

is given by f(r,u) = r*\iP (0 < r and 0 £ u) so that the equation (1.1) is

the Emden-Fowler equation. Clearly f satisfies assumptions (1.12). In this

special case Th. II was established in [C] and [Ni - N]. The method presented

here is different from the methods used in those papers.



 



§2. A-priori estimates.

Let H denote the family of functions h such that,

{h € C([tQ.«) x R), h(t,O) = 0. h(tfs) > 0 V t I tQ, V s > 0;

h(t.s) = h(trs) V t > tj , V s € R.

For h € * we define the functions h and h as in (1.7)

2.1 Lemma Let h € X and assume (1.9). Then there exists a positive number

A = A(h; t-) such that the following statement holds.

If v is a positive solution of (1.4) in an interval (tQft) vanishing at

the end points then,

(2.2) t < tx * v(tQ) I A.

Proof Consider the problem

V + \<p = 0 in (tQ,t) ,

(2.3)
= 0.

Denote its first eigenvalue by A, = ̂ j(t) and let f be a corresponding

positive eigenfunction. Further set

(2.4) i(s): = h(s)/s, V s C F.



 



Then

Hence,

t z

J ^ ( v + h(t,v)) dt = I (VjV + <P1
t0 l0

t t

= J »i(- V + h(t,v))dt < J ^v(- Xj + i(

(2.5) sup_ i(v(t)) ̂  X

Denote,

(2.6) ^(a): = sup g(s).
0<s<a

Since v is concave,

(2.7) v(t) i v(tQ)(t - tQ) . V t € [tQ,t].

Since t is monotone increasing, (2.5) and (2.7) imply.

(2.8) AHt0Ht - t0)) i x r

By (1.9). ^(a) ̂  ^Q < Aj as a ̂  0. Choose T > 0 such that ^(T) < Aj. If

t £ tj. then Xj ^ Aj. Hence by (2.8).



 



(2.9) v(tQ)(t - tQ) > T.

Thus (2.2) holds with A = T/(tj - tQ).

2.2 Remark Let X be a subset of * such that (1.9) is satisfied uniformly

for h in X. More precisely, there exist positive constants C,T such that

c < A1 and

(2.10) suph(t.s) £ cs , V h € X.
0<S<T

Then, for every h € X, the lemma holds with A = T/(tj - tQ).

2.3 Lemma Let cQ € (0,1/2) and denote

0 1 0 0 0 0 0 1

If v € C[tQ,t-] and v is concave and positive in (to,t-) then

(2.11) v(t) I cQ sup v . V t € (a,/3).

Proof Let N = sup v. It is easily seen that the triangle whose vertices

are (to,O)f (tj.O), ((tQ + t^/2. M/2) in the (t.v) plane lies under the graph

of the function v. This implies the assertion of the lemma.
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2.4 Theorem Let h € * and assume (1.10). Let S be the set of positive

solutions of (1.4) in (to,t-). Then there exists a positive number

cl = ci(k) such that

(2.12) sup v £ c1 . V v € S.
(to.tl}

Proof Let [a,/5] be a closed interval contained in (t^.t-). Denote

g(s): = h(s)/s, let v € S and consider the eigenvalue problem,

(w + Xg(v)w = 0 in (a,)3),

w(a) = w(P) = 0.

Let X- be the first eigenvalue and w- a corresponding positive

eigenfunction of this problem. Then, multiplying (2.13)- by v and

integrating by parts one obtains,

CL
rxdt + vwj]^ + Xj J g(v)vw1c(2.14) - f w-dt + v ^ r + X, I g^vw-dt = 0.

Similarly, multiplying (1.4) by Wj integrating by parts and using (1.7)

P
jdt + J g^vwjc(2.15) - vw.dt + gCv^.dt i 0.

Subtracting (2.15) from (2.14).



 



- 1) gMvw-dt + vwxr ^ 0.
Ja a

Since v(P)*AP) - vfajw^a) < 0 it follows that

(2.16) Xj > 1.

Denote,

(2.17) 2(s); = inf g . s > 0.

Thus 2 *s monotone increasing and 2 ^ 6 *n (0.00)- Let a,P,c^ be as in

Lemma 2.3 and let A- ,w- be as in the first part of this proof. Then, by

Lemma 2.3,

(2.18) g(v(t)) I 2(v(t)) 1 2(c0 sup v) =: 6y.

Next let n1(a,/5) be the first eigenvalue of the problem

= 0 in (a./3).
(2.19)

0.

Since, by (2.13) and (2.18),

Xl6vw ̂  ° ln ^a>^ '
= Wj(/3) = 0
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it follows that ^(a.p) £ X-6 . In view of (2.16) we conclude that,

(2.20) V^a.p) > 2(c0 sup v).

Now. by (1.10). 2(s) S ^ > Aj» a s s /• ». Let T, C be two positive

constants such that

(2.21) 2(s) ^ c > A r for V s * r.

Choose c~ sufficiently small so that A- < fx-fa.P) < c. (This is possible

by Lemna 2.3.) Then by (2.20) and (2.21)

(2.22) cQ sup v £ r , V v € S.

2.5 Remark Let X be a subset of * such that (1.10) is satisfied uniformly

for h in X. More precisely, there exists positive constants T,C with

c > A- such that

(2.23) inf h(t.s) I c s . V h € X.

Then the constant c. in the theorem can be chosen vmiformly with respect to

h in X.

2J5 Lemma Let h € * and assume (1.10). Then there exists a positive number

A = A(h; t-) such that the following assertion holds.
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If v is a positive solution of (1.4) in (tg.tj) such that v(tQ) = 0

then v(tQ) £ A.

Proof Let c- be as in Theorem 2.4 and denote

(2.24) c2: = sup{h(t,v): tQ £ t £ tj. 0 £ v £ c^.

Observe that if v is a positive solution of (1.4) in (tg.ti) then, by

Theorem 2.4,

(2.25) ;(tQ) = ̂ (t) + J h(T.v(T)d
l0

£ ̂ (t) + c2(t - tQ) V t € [tQ.tj].c2(t tQ

Now either (i) v vanishes at some point in (tr^ti] or (ii) v > 0 everywhere

in [tg.tj]. In the first case we have (by (2.25))

(2.26) ;(tQ) £ c2(tj - tQ).

In the second case we note that since v is concave

(2.27) 0 < vCt^Ct - tQ) i v(t) V t € [ t o . t l ] .

Hence, with 2 a s l n (2.17),

(2.28) 0 2 v(t) + v 2(v) 1 v(t) + v 2(v(tj)(t - tQ)). V t €
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Let tr € (^.t-) and let A^t') be the first eigenvalue of the problem,

|V" + \<p = 0 in (t'.t-J,

By (2.28).

(2.29) Xj(t') I 2(v(t1)(t' - tQ)).

Let c, T be as in the proof of Theorem 2.4 and choose t' sufficiently near

to tQ so that A- < X-(t') < c. Then (2.29) amd (2.21) imply that

j ' - tQ) i T.

Hence, by (2.25),

(2.30) v(tQ) i T/(t' - tQ) + c2(tl - tQ).

Finally. (2.26) (in case (i)) and (2.30) (in case (ii)) imply the assertion of

the lemma with A given by the right hand side of (2.30).

2.7 Remark Let X be a subset of * which satisfies (2.23) and which is

uniformly bounded on compact sets. Then the constant A in the previous

lemma can be chosen uniformly for h € X.
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§3. Existence results

The assertion of Theorem I is equivalent to the statement that there

exists a positive solution of (1.4) in (tQ.ti)* w h i c h vanishes at the end

points. This will be proved in two steps.

3.1 Step 1 In addition to the assumptions of the Theorem (i.e. h € # and h

satisfies (1.9) and (1.10)) we shall assume that

(3.1) h(t,-) € C V ) V t €

Consider the following problem,

{v + h(t,v) = 0

v(tQ) = 0 . v(tQ) = a.

Denote its solution by v(*,a). For a > 0 the solution is positive to the

right of tQ. Denote,

tj(a): = sup{t : v(-.a) > 0 in (tQ,t)}.

If tx(a) < « then v(t]l(a).a) = 0. Let.

»: = {a > 0 : tj(a) < »}.

In view of (3.1), 9 is an open set and t-(*) € C(9).

By Lenma 2.6,
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(3.3) a > A * tj(a) < ty

Thus 2B contains a half line. Let (ao>«) be the maximal half line contained

in ». If aQ = 0 then, by Lemma 2.1, there exists a' € (aQ,«>) such that

tj(a') > tj. (In fact this holds for every a' in (0,A).) If aQ > 0 then,

by the proof of Lemma 2.1 (see (2.9)),

tx(a) - tQ > T/aQ V a > aQ

for some T > 0. Therefore lim t-(a) = ».
a H a 0 +

(If for some sequence a -* aQ+, {t-(a )} converges to a number larger than

tQ then aQ € S contrary to assumption.) Consequently, in this case too,

there exists a' € (aQ,») such that t-(a') > t-. Since t(*) is continuous

in (aQ.«>) this fact and (3.3) imply that there exists a € (ao,«) such that

tj(a) = t r

3.2 Step 2 Let h € * satisfy (1.9), (1.10). (We do not assume (3.1).)

Since we are interested in positive solutions, there is no loss of generality

in assuming that h(t,») is odd. Let J denote the e-mollifier on K and

denote hn(t,*) = J1/n
h(t-#)- Then, hR € * and it is easily seen that the

set X = {h }- satisfies the assumptions of remarks 2.2, 2.5 and 2.7. By the

first part of the proof, for each n € M, there exists a positive solution,

say v , of the problem
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(3.4) ;
v(tQ) = v(tj) = 0.

By Theorem 2^4 and remark 2_J>. the sequence {V R} is uniformly bounded in

[to,t.]. By Lemma 2.6 and remark 2.7 {v (tQ)} is bounded. Consequently, by

(3.4). {v } and {v } are uniformly bounded. By the Theorem of Arzela-Ascoli,

there exists a subsequence {v } which converges in C [tQ,tj] to a function

v. By (3.4),

(3.5) ;n(t0) = ;n(t) + J hn(T,vn(-r))dT, v t c (t o, t l).;n(t0) = ;n(t) + J hn(T,vn to,tl

Since h •* h uniformly on compact sets and v -* v in C [t^.t-] we
n n^

conclude that

(3.6) V(t ) = V(t) + f h(T. v(T))dT.
J to

Thus v satisfies the equation in (3.4) and clearly v I 0 in (tQ.tj) and

v(tQ) = v(tj) = 0. It remains to show that v > 0 in (tQ.t-).

We note that by Lemma 2.1 and remark 2.2, the sequence {v (tQ)} is bounded

below by a positive number A. Consequently v(tQ) > 0 so that v = 0.

Since v ^ 0 and v is concave in (tQ.tj) it follows that v > 0 in this

interval.

The argument used in the second part of this proof actually yields the

following result.
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3.3 Theorem Let {h } be a sequence in # which converges uniformly on
n

compact sets to an element h € *. Suppose that (2.10) and (2.23) hold for X

= {h }. Let v be a positive solution of (3.4). Then there exists a

subsequence {v } which converges uniformly in [tg.t-] to a positive solution

v of (3.4).

Next we consider problem (3.4) for h of the form,

(3.7) h(t.s) =b(t)k(s).

In this case we can relax the continuity assumption on h, requiring only

(3.8) b € C [tQ,t1] ; k is a Borel function in L^OC(IR)<

Thus we have,

3.4 Theorem Let h be as in (3.7). Assume (3.8), (1.9), (1.10) and

(3.9) b(t) > 0 in [tQ.tj], k(s) > 0 a.e. in (0,») and k is essentially

bounded away from zero in every interval [s-.s^] C (0,»).

Then there exists a positive solution v of (1.4) in (t/\,t-) vanishing at the

end points, v is a solution of (1.4) in the following sense: v € C [t^.t-]
U 1

v is Lipschitz in [tg.t-] and (1.4) holds a.e. in (to,t-).

Proof Since we are interested in positive solutions we may assume that k is

odd. Let kR = J1/nk. Then {kn> is bounded in L^OC(R) and k -> k a.e.

Denote h^: = b kR and let v be a positive solution of (3.4). Clearly
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X = {hn) satisfies the assumptions of Remarks 2J5, 2J5, 2/7. Therefore (as in

the proof of Theorem I) we conclude that there exists a subsequence of {v }

(likewise denoted by {v }) which converges in C [t^.t-] to a function v and

that {v (tQ)} is bounded away from zero so that v(tQ) > 0. We denote

M: = sup llv Wnr4. «. -i. We claim that (for this subsequence)
n ^Lr t J

(3.10) k
n<

vn^n "> k ( v )* i n

First we show that,

(3.11) VV^n " k<V\^ ° ln

Since v^ > 0 and vn < 0 in (tQ.tj) there exists a point t in this

interval such that V R > 0 in ^0'^) a n d V R < 0 in (t ,t-). Consequently,

if Mn: - vn^n> = *u? /n then

I |kn(vn) - k(vn) | |vjdt

p n p 1
- ( " I )|k (v ) - k(v )I vJt J- n n n n

"0 "n

n
= 2 f |k (s) - k(s)|ds i 2 f |k (s) - k(s)|ds - 0.

Jo " Jn "
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This proves (3.11). Next let,

\a\ i M_ fk(a).

1 0 .
k(a)

otherwise

and denote

s
K(s) = f k(a)da.

J0

Then K is uniformly Lipschitz on R. By a result of [MM], if u -> u in

*i (t^.t-) (where p € [1,»)) then K(u ) -* K(u) in W- (t^.t-).i,p u L n i,p u i

Furthermore,

K() k± K(u) = k(u) u.

Thus,

(3.12) k(v nK n-k(vK in

Statement (3.10) for p = 1 follows from (3.11), (3.12). Since (k (v )v } is

uniformly bounded, it is clear that this implies convergence in L (t/yti) f°r

every p € [I,60). Note that (v } is a bounded sequence in Wo ^(t^.t-) and

hence in particular in IL(tQ,t-). Therefore one can extract a subsequence

(which we continue to denote {v }) which converges weakly in VL. Since

vn -• v in CCtQ.tj] it follows that the weak limit of {vn> in Hg is v. In

particular V R -> v weakly in L2^
t0ttl^ S i n c e ^n "• ̂ in C[t(),t1] it
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follows that v v -» vv weakly in L^t^.t.). This fact, together with
n n ^ u i

(3.10) and (3.4) imply that

(3.13) vv + bk(v)v = 0 a.e. in (to,tj).

Clearly v 2 0 in (tQ.tj), v(tQ) = v(tj) = 0. Recall that v(tQ) > 0. Let

I = sup{t > tQ: v > 0 in (tQ.t)}. By (3.13)

(3.14) v + bk(v) = 0 a.e. in (tQ,t).

since v(t) > 0 it is clear that there exists 6 > 0 and c > 0 s.t.

v (t) > c for |t - t| < 6 and n = 1,2, Hence there exists c' > 0

such that

vn(t) £ - c' for |t - t| < 6 and n = 1,2,

Consequently

Vn ( t ) ~ Vn ( t ) * - C'(t

and hence (recall v(t) = 0)

v(t) i - c' (t - t) , |t - t| < 6.

Thus v < 0 in (t, t + 5). Furthermore v is monotone decreasing (since v
n

has this property). Thus v < 0 everywhere in (t.t-). Consequently (using

(3.13), (3.14))
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(3.15) v + bk(v) = 0 a.e. in (tg.tj).

It is also clear that v > 0 in (tQ,tj). This completes the proof of the

theorem.
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4. A uniqueness result.

In this section we prove Theorem II. We start with some preliminary

observations.

4.1 We consider equation (1.3) with f as in (1.11). In this case the

function h in (1.4) is given by

(4.1) h(t,v) = (N - 2rV2 + afo(vt~a) , a: = p/(N - 2).

Further applying the Fowler transformation

(4.2) x = log t , z = vt"*7

equation (1.4) obtains the form,

(4.3) z" (x) = (1 - za)z'(x) + fj(z(x))

where,

(4.4) fx(z) = a(l - a)z - fQ(z)/(N - 2)
2.

If 0 < a < 1 then, by (1.12), fj has exactly three zeros, z = 0, z = z > 0

and z = - xa. If a 2 1 or a £ 0, fj(z) * 0 for every z * 0. Note that

fj is odd. Accordingly, if z = z(x) is a solution of (4.3) in (a,/3) then so

is z = - z(x). In addition z = z(-x) is a solution of (4.3), with a

replaced by a: = 1 - a. in (-/3,-a).
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Since f- is independent of x, equation (4.3) can be studied by phase

plane methods, as in the case of the Emden-Fowler equation. A study of the

positive solutions of (1.1) with f as in (1.11), by phase plane methods, was

carried out in [BM]. We quote below some of the results of [BM] that will be

used in our proof. All of these results hold under assumptions (1.11) and

(1.12).

4.2 Denote w = z'(x) so that the generic point in the phase plane is (z,w).

There exists a curve F which divides the half plane {(z,w)." z > 0} into two

domains D Q and D- such that D~ is bounded and D. is the union of all

phase plane curves corresponding to positive solutions of (1.1) (for arbitrary

annuli). The curve F is the phase plane trajectory of the positive

solutions of (4.3) defined on an unbounded interval, for which (0,0) is a

limit point. (All these solutions have the same trajectory in the phase

plane.) If z = z(x) is such a solution and (x-.x^) is the maximal unbounded

interval on which it is positive then,

Xj = - « and Xg < » when a < 1/2,

(4.5) Xj = - • and Xg = » when a = 1/2,

Xj > - » and Xg = » when a > 1/2.

The curve F intersects the z-axis at exactly one point a which divides

T into two branches T+, T_ lying in the upper and lower half plane

respectively. These branches can be described in the form w = w (z),

0 < z < a which have the following properties
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lim w (z)/z = 1 - a if a < 1/2
VHO

lim w (z)/z = - a if a > 1/2
v-O

lim w.(z)/z = + a if a' = 1/2.
VHO *

Furthermore, if a < 1/2 (resp. a > 1/2) then T_ (resp. T+) intersects the

w-axis at a point w* < 0 (resp. w+ > 0) with slope 1 - 2a. The functions

w ,w_ satisfy the equation

(4.7) ww' = (1 - 2a)w + f^z).

For a £ a denote by z(»,a) the unique positive solution of (4.3) subject

to the conditions z(0) = a, z'(0) = 0. The set of positive solutions of

(1.1) corresponds to {z(#,a): a > 0}. Denote by (x_(a), x (a)) the maximal

interval (containing zero) on which z(\a) is positive and let F(a) be the

corresponding curve in the half plane {(z,w): z > 0}. By (4.5). x_(a ) = - »

if a i 1/2 and x+(a*) = « if CT ^ 1/2 while x+(a**) < » if a < 1/2 and

x_(a*) > - » if a > 1/2. For a > a**. - » < x_(a) < 0 < x+(a) < ».

Moreover, for a > a , the curve T(a) intersects the z-axis exactly once, at

(a,0), and this point divides T(a) into two branches T+(a), T_(a) lying in

the upper and lower quarters respectively. F (a) (resp. F_(a)) intersects the

w-axis at a point w+(a) > 0 (resp. w_(a) < 0) with slope 1 - 2a. Clearly if

al * ̂  t^ien ^(ai) does not intersect F(a^). As a point moves along F(a)

from (0,w+(a)) towards (0,w_(a)) the corresponding point on the curve z(»,a)

moves from x_(a) towards x+(a). Finally, two solutions of (4.3) are

represented by the same curve in the phase plane if and only if one is a

translation of the other. Thus two distinct positive annular solutions in the
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same annulus correspond to distinct curves T(a).

Given a > 0, let v(t,a): = taz(x,a) where t = eX and denote

t+(a) = exp x+(a). In view of (4.5),

(4.8) t+(a)/t_(a) -+ + » as a -» a*.

It is easily seen that,

(4.9) tv =5 wta + av.

Hence,

(4.10) v(t±(a),a) = w_(

4.4 Proof of Theorem II Suppose that in a given annulus there exist two

distinct positive solutions of (1-1). Then there exist ^L..^ SUC^ that

a < a- < a* < » and t+(a-) = t+(a~). Denote t+(a.) = b. t_(a.) = b and

vi(*) = v(*, a i). Since &1 < a ^ v+i^) > w+(aj) and w j a ^ < w-(a1).

Hence, by (4.10),

(4.11) ^(b) > ̂ ( b) > 0 . ^(b) < ̂ (b) < 0.

Thus v^(t) > v-(t) for t near b and for t near b. Now, v-.v^ are two

positive solutions of (1.4) (with h given by (4.1)) in (b,b) vanishing at

the end points. In view of (1.12)., the comparison theorem implies that the

two solutions must intersect in (b,b). Further, (4.11) implies that they must

intersect at least twice in (b,b). Let c (resp. c) be the point of
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intersection nearest to b (resp. b). Thus (by (4.11))

(4.12)

V2(t) > Vj(t) in (b.c) U (c.b),

Vj(c) = v2(c) , vx(c) = v2(c).

This implies,

(4.13) j(c) , v2(c)

Set z := vi(c)c , z := vi(c)c (see (4.2)) and let (z,

the points corresponding to c and c on r(a.), i = 1,2.

Then by (4.9),

and (z,wj[) be

Since Vj(c) = v2(c), (4.13) implies

-2

Similarly we obtain,

(4.14)2

Since c^ > a19 if (z.Wg) €

following statement holds,

and (z.Wj) € T(aj) then and the
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> 0

< 0

Thus (4.14)- implies that w2 < 0. Since c < c it follows that (z,w2) lies

between (z,w2) and (O.w^a^,)). Hence, * 2 < 0 and hence, by (4.15), wg < Wj

in contradiction to (4.14)~. Thus in any annul us there is at most one

positive solution of (1.1). Since the existence is guaranteed by Th. I, the

first part of Th. II is proved.

This uniqueness result implies that the function

(4.16) (a*,«) 3 a -> t+(a)/t (a)

is strictly monotone. The existence result established before implies that

the range of this function is (I,09). Finally, in view of (4.8) we conclude

that

(4.17) lim t+(a)/t_(a) = 1.

If v = v(t) is a solution of (1.4) in (to,t-) then v = -v(t) is a

solution of (1.4) in the same interval while v = t v(l/t) is a solution of

(1.4) in (1/tj, l/tQ) with a replaced by a = 1-a. Therefore it is

sufficient to establish the assertion of the theorem for a < 1/2.

Let r be a curve in the phase plane (z,w) corresponding to a solution

z = z(x) of (4.3). Then -r corresponds to the solution z = -z(x). (Recall

that f- is odd.) Thus -F* divides the left hand plane z < 0 into two

domains, -DQ and -Dj, such that -D- is precisely the union of all curves

representing negative solutions of (1.1) (for arbitrary annuli).

Note that the function a -• w+(a) is strictly monotone increasing in
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(a*.«) because r(aj) D T ^ ) = + whenever aj * a^ If a < 1/2 then

w (a) -> 0 as a -» a* and w (a) -* • as a -» », because for every point

(0,w) with w > 0 there exists a curve T(a) starting at that point.

Assume a < 1/2. Given b > 0 let a > a be such that w+(a) = b and

denote 3t(b): = T(a) and w(b): = wja). For b < 0 let *(b) = - 3t(-b) and

denote w(b) = - w(-b). Note that |w(b) | > |w*|, for every b * 0.

Now for b > 0 let

(4.18) XJb): = U «(b ) .
i=0 X

where bQ = b, b. = w(b,j) for i = 1,2,... . Then ^(b) is a continuous

curve in D. U (-D.) which corresponds to an oscillating solution of (1.4).

Given tQ > 0 there exists exactly one such solution of (1.4) defined in some

interval (to,T), namely, the solution v with initial data v(tQ) = 0, v(tQ)

as b tQ . We denote this solution by v(#;b).

By the results of [BM] (see in particular Lenma 2.2), if a * 1/2, a

curve F in the phase plane corresponding to a solution of (1.4) cannot

contain a closed loop (and, by uniqueness, it cannot intersect itself).

Furthermore ^(b) is unbounded. Indeed, if ^(b) were bounded then it

follows that the solution v(#;b) is defined on (to,») and consequently, using

the Poincar6-Bendixon theory, one concludes (as in [BM, Lenma 2.7]) that

lim (z,w) exists and is a stationary point. However this is impossible
XH»

because |bjj > |w_| for k £ 1 so that {b,} cannot converge to zero.

(Recall that there are exactly three stationary points and they are all

located on the z-axis.)

Next we observe that 0>21}()
 a n d ^b21-l^l a r e s t r i c t ly monotone. Since
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^ is unbounded, it follows that bg. -* + » and t>2. j -• - ». (If

were bounded then choosing an upper bound b we would conclude that ^

lies inside the domain bounded by £(b) fl S(w(b)).) In particular we deduce

00 00

that 0>2J}Q * S Inonotone increasing while {̂ 91-1̂ 1 *s n*0110*0116 decreasing.

To each point (0,b.) there corresponds a unique point t .(b) € [to,«>)

such that v(t (b);b) = 0 and v(t (b);b) = b t (b)""1. (In particular

J J J J

tQ = tQ(b).) {t.(b)>Q is precisely the set of zeros of v(»;b) and t (b) <

t j(b), j = 0,1 Let vk(^;b) denote the restriction of v(»;b) to
|. Then v,(#;b) is a solution of (1-4) in this interval which

vanishes at k+1 points (including the end points) and which satisfies

vk(tQ;b) > 0. Conversely, if v is a solution of (1.4) in [tQ,T] satisfying

the above conditions then there exists b > 0 such that T = t,(b).

Therefore, to establish the second assertion of Th. II it is sufficient to

show that b -* t,(b)/t0 is monotone and that its range is (I,0*).

Let a. denote the point where S(b ) intersects the z-axis. In view of

the monotonicity properties of 0>21}
 3nd ^21-1^ it: f o l l o w s t h a t {aoi}n is

monotone increasing in (0,») and {^^.i}^ is monotone decreasing in (-«>,0).

Since 3t(b9 ) = T(aQ.) and «(bo. ) = -r(-«u. -) we have,

k-1

0 j=0 + J J

By the first part of the proof,

(4.20) a -> t+(a)/t_(a) is monotone decreasing in (a ,«)

and its range is (I,00).
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It is easy to see that for each fixed j (j = 0,1,...) |a | -» » as b -> «>.

Therefore. (4.19) and (4.20) imply that

t+(a0)/t_(a0) i ybJ/tQ i [max (t+(a0)/t_(a0). ^ (

and hence t.(b)/t0 varies from 1 to » as b varies from • to zero.

Furthermore, if 0 < b < b' then |a. | < |a'| (where a' is in the same

relation to b' as a. to b) and consequently
J

t+(kjl)/Uk,l) > t+(|a^|)/t_(|a'|) j = 0 k.

Hence by (4.19).

tk(b)/tQ > y b ' ) / ^ .

This completes the proof of the second part of the theorem in the case

a * 1/2.

Finally, assume a = 1/2. In this case if z = z(x) is a solution of

(4.3) then z = z(-x) and z = -z(x) are also solutions of (4.3). Hence if F

is a curve in the phase plane corresponding to a solution of (4.3) then F

(its symmetric image with respect to z-axis), as well as -T, are also curves

of this type. In particular F(a), a > a , is symmetric with respect to the

z-axis and -T(a) is its continuation as an integral curve (corresponding to

solutions of (4.3)) to the left hand plane z < 0. Consequently, setting

b: = w+(a), the curve ^(b) defined in (4.18) reduces to the closed curve

T(a) U (-r(a)). Therefore if v(*;b) and {t (b)}~ are defined as before we

have:
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V i ( b ) / t j ( b ) =

so that (with tQ = tQ(b)):

= (t+(a)/tja))
k.

By the first part of the proof it follows that the function b -» t,(b)/t0 is

monotone decreasing in (0,») and its range is (I,00). This implies the second

assertion of the theorem for a = 1/2 and the proof is complete.
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