ON RANDOM MINIMUM LENGTH SPANNING TREES

by
A. M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
and
C. J. H. McDiarmid
Wolfson College
Oxford University
Oxford
England
Research Report No. 88-16 2
May 1988

On random minimum length spanning trees

by

A.M. Frieze	and	C.J.H. McDiarmid
Dept. of Mathematics		Wolfson College
Carnegie Mellon University		Oxford University
Pittsburgh, PA 15213	Oxford	
U.S.A.		England

May 1988

Abstract

We extend and strengthen the result that, in the complete graph K_{n} with independent random edge-lengths uniformly distributed on [0,1], the expected length of the minimum spanning tree tends to $\zeta(3)$ as $n \rightarrow \infty$. In particular, if K_{n} is replaced by the complete bipartite graph $K_{n, n}$ then there is a corresponding limt of $2 \zeta(3)$.

§1 Introduction

Suppose that we are given a complete graph K_{n} on n vertices together with lengths on the edges which are independent identically distributed non-negative random variables. Suppose that their common distribution function F satisfies $F(0)=0, F$ is differentiable from the right at zero and $\mathrm{D}=\mathrm{F}_{+}^{\prime}(0)>0$. Let X denote a random variable with this distribution.

Let L_{n} denote the (random) length of the minimum spanning tree in this graph. Frieze [3] proved the following:

Theorem 1

(a) If $E(X)<\infty$ then $\lim _{n \rightarrow \infty} E\left(L_{n}\right)=S(3) / D$, where
$\zeta(3)=\sum_{k=1}^{\infty} k^{-3}=1.202 \ldots$
(b) If $E\left(X^{2}\right)<\infty$ then $\lim _{n \rightarrow \infty} \operatorname{Var}\left(L_{n}\right)=0$, and so in particular $L_{n} \rightarrow S(3) / D$
in probability.
Recently, Steele [5] has shown that the convergence in probability above holds without assumptions on moments.

In this paper we generalise Theorem 1 to graphs other than K_{n}. We shall also simplify the proofs and sharpen the results.

Let H be a fixed connected multigraph, with vertex set $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{h}\right\}$. Corresponding to each edge e of H let F_{e} be a distribution function of a non-negative random variable such that $F_{e}(0)=0$ and F_{e} has a right derivative D_{e} at 0 . We assume that there exists $D>0$ such that for each vertex v of H,

$$
\sum_{e \ni v} D_{e}=D
$$

(Observe that loops contribute once to this sum.)
For each $n=1,2, \ldots$ let H_{n} be a (loopless) graph obtained as follows. Replace each vertex v_{i} of H by a set V_{i} of n new vertices, so that $\left|V\left(H_{n}\right)\right|=n h$. Now join two distinct vertices of H_{n} by the same number of edges as join the corresponding vertices of H. Thus if H has λ loops and v non-loops then H_{n} has $\mu=\binom{n}{2} \lambda+n^{2} v$ edges.

Let the edges of H_{n} have independent lengths, where the length of an edge e is distributed according to the distribution for the edge of H from which e arose. Let us extend our notation so that the length of $e \in E\left(H_{n}\right)$ has distribution function F_{e} as well.

For any connected graph G with non-negative edge-lengths let $L(G)$ denote the length of a minimum spanning tree in G.

Theorem 2

As $n \rightarrow \infty, L\left(H_{n}\right) \rightarrow(h / D) \zeta(3) \quad$ a.s.

This result follows (by a Borel-Cantelli lemma) from

Lemma 0

For any $\epsilon>0$ there exists $c, 0<c<1$ such that

$$
P\left(\left|L\left(H_{n}\right)-(h / D) \zeta(3)\right|>\epsilon\right)\left\langle c^{n^{1 / 4}} .\right.
$$

Theorem 1 follows from the case where H has a single vertex and a
single loop, so that $H_{n}=K_{n}$. Some other interesting cases are the following, where for simplicity we make each edge length uniform on [0,1].

$$
\begin{equation*}
L\left(\left(K_{r}\right)_{n}\right) \rightarrow \frac{r}{r-1} \zeta(3) \quad \text { a.s. } \tag{1}
\end{equation*}
$$

(Here $\left(K_{r}\right)_{n}$ is the complete multipartite graph with r blocks each of size n.) In particular $L\left(K_{n, n}\right) \rightarrow 2 \zeta(3)$ (se [4]).

$$
\begin{equation*}
L\left(\left(C_{k}\right)_{n}\right) \rightarrow \frac{k}{2} \zeta(3) \quad \text { a.s. } \tag{2}
\end{equation*}
$$

(Here C_{k} is a cycle with k vertices.)

$$
\begin{equation*}
L\left(\left(Q_{k}\right)_{n}\right) \rightarrow \frac{2^{k}}{k} \zeta(3) \quad \text { a.s. } \tag{3}
\end{equation*}
$$

(Here Q_{k} is the k-cube.)
We shall prove lemma 0 (and thus Theorem 2) in three stages (sections 3,4,5 below), but first we have:

§2. Notation and Preliminaries

We use two models of random subgraph of H_{n}.
For $1 \leq m \leq \mu \quad H_{n, m}$ has the same vertex set as H_{n} and for its edge set a random m-edge subset of $E\left(H_{n}\right)$.

For $0 \leq p \leq 1 \quad H_{n, p}$ has the same vertex set as H_{n} and each of the μ edges of H_{n} are independently included with probability p and excluded with probability 1 - p.

We have need of the following simple relation between $H_{n, m}$ and $H_{n, p}$ where $p=\frac{m}{\mu}$: for any property II

$$
P\left(H_{n, m} \in \Pi\right) \leq 2 \sqrt{\mu} P\left(H_{n, p} \in \Pi\right)
$$

This follows from

$$
P\left(H_{n, p} \in I\right)=\sum_{m^{\prime}=0}^{\mu} P\left(H_{n, p} \in I| | E\left(H_{n, p}\right) \mid=m^{\prime}\right) P\left(\left|E\left(H_{n, p}\right)\right|=m^{\prime}\right)
$$

and the fact that (i) $H_{n, p}$ conditional on $\left|E\left(H_{n, p}\right)\right|=m^{\prime}$ is distributed as $H_{n, m^{\prime}}$ and (ii) $\left|E\left(H_{n, p}\right)\right|$ has the binomial distribution $B(\mu, p)$.
§3. Expected value for uniform [0, 1] case
Our approach to proving theorem 2 is similar to that of [3] but uses martingale inequalities in place of the Chebycheff inequality. We first discuss the case where edge lengths are uniform on [0,1] and H is r-regular (with loops counting once towards the degree of a node).

Suppose that the edges $E\left(H_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\mu}\right\}$ are numbered so that $\ell\left(u_{i}\right) \leq \ell\left(u_{i+1}\right), i=1,2, \ldots, \mu-1$ where $\ell(u)$ is the length of edge u.

A minimum length tree may be constructed using the Greedy Algorithm of Kruskal [4]. Let $\mathrm{F}_{0}=\phi, \mathrm{F}_{1}=\left\{\mathrm{u}_{1}\right\}, \mathrm{F}_{2}, \ldots, \mathrm{~F}_{\mathrm{hn}-1}$ be the sequence of edge sets of the successive forests produced. Here $\left|F_{i}\right|=i$ and $F_{h n-1}$ is the set of edges in a minimum spanning tree.

Next define $t_{i}=\max \left\{j: u_{j} \in F_{i}\right\}$. Then

$$
\begin{equation*}
L\left(H_{n}\right)=\sum_{i=1}^{h n-1} u_{t_{i}}, \tag{5}
\end{equation*}
$$

and thus

$$
\begin{equation*}
E\left(L\left(H_{n}\right)\right)=\frac{1}{\mu+1} E\left(\sum_{i=1}^{\mathrm{hn}-1} \mathrm{t}_{\mathrm{i}}\right) . \tag{6}
\end{equation*}
$$

The subgraph Γ_{m} of H_{n} induced by $U_{m}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is distributed as $H_{n, m}$. Let κ_{m} denote the number of connected components of Γ_{m}.

Lemma 1

$$
\underset{i=1}{\mathrm{hn}-1} \mathrm{t}_{\mathrm{i}}=\sum_{\mathrm{m}=1}^{\mu} \kappa_{\mathrm{m}}+\mathrm{hn}-\mu-1
$$

Proof

$$
\sum_{m=1}^{\mu} \kappa_{m}=\sum_{r=1}^{h n-1}(h n-r)\left(t_{r+1}-t_{r}\right)
$$

where $t_{\mathrm{h}_{\mathrm{n}}}=\mu+1$. This is because $\Gamma_{\mathrm{t}_{\mathbf{r}}}, \Gamma_{\mathrm{t}_{\mathrm{r}}+1}, \ldots, \Gamma_{\mathrm{t}_{\mathrm{r}+1}-1}$ all have $\mathrm{hn}-\mathrm{r}$ components. Thus

$$
\sum_{m=1}^{\mu} \kappa_{m}=-(h n-1) t_{1}+t_{2}+t_{3}+\ldots+t_{h n-1}+t_{h n}
$$

and the result follows on noting that $t_{1}=1$ and $t_{h n}=\mu+1$.
\square
It follows from (6) and the above lemma that

$$
\begin{equation*}
E\left(L\left(H_{n}\right)\right)=\frac{1}{\mu+1}\left(E\left(\sum_{m=1}^{\mu} \kappa_{m}\right)+h n\right)-1 \tag{7}
\end{equation*}
$$

We must therefore estimate $\mathrm{E}\left(\sum_{\mathrm{m}=1}^{\mu} \kappa_{\mathrm{m}}\right)$. It will be easier to work with $H_{n, p}$ and so let k_{p} denote the (random) number of components in $H_{n, p}$. The following simplification is from Bollobás and Simon [1].

Lemma 2

$$
\frac{1}{\mu+1} \mathrm{E}\left(\sum_{\mathrm{m}=1}^{\mu} \kappa_{\mathrm{m}}\right)=\int_{0}^{1} \mathrm{E}\left(\kappa_{\mathrm{p}}\right) \mathrm{dp}
$$

Proof

$$
\begin{aligned}
\int_{0}^{1} E\left(\kappa_{p}\right) d p & =\int_{0}^{1} \sum_{m=0}^{\mu}\binom{\mu}{m} p^{m}(1-p)^{\mu-m_{2}} E\left(\kappa_{m}\right) d p \\
& =\sum_{m=0}^{\mu} E\left(\kappa_{m}\right)\binom{\mu}{m} \frac{m!(\mu-m)!}{(\mu+1)!}
\end{aligned}
$$

Thus to compute $E\left(L\left(H_{n}\right)\right)$ we need an accurate estimate of $E\left(\kappa_{p}\right)$.

Lemma 3

If $p \leq 4 \log n / n$ then

$$
\begin{equation*}
E\left(\kappa_{p}\right)=h n \phi(r n p)+o\left(n^{3 / 4}\right) \tag{8}
\end{equation*}
$$

where

$$
\phi(a)=\sum_{s=1}^{\infty} \frac{s^{s-2}}{s!} a^{s-1} e^{-a s}
$$

(The 'little o' notation in (8) is intended to imply uniformity over relevant p.)

Proof

As we shall see, the most important components from our point of view are small isolated trees. Let therefore τ_{p} denote the number of components in $H_{n, p}$ which are trees of order $n^{1 / 3}$ or less. Let $\mathscr{T}_{s}(G)$ denote the set of s-vertex subtrees of a graph G. For $T \in \mathscr{G}_{s}\left(H_{n}\right)$ we f ind

$$
P\left(T \text { is a component of } H_{n, p}\right)=p^{s-1}(1-p)^{r n s-\alpha(T)}
$$

where, rather crudely,

$$
0 \leq \alpha(T) \leq r\binom{S}{2}+r
$$

Hence

$$
\begin{align*}
& E\left(\tau_{p}\right)=\sum_{s=1}^{n^{1 / 3}}{\underset{T \in G}{s}}^{\Sigma}\left(H_{n}\right) \\
& p^{s-1}(1-p)^{r n s-\alpha(T)} \tag{9}\\
&=\left(1+o\left(n^{-1 / 4}\right)\right)^{n^{1 / 3}}\left|\mathscr{T}_{s}\left(H_{n}\right)\right| p^{s-1} e^{-r n s p}
\end{align*}
$$

We must now estimate $\left|\mathcal{J}_{s}\left(H_{n}\right)\right|$.
For each tree T in $\mathscr{T}_{S}\left(K_{S}\right)$ and each tree T^{\prime} in $\mathscr{T}_{S}\left(H_{n}\right)$ let $\mathscr{F}\left(T, T^{\prime}\right)$ be the set of bijections f between $E(T)$ and $E\left(T^{\prime}\right)$ that correspond to bijections between $V(T)$ and $V\left(T^{\prime}\right)$.

Now if $T^{\prime} \in \mathscr{F}\left(\mathrm{H}_{\mathrm{n}}\right)$ then

$$
{\mathrm{T} \in \mathscr{G}_{\mathrm{s}}\left(\mathrm{~K}_{\mathrm{s}}\right)}_{\Sigma}^{\left|\mathscr{F}\left(\mathrm{T}, \mathrm{~T}^{\prime}\right)\right|=\mathrm{s}!}
$$

since each bijection between $\{1, \ldots, s\}$ and $V\left(T^{\prime}\right)$ contributes exactly one to the sum on the left hand side. Hence

$$
\begin{equation*}
\left|\mathscr{T}_{s}\left(H_{n}\right)\right|=\frac{1}{s!} \underset{T \in \mathscr{T}_{s}\left(K_{s}\right)}{\Sigma} \quad \underset{T^{\prime} \in \mathscr{G}_{s}\left(H_{n}\right)}{\Sigma}\left|\mathscr{F}\left(T, T^{\prime}\right)\right| . \tag{10}
\end{equation*}
$$

We shall show that for each $T \in \mathscr{F}_{\mathbf{S}}\left(\mathrm{K}_{\mathbf{S}}\right)$

Using (11) in (10) and $\left|\mathscr{T}_{s}\left(K_{s}\right)\right|=s^{s-2}$ yields

$$
\left|\mathscr{T}_{s}\left(H_{n}\right)\right|=\left(1+o\left(n^{-1 / 4}\right)\right) \frac{s^{s-2}}{s!} h r^{s-1} n^{s}
$$

and then from

$$
\begin{equation*}
E\left(\tau_{p}\right)=\left(1+o\left(n^{-1 / 4}\right)\right) h n \sum_{s=1}^{n^{1 / 3}} \frac{s^{s-2}}{s!}(n r p)^{s-1} e^{-m p} \tag{12}
\end{equation*}
$$

To prove (11) note that when $s=1$ it is correct (if we interpret $I I$ as 1). Assume that it is true for some $s \geq 1$: we shall show that it is
true for $s+1$. Consider a tree T in $\mathscr{T}_{S+1}\left(K_{s+1}\right)$ and assume without loss of generality that $s+1$ is a leaf of T, with incident edge e. Then having fixed a bijection f on the tree $T-(s+1)$ in $\mathcal{J}_{\mathbf{S}}\left(K_{S}\right)$ there are between $r(n-s)$ and $r n$ choices for the image of e. This completes our proof of (11) and thus of (12).

We observe that since $s!\geq(s / e)^{s}$

$$
\begin{aligned}
\frac{s^{s-2}}{s!} p^{s-1} e^{-r n s p} & \leq \frac{e}{s^{2}}\left(r n e^{1-r n p}\right)^{s-1} \\
& \leq \frac{e}{s^{2}}
\end{aligned}
$$

This implies, from (12), that

$$
\begin{equation*}
E\left(\tau_{p}\right)=\operatorname{hn\phi }(\mathrm{rnp})+o\left(n^{3 / 4}\right) \tag{13}
\end{equation*}
$$

We now look at $\sigma_{p}=$ the number of non-tree components of $H_{n, p}$ of order at most $n^{1 / 3}$. As each such component consists of a tree $T \in \mathscr{T}_{s}\left(H_{n}\right)$ plus some k extra edges, we deduce that

$$
=E\left(\tau_{p}\right) \times o\left(n^{-1 / 4}\right)
$$

As $H_{n, p}$ contains at most $n^{2 / 3}$ components of size exceeding $n^{1 / 3}$, the lemma follows from (13) and (14).

For $p \geq 4 \log n / n$ we use the following.

Lemma 4
(a) If $p=4 \log n / n$ then

$$
P\left(H_{n, p} \text { is not connected }\right)=O\left(n^{-3}\right)
$$

(b) If $\mathrm{p}=\mathrm{n}^{-3 / 4}$ then

$$
P\left(H_{n, p} \text { is not connected }\right)=O\left(n^{-n^{1 / 4}}\right)
$$

Proof

(a) If $H_{n, p}$ is not connected then either
(i) $h=1$
or
(ii) there is a pair of distinct adjacent vertices $\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}$ in H such that the subgraph of $H_{n, p}$ induced by $V_{i} \cup V_{j}$ is not connected.
In case (i) $H_{n, p}$ is the standard model $G_{n, p}$ and in case (ii) the subgraph K induced by $V_{i} \cup V_{j}$ contains a random bipartite graph. For brevity we deal with case (ii) and leave case (i) to the reader. Both cases are straightforward.

If K is not connected then there exist $S \subseteq V_{i}, T \subseteq V_{j}$ such that $1 \leq|S|+|T| \leq n$ and no edge of $H_{n, p}$ joins $S U T$ to $V_{i} U V_{j}-S U T$. Hence

$$
P(\mathrm{ii}) \leq\binom{\mathrm{h}}{2} \sum_{\substack{\mathrm{k}, \ell=0 \\ 1 \leq k+\ell \leq \mathrm{n}}}^{\mathrm{n}} \mathrm{u}(\mathrm{k}, \ell)
$$

where

$$
\begin{aligned}
u(k, \ell) & =\binom{n}{k}\binom{n}{\ell}(1-p)^{k(n-\ell)+\ell(n-k)} \\
& \leq n^{k+\ell-4(k+\ell)+\frac{8 k \ell}{n}} \\
& \leq n^{-(3-2(k+\ell) / n)(k+\ell)}
\end{aligned}
$$

Part (a) now follows easily, and part (b) may be proved in a similar manner.

We can now obtain the limiting value for $\mathrm{E}\left(\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)\right)$ in the special case under consideration.

Lemma 5

If H is r-regular and edge-lengths are independent and all uniform on $[0,1]$ then

$$
\lim _{n \rightarrow \infty} E\left(L\left(H_{n}\right)\right)=(h / r) \zeta(3)
$$

Proof
It follows from (7) and Lemma 2 that

$$
E\left(L\left(H_{n}\right)\right)=\int_{0}^{1}\left(E\left(\kappa_{p}\right)-1\right) d p+\frac{h n}{\mu+1}
$$

Now if $p_{0}=4 \operatorname{logn} / n$ then by Lemma 3.

$$
\begin{aligned}
\int_{0}^{p_{0}} E\left(\kappa_{p}\right) d p & =h n \sum_{s=1}^{\infty} \frac{s^{s-2}}{s!} \int_{0}^{p_{0}}(r n p)^{s-1} e^{-r n p s} d p+o\left(n^{3 / 4} p_{0}\right) \\
& =(h / r) \sum_{s=1}^{\infty} \frac{s^{s-2}}{s!} \int_{0}^{4 r \operatorname{logn}} x^{s-1} e^{-s x} d x+o\left(\operatorname{logn} / n^{1 / 4}\right) \\
& =(h / r) \zeta(3)+o\left(\operatorname{logn} / n^{1 / 4}\right)
\end{aligned}
$$

To see the last equation above note that

$$
\int_{\omega}^{\infty} x^{s-1} e^{-s x} d x=0\left(e^{-\omega / 2}\right) \quad \text { if } \quad \omega=\omega(n) \rightarrow \infty
$$

and

$$
\int_{0}^{\infty} x^{s-1} e^{-s x} d x=(s-1)!/ s^{s}
$$

It follows from Lemma 4(a) that for $p \geq p_{0}, E\left(\kappa_{p}\right)=1+O\left(n^{-2}\right)$ and so $\int_{p_{0}}^{1}\left(E\left(\kappa_{p}\right)-1\right) d p=O\left(n^{-2}\right)$. Hence

$$
\begin{equation*}
E\left(L\left(H_{n}\right)\right)=(h / r) \zeta(3)+o\left(\log n / n^{1 / 4}\right) . \tag{15}
\end{equation*}
$$

§4. Probability inequality for uniform [0,1$]$ case
Our aim next is to prove that there is a constant $A=A(r, h)>0$ such
that for any $0<\epsilon<2 h / r$

$$
\begin{equation*}
P\left(\left|L\left(H_{n}\right)-(h / r) \zeta(3)\right| \geq \epsilon\right) \leq e^{-A \epsilon_{n}^{2} 1 / 4} \tag{16}
\end{equation*}
$$

for n sufficiently large. We do this in two stages.

Lemma 6

Let $t_{1}, t_{2}, \ldots, t_{h n-1}$ be as in (5) and $0<\epsilon<1$ be fixed. Then for n sufficiently large

$$
P\left(\sum_{i=1}^{h n-1} t_{i}-(h / r)(\mu+1) S(3) \mid \geq \epsilon n^{2}\right) \leq e^{-\epsilon^{2} n^{1 / 4} / r^{3} h^{3}} .
$$

Proof

We prove this using a martingale inequality. Let $X_{1}, X_{2}, \ldots, X_{N}$ be random variables, and for each $i=1, \ldots, N$ let $\underline{X}^{(i)}$ denote $\left(X_{1}, X_{2}, \ldots, X_{i}\right)$. Suppose that the random variable Z is determined by $\underline{X}^{(N)}$. For each $i=1,2, \ldots, N$ let

$$
\begin{equation*}
\delta_{i}=\sup \left|E\left(Z \mid \underline{X}^{(i-1)}\right)-E\left(Z \mid \underline{x}^{(i)}\right)\right| \tag{17}
\end{equation*}
$$

Here $E\left(Z \mid \underline{X}^{(0)}\right)$ means just $E(Z)$. The following inequality is a special case of a martingale inequality due to Azuma. For any $u \geq 0$

$$
\begin{equation*}
\operatorname{Pr}(|z-E(Z)| \geq u) \leq 2 \exp \left\{-u^{2} / 2 \sum_{i=1}^{m} \delta_{i}^{2}\right\} \tag{18}
\end{equation*}
$$

To apply (18) we take $N=\left\lceil\mu / n^{3 / 4}\right\rceil$ and let $X_{i}=u_{i}$, the $i^{\text {th }}$ shortest edge of H_{n}. Let $Z=\sum_{m=1}^{N} \kappa_{m}$. It is not difficult to see that for δ_{i} as defined by (17) we have $\delta_{i} \leq N-i+1$. This follows from the fact (in an obvious notation) that $\left|\kappa_{m}\left(\underline{X}^{(N)}\right)-\kappa_{m}\left(\underline{Y}^{(N)}\right)\right| \leq 1$ if there exists k such that $X_{i}=Y_{i}$ for $i \neq k$ or there exist k, ℓ such that $X_{k}=Y_{\ell}, X_{\ell}=Y_{k}$ and $X_{i}=Y_{i}$ otherwise.

Thus

$$
\begin{equation*}
P(|Z-E(Z)| \geq u) \leq 2 e^{-3 u^{2} / N(N+1)(2 N+1)} \quad \text { for } \quad u \geq 0 \tag{19}
\end{equation*}
$$

Now let $Z^{\prime}=\sum_{m=N+1}^{\mu} \kappa_{m}$. It follows from (4) and Lemma 4(b) that

$$
\begin{equation*}
P\left(Z^{\prime} \neq \mu-N\right)=O\left(n^{2} \mathrm{e}^{-\mathrm{n}^{1 / 4}}\right) \tag{20}
\end{equation*}
$$

and so

$$
\begin{equation*}
E\left(Z^{\prime}\right)=\mu-N+o(1) \tag{21}
\end{equation*}
$$

Now (7), (15) and (21) imply that

$$
\mathrm{E}(\mathrm{Z})=(\mathrm{h} / \mathrm{r})(\mu+1) \zeta(3)+0\left(\mathrm{n}^{7 / 4} \log n\right)
$$

We can then use (19) with $u=\frac{1}{2} \in n^{2}$ together with Lemma 1, (20) and $\mu \leq \frac{1}{2} \operatorname{rhn}^{2}$ to obtain the Lemma.

We must now show that sums of order statistics of a large number of
independent uniform [0,1] random variables usually behave as expected.

Lemma 7

Let $u_{i}, i=1,2, \ldots, \mu$ denote the order statistics of μ independent uniform $[0,1]$ random variables. Let $1 \leq t_{1}<t_{2}<\ldots<t_{h n-1} \leq \mu$ and $\mathrm{hn}-1$ $T=\sum_{k=1} t_{k}$. Then for any fixed $0<\epsilon<1$

$$
\begin{equation*}
P\left(\left|\sum_{k=1}^{h n-1} u_{t_{k}}-\frac{T}{\mu+1}\right|>\frac{\epsilon T}{\mu+1}\right) \leq e^{-\frac{\epsilon^{2} T}{16 h n}} \tag{22}
\end{equation*}
$$

Proof

It is well known (see for example Feller [2]) that if $X_{1}, X_{2}, \ldots, X_{\mu+1}$ are independent exponential random variables with mean 1 than the variables $Z_{i}=\frac{Y_{i}}{Y_{\mu+1}}, \quad i=1,2, \ldots, \mu$ are distributed as $u_{i}, i=1,2, \ldots, \mu$ where $Y_{i}=X_{1}+X_{2}+\ldots+X_{i}$. It suffices therefore to prove (22) with $u_{t_{k}}$ replaced by $Z_{t_{k}}$. Note now that

$$
S=\sum_{k=1}^{h n-1} Y_{t_{k}}=\sum_{j=1}^{\mu+1} a_{j} X_{j}
$$

where $a_{j}=\left|\left\{k: t_{k} \geq j\right\}\right|$, and that $T=\sum_{j=1}^{\mu+1} a_{j}$. Now for $\lambda>0$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S} \geq(1+\epsilon) \mathrm{T})=\mathrm{P}\left(\mathrm{e}^{\lambda S-\lambda(1+\epsilon) \mathrm{T}} \geq 1\right) \\
& \leq \mathrm{E}\left(\mathrm{e}^{\lambda S-\lambda(1+\epsilon) \mathrm{T}}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
=\prod_{j=1}^{\mu+1} \frac{e^{-\lambda(1+\epsilon) a_{j}}}{1-\lambda a_{j}} & \text { if } 0<\lambda<\min \left\{1 / a_{j}\right\} \\
\leq \prod_{j=1}^{\mu+1} e^{-\epsilon \lambda a_{j}+\frac{2}{3}\left(\lambda a_{j}\right)^{2}} & \text { if } 0<\lambda<\frac{1}{3} \min \left\{1 / a_{j}\right\}
\end{array}
$$

and on taking $\lambda=\frac{\epsilon}{3 \mathrm{hn}}$

$$
\begin{aligned}
& \prod_{j=1}^{\mu+1} e^{-\frac{\epsilon^{2} a_{j}}{3 h n}\left(1-\frac{2}{9} \frac{a_{j}}{h n}\right)} \\
& \leq e^{-\frac{7 \epsilon^{2}}{27} \frac{T}{h n}}
\end{aligned}
$$

(23)
as $\mathrm{a}_{\mathrm{j}} \leq \mathrm{hn}$.

Similarly, for any $\lambda>0$,

$$
\begin{aligned}
P(S \leq(1-\epsilon) T)= & P\left(e^{-\lambda S+\lambda(1-\epsilon) T} \geq 1\right) \\
& \leq e^{-\frac{\epsilon^{2} T}{2 \mathrm{hn}}}
\end{aligned}
$$

on taking $\lambda=\frac{\epsilon}{\mathrm{hn}}$.

We may argue as above with each $a_{j}=1$ (or otherwise) to obtain

$$
\begin{equation*}
P\left(\left|Y_{\mu+1}-(\mu+1)\right| \geq \epsilon(\mu+1)\right) \leq e^{-\frac{\epsilon^{2}}{4} \mu} \tag{25}
\end{equation*}
$$

The result follows from (23), (24) and (25) after replacing ϵ by $\epsilon / 2$ throughout the proof.

$$
\begin{aligned}
& \text { We can now readily establish (16). Let } T=\sum_{i=1}^{h n-1} t_{i} \text {, and let } \\
& \qquad \begin{array}{c}
A_{n}=\left\{\left|L\left(H_{n}\right)-(h / r) \zeta(3)\right| \geq \epsilon\right\}, \\
B_{n}=\{|T /(\mu+1)-(h / r) \zeta(3)| \geq \epsilon / 2\} .
\end{array}
\end{aligned}
$$

Then

$$
P\left(A_{n}\right) \leq P\left(B_{n}\right)+P\left(A_{n} \mid \bar{B}_{n}\right)
$$

Now Lemma 6 gives

$$
\begin{aligned}
P\left(B_{n}\right) & \leq P\left(|T-(h / r)(\mu+1) \zeta(3)| \geq(\epsilon h r / 4)\binom{n}{2}\right) \\
& \leq \exp \left(-\epsilon^{2} n^{1 / 4} / 65 r h\right) .
\end{aligned}
$$

Fur thermore,

$$
\begin{aligned}
P\left(A_{n} \mid \bar{B}_{n}\right) & \leq P\left(\left|L\left(H_{n}\right)-T /(\mu+1)\right| \geq \epsilon / 2 \mid \bar{B}_{n}\right) \\
& \leq \exp \left(-\tilde{\epsilon}^{2} \tilde{T} / 16 \mathrm{hn}\right)
\end{aligned}
$$

where $\tilde{\epsilon}=(\epsilon / 2) /((h / r) \zeta(3)+\epsilon / 2)$ and

$$
\widetilde{\mathrm{T}}=((\mathrm{h} / \mathrm{r}) \zeta(3)-\epsilon / 2)(\mu+1)
$$

The inequality (16) now follows.

§5. General case

We will now use the inequality (16) to complete the proof of lemma 0 and thus of Theorem 2 in the general case. We shall assume that $D_{e}>0$ for each edge e in $E(H)$. Any edges e with $D_{e}=0$ would cause only minor irritation.

We will first use the approach of Steele [5] to relate a random edge-length X_{e} with distribution function F_{e} to one which is uniform in $\left[0, D_{e}^{-1}\right]$. Let A_{e} denote the set of atoms of F_{e} and define Y_{e} by

$$
Y_{e}= \begin{cases}D_{e}^{-1} F_{e}\left(X_{e}\right) & x_{e} \notin A_{e} \\ D_{e}^{-1}\left(F_{e}\left(X_{e}-\right)+U_{e}\left(F_{e}\left(X_{e}\right)-F_{e}\left(X_{e}-\right)\right)\right. & x_{e} \in A_{e}\end{cases}
$$

where U_{e} is a uniform [0,1] random variable (and we make a suitable assumption of independence)..

Observe that Y_{e} is uniform on $\left[0, D_{e}^{-1}\right]$ and $X_{e}>X_{e}$ implies $Y_{e} \geq Y_{e^{\prime}}$. It follows that there is always a tree T which is simultaneously of minimum length for edge-lengths $\left\{\mathrm{X}_{\mathrm{e}}\right\}$ and $\left\{\mathrm{Y}_{\mathrm{e}}\right\}$.

Our hypotheses for the F_{e}, e $\in E(H)$ show that we may write $F_{e}(x)=D_{e} x+x g_{e}(x)$ and $F_{e}(x-)=D_{e} x+x h_{e}(x)$ where g_{e} and h_{e} go to zero as $x \rightarrow 0$. We then have
(27)

$$
\underset{e \in T}{\sum} D_{e}^{-1} X_{e} h_{e}\left(X_{e}\right) \leq \sum_{e \in T} Y_{e}-\sum_{e \in T} X_{e} \leq \sum_{e \in T} D_{e}^{-1} X_{e} g_{e}\left(X_{e}\right) .
$$

Our immediate task is to bound the probability that either of the outside terms of (27) is significant. Let $g_{e}^{*}(x)=\sup \left\{g_{e}(y): 0 \leq y \leq x\right\}$ for e $\in E(H)$. Now fix $\in>0$. For $e \in E(H)$ let

$$
\lambda_{e}=\lambda_{e}(\epsilon)=\sup \left\{\lambda: g_{e}^{*}(\lambda) \leq \epsilon D_{e}\right\} .
$$

Let

$$
\mu=\min \left\{\lambda_{\mathbf{e}}: \mathbf{e} \in E(H)\right\}
$$

and

$$
v=\min \left\{P\left(X_{e}<\mu\right): e \in E(H)\right\}
$$

and note that $\mu>0, v>0$.

Then

$$
\begin{aligned}
& P\left(\sum_{e \in T} D_{e}^{-1} X_{e} g_{e}\left(X_{e}\right)>\epsilon \sum_{e \in T} X_{e}\right) \\
& \leq P\left(X_{e} \geq \mu \quad \text { for some } \quad e \in E(H)\right) \\
& \leq P\left(H_{n, v} \text { is not connected }\right) .
\end{aligned}
$$

But this last quantity is at most $e^{-n v / 3}$ (for n sufficiently large) by an argument similar to that of Lemma 4. An analogous argument yields

$$
P\left(\sum_{e \in T} D_{e}^{-1} X_{e} h_{e}\left(X_{e}\right)<-\epsilon \sum_{e \in T} X_{e}\right) \leq e^{-n v^{\prime} / 3}
$$

for some $v^{\prime}=v^{\prime}(\epsilon)>0$.
Thus if $L\left(H_{\mathbf{n}}^{\prime}\right)$ denotes the length of a minimum spanning tree when the length X_{e}^{\prime} of edge $e \in E(H)$ is uniform in $\left[0, D_{e}^{-1}\right]$ then we can write, for small fixed $\epsilon>0$,

$$
\begin{align*}
P\left(L\left(H_{n}\right)\right. & \left.\geq(1+\epsilon)^{2}(h / D) \zeta(3)\right) \tag{28a}\\
& \leq e^{-n v / 3}+P\left(L\left(H_{n}^{\prime}\right) \geq(1+\epsilon)(h / D) \zeta(3)\right)
\end{align*}
$$

and

$$
\begin{align*}
P\left(L\left(H_{n}\right)\right. & \left.\leq(1-\epsilon)^{2}(h / D) \zeta(3)\right) \tag{28b}\\
& \leq e^{-n v^{\prime} / 3}+P\left(L\left(H_{n}^{\prime}\right) \leq(1-\epsilon)(h / D) \zeta(3)\right)
\end{align*}
$$

These results reduce the general case of the theorem to the case of uniform edge-lengths. Thus in particular the inequality (16) holds also when all edge lengths have the negative exponential distribution with mean 1.

However, the above argument works also in the other direction; and we have

$$
\begin{align*}
P\left(L\left(H_{n}^{\prime}\right)\right. & \geq((1+\epsilon) /(1-\epsilon))(h / D) \zeta(3)) \tag{29a}\\
& \leq e^{-n v^{\prime} / 3}+P\left(L\left(H_{n}\right) \geq(1+\epsilon)(h / D) \zeta(3)\right)
\end{align*}
$$

and

$$
\begin{align*}
& P\left(L\left(H_{n}^{\prime}\right)<((1-\epsilon) /(1+\epsilon))(h / D) \zeta(3)\right) \tag{29b}\\
& \quad \leq e^{-n v / 3}+P\left(L\left(H_{n}\right)<(1-\epsilon)(h / D) \zeta(3)\right)
\end{align*}
$$

Thus the case of uniform edge-lengths reduces to the case of (negative) exponential edge-lengths.

Now we are almost home. We wish to show that lemma 0 holds when the edge-lengths have exponential distributions.

Let us check first that we may take each D_{e} rational. Let D^{\prime} be rational, $0<D^{\prime}<D$. We shall show that there exist rational D_{e}^{\prime}, $0<D_{e}^{\prime} \leq D_{e}$ for $e \in E(H)$ such that $\underset{e}{ } \underset{\mathcal{F}}{ } D_{\mathbf{v}}^{\prime}=D^{\prime}$ for $v \in V(H)$. A similar approximation from above may be obtained by the reader.

Suppose then that $0<\epsilon<1$ and $D^{\prime}=(1-\epsilon) D$ is rational. Write $D^{\prime}=$ M / N where M and N are positive integers such that both $\epsilon N D_{e} \geq 1$ and $(1-\epsilon) N D_{e} \geq 1$ for each $e \in E(H)$. Observe next that the polyhedron

$$
\begin{gathered}
\sum x_{e}=(1-\epsilon) D \\
\mathrm{e} \mathrm{r}_{\mathrm{v}} \\
1 / \mathrm{N} \leq \mathrm{x}_{\mathrm{e}} \leq\left\lceil(1-\epsilon) \mathrm{ND}_{\mathrm{e}}\right\rceil / \mathrm{N}
\end{gathered}
$$

is non-empty, since it contains the point $x_{e}=(1-\epsilon) D_{e}$, $\in E(H)$. But the
polyhedron is rational, and so it contains a rational point, as required.
Finally then we wish to show that lemma 0 holds when each edge e of H has exponential distribution with rational parameter $\lambda_{e}=D_{e}=P_{e} / Q$. Consider the graph \tilde{H} obtained from H by replacing each edge e by P_{e} parallel copies, each with edge-length exponentially distributed with parameter $1 / Q$ (mean Q). Then $L\left(H_{n}\right)$ and $L\left(\hat{H}_{n}\right)$ have the same distribution, and we have already shown the required result for $L\left(\hat{H}_{n}\right)$.

References

[1] B. Bollobás and I. Simon, "On the expected behaviour of disjoint set union algorithms", Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, (1985), 224-231.
[2] W. Feller, An Introduction to Probability Theory, Volume 1, John Wiley and Sons (1966).
[3] A.M. Frieze, "On the value of a random minimum spanning tree problem", Discrete Applied Mathematics 10 (1985) 47-56.
[4] C.J.H. McDiarmid, "On the greedy algorithm with random costs", Mathematical Programming 36 (1986) 245-255.
[5] M.J. Steele, "On Frieze's $\zeta(3)$ limit for lengths of minimal spanning trees", to appear.

