
ON RANDOM MINIMUM LENGTH SPANNING TREES

by

A. M. Frieze
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

and

C. J. H. McDiarmid
Wolfson College
Oxford University

Oxford
England

Research Report No. 88-16

May 1988



 



Oh random Minimum length spanning trees

by

A.M. Frieze
Dept. of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
U.S.A.

and C.J.H. McDiarmid
Wolfson College
Oxford University
Oxford
England

May 1988

Abstract

We extend and strengthen the result that, in the complete graph K with

independent random edge-lengths uniformly distributed on [0,1], the expected

length of the minimum spanning tree tends to C(3) as n -» «. In particular,

if K is replaced by the complete bipartite graph K then there is a

*•!• n, n
corresponding limt of 2f(3).



 



§1 Introduction

Suppose that we are given a complete graph K on n vertices together

with lengths on the edges which are independent identically distributed

non-negative random variables. Suppose that their common distribution

function F satisfies F(0) = 0, F is differentiable from the right at zero

and D = F^(0) > 0. Let X denote a random variable with this distribution.

Let L denote the (random) length of the minimum spanning tree in this

graph. Frieze [3] proved the following:

Theorem 1

(a) If E(X) < «> then lim E(Ln) = f (3)/D, where

<x>
f(3) = 2 k"3 = 1.202

k=l

(b) If E(X2) < «> then lim Var(L ) = 0, and so in particular L -» C(3)/D
n-*» n n

in probability. •

Recently, Steele [5] has shown that the convergence in probability above

holds without assumptions on moments.

In this paper we generalise Theorem 1 to graphs other than K . We shall

also simplify the proofs and sharpen the results.

Let H be a fixed connected multigraph, with vertex set

V(H) = {vlfv2, . .. ,v h). Corresponding to each edge e of H let F be a

distribution function of a non-negative random variable such that F (0) = 0

and F has a right derivative D at 0. We assume that there exists
e e

D > 0 such that for each vertex v of H,



2 D = D.
e

eav

(Observe that loops contribute once to this sum.)

For each n = 1,2,... let H be a (loopless) graph obtained as

follows. Replace each vertex v. of H by a set V. of n new vertices,

so that |V(H ) | = nh. Now join two distinct vertices of H by the same

number of edges as join the corresponding vertices of H. Thus if H has X
<\

loops and v non-loops then H has ]x = (O)A + n v edges.
n £

Let the edges of H have independent lengths, where the length of an

edge e is distributed according to the distribution for the edge of H from

which e arose. Let us extend our notation so that the length of e € E(H )

has distribution function F as well.

For any connected graph G with non-negative edge-lengths let L(G)

denote the length of a minimum spanning tree in G.

Theorem 2

As n -> «>, L(Hn) -> (h/D)£(3) a.s.

D

This result follows (by a Borel-Cantelli lemma) from

Lemma 0

For any e > 0 there exists c, 0 < c < 1 such that

1/4
P( |L(Hn) - (h/D)f (3) | > e) < c

n .

Theorem 1 follows from the case where H has a single vertex and a



single loop, so that H = K . Some other interesting cases are the

following, where for simplicity we make each edge length uniform on [0,1].

(1)

(Here (K ) is the complete multipartite graph with r blocks each of size

n.) In particular L(K ) -» 2 f(3) (se [4]).
n, ix

(2) L(((l) ) -*£C(3) a.s.

(Here C, is a cycle with k vertices.)

2 k

(3) L«Vn> •* JT C ( 3 )

(Here Q, is the k-cube.)

We shall prove lemma 0 (and thus Theorem 2) in three stages (sections 3,4,5

below), but first we have:

§2. Notation and Preliminaries

We use two models of random subgraph of H .

For 1 < m < \x H has the same vertex set as H and for its edgen, m n

set a random m-edge subset of E(H ).

For 0 < p < 1 H. has the same vertex set as H and each of the \i

edges of H n are independently included with probability p and excluded

with probability 1 - p.

We have need of the following simple relation between H and H
n,m n,p

where p = — : for any property IT



(4)

This follows from

* . . . .P(H £ U) = 2 P(H €11 E(H ) = m')P( E(H ) = m ' ]v n,p ' .n n»P n,p'' ' v' v n.p' ' J

m =u

and the fact that (i) H conditional on |E(H ) | = mr is distributed as

H , and (ii) |E(H ) | has the binomial distribution B(jx,p).
n,m n, p

§3. Expected value for uniform TO. 11 case

Our approach to proving theorem 2 is similar to that of [3] but uses

martingale inequalities in place of the Chebycheff inequality. We first

discuss the case where edge lengths are uniform on [0,1] and H is r-regular

(with loops counting once towards the degree of a node).

Suppose that the edges E(H ) = {u-.u^,...,u } are numbered so that

€(u.) < *(u. + 1), i = 1,2,... ,jbt~l where «(u) is the length of edge u.

A minimum length tree may be constructed using the Greedy Algorithm of

Kruskal [4]. Let FQ = f, Fj = {Uj},
 F2"--'Fhn-l *** t h e s e <* u e n c e o f e d £ e

sets of the successive forests produced. Here |F. | = i and F, - is the

set of edges in a minimum spanning tree.

Next define t. = max{j: u. € F.}. Then

hn-1
(5) L(H ) = 2 u

n i=l l

and thus
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hn-1
(6)

The subgraph T of H induced by U = {u1,uo,...,u } is distributed asm n m 1 z m

H . Let fc denote the number of connected components of F .n,m m m

Lemma 1

hn-1 \i
2 t. = 2 K + hn - u - 1,
i=l X m=l m

Proof

JLI hn-1
\*m = 2 (hn-r)(tr+1-tr)

r=l

where t ^ = ju+1. This is because Ft ,T +j»--- *
r
t _i a11 haiye hn - r

r r r+1
componen t s. Thus

2 K = -fhn-l)t1 + to + to +...+t, i + t, ,2 m v J 1 2 3 hn-1 hn

and the result follows on noting that t- = 1 and t, = JLI + 1.

It follows from (6) and the above lemma that

(7) E(L(Hn)) = r£j<E( 2 KJ + hn) - 1.
m=l



V
We must therefore estimate E( 2 ic ). It will be easier to work with

m=l m

H and so let K denote the (random) number of components in H . The
n,p p v r n,p

following simplification is from Bollobas and Simon [1].

Lemma 2

1

j+Y E( 2 icm) = J E(K p)dp.

Proof

1 1

r r ^ \L m
E(ic )dp = 2 (*jp (1-1

J 0 P J 0 m=0 m

E(|C ) ( ^

* m'V

Thus to compute E(L(H )) we need an accurate estimate of E(ic ),

Lemma 3

If p < 4 logn/n then

(8) E(icp) = hn *(rnp) + o(n

where

«> s-2 1v» s s-1 -as= 2 ^ — a e
s=l



(The 'little o' notation in (8) is intended to imply uniformity over relevant

P)

Proof

As we shall see, the most important components from our point of view are

small isolated trees. Let therefore r denote the number of components in

1/3
H which are trees of order n or less. Let y (G) denote the set of
n,p sv

s-vertex subtrees of a graph G. For T € y (H ) we find
s n

P(T is a component of H ) = p (1-p) v '

where, rather crudely,

0 i a(T) i r Q + r.

Hence

nl/3

E(T ) = 2 2
p s=i Tey (H

nl/3
(9) = (1 + o(n"

1/4)) 2 |y_(H )
s=l s n

We must now estimate |j (H )|.
1 sv n'•

For each tree T in $ (K ) and each tree T' in J (H ) let
s s s n

be the set of bijections f between E(T) and E(Tf) that correspond to

bijections between V(T) and V(T').
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Now if T' € y(H ) then
n'

2 |?(T,T')| = s!
(K )sv s'

since each bijection between {l,...,s} and V(T') contributes exactly one to

the sum on the left hand side. Hence

(10)
(K ) T'ef (H )

sv s' sv n'

We shall show that for each T € J (K )
sv sJ

s-1 s-1
(11) hn H r(n-k) < 2 |Sf(T,T')| < hn IT rn.

k=i T'ey (H ) k=i
s n

Using (11) in (10) and |y (K )| = sS 2 yields
s s

s-2
—

and then from (9)

nl/3 s

(12) E(rp) = (1 + o(n"
1/4))hn 2 ^j

0
To prove (11) note that when s = 1 it is correct (if we interpret IT

k=l
as 1). Assume that it is true for some s £ 1 : we shall show that it is



true for s + 1. Consider a tree T in J +1(K + 1 ) and assume without loss

of generality that s + 1 is a leaf of T, with incident edge e. Then

having fixed a bijection f on the tree T - (s+1) in 7 (K ) there are
s s

between r(n-s) and rn choices for the image of e. This completes our

proof of (11) and thus of (12).

We observe that since s! > (s/e)

s-2 , , ,
s s-1 -rnsp , e , 1-rnp^s-l

p e v £ -5- (rn e K )
s!

s

—
2 '
s

This implies, from (12), that

(13) E(Tp) = hn*(rnp) + o(n

We now look at a = the number of non-tree components of H of order
P K n,p

1/3
at most n . As each such component consists of a tree T € y (H ) plus

some k extra edges, we deduce that

(14) E(o ) <
P

n
1/3

8"1

s=l
n'

2
k=l

Pk(i-P) k

=E(r p) xo(n

2/3 1/3
As H^ contains at most n components of size exceeding n , the

lemma follows from (13) and (14).
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For p > 4 logn/n we use the following.

Lemma 4

(a) If p = 4 logn/n then

_3
P(H is not connected) = 0(n ),

(b) If p = n 3 / 4 then

-n1/4

P(H is not connected) = 0(ne )
n,p * v '

Proof

(a) If H is not connected then eithern,p

or

(ii) there is a pair of distinct adjacent vertices v.,v. in H such that

the subgraph of H induced by V. U V. is not connected.
n,p l j

In case (i) H is the standard model G and in case (ii) the subgraph K

induced by V. U V. contains a random bipartite graph. For brevity we deal

with case (ii) and leave case (i) to the reader. Both cases are

straightforward.

If K is not connected then there exist S C V., T C V. such that

1 i |S| + |T| < n and no edge of Hn joins S U T to V . U V . - S U T .

Hence

P(ii) i (5) 2 u(k,«)
Z k,«=0
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where

< n

n"(3 -

Part (a) now follows easily, and part (b) may be proved in a similar manner.

•

We can now obtain the limiting value for E(L(H )) in the special case

under consideration.

Lemma 5

If H is r-regular and edge-lengths are independent and all uniform on

[0,1] then

limE(L(H )) = (h/r)f(3).

Proof

It follows from (7) and Lemma 2 that

E(L(Hn)) = J(E(Kp) - l)dp
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Now if p o = 4 logn/n then by Lemma 3,

J E(icp)dp =hn 2 i - | (rnp)S Xe rnpSdp + o(n3/4P())

• s-2 r4rlogn n 1 ,A
(h/r) 2 — j — x e dx + o( logn/n )

s=l S" J0

1/4
(h/r)f(3) + o(logn/n ' ^ ) .

To see the last equation above note that

tr11e SXdx = OCe^72) if

and

£x s Je SXdx = (s-l)!/sS.

—2
It follows from Lemma 4(a) that for p £ po, E(ic ) = 1 + 0(n ) and so

fl _2
(E(K ) - l)dp = 0(n ). Hence

1/4
(15) E(L(Hn)) = (h/r)C(3) + o(logn/n

lx^)

D

§4. Probability inequality for uniform fO.li case

Our aim next is to prove that there is a constant A = A(r,h) > 0 such
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that for any 0 < e < 2h/r

2 1/4
(16) P(|L(Hn) - (h/r)C(3)| ̂  e) < e Ae n

for n sufficiently large. We do this in two stages.

Lemma 6

Let tj.tg,... •t
hn_1 be as in (5) and 0 < e < 1 be fixed. Then for n

sufficiently large

h n - 1 2 l / 4 7 3 , 3
| 2 t - ( h / r ) ( n + l ) C ( 3 ) | lenZ) < e e n /T h .
i=l *

Proof

We prove this using a martingale inequality. Let X1 .X^,... .X̂  be

random variables, and for each i = 1.....N let X^ * denote

(Xj.Xg, •. . ,X ). Suppose that the random variable Z is determined by X

For each i = 1,2,...,N let

(N)

(17) 6. = sup |E(Z|X(i 1 }) - E(Z|X(i))|.

Here E(Z|X^ ^) means just E(Z). The following inequality is a special case

of a martingale inequality due to Azuma. For any u > 0

(18) Pr(|Z - E(Z)| > u) i 2 exp{-u2/2 2 6?}.
il X
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To a p p l y ( 1 8 ) we take N = fjj/n 1 and l e t X. = u . , the I* s h o r t e s t

N
edge of H . Let Z = 2 ic . It is not difficult to see that for 6. as& n - m l

m=l

defined by (17) we have 8± < N - i+1. This follows from the fact (in an

obvious notation) that |#c ( X ^ ) - K (Y^N^)| < 1 if there exists k such

that Xi = Yi for i * k or there exist k,« such that X, = Y«, X. = Y,

and X. = Y. otherwise.

Thus

(19) P( |Z - E(Z) U u) i ̂ -^(MHW+D for u

V
Now let Z' = 2K. It follows from (4) and Lemma 4(b) that

m=N+l m

9 1/4
(20) P(Z' * p. - N) = 0(n e n )

and so

(21) E(Z') = jx - N + o(l).

Now (7), (15) and (21) imply that

7/4
E(Z) = (h/r)0i+lK(3) + 0(nf/^ logn).

1 2We can then use (19) with u = ?r en together with Lemma 1, (20) and

1 2\i < g- rhn to obtain the Lemma.

•

We must now show that sums of order statistics of a large number of
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independent uniform [0,1] random variables usually behave as expected.

Lemma 7

Let u., i = 1,2 ]x denote the order statistics of \i independent

uniform [0,1] random variables. Let 1 £ t- < t~ <...< t, _.. < ]i and

hn-1
T = 2 t, . Then for any fixed 0 < e < 1

k=l k

h n l

( 2 2 ) p ( ' " u t
fC—A IC

Proof

It is well known (see for example Feller [2]) that if X-.Xo.-.-.X 1

are independent exponential random variables with mean 1 than the variables

Z. = Y , i =s 1,2 JLX are distributed as u., i = 1,2 jx where

V+i r

Y. = X^X,,*.. .+X.. It suffices therefore to prove (22) with u replaced by
1 1 2 1 tk

Z . Note now that

hn-1 fi+1
S = 2 Y = 2 a X.

k=l \ j=l J J

JLl+1
where a = | { k : t, > j } | , and tha t T = 2 a . . Now f o r X > 0

J K j = 1 j

P(S I (l+e)T) = p ( e
X S " X ( 1 + e ) T ^ l )
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= n if 0 < X < min{l/a.}
J

-eXa
< IT e if 0 < X < ±-min{l/a.}

and on taking X = 3hn

2
e. a,

II e
9 hn;

(23) i e

7e2 T
27 hn as a. < hn.

Similarly, for any X > 0,

P(S i (l-e)T) = i)

(24) i e
2hn

on taking X = r—.nn

We may argue as above with each a. = 1 (or otherwise) to obtain

(25) P( -T^
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The result follows from (23), (24) and (25) after replacing e by e/2

throughout the proof.

•

hn-1
We can now readily establish (16). Let T = 2 t., and let

An =

- (h/r)f(3)| > e/2}

Then

P(A ) < P(B ) + P(A |B )v nJ ~ v nJ v n 1 nJ

Now Lemma 6 gives

P(Bn) i P(|T -

exp(- £2n1/4/65rh)

Furthermore,

P(An|Bn) <, P(|L(Hn) -

<, exp(- e^T/iehn) by Lemma 7,
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where e = (e/2)/((h/r)f(3) + e/2) and

f = ((h/r)C(3) - e/2)(»z+l).

The inequality (16) now follows.

§5. General case

We will now use the inequality (16) to complete the proof of lemma 0 and

thus of Theorem 2 in the general case. We shall assume that D > 0 for each
e

edge e in E(H). Any edges e with D = 0 would cause only minor
e

irritation.

We will first use the approach of Steele [5] to relate a random

edge-length X with distribution function F to one which is uniform in
e e

[0,D~ ]. Let A denote the set of atoms of F and define Y by
•" e e e e

y =
e

D AF (X ) X € A
e ev e' e e

D X(F (X -) + U (F (X ) - F (X -)) X € A .e v ev e * ev ev e' ev e // e e

where U is a uniform [0,1] random variable (and we make a suitable
e

assumption of independence)..

Observe that Y is uniform on [0,D ] and X > X , implies Y > Y ,.
e e e e e e

It follows that there is always a tree T which is simultaneously of minimum

length for edge-lengths {X } and (Y }.
e e

Our hypotheses for the F , e € E(H) show that we may write
e

F (x) = D x + xg (x) and F (x-) = D x + xh (x) where g and h go to zero
e e e e e e e e

as x -» 0. We then have
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(27) 2 D ! X h ( X ) < H - 2 X < 2 D *X g (X ).
e € T e e e e e € T e e e e e e

Our immediate task is to bound the probability that either of the outside

terms of (27) is significant. Let g (x) = sup{g (y): 0 < y £ x} for
© e

e € E(H). Now fix e > 0. For e € E(H) let

Let

and

g e ( X )

= min{X : e € E(H)}
e

i) = min{P(X < n): e € E(H)}.
e

and note that jx > 0, v > 0.

Then

P( 2 D h g (X ) > e 2 X )
e€T e e e e e€T e

< P(Xe £ u for some e € E(H))

P(H is not connected).
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But this last quantity is at most e n u (for n sufficiently large)

by an argument similar to that of Lemma 4. An analogous argument yields

P( 2 D *X h (X ) < -e 2 X ) < e nv>/3

e€T e e e e eCT e "

for some v* = vf (e) > 0.

Thus if L(Hr) denotes the length of a minimum spanning tree when the

length X' of edge e € E(H) is uniform in [0,D~ ] then we can write, for
e e

small fixed e > 0,

(28a) P(L(Hn) 2 (l+e)
2(h/D)f(3))

and

e n p / 3 + P(L(Hn)

(28b) P(L(Hn) i (l-e)
2(h>T))f(3))

e n u V 3 + P(L(Hn)

These results reduce the general case of the theorem to the case of uniform

edge-lengths. Thus in particular the inequality (16) holds also when all edge

lengths have the negative exponential distribution with mean 1.

However, the above argument works also in the other direction; and we

have
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(29a) P(L(H')

e n U' / 3 + P(L(Hn)

and

(29b) P(L(H')

e np/3 + P(L(Hn) < (l-e)(h/DK(3))

Thus the case of uniform edge-lengths reduces to the case of (negative)

exponential edge-lengths.

Now we are almost home. We wish to show that lemma 0 holds when the

edge-lengths have exponential distributions.

Let us check first that we may take each D rational. Let Dr be
e

rational, 0 < D' < D. We shall show that there exist rational D',
e

0 < D' < D for e € E(H) such that I D ' = D' for v € V(H). A similar
e e e3v e

approximation from above may be obtained by the reader.

Suppose then that 0 < e < 1 and D' = (l-e)D is rational. Write D'

M/N where M and N are positive integers such that both e ND > 1 and
e

(l-e)ND 2 1 for each e € E(H). Observe next that the polyhedron
e

2 x = (l-e)D
e3v

1/N i x < [(l-e)ND 1/N

is non-empty, since it contains the point x = (l-e)D , e € E(H). But the
e e
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polyhedron is rational, and so it contains a rational point, as required.

Finally then we wish to show that lemma 0 holds when each edge e of H

has exponential distribution with rational parameter X = D = P /Q.

Consider the graph H obtained from H by replacing each edge e by P
e

parallel copies, each with edge-length exponentially distributed with

parameter 1/Q (mean Q). Then L(H ) and L(H ) have the same distribution,

and we have already shown the required result for L(H ).
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