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Abstract

Let G denote a random r-regular graph with vertex set {l,2,...,n} and

let a(G ) denote its independence number. We show that with probability

going to 1 as n -> °°

l«(Gr) - f
2- (logr - loglogr + 1 - Iog2) | < Si

provided r = 0(n ), 0 < e < 1 is constant, r > r , where r depends

only on e and 0 < 9 < 1/5 is constant.



This note is concerned with the independence number of random regular

graphs. Thus let REG(n.r) denote the set of r-regular graphs with vertex set

[n] = {1.2,...,n}. Let G denote a random graph sampled uniformly from

REG(n.r).

The independence number a(G) of a graph G is the size of the largest

set of vertices not containing any edge. This has been studied by, inter

alia, Matula [7], Grimmett and McDiarmid [6], Bollobas and Erdos [3] and

Frieze [4], The aim of this note is to apply the approach of [4] to Gr and

prove

Theorem

Let 0 < e < 1 be fixed. There exists a constant r such that if

r > r , r = 0(n ) for some constant 0 < 0 <. 1/5 then

k(Gr) - ̂  (logr - loglogr + 1 - Iog2) | < Si

with probability going to 1 as n -» ».

D

(All logarithms are natural.)

The upper bound of the theorem is already known (at least for r

constant) and straightforward to prove by the first moment method (see

Bollobas [1], Theorem XI.27). The lower bound is close to what one might

expect given the results of [4]. We can extend the theorem to r = 0(n ~ )

because of the results of Frieze [5]).



Proof of the theorem

We shall use the model of Bollobas [2] to study G . We let W = [rn]

and Wj = {(i-l)r+lf...,ir}, i = l,2,...,n be a partition of W into n

sets of size r. For w € W we define >//(w) = [w/rl so that w € W., >

holds.

A configuration is a partition of W into m = ̂  rn pairs. $ denotes

the set of configurations. For F € $ we let JLI(F) be the multigraph with

vertex set [n] and m edges {{^(x),^(y))}- {x,y} € F}.

We consider $ as a probability space in which each F € $ is equally

likely. Let Q be a property of the graphs in REG(n.r) and let Q be a

property of the configurations in $. Suppose these properties are such that

for Gr € REG(n.r) and F € t ^ G ), Gr has Q if and only if F has Q*.

All we shall need from [2] and [5] is

r2

(0) P(Gr € Q) < e
r P(F 6 Q ).

In the analysis we only claim that inequalities hold for r and n

sufficiently large and e sufficiently small.

Now for 0 < e < 1 let a (F) denote the size of the largest independent

set in n(F) which is (i) contained in [n ], n = [(l-e)nj, (ii) of size at

„ 2 logr
most s— n.

For a positive integer s let Z be a random variable which counts the
s

number of independent sets of *x(F) which are of size s and are contained in

For F € * let Xi = X^F) = {pi,qi>, p± < q±, i = l,2,...,m denote the

pairs of F sorted into lexicographically increasing order and let

Xv
1) — Y Y YY Y



2
Let me = m - \^j^\ and N£ = {v € [n]: v fl ̂ (X.) = * for i > m &}.

e

Let a'(F) denote the size of the largest indpendent set in jx(F) which is (i)

contained in N and (ii) of size at most j 6— n.

The theorem follows from the following

Lemma

(a) P(ae(F) > a;(F)) < e

for some absolute constant T > 0.

(b)

Let a' = E(a'(F)). Then

2 4
P(|a'(F) -a'\ 2 t) i e x p { r f e(F) a\ 2 t) i exp{ }

800(logr) n

for 0 < t £

(c)

Let k = ff2" (logr - loglogr + 1 - Iog2 - |)]. Then

0) I exp{- aLtoi! n)
r

(d) P(a(F) 2 *f (logr loglogr + 1 - Iog2 + e)) i exp{- fe *°Sr n}.

D



Proof of the Theorem

Let tQ = -gp. Then a^ > k - tQ for otherwise

§")> 0) i P(ae(F) > a;(F)) + P(a|(F) - a^ > §"-)

2 6
—re n , e ne + exp{

12800(logr) r

which contradicts (c).

But then if a' > k - tQ,

6
P(a(F) < k - 2t ) < P(a'(F) < a' - t ) < e x p { ^

Using this, (d) and inequality (0) with

Q* = {|a(F) - ̂  (logr - loglogr + 1 - Iog2) | I ^}

establishes the theorem.

Proof of the Lemma

(a)

Now a'(F) I a (F) whenever N D [n ] and N D [n ] whenever M(F)

re2ncontains at least r^Q
n edges with both vertices in [n]-[n ].

Consider constructing F by first pairing off elements of W =

W.- -,_,. ^. The first —j— times we take an element of W and find its

partner, we have a probability of at least ^ of choosing its partner in W



Thus the number of pairs contained in Wr is dominated by B( Ir^-J > cjO

the result follows from the Chernoff bound for the tails of the binomial

distribution.

(b)

We follow the proof of a simple martingale tail inequality and tighten it

for our special case. Let

a'± = a£(X
(i)) = E(a;(F)|X(1)). 1 i i < m.'± =

(fe)
Thus af = a' and a' = a'. Since X , determines the edges of Ji(F)

o & in o "~"

contained in N we see in fact that a! = ar for i > m .

mNow a' - a' = 2 (a! - a!*) and so
e e 1 1 i 1 1

P ( k ; - a;| > t) = p(a; - a; > t) + P( a; - a; < - t)
e e

m m
e e= P(exp{X( 2 (a' - a' ) - t)} > 1) + P(exp{X( 2 (a! - a ' ) + t) > 1)

i l X x X i l X X X

for all X > 0, so from the Markov inequality

m m
e~ Xt(1) P(|a' - a'| > t) < e~Xt(E( IT exp{X(a'-a! )}) + E( IT exp{~X(a!~a' J}))

e e i=l 1 X X i l x i"1

Now for a given i > 1



i-1

X*1"1) t=l

since aQ>a[ a'-i a r e determined by X*1 .
x 2 *Now e < x + e for all x and so

Here we use the fact that a',a'...,a' form a martingale to imply that

(4) E(Z) = 0 where Z = (aj - a ^ IX̂

e r

We will show that Z satisfies

(5) -1 i Z < 6 =

which combined with (4) yields

... r , ,.2, . , .2, iv(i-l)(6) 1^ (exp{X (a^-a^) } |XV ;

X2x2

(Knowing (4) and (5) we use the fact that the function f(x) = e is

8 X 2 ^ 1e + j^ e
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convex and maximise E(e ) by putting Z = -1 with probability j^g

1+6^Z = 6 with probability rrr)•

Proof of (5)

Fix X ( i - 1 ) = X ( 1 - 1 ) = X r X 2 X.j and let

Z = {F € * : X^i~1^(F) = X^1"1^}. Let Y = W - U X. and x = min Y, so that
j=l J

if F € Z then X^F) = (x.y} for some y € Y - {x}.

For y € Y let $ = {F € $ : X (F) = {x,y}}. If y,y € Y - {x} define

f̂  : ̂  -» $ as follows:
y

y.y y
Suppose F € $^ and {x,y} € F, then

y

^ (F) = (F U {{x,y},{x,y}» - {{x,y}, {x,y}} € *
y.y

Observe that f ^o f^ is the identity on $^. Suppose now that we fix
y.y y.y y

X. = {x,y} and then

a (X*1*) - o (X^1 1}) = - 1 - 2 a'(F) - -L- 2 - ^ — 2 a'(F)

l*l IYI ̂  l*l F€$
y y

(7) = -L. 2 -1— 2 (a'(F) -a'(f^ (F))).
|Y| y€Y |^| F€$^ y,y

y y

Fix F € *^ and an independent set S C N of size a'(F). Now
y e



(8) |a'(f^ (F)) - a '
y.y

since (i) by deleting at most one member of S fl ̂ ({x.y.x.y}) we obtain an

independent set in <£(f̂  (F))» (ii) we can, symmetrically, compare a'(F),
y.y

a'(f ^(F)) for F € $
y.y

(9) a'(f^ (F))>a'(F) if S fl *({x,y}) = 0
y.y

since in this case the added edges cannot join two vertices in S.

Hence (7), (8) and (9) imply

€ Y-{x}: •({x(y).y» n S ̂  (J)} |

(where x(y) is defined by {x(y),y} € F)

4(logr)n
rn-2i+l

< 6 as i < m

and we have proved (5).

Using (3) and (6) inductively in (2) yields

(10) E(exp{X 2 (a'j-a'^)}) < ( ^ e

and a similar argument yields
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•" _ *i % J *J in

(11) E(exp{- X 2 (a^-a'.^)}) < (jfg eA
 + ̂  e° A ) .

It follows from (1), (7) and (8) that

P( \a>^> \>_t) X t | A ^ 6 ^ e

-Xt+m

provided X, 26X2 < 1.

2 2
(Consider f(x) = xea - eX a. f(l) = 0 and f'(x) = ea - 2axeX a I 0 if

x, 2ax < 1).

Now take X = ——~- $ ^-^ ^— < ̂ ^^ t for
2m 6 300(logr) n

so that

P( |a - a I > t) < 2 exp{
e fc

and (b) follows,

(c)

We prove this using the inequality

(12) P(Z^ > 0)

Now



Now,

11

rk-1 , .
n i

i=l

rk-1

rfi •» rk -1
= Ik J ^J1 " r(n-2k)+2i+P

£*] ^ V - Ffs

rlT1. i <2

Tel f rk2 , , 3k.
Ik J e X p < - 2 n - ( 1 + n-

E(Z?) = 2 2 P(LL)
SC[ne] TC[ne]

 S T

|s|=k |T|=k

(where 5^ i s the event "S i s independent in jLt{F}

?n ]
|T|=k
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(14) = M jfjl 2 P(£ «T) where T = {1,2 «}.
Lk J ^ J T C T [ ] S 0 T *

Now

P(S « ) = 2 P(« |X)P(X)

where Q = {X*. X is a choice of pairings of elements of WQ = U W. with
0 i€S0

elements of W for which So occurs}. For X € Q suppose that when
S0

k+l < i i n, X has dJiX p ^ {u.v}, u € W v € W. and d»§x ̂ ^ {u.v}

with u € Wo T , v € W.. Thus

P(gT|X) ̂  0 iff X € ftj. = {X € fi: d| x = 0 for i € T-T^}.

If X € flL, then, for dl! Y = 2 d!' Y , we have
i I .A i e T _ T LA

r(k«)c4, r(k-«) - d» x -

P(IT |X) = ^ X l X
r ( n _ 2 k ) ,

(r(k-fi) - df' ) 2

2 ex*><" 2r(n-2k) '
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Hence

(r(k-£) - d» x ) 2

2 P(«S«T) * 2 2 2 exp{ 2rfn-2kl
 } P ( X )

] T?rc|>] X€fi l J

|T|=k |T|=k

(r(k-«) - d» x ) 2

= 2 2 P(X € OJX € fl)P(X € n)E^(exp{ 2rfn-2k/ > 'X €

|T|=k

-k= 2 (A 2r(n-2k)

(r(k-€) - dj.' x ) 2

(15) <; 2 ^-k]exp{- ^ ^ } P ( X € n)^(exp{- 2r(n_2k) °' } |X €

where TQ = {1,2,...,«. k+1, k+2, 2k-«}.

Let now

0' 0

-£) pairings in which the expected individual contribution is ,..g• )

and observe that
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2
t

(16) P(|df' x-^| > t|X € Oj, ) < 2 exp{- 4r(

We can prove (16) using the "martingale" approach used to prove part (a)

Assume some fixed choice of pairings of elements in T~ with elements in

We irr . Let W denote W~ with these latter elements removed. Then let
V^O S0

X., 1 < i < p = r(k-£) denote the (random) choice of "partner" in W - [rk]

of the element i+r£ (in We ^ ). We replace the random variable a' by

A = dj,' and define A. = E ( A | X ^ ) . It is straightforward to show that

|A. - A.- | < 1 by an argument similar to that in part (a). Indeed consider

a fixed X^1""1* and let 8 = (X(p^ : X(i-l) = X^1"1^ and Xt = x> for

x € W' - {X-.Xg.... .X.^-}. To prove |A. - A. -| < 1 we need only construct

bijections g r: 0 -* 9 ,, for all x,x', so that
X. 9 X. X. X

|A(X^P^) - A(g ,(X^P^))| < 1 for X^P^ € G and x' ?£ x. This is easily
X t X X

done. If X^p) € 9 and x' = X. for some j > i let g ,(X^) be
X J X, X

with X..X. interchanged. Otherwise just replace X. by x'. This yields

|A. - A., | £ 1 after arguing as in part (a). Inequality (15) now follows.

So

d»

2r(n-2k)

-(d" -u))27 exnl
d"=0 2r(n-2k) ~ d

< 2 r (5~ € ) exnr- (r(k-^)-n-(d" -y))2 (d" - U )
2

" H » - O ^ ( 2r(n-2k) " ^ ~ 4F(k^)



- 2

N o w l e t
n-2k

s o that
 d~^ - r(k-l)-tiso that 4 r ( k 5 ) - r ( n_ 2 k )

Thus the sum in (17) is bounded above by

22

2
d» =0 2r(n-2k)

2r(n-2k) ' ™vx 2r(n-2k)

. 2rk e x p { ^ > exp{-
n

3 2

(18) < 2rk exp{^kr}exp{- ̂ [ ^ ] }

Hence, by (14), (15) and (18)

vrrr2\ / A , f 7 r k , w v . ^ ,k. fn -k
E(Zk) * 4rk e x p l ^ E O ^ ) ^ ( ) ^

15

2r(n-2k) (d W(2r(n^0 + i f M r(n-2k)

2r(n-2k) ' T " ^ 7 ^ vx 2r(n-2k) T r(n-2k)

Applying (12) and (13) to the above inequality and simplifying yields
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,k, "
3 k

(19) P(Z^ > 0) - 1 <; 4rk i ^ |
2n

fn -

L e t

c-i
Observe that (A/*) is maximised at £ - A/e and so

(20) (A/e)€ < eA/e

and

(21) uei if- • M-

Case l : 0 < H < k /2

Here exP{oJ7} ^ *** an<i s o » ^Y (21)

u ^ .6 k logr^l

(22)

e 47

exp{
<

,2exp{—

k
2,

(1

)

logr.

1 /O

' b y
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Case 2: k/2 < « $ |^ (logr - loglogr - 3)

By (20),

12

3, '
e logr

(23) i 1.

Case 3: — (logr - loglogr - 3) < € i k.

Now

u

3
kn e logr

9 9
«)^ r^

Hence

fkne
3(logr)2.k-g

r r2 k

rkne
5(logr)2.k-g

*• 9 9 '

(k-«) r

2 € 1/2
Now observe that (A/5 ) is maximised at € = (A/e) and so
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, f,kne (logr) Nl/21.
i exp{( 2 * ' k

1 1

(24) < exp{n ^ f > n}uk

Now

2 r1 Tel , k2r,
= [k J e x p^ 2iT>2iT

n e , w o
(25) > (-|- exp{~ (^- + (̂ -) } exp{-

e e

ek/5e

Part (c) follows from (19), (22), (23), (24), (25).

(d)

Let now € = f— (logr - loglogr + 1 - Iog2 + -|)1 and Y be the random

variable which counts the number of independent sets of Ĵ (F) of size £.

Then

P(ot(F) I C) 1 E(Y)
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< 2{-j- exp{-

and (d) follows.
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