
INTERFACIAL ENERGY AND THE MAXWELL RULE

by

Irene Fonseca
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 88-18 «

May 1988



 



INTERFACIAL ENERGY AND THE MAXWELL RULE

IRENE FONSECA

Table of Contents

1. Introduction.

2. Statement of the problem. Interfacial energy density.

3. Necessary ccmditions for metastable equilibria.

4. Quasiconvexity of the surface energy density F.

5. Consequences of the rank one convexity of F.

References.



L INTRODUCTION.

A typical problem of phase transitions consists in minimizing an energy functional

J(u):=f W(u)dx,

where £1 c IRn is an open bounded smooth domain, u : £1 -> IRN and W supports more than one

phase (i.e. W £ 0 and there exist a * b such that W(a) = 0 = W(b)).

When interfaces are allowed to form without an increase in energy there generally results a

striking nonuniqueness of equilibria. Recently* several authors have studied this question from

different points of view, the common feature being the search for a model which penalizes the

formation of interfaces, hopefully to predict those solutions most likely to be observed.

There is an extensive bibliography concerning the Van der Waals-Cahn-Hilliard theory of

phase transitions for fluids. Here N = 1, W has exactly two potential wells and the asymptotic

behavior of minimizers of a perturbed problem is studied (see CARR, GURTIN & SLEMROD [8],

GURTIN [20], KOHN & STERNBERG [26], MODICA [28], OWEN [29], [30], OWEN &

STERNBERG [31], STERNBERG [35]). More recently, FONSECA & TARTAR [16] and

STERNBERG [36] treated the case where N is arbitrary.

A different approach is undertaken by GURTIN [18], [19], where the interfaces are directly

penalized.

Due to necessary compatibility conditions, none of these theories has been successfully

applied to nonlinear elasticity, where u is a deformation gradient In this paper we study the role

played by a class of surface energies in the metastability of piecewise smooth configurations of a

homogeneous elastic material. We adopt the point of view that, for dead loading, equilibria

correspond to local minima of an energy functional

fw(Vu)dx+]T (VdS- f f.udx-J tu dS,

where W is the strain energy density, F is a surface energy density accounting for jumps in

deformation gradient, 7 is the family of phase boundaries, f represents the body forces and t is the

surface traction on a portion 90^ of the boundary d£l of £1. Although most of our results are valid

for non ordered materials, they may give some insight to questions of metastability of solids with

crystalline structure. Problems related to equilibria, stability and metastability of elastic crystals

have been addressed by BALL & JAMES [4], CHIPOT & KINDERLEHRER [9], ERICKSEN

[12], [13], JAMES [24], KINDERLEHRER [25], PARRY [32] and PITTERI [33].

In order to describe phenonema like twinning and martensitic phase transitions, ERICKSEN

[13] proposed a continuum theory based on nonlinear elasticity. This framework leads to



variational problems that escape the classical hypotheses of the calculus of variations (see

ERICKSEN [13], KINDERLEHRER [25]); such problems are highly unstable and previous

results (see CHDPOT & KINDERLEHRER [9], FONSECA [14], [15]) suggest that the inclusion

of interfacial energy might render them more stable.

In Section 2 we introduce the interfacial energy density F. The constitutive hypotheses for F

arc motivated by previous work of HERRING [23] and PARRY [32], who based their analysis on

molecular considerations in which surface energies arise from interatomic interaction of finite range

in solid crystals. Here it seems natural to attribute to F a lack of differentiability with respect to

certain crystallographically simple directions (see CAHN & HOFFMAN [6], [7]).

In Proposition 3.2 we obtain new necessary conditions for metastability of piecewiese C2

deformations that complement the ones previously deduced by ALEXANDER & JOHNSON [1],

[2], GURTIN [21], GURTIN & MURDOCH [22], LEO [27], PARRY [32] and PITTERI [33]

(see Proposition 3.1 and Proposition 3.2 (ii)). As a consequence, in Corollary 3.6 we conclude that

the lack of differentiability of F permits the selection of a finite number of interfacial directions n for

which the gradients F + and F. of the deformations that form the adjoint phases of a piecewise

homogeneous local minimizer do not satisfy the Maxwell rule (see CAHN & HOFFMAN [6], [7]).

This confirms PARRYfs [32] conjecture for the arrangement of thin shear bands in unloaded

crystals, namely "...One is tempted, then, to suppose that stable shear bands gorrespond to 'inward

pointing1 cusps in the 0-plot...". We note that configurations of that sort are likely to occur. As it

was pointed out by PARRY [32], the strain energy densities of the deformation gradients F+ and

F. in the photographs of RICHMAN [34] are generally unequal (they are not symmetry related).

Hence, as it is reasonable to suppose that they are local minima of W, we deduce that F+ and F.

cannot verify the Maxwell rule.

Moreover, using any reasonable notion of metastability wide enough to allow movement of

the interfaces, we show (Proposition 3.7) that there is Mneck forming" near the phase boundary of a

two-phase deformation. Precisely, we have that either F = 0 or
A ( p ) - A ( 0 ) ^ ^ t . . A(p)-A(0)

km sup— £ 0 < k m i n f — - —
P-*o- P P-*o* P

where A(t) := area{x e il | x.n = k+ t} and {x e Q, | x.n = k} is the interface with normal n.

In Remark 3.9 (ii) we examine the sufficient conditions for strong metastability proposed by

PARRY [32]. Under his assumptions, we show that the lack of differentiability of F with respect to



the interfacial normal is an essential requisite to prevent W(F+) = W(FJ.

In Section 4 we analyze the quasiconvexity condition in the presence of the interfacial

energy. This property plays a crucial role in the calculus of variations, since it is a necessary

condition for lower semicontinuity of multiple integrals (see BALL & MURAT [5], DACORCXJNA

[11]). Also, disregarding the interfacial energy contribution, if u is a relative minimizer with respect

to the norm || • Ĥ +H • ||1>p and if u is C1 near x^ then W is quasiconvex at Vu(x0) (see BALL [3]).

It turns out that a similar result holds for minimizers of E(). In fact, in Proposition 4.3 we

derive an analog of the quasiconvexity condition for F. This result, together with one of the

hypotheses considered in Remark 3.9 (ii), implies that the Maxwell rule holds for piecewise C2

relative minimizers (see Remade 4.4 (ii)).

Exploring frame indifference, we deduce (Proposition 5.1) that at metastable states the matrix

ar T
F

is symmetric, i. e. we recover the analog to the symmetry of the Cauchy stress tensor (see

GURTBSf & MURDOCH [22] and LEO [27]). Further, for elastic crystals the quasiconvexity

properties of F together with material symmetry imply that at metastable states
ar TF

reduces to a "pressure" up to a rank-one matrix (Proposition 5.3). Recall that, in the absence of

interfacial energy, the Cauchy stress tensor is a hydrostatic pressure (see ERICKSEN [12]).

Finally, (Proposition 5.11) we prove that the Maxwell rule holds for a piecewise C2 relative

minimizer u whenever det Vu is continuous across the interface. It is worth noticing that for

ordered materials the condition F > 0 at metastable states follows from material symmetry (Remark

5.13).

2. STATEMENT OF THE PROBLEM INTERFACIAL ENERGY DENSITY.

In what follows, M3x3 denotes the set of all 3x3 real matrices, and O+(3) is the proper

orthogonal group,

M3x3+ : = { F € M3x31 d e t F > o},

G + : = { M e M3 x 3 |Mye Z , t j - 1,2,3 anddetF=l} ,

X :={(F; a, n) e M3x3xlR3xlR3 | det F > 0 and det (F + a<8>n) > 0}.



We consider a hyperelastic solid which (in a fixed reference configuration) occupies an open

bounded strongly Lipschitz domain Cl c [R3.

Throughout this paper, an admissible deformation is a mapping u € W1*00^; IR3) such

that there exist a finite partition of £2, {QJi«\t#^M and a set E C Q such that:

£ii is a domain for all i =1,..., M,

area(E) = 0,

u € C2(n{; IR3) and det Vu > 0 on Qi9 i = 1, ..., M,

Lj := 3Q. n 912. o £2, 1 < i < j £ M, is a C2 surface at every x € Iy \ E and

area(I i J n 1^) = 0 if (i, j) * (k, 1).

We call the surfaces L., 1 ̂  i < j ^ M, the interfaces ofu.In most cases of interest, E reduces to

a finite union of piecewise C2 curves. The simplest example of admissible deformations are

continuous piecewise affine deformations.

As a kinematical restriction, an admissible deformation must satisfy the well known

compatibility condition

y only (2.1)

where 1 < i < j < M, the amplitude vectors ay : Iy -»IR3 are continuous, u{ denotes the

restriction of u to Cli9 and n^ is the normal to L. pointing into Q. If u is piecewise affine then VuA

are constant, the interfaces are planar and ay are constant, i,j= 1,..., M.

When there is no possibility of confusion, drop the subscripts i and j and write

F+ := if

F.:=VU j ,

so that (2.1) reduces to

F+ = F. + a®n.

Accordingly, the jump of a function h across I is given by



We shall consider the mixed problem in which displacements are prescribed on a portion

of of the boundary, and (dead load) tractions are assigned on the remainder dQ^ Thus let f e

; IR3), q > 3/2, be the body force per unit volume in the reference configuration and let t e

R3) te * e surface traction per unit area of the undeformed configuration, where

d& = closure (BQX u 9Q2) and dQx rdfy = 0 -

If W: M3x3
+ -»1R is the strain energy density per unit reference volume, then the total energy

of an admissible deformation u is given by dfi^

E(u):= f W(Vu)dx+ V f r d S - f f.udx- f t.u dS,
Ja r-± Ji Jn -tea,

l €

where 7 is the family of interfaces and F: X —» IR is the surface energy density per unit area of the

reference configuration.

As it is common in nonlinear elasticity, we make the following hypotheses on W:

(HI) W ^ 0 and W € ^(M 3* 3^ IR );

(H2) (frame indifference ) W(RF) = W(F) for all F € M3x3+, R e O+(3).

Moreover, according to ERICKSEN [13], if the solid has a crystalline structure then W is invariant

with respect to a conjugate group of G, precisely

(H3) (invariance under the change of lattice basis ) W(FM) = W(F) for all F € M3x3
+ and M

€ AG+A"1, where the columns of the matrix A form a lattice basis for the crystal in the

reference configuration.

For a detailed description of this model we refer the reader to ERICKSEN [13], FONSECA [14]

and KINDERLEHRER [25]. For simplicity, we suppose that the reference configuration has cubic

symmetry, so that A is the identity matrix.

Concerning the surface energy density F, our constitutive assumptions are based on

molecular considerations for solid crystals outlined by HERRING [23] and PARRY [32]. Suppose

that kinematically compatible lattices L2 and l^ coexist in equilibrium separated by a plane I! with

normal nf, and let the underlying pairwise homogeneous deformation have deformation gradients F

and F+ a®n, where



„•--£=-
llF"Tn||

HERRING [23] and PARRY [32] identify the surface energy with the energy of interaction of

atoms in the lattice L|, i = 1,2, with "virtual" atoms in a (non-existent) congruent lattice of identical

atoms on the other side of the surface. Assuming that the atoms interact attractively in pairs by

means of forces of finite range, and that the surface and interior lattice spacings are the same, they

deduce that F is of the form
P

F(F; a, n) = V y-(F; a, n, r{) |cos(F"Tn, r̂ l

where ^ = r> (F; a, n) are smoothly varying vectors separating two atoms in the lattices Lj, j=l,2.

The vectors r{ correspond to short bonds that cross F, while the functions y. are associated with

the smooth potential energies of atomic interaction. Thus F is not differentiable with respect to n

whenever PTn is perpendicular to one of the vectors r̂  i.e.

(F; a, n) does not exist if n e F ^ u FTn2 u . . . u FTnP,

where n. is the plane through the origin with normal

IWI ' i = 1""' R

We define the sets

X(F; a, n) := { y e IR3 | y. F 1 ^ ; a, n) = 0 for some i € {1,..., P}},

X* := {(F; a, n) e X | n e X(F;a,n)}.

It is then natural to assume that:
(H'l) r £ 0, T e W ^ X ; IR) n C^XN X*; IR), T(.; a, n) e C2;

(H'2) T(F; a, n) = T(F + a®n; -a, n) for all (F; a, n) e X;

(H'3) T(F; Xa, n) = T(F; a, Xn) for all F e M3x3
+, a e IR3, X e IR such that (F; Xa, n) e X;

(H'4) T(F; 0, n) = T(F; a, 0) = 0 for all (F; a, n) e M3x3
+x IR3x IR3;

(H'5) (̂ -ome indifference ) T(RF; Ra, n) = T(F; a, n) for all R € O+(3) and (F; a, n) € X.
Further, for elastic crystals invariance with respect to changes in lattice basis imply (see PARRY
[32])

(H'6) T(FM; a, MTn) = T(F; a, n) for all M e G+ and (F; a, n) e X.
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As the matrices 11 and 11 + a ® b, with a, b e Z3 such that a.b=O, correspond to symmetry related

variants, it would not be possible, at the molecular level, to distinguish the interface of a pairwise

affine defonnation with gradients F and F ( l + a ® b). Thus, we assume

(H7) T(F; Fa, b) = 0 for every a, b e 1? such that a.b=O.

We use the following notions of metastability for admissible deformations:

Definition 2.2.

(i) u is weakly metastable if there exists an e > 0 such that E(u) < E(u + <|>) for all <|> e C°°(£2; 1R3)

such that <|> = 0 on dClx and ||<|>||1>oo < e;

(ii) u is metastable if there exists an e > 0 such that E(u) < E(u + 4>) and E(u) < E(u(. + (()(.)) for all

4 € C~(Q; IR3) such that(J> = 0ondClx and \Mloo<e;

(iii) (PARRY [25]) u is strongly metastable if there exists an e > 0 such that E(u) < E(v) whenever

v(x + <p(x)) = u(x) + <(>(x) for all x e a , where <p, <|> € C~(Q; IR3) are such that ||<p||1>oo < e, |M>||lfOO <

e and v(x) = u(x) on dQx;

(iv) If 1 ^ p < «s u is said to be p-weakly metastable if there exists an e > 0 such that E(u) < E(u +

((>) for all 4 e C°°(Q; IR3) such that 4 = 0 on dClx and \Mlp < e;

(v) If 1 ^ p < oo, u is p -metastable if there exists an e > 0 such that E(u) < E(u(. + <()(.)) for all § e

C°°(Q; IR3) such that <|> = 0 on 3Qj and ||<t>||1>p < e;

(v) u is phase - metastable if there exists an e > 0 such that E(u) < E(v) for all admissible

deformation v with the same discontinuity surfaces of u and such that ||u - vllj ̂  < e.

Remark 2 3 .

Qearly, we have the following implications for a given admissible deformation:

strongly metastable => metastable => weakly metastable,

p-weakly-metastable => weakly metastable,



p-weakly-metastable and p-metastable => metastable and

phase-metastable => weakly metastable.

Next, we recall some results on surface integrals that we will use throughout this paper.

Let I c £t be a C 2 surface with normal v and mean curvature K. For f: Cl -> [R we define

the tangential derivatives

1 # d x i dv l'

where the normal derivative is given by
3f _df_

d v ' d x i V i *

Here we use the summation convention for repeated indices. Moreover, if f takes values in IR3, we

denote its tangential divergence by

Divt f := div f .v.
dv

If f € C1 and if <J> is a diffeomorphism, then (see CIARLET [10])

f f(y) dS(y) = f f(<|>(x)) ||adj( V<Kx)) v(x)|| dS(x) (2.4)
•tyi) Ji

where adj(A) is the matrix of cof actors of A.

Also, if f: Q, -» (R3 is a C1 function vanishing on 31, then

fDivt f dS = -2 Jf.v K dS, (2.5)

from which follows immediatly that

JgDivt f + V'g.f dS = -2 fgf.v K dS (2.6)

whenever gf = 0 on 31.

Finally, it is easy to show that if D c |R3 is an open bounded domain and if f: D -» IR3 is a

continuous function then

climoj i-xo fdS = J _ fdS (2.7)

for every XQ e I.



3. NECESSARY CONDITIONS FOR METASTABLE EQUILIBRIA.

In the sequel u is an admissible deformation, I is an interface of u and S is the first

Piola-Kirchhoff stress tensor, i.e.
s fork, 1=1, 2, 3.

The proof of the following proposition can be found in FONSECA [14] (parts (i), (ii)),
PARRY [32] and PITTERI [33] (parts (iii) and (iv)). See also ALEXANDER & JOHNSON [1],
[2], GURTENt [21], GURTIN & MURDOCH [22] and LEO [27].

Proposition 3.1.
Let u be weakly metastable. If (HI), (H*l) and (H*2) hold then

(i) - div S(Vu) = f in fij, i =1,...,M;

(ii) S(Vu)v = t on dCl^, where v is the outward unit normal to dQ;
3r

(iii) ^p (F-J a, n) n = 0 a.e. on I;
(iv) Divt ^p (F-; a, n) + [S(Vu)] n = 0 a.e. on I.

In the next result, we need to ensure the existence of dF/dn and dF/da and so, according to

(H'l),we define the set

:= {x e ft \ E | x e Iy and (Vuj(x); ay(x), nid(x)) e X \ X* for some 1 < i < j < M}.

Conditions analogous to Proposition 3.2 (ii) were derived in ALEXANDER & JOHNSON [1],[2],
GURTIN [21] and LEO [27].

Proposition 32.
Let (HI), (H'l) and (H*2) be satisfied and let u be metastable.Then

3r
(i) -*r-.n = 0 on I
and, granted (H'3),

•3 - .a = 0 on I n QQ;

(ii) W(F+) - W(FJ - S(F+).(F+ - F J + 2K F(F_; a, n) - D i v ( ^ ) = 0 (3.2)

on I n QQ, where K is the mean curvature of I.



Proof. Let XQ e I n QQ; since X \ X* is open and F. is continuous, let e0, ex > 0 be such that

|| (F; b, m) - (F.(x0); a(x0), n(xj) \\ < eQ =* (F; b, m) e X \ X*

and

|| x- xo|| < Bj =* || (F.(x); a(x), n(x)) - (F.(x0); afx^, n(x0)) || < eQ/2

if x € I n QQ. Let <j> € C°°(Q; IR3) with supp <|) c B(x0; 6j/2) and choose e small enough so that

w e : Q -» i2 is a diffeomorphism,

w£(B(x0; Ej/2)) c B(x0; e^,

e||V(|)| |oo(||FJ|oo+l)<e (/2

and

E(u)<E(u£),

where we(x) := x + e<|>(x) and ue(x) := u(w£(x)). As u is a metastable defonnation, using (2.4) we

obtain

where

W(F(x) Vv/t(y/~\x)) det VwJ2(x) dx,

:= J T(F_(x) Vwe(wJl(x)); a(x), VwJCw-^x)) n(x)) JdS

and

J 3 :=- f f(x) .u(wE(x)) dx.
Ja

On the other hand, from the identity

it follows that

^ ^o det (fl+ eVtfw-^x)) = div

dj ( V ^ x ) ) = V<|>T(^ ^o adj (Vw-^x)) = V^'Cx) - div <|>(x)ll

and

"JT ie=o lladj (VwJ!(x)) n(x)|| = n(x). [V<j)T(x)n(x) - div <f>(x)n(x)]
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Hence, we conclude that

4z&=oh=[ S(F). F(V<|>) dx - f W(F)div<|>dx

and, by (2.6) and Proposition 3.1 (iii), we obtain

^ M» Jz = J,IF" • F"(V<I>) ̂  + J , ( n ® ^ ) V* dS - J , r M v i * dS

= J -Div t(Fl | ^ ) • 4» dS + J ( n ® ^ ) . V<|) dS + J V'r.* dS + 2 J K T «j).n dS.

Finally, as

(3.3) and Proposition 3.1 (i), (iii) yield

0 =J {W(F+) - W(FJ - S(F_).(F+ - FJ + 2K T(F_; a, n)} <>. n dx - J W ) ] n . F+(J> dS

^ . <|> dS + J ( n ® | ^ ) . V<|> dS + JVV.ij) dS. (3.4)

Clearly, from (3.4) we deduce that
ar 0

which, together with (H*3), implies that

ar
Therefore,

and (3.4) reduces to
0 = (W(F+) - W(FJ - S(F_).(F+ - F_) + 2K T(F_; a, n)} n -F^ [S(F)] n

VV. (3.5)

As ||n|| = 1, we obtain

and the inner-product of (3.5) by n yields
0 = W(F+) - W(FJ - S(F_).(F+ - FJ + 2K T(F_; a, n) - [S(F)] n. F+n

Finally, by Proposition 3.1 (iii, iv) we have

- Divt ( F l | ^ ) n = [S(F)] n . F_n

which, together with the previous formula, implies (3.2).

n



It follows immediatly from Propositions 3.1 and 3.2 that for piecewise-affine, metastable

deformations the traction is continuous across the interface and the Maxwell rule holds.

Corollary 3.6.

Let u be a piecewise affine metastable deformation. If (HI), (Hf 1) and (Hf2) hold, then

n = OonI;

(ii) W(F+) - W(FJ - S(F_).(F+ - F.) = 0 if (F_; a, n) € X \ X*.

Next, we show that the boundary of Q, near the interface of a two-phase, affine, strongly

metastable deformation is qualitatively predictable. Precisely, we prove that there is "neck

formation11 at the phase boundary.

Proposition 3.7.

Let u be a two-phase, affine, strongly metastable deformation and let I = {x e Q. | x.n + k}be

the interface of u. Assume that (HI), (Hf 1) and (Hf2) are verified and that (F_; a, n) e X \ X*.

If I n dClx = 0 , then either r(F_; a, n) = 0 or
A(p)-A(0) n ^ r A(p)-A(0)

km sup — < 0 < lim inf — ,
p-><r P P->o+ P

where A(t) := area {x e Q \ x.n = k +1}.

closure (Q+), where £l+ := {x € Q \ x.n > k}, £2_ := {x €

ifx.n>k

ifx.n£k.

0 ifx.n>k + p

(k + p)a-(x.n)a ifk<x.n<k + f

pa if x.n < k

Proof. Assume that

x.n < k}, F + = F. + a®n and

F+x

We define

and
Up := u + Wp(x).

As u is strongly metastable and since

12



Up(x + pn) = u(x) + p(Fjn + a),

for p sufficiently small, we have

E(u)<E(uJ);

i. e.,

f W(F+)dx + fr(F_;a,n)dS- f t u d S - f tudS<

f W(FJ dx + f T(F_; a, n) dS - f t.[u +(k + p - x.n)a] dS - f t.(u 4pa) dS,

where

12+p := {x e Q | k < x.n < k + p} and Ip := {x € Cl \ x.n = k + p}.

Hence

meas (Q^) (W(F+) - W(FJ) < T(F,; a, n) (A(p) - A(0)) + f t.(x.n - k)a dS

- p I ta dS - p j La dS,

which, dividing by p and letting p —»0+, yields

A(0) (W(F+) - W(FJ) < T(F ;̂ a, n) lim inf A ( p ) " A ( 0 ) - f t.a dS. (3.8)

By Proposition 3.1 (i), (ii) and Corollary 3.6 (i), we have

f ta dS = -A(0) S(FJ.(F. - FJ

and so, since the Maxwell rule is satisfied (see Corollary 3.6 (ii)),we conclude from (3.8) that

either

r(F_;a,n) = O

or
r _ A ( p ) - A ( O ) s .
hminf—- £0.
p-»o+ P

In a similar way, if we consider variations
u~ := u +

with p > 0 and

Up := u + w~(x)

0 ifx.n>k

Wn(x) := \ (x.n - k)a if k - p < x.n < k

—pa ifx.n<k-p,

we conclude that

13



p->(T P

Remarks 3.9.

(i) It is natural to suppose that the homogeneous deformations forming the different phases of a

metastable, piecewise affine, deformation u correspond to local minima of the energy density W

(see PARRY [32]). If F. and F+ = F_+ a ® n arc the gradients of adjoint variants of u and if

(F. ; a, n) € X \ X*, then, by Corollary 3.6 (ii), we would obtain

W(F+) = W(F_). (3.10)

However, the photographs of RICHMAN [34] of twinned cubic crystals seem to suggest that F+

and F" arc not symmetry related, and so (3.10) is, in general, violated.

We therefore obtain a confirmation of PARRY's conjecture: namely, the gradients of a

metastable, piecewise affine, deformation correspond to points where the interfacial energy T is

not differentiable. This fact could explain the preferred directions of the phase boundaries (see

CAHN & HOFFMAN [6], [7]).

(ii) In [32] PARRY derives sufficient conditions for strong metastability of an undeformed shear

band under null loading; among those we have

(1) F. and F_+ a®n provide local minima of W;

(2) T(F_; a, n*) £ T(F; Xa, n') for all (F, nf, X) close enough to (F_, n, 1);

(3)(F.;a,n)eX*;

(4) (local Wuljfs condition) If ||v|| = 1 = ||w||, ||v - n|| and ||w - n|| are sufficiently small, and

if X, \i > 0 and X\ + (iw = n, then

T(F_; a, n) < X T(F; a, v) + \i T(F_; a, w).

In (i) we remarked that (1) would imply (3.10) if (3) was violated. We now examine conditions (2)
and (4) in the inhomogeneous case in which (3) fails.

Let u be a metastable deformation and let x0 e I be such that:

(2f) T(F.(x); a(x), n(x) + en') < T(F.(x) + ec®d; a(x), n(x) + enf) for all e e [-e0, eQ], c,

d, nf € 9B(0, 1) and x e B(x0, eQ) n I,
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1) (F.(x0); a(x0), n(x0)) e X \ X*.

(41) For every x e B(XQ, eQ) n I there exists e > 0 such that if ||v|| = 1 = ||w||, ||v - n(x)|| < e,

||w - n(x)|| < e, X, \L £ 0 and Xv + \iw = n(x) then

r(F.(x); a(x), n(x)) < X r(F.(x); a(x), v) + \i r(F.(x); a(x), w).

By (21) we have

| p (F_(x); a(x), n(x)). c®d = 0

for all c, d e 9B(0,1) and x € B(XQ, eQ) n I. Therefore,

and from Proposition 3.1 (iv) and Proposition 3.2 (ii) we deduce that

[S(Vu)] n = 0

on B(x0, eQ) n I. Hence, since X \ X* is an open set,

W(F+) - W(F_) - S(F_).(F+ - FJ + 2K T(F_; a, n) - Divt ( ^ ) = 0. (3.11)

It turns out if that I is a surface of minimal area (see FONSECA & TARTAR [16], GURTIN [17],

[18], [19], [20], KOHN & STERNBERG [26], MODICA [28], OWEN [29], [30], OWEN &

STENBERG [31] and STERNBERG [35], [36]), then (3.11) reduces to

W(F+) - W(F_) - S(F_).(F+ - FJ - Divt ( | £ ) = 0.

Finally, we show that (4') implies that

T(F_(x); a(x), n(x)) + ^-(F_(x); a(x), n(x)) U Z 0 (3.12)
dn

for all % such that ||£|| = 1, £.n(x) = 0. Fix x e B(x0, eQ) n I, k e IN and let
, . n + tk£

w(t) := r ^ .

1+tV

Let p. be a smooth function such that

0

and define

and

v ( t ) : ="~"X(t)

15



By (4') and Proposition 3.2 (i),
d2

0 <. ~ .{WO r(F_; a, v(t)) + \i(t) r(F_; a, w(t))}
dt2fe*

=( X"(0) + u"(0)) (T(F_; a, n) - -srCF.; a, n).n) + k2 , , —r-(F_; a, n) £.

>i(0)

9n
+ k2) T(F_; a, n) + k2 7"Y(F_; a, n) §.

1

Dividing the previous inequality by k2 and letting k —»«», we obtain (3.12).

4. QUASICONVEXTTY OF THE SURFACE ENERGY DENSITY T.

It is well known that if u is p-weakly-metastable and if XQ e Qj for some i= 1,..., M,

then W is quasiconvex at F, where F = Vu( XQ), i. e.

f W(F + Vq>(x)) dx 2> W(F) measD (4.1)

for every bounded open set D C IR3 and for every 9 e X)(D; K3) satisfying det (F + V<p(x)) > 0

for all x € D (see BALL [3]). Also, if (4.1) holds, then W is rank one convex atF; i. e.,

W(F) <: 0 W(F + c®d) + (1 - 6) W^F - y ^ c ® d ) (4.2)

for all 6 e [0,1) and for all c, d e K3 such that det (F + ac®d) >0 with a e {1, 9(0-1)1}. In

this section we obtain conditions analogous to (4.1) and (4.2) for the interfacial energy density T.

Let I be an interface of u and let XQ e I. In the sequel we will use the notation

(F_; a, n) := (F.( XQ); a( XQ), n( x0))

and, for D a subset of IR3, we define

D* := {x e D | x.n(xo) = 0}.

Proposition 43.

Let u be p-weakly-metastable and assume that (HI), (H*l) and (H'2) hold. If x0 e I then

16



(i) (Quasi convexity )

f r(F. + Vcp(y);a,n)dS^area(D*)r(F.;a,n)

for every bounded open set D C (R3 and for every 9 € £>(D; IR3) satisfying det (F+ + Vcp(x)) > 0

and det(F.+V9(x))>0forallxe D;

(ii) (Rank one convexity )

T(F_; a, n) £ 8 T(F_ + c®d; a, n) + (1 - 6) I ^ F _ - y—cgt f ; a > n )

for all 6 € [0,1) and for all c, d € IR3 such that det (F+ + a c ®d) > 0 and det (F. + a c ®d) > 0

with a € {1, 9 ( 9 - I ) 1 } -

Proof, (i) Let D c [R3 be a bounded open set and let 9 € D(D; IR3) be such that det (F+ +

Vcp(x)) > 0 and det (F. + V9(x)) > 0 for all x e D. Consider the variations

u€(x) := u(x) + £9^—-—J.

For |e| sufficiently small we have E(u) < E(Ug); i.e.,

f W(Vu(x)) dx + f r(F_(x); a(x), n(x)) dS ^

f wf Vu(x) + V < p ( ^ - ^ 1 1 dx + f I{F_(X) + V<pf ̂ ^ 1 ; a(x), n(x)l dS

_ef fwJiZ^K
Jxo+eD V 6 ;

Using the change of variable x = xo+ ey, we obtain, using (2.4),

e3 f W(Vu(xo + ey)) dy + e2 f i-^ IXF_(xo + ey); a(xo +ey), n(xo +ey)) dS <

e3 I W(Vu(x0 + ey) + V<p(y)) dy + e2 f i -^ nF_(x0 + ey) + V<p(y); a(x0 + ey), n(x0 + ey)) dS

- e 4 f f(xo + ey).<p(y)dy.
J D

Dividing the previous inequality by e and letting e —»0, by (2.7) we conclude that

f , n p - + V9(y); a, n) dS > area (D*) T(F.; a, n).

17



(ii) Let c, d € IR3 and 6 € [0,1) be such that ||d|| = 1, det (F+ + a c ®d) > 0 and det (F_ + a c <8>d)

> 0 with a e {1,9(9 -1)"1}- Due to the continuity of T, with no loss of generality we can assume

that d is not parallel to n. We consider the construction made in FONSECA [15], Theorem 2.4;

precisely, let {v, w, d} be an orthonormal basis of IR3 and let k^ € DM be such that

det f F+ +-r- c®v J > 0 and det f F_ +-£- c®v 1 > 0

for all k e IN, k £ ICQ, and for every v e K3 with ||v|| = 1. For k £ 1^ let Qk be the parallelepiped

3 | | | < | | ^

k k

2 "I

:= j x e IR3 | |x.v| <, y , |x.w| ^ j and 0 - 1 <x.d ^

with vertices

Al = 12' 2' 6 > Az = l"2 ' 2' 9J' A3 = l"2 " 2 ' e > ^
and

AJ- (|, f e-i) AJ=(-|, |. e-.), AJ- ( 4 4 e-.), A{- (f 4 e-,).
In addition, we consider the following points in Q^

k_(k-ko k-ko \ f k-ko k^o ) k _ f k-kp k-kp

and

A3

A8

Fig. 1

AS

We decompose Qk as

i= 1

where
k A k A k A k ^ k T*k ^ k:= convex hull {Af, Af, A ,̂ AJ, Bf, B ,̂ B ,̂

18



Q£ := convex hull {A?, A£, A?, A| , BJ, B|, B\, BJ},

i f := convex hull {A\, AJ, A|, A| , B\, BJ},

i f := convex hull {A\, A\, A% A£, B\, B | } ,

i f := convex hull {A£, A*, A£, A*, B|, B | } ,

i j := convex hull {A|, AJ, A7, Ag, B?, B4}.

Next, we define the functions
c®dx-6c

6
6-1
20

wk(x) v=*

:®d x - 6c

28 6k
•r—c®w x - -r—c

26 ^ 6k
—:—C®VX - - — C

26

0

6k

ifxe Tf

ifxe if

ifxe if

ifxe ij

otherwise.

If $k denotes the set of interfaces of wk, then there exists a sequence qt^. e C1(IR3; IR3) such that

• t o o

in L, ,

Vwk for all x

and
inf {det (F+ +m,k,x

0,det(F+ + V<pm,k(x))}>0.

Moreover, since d is not parallel to n(x0), for k large enough we have

area (Q2k* ̂  $*) = 0.

Therefore, by (i),

T(F_; a, n) area (Q^*) <, f r(F_ + V9nU(x); a, n) dS
JQ2k*

and so, passing to the limit in m, we deduce that

a,n)< ) ^ ^ \ r(F_ + Vwk(x);a,n)dS.

Hence, by the definition of wk,

19



areaCQt)* , area(C£)* r e ^

4

+ - tf>* JU^ , 26 >>U~ ̂  29

Finally, letting k -> «>,

T(F.; a, n) < 9 T(F_ + c®d; a, n) + (1 - G) I^F. - y ^ c®d; a, nJ.

Remark A A.

(i) Suppose that u is p-weakly-metastable. If u € C1 near XQ, then (4.2) yields

W(Vu(x0) + c®d) - W(Vu(xo)) - S(Vu(x0)). c®d > 0 (4.5)

for all c, d € IR3 such that det(Vu(x0) + c®d) > 0. Hence, if we disregard the contribution of the

surface energy, the traction is continuous across the interface (see Proposition 3.1 (iv)) and from

(4.5) it follows that the Maxwell rule holds (see JAMES [24]); namely, if x0 e I, then

[S(Vu(xo))]n(xo) = O

and

W(F+) - W(F) - S(F ).(F+ - F ) = 0. (4.6)

Consider sequences xm € Q{ and ym € Qj converging to x0. By (4.5)

W(Vu(xm) - a(xo)®n(xo)) - W(Vu(xm)) + S(Vu(xm)). a(xo)®n(xo) > 0

and
W(Vu(ym) + a(xo)®n(xo)) - W(Vu(ym)) ~ S(Vu(ym)). a(xo)®n(xo) £ 0.

Letting m —> +<», we conclude that

W(FJ - W(F+) - S(F+).(F. - F+) ^ 0

and (4.7)

W(F+) - W(FJ - S(F.).(F+ - FJ > 0.

It is clear that (4.7)1>2 are still valid when we include the interfacial energy term in the total energy

functional.

(ii) Let u be p-weakly-metastable and assume that (HI), (H'l) and (H'2) are satisfied. Let x0 e I

and, as in Remark 3.9 (ii), consider the following hypothesis:
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(2") r(F.(x); a(x), n(x)) < T(F.(x) + ec®d; a(x), n(x))

for all e e [-e0, e^l, c, d € 9B(0,1) and x € B(x0, eQ) n I. Then (2ff) holds if and only if

| ^ (F_ ;a ,n ) = O (4.8)

on B(x0, eQ) n I. It is clear that (2") implies (4.8). Conversely, by Proposition 4.3 (ii),

A J e n F +ec®d;a>n) + (1^e)r(F,--Y^-Q ec<8>d;a,n)} >0,

which, together with (4.8), yields (2"). Therefore, if (2") holds then by Proposition 3.1 (iv), (4.7)

and (4.8) we conclude that the traction is continuous across the interface, i.e.

[S(Vu(xo))]n(xo) = O

and the Maxwell rule (4.6) is satisfied.

Next, we deduce corresponding quasiconvexity and rank one convexity conditions for a

p-metastable deformation.

Proposition 4,9.

Let u be p-metastable and assume that (HI), (Hfl) and (Hf2) hold. If x0 € I, then

(i) (Quasi-convexity)

f HFJII + V<p(y)); a, (11 + V<pT(y))n) dS 2> area(D*) T(F_; a, n)
JD**

for every bounded open set D C 1R3 and for every <p e JD(D; IR3) satisfying det (11 + Vcp(y)) > 0

for all y e D, with D** := {y e D | (y + 9(y)).n = 0};

(ii) (Rank one convexity )

T(F_; a, n) < 6 ||n + (c.n)d|| r(F.(1l + c®d); a, ( £ + d®c)n)

+ ||n - 6(n + (c.nM)||

for all 6 e [0,1) and for all c, d e IR3 such that det (1 + a c ®d) > 0 with a s {1, 9(0 -1) 1}.

Proof, (i) For |e| sufficiently small, consider the deformations

ue(x) := u(x + e<p[—— JJ.
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Then E(u) < E(ue); i. e.,

f W(Vu(x))dx+f T(F_(x); a(x), n(x)) dS - f f(x).u(x)dxf
'xo+eD

«

where

Making the change of variables
X — XQ

and setting

w(y) := y + <p(y)

we obtain

Je ij.

e3 j W(Vu(xo + ey)) dy + e21 i-x,, r (Fjx 0 + ey); a(xo + ey), n(x0 + ey)) dS

<£e3f W(Vu(xo + ew(y))Vw(y))dy
• D

+ e J J i-*o ) r(F_(xo + ew(y))Vw(y); a(x0 + ew(y)), VwT(y) n(x0 + ew(y))) dS
W V £ J

+ e3j f(xo + ey).u(x0 + ew(y)) dy.

Dividing the previous inequality by e2 and letting e -> 0, by (2.7), we deduce that

arca(D*) T(F_; a, n) < lim f / i -x^nF.VwCyha, VwT(y)n)dS
E —• 0 J Dnw~i — I

\ £ y

f -1 T -1 -1
= lim I j-xoHF_Vw(w (x));a, VW (W (x)) n) ||adjVw (x)v(x)||dS

£->0Jw(D)n—:

= [ HF.VwCw-Vx)); a, VwV^x)) n) HadjVŵ tonU dS
J w(D)n{x| x.n=0}
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= f T(F_Vw(y); a, VwT(y) n) dS.
J D**

(ii) Here we use the same construction of the proof of Proposition 4.3 (ii) and, in a similar way, we

assume (without loss of generality) that ||d|| =1 and that d is not parallel to n. Also, we can suppose

that (n.v)v + (n.w)w is not parallel either to v -f w or to v - w. By part (i),

area(Qk*) r(F_; a, n) < f r(F_(l + Vwk(y)); a, (11 + Vw£(y))n) dS

£ area (Q£)** r(F_(ll + c®d); a, (11 + d®c)n)
f f 6 \ ( 0 ^ \

+ area (Qp** T\ F_Ml c®d 1; a, f H d®c In I

^ I I 1 - 9 / ' I 1 - 9 ) )
A

+ Cons t .^ area (if)**. (4.10)

Clearly,
area(Q£)** . area {y e Q^\0 <,y <,9 andy.(n + (c.n)d) = 9c.n}

lim s u p T T T Z T T ^ Km r ^ i ^
k -* +£ area(Qk*) k -»+«. area { y e Qk | y.n = 0}

area { y e Q k | 0 ^ y ^ 9 a n d y.(n + (cn)d) = 0}
= lim 7 -— -r . (4.11)

k area {y e Q^| y.n = 0}
We claim that

area { y e Q k | 0 < y < 9 and y.(n + ad) = 0}
Km / n i —«\ = 9||n + ad|| (4.12)

k -»+oo area { y e 0 1 ^ ^ ^ = 0}

for all a e IR. In fact, by the assumptions made on n, d, v and w, for k large enough

area {y e Qk 10 <£ y.d £ 9 and y.(n + ad) = 0} = ||C - O|| ||Ak - Bk||

and

area {y e Qk | y.n = 0} = ||A - B|| ||Ak - Bk||,

where we have used the notation of Figures 2 and 3. Since

and

»c°i'
e

ad).d)2

||n + ad||2

6 ||n + cxd||

Vl-(d.n)2
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n+ad

\

x.d=9

x.d =

x.d=e-i

n

Fig. 2. Intersection of the planes {y.(n + ad) = 0} and {y.n = 0} with Qk n Span {d, n}.

x.v = -k/2

x.w * -k/2 x.w = k/2

k/2 V

Fig.3. Intersection of the planes {y.(n + ad) = 0} and {y.n = 0} with {y e Qk | y.d = 0}.

we obtain (4.12). Hence, by (4.11) and (4.12),
area(Q£)**

and, in a similar way, we have

(4.13)

area
(c 'n)d"

= | | n - (4.14)
Finally, as

= 0limsup
k-»+~

by (4.10), (4.13) and (4.14) we conclude that
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T(F_; a, n) £ 6 ||n + (c.n)d|| r ( F . ( l + c®d); a, (11 + d®c)n)

+ | |n -6(n + (c.nM)||

5. CONSEQUENCES OF THE RANK ONE CONVEXITY OF r .

It is well known that, due to frame indifference, the Cauchy stress tensor

detF 3F
is symmetric. We now show that frame indifference effects in a similar way, the tensor

ar TF

Proposition 5.1.
Let (HI), (H2), (H'l), (H*2), (H'3) and (H'5) hold. Then

(i) - ^ ( F ; a,n) F T + -^r (F; a, n)®a is a symmetric matrix for all (F; a, n) e X \ X*;or1 da
(ii) if u is phase-metastable, then

(F_; a, n) F . is a symmetric matrix

and

either T(F_; a, n) = 0 or -^-(F. ; a, n) = 0

for all x € I n Qo.

Proof, (i) Let A be a skew-symmetric matrix. By (FT5),

thus, differentiating with respect to e at e = 0,

a ar AT3 dr
A F +

which proves part (i).

(ii) Let g : IR -» IR be a smooth function such that

g(s) = 0 if s > 1 and I s2g'(s) ds ^ 0
Jo

and define
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gr(s):=rg(f) for r > 0.

Let A be a skew-symmetric matrix and let XQ € L Consider the variations

i f | x -xo l<r

u£>r(x) :=

u(x) otherwise.

As
HUEJ ~ ulli,~ converges to 0 as e -» 0+ ,

we obtain
d

Since

Vu(x)

and as -A is also skew-symmetric, by (H2) and (Hf5),

-**a(x)>

Making the change of variables
x - XQ = iy,

dividing through the previous equation by r3, and letting r —> -H», we obtain

S • f AF_ f y ®g'(|y|) ^r dS(y)) = 0.
d h V J{y| |y|<l, yj>=0} M )

Finally, as

f y ®g'(|y|) f r dS(y) = it f s2g*(s) ds (11 - n®n),
Jiy\ lyKL y.n=o> M Jo
f
iy\ lyKL y.n=o>

Proposition 3.1 (iii) and (5.2) yield

~Fl.A.

: - Xn < r

otherwise

(5.2)

T"
F i

T
Hence QI73F) F^ is a symmetric matrix which, together with part (i), implies that dr/da is parallel to a.
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From Proposition 3.2 (i) we conclude that either a = 0 or dI79a = 0.

ERICKSEN [12] proved that, when there is no interfacial energy contribution, if u is
metastable relative to large disturbances, then the Cauchy stress tensor reduces to a hydrostatic
pressure:

VuTS(Vu) = a l â e. in 12, for some a € IR.

This remains valid when the surface term T is present We now show that an analog of this

condition is satisfied on the phase boundaries, where
ar
9F

plays the role of S(F).

Let

I* := I n closure j x e I r&Q | there exists b e 13 \{0} such that n(x) =-jgr t ,

and note that if the surface is not degenerate near x e I, then x e I*,

Proposition 53.
Let u be p-weakly-metastable and assume that (HI), (Hfl), (H'2) and (Hf6) hold. There

exists j i : I* —»IR3 continuous such that

l on I*. (5.3)

Proof. The estimate
n2

and a continuity argument allow us to restrict attention to the case where

= Tirir for some b€ Z3\{0}.
llt>ll

Let c, d e 1? be such that c.d = c.b - 0. By Proposition 4.3 (ii),

T(F_; a, n) £ 6 T(F_ +F_c®d; a, n) + (1 - 6) I"(F_ - -^F_c®d; a, n)

which, together with (H'6), yields

r(F_; a, n) ^ r^F_ - ^ F _ c ® d ; a, n)

for all Qe [0,1). Hence,

F l | | (F_ ;a ,n) .c®d =
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for all c, d € IR3 such that c.d = c.b = 0. Therefore, there are functions \i and v satisfying

FT||J(F_; a, n) = -v 11 + n®^

Finally, since by Proposition 3.1 (iii)

we conclude that
V = n .\L.

In what follows we will use the notation of Proposition 5.3.

Corollary 5.4.

Let u be phase metastable and p-weakly-metastable and assume that (HI), (H2), (H'l),

(H7), (H'3), (Hf4), (Hf6) and (H7) are verified. If x e I* then

(i) 0<r(F_;a,n)<-n4i;

(ii) there exists X e IR such that \i = X (FT F j ^ n .

Proof, (i) As in the proof of Proposition 5.3, we assume that
n00 = "nnr f°r some b e Z \{0}.

l|b||

Suppose in addition that T(F.; a, n) > 0 and fix v € 1? with v.n = 0. By (H'4) we have a * 0 and

so there exist vf € {v, -v} and w e IR3 such that

>0.v .w
On the other hand, since

F^a.w F^a.w detF_
v'.w "" v'.w * detF+

we deduce that

^ > 0 .v \w
Defining the sequence of vectors

a F-V
c k : = * III.II/ »—7 ; — for k e IN,

K k||b||(v\w) vf,w
by Proposition 4.3 we have that

T(F_; a, n) < Gr(F_ + ck®w; a, n) + (1 - Q) I ^F . - JL C k ®w; a, n
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for 9 e [0, 1) small enough. By (H'3) and (H7),

T(F_ + ck®w; a, n) = T(F_ + ck®w; (F_ + ck®w)v\ kb) = 0

and so,

0 £ -5Q-Ie=oi (1 -6) r( F_ - -r-s-c^w; a, n H = - T - ^ ( F _ ;a ,n). (ck®w).

Letting k -^ +*», by Proposition 5.3 we obtain

r ^ F I 3p (F- ;a ^i). —7— = - n.ji.

(ii) By Proposition 5.1 (ii) and Proposition 5.3,

3 ^ Fl = ~(n.\i) t + FITn®F4i

is a symmetric matrix; hence there is a A, e IR such that F41 = X FI n.

Proposition 5-5.
Let u be phase-metastable and p-metastable. If (HI), (H2), (Hfl), (H7), (H'3) and (H'6)

hold and if x € I n flu, then

(i) T(F_; a, n) [ ||n + (c.n)d|| - 1 - (c.n)(d.n)] - (FT ^ ( F _ ; a, n) + n®|£(F_; a, n)) . (c®d) > 0

for all c, d e 1? such that c.d = 0;

(ii) T(F_; a, n) [ |c.n| ||d|| - (c.n)(d.n)] - ( F I ^ ( F _ ; a, n) + n€>|£(F_; a, n) ) . (c®d) ^ 0

for all c, d e IR3 such that c.d = 0;

(iii) Fl ~ ( F _ ; a, n) + n®^(F_; a, n) = -(n.^)ll + n®^

for some % e IR3, with || T(F_; a, n)n + £ || <, T(F_; a, n). If in addition (H2) and (H'5) are satisfied

and if T(F_; a, n) = 0 then

| _ ; a, n) = 0 and |^(F_; a, n) = 0.

Proof, (i) If c, d e Z3 are such that c.d = 0 then, by Proposition 4.9 (ii),
T(F_; a, n) < 6 ||n + (c.n)d|| T(F_ (1 + c®d); a, (11 + d®c)n) +

+ ||n - 6 (n + (c.n)d)|| T ( F _ ( l - - ~ c®d); a, ( l - - ^ d®c) n)

for all 6 e [0,1). Differentiating the right hand side of this inequality with respect to 6 at 6 = 0,

and using (H'6), we deduce that
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T(F_; a, n) [ ||n + (c.n)d|| - 1 - (c.n)(d.n)] - ( F ! |]^(F_; a, n) + n® |£(F_; a, n)) . (c®d) > 0.

(ii) Take c, d e Z3 such that c.d = 0 and apply the formula in part (i) to kc and d, with k e Dsl.

Dividing through by k and letting k -» °°,

T(F_; a, n) [ |cn| IkHI - (c.n)(d.n)] - (FT |^(F.; a, n) + n®|£(F_; a, n)) . (c®d) > 0,

which, by a density argument, is still valid for c, d e IR3 with c.d = 0.

(iii) If in (ii) we choose ±c, d € IR3 such that c.d = 0 and c.n = 0, then

I |^(F_; a, n) + n®|£(F_; a, n)) . (c®d) = 0

and so there are a, ^ € IR such that

Fl |^ (F- ; a, n) + n®|^(F_; a, n) = all + n®^ (5.6)

Therefore, by Proposition 3.1 (iii) and Proposition 3.2 (i), we deduce that

an + (£.n)n = 0

and (5.6) reduces to

l | _ ; a, n) + n®|£(F_; a, n) = -(n.

This result, together with (ii), yields
T(F_; a, n) [ |c.n| ||d|| - (c.n)(d.n)] - (c.n)(d.^) > 0

for all c, d € IR3 such that c.d = 0. Hence, either
= 0 (5.7)

or
IXF_; a, n) > 0 and || n + — - ^ r || < 1. (5.8)

l (ts, a, n;
Clearly, (5.7) and (5.8) imply that

If T(F_; a, n) = 0 then (5.7) yields

Fl |^(F.; a, n) = - n®^(F.; a, n). (5.9)

Therefore, if, in addition, (H2) and (H'5) hold, then, by Proposition 5.1 (ii), there is a X € [R3

such that

F . | ^ ( F . ; a , n ) = AP:Tn. (5.10)

Taking the inner product by FlTn on (5.10), by Proposition 3.2 (i), we have that X = 0 and so, (5.9) and
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(5.10) imply that

_; a, n) = 0 and ^"(F_; a, n) = 0.

Proposition 5.11.
Let u be phase-metastable and p-metastable. Assume that (HI), (H2), (H'l), (H*2), (H'3),

(H'4), (H*5) and (H"6) are satisfied and let x e I n

(i) If det F. = det F+ then

T(F_; a, n) = 0, ^ ( F _ ; a, n) = 0 and ^ ( F . ; a, n) = 0.

(ii) If det Vu. = det Vu+ in a neighborhood of x in I then

[S(F)]n = 0
and the Maxwell rule holds:

W(F+) - W(F.) - S(F.).(F+ - F.) = 0.

Proof, (i) By Proposition 5.5 (iii) it suffices to show that T(F_; a, n) = 0. If a = 0 then (H'4)

yields the desired result. Assume that a * 0 and choose co, T e 1? such that
co.F^a

co.x = 0, x.n * 0 and < 0. (5.12)
x.n

Fix t e IR and define
T - t F ^ a

c : = — ^ — , d:=tco-n.

Then, since det F. = det F+,

F ^ a . n = 0

and

det (1 + c®d) > 0 and det (ll - -r^r c®dj > 0

for 0 £ 0 sufficiently small. Moreover, (H7) implies that

T(F.( 11 + c®d); a, ( 11 + c®d)n) = T(F.( 11 + c®d); ( 11 + c®d)x, co) = 0.

Hence, by Proposition 4.9 (ii) we obtain

T(F_; a, n) < ||n - 6 (n + (c.n)d)|| V(F_ (ll - ^ c0d); a, (ll - ^ d®c) n).
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Differentiating the right hand side of the previous inequality with respect to 6 at 6 = 0, by

Proposition 5.5 (iii) we conclude that

_; a, n)n + %}.(* +12 (n.£) ^ £ ~ ^ 0

for all t € IR. Therefore (5.12) implies that
T(F_; a, n)n + £ = 0 and n.£ £ 0.

On the other hand, since by Proposition 5.5 (iii)

it follows that n.£ < 0; thus
n.£ = 0 and r(F_; a, n) = 0.

(ii)By(i),

Divt-s=r = 0 near x

and so, by Proposition 3.1 (iv),

[S(F)]n = 0.

The Maxwell rule follows from (i) and Proposition 3.2 (ii).

Remark 5.13*

We used only the hypothesis

(5.14)

on part (iii) of Proposition 5.5 (see (5.7) and (5.8)). Moreover, (5.14) can be obtained directly

from Proposition 5.5 (ii). Indeed, if we add the inequalities corresponding to (c, d) and (-c, d) we

deduce (5.14).
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