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§1, Introduction

In this paper we study a variational problem for real valued functions

2
defined on an infinite semiaxis of the line. To wit, given x € K we

seek a "minimal solution" to the problem

Minimize the functional given by

(PJ I(w(-)) = f f(w(s),;(s),w(s))ds,
J0

w € Ax = {v € W^(O.co) : (v(0),;(0)) = x}.

J2 1 1
Here W7* C C denotes the Sobolev space of functions possessing a

vOC

locally integrable second derivative, and f = f(w,p,r) is a smooth

function satisfying

(1.1) f > 0, f(w,p,r) > a|w|a - b\pf + c|rT - d (a.b.c.d > 0)
rr

where a,T € (I,00), j3 € [!,«) satisfy a > 0, nr > j3,

as well as an upper growth condition to be described in §2.

It can be appreciated that the notion of minimal solution for (Pw) is

a subtle one, since the infimum of I on A is typically either +«> or

-«>. The formulation which is best suited to our problem will be described

and analyzed in §3. It will also be shown in §3 that the analysis given

for (Pw) applies to similar problems involving a functional identical to I

except for the fact that integration is taken along the entire real line.



Our interest in variational problems of the form (P^) stems from a

one-dimensional model recently proposed by Bernard Coleman to describe the

equilibrium behavior of a long slender bar of polymeric material under

tension. It involves a fiber of material distributed along an infinite

interval and possessing an equilibrium specific Helmholtz free energy

function which, formally, is a higher order version of the van der Waals/

Oahn-Hilliard mean free energy for the density of a two phase fluid ([vdW],

[C & H], see also [OGS]). This model goes beyond a model previously

analyzed by Coleman in which, starting from a dynamical framework and a

general nonlocal constitutive assumption for the stress in a slender rod of

polymer, he arrived, by the use of quasistatic- and retardation-type

approximations in the limit of zero radius, at a lower order constitutive

relation for the equilibrium stress in a stressed one-dimensional fiber

([Cl], [C2]). This lower order relation includes, as an important special

case, constitutive formulas for the equilibrium stress in a finite fiber

which arise from the minimization, under a fixed length constraint, of any

one of a large class of free energies of the van der Waals/Cahn-Hilliard

type.

To describe the new, higher order, model we utilize an unstressed

reference configuration R for the material fiber, where R = [Z1 ,Z~] is a

long but finite interval and Z denotes the coordinate in R. The

location z in the stressed fiber of the material point at Z in R is

given in the form

z = z(Z) , Z€[ZrZ2].



(time does not enter in the present equilibrium model). Then if we denote

the equilibrium stretch ratio (or "stretch") of the stressed fiber at the

material point at Z in R by

X(Z) = zr(Z),

it is stipulated that, when the material is held under a fixed tension, the

stress at the point Z will be that combination of the values of X(#) and

its derivatives at Z which is obtained by minimization of the free energy

functional

(1.2) I (MO) = f(X(Z).V(Z).X" (Z))dZ,

under the constraint that the fiber have a prescribed length:

Z2
(1.3) f X(Z)dZ = €.

The form of free energy integrand proposed in this model is given by

(1.4) f(w.p.r) = *(w) - | p 2 + | r 2 (b.c>0),

where * is any function possessing some of the basic features of the

van der Waals/Cahn-Hilliard potential, for instance
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(1.5) *(w) = a(w - Wj) (w - w2) , w € K, with a > 0, wg > w-.

Note that the function f given by (1,4), (1.5) obviously satisfies (1.1);

in fact, much of our analysis permits a,b,c themselves to vary with w

and p. We mention that the characterization of equilibrium states by

means of (1.2), (1.3) is the one appropriate to a fiber held in a "hard

device", one that maintains the fiber at length €.

It will be shown in §2 that the functional I7 7 in (1.2) is
LVL2

bounded below. It then follows by a standard argument involving lower

semicontinuity that there exists a stretch field X(#) minimizing I7 7
LYL<1

subject to (1.3). Moreover, for f as in (1.4), (1.5), A(#) is four times

continuously differentiable and satisfies the Euler-Lagrange equation:

(1.6) ^(c^zz) "c|0>V +•'(*) =T° , Z€(ZrZ2)

Moreover, the tension T , which arises as a Lagrange multiplier associated

with the constraint (1.3), is uniform over the fiber.

Since we are interested in very long physical fibers we are led to

examine limiting cases in which R = [0,«>) or R = (-oc>,a)). In such cases

the fixed length requirement (1.3) is useless, and we are instead led to

postulate that the value T of the tension is specified. This

corresponds to the replacement of f in (1.4) by

fo(w,p,r) = (*(w) - T°w) - | p
2 + | r2 (b.c > 0).



It is easily verified that fQ satisfies the conditions (1.1). whatever be

the value T € K. Thus the first limiting case gives rise to problem

(P^), the second limiting case to an analogous problem on (-00,00). For

convenience we restrict ourselves for the remainder of this section to the

integrand f in (1.4), (1.5). It will be shown in §6 that if the

parameter b is sufficiently large then the energy integral I(A(#)) in

(Poo) will have the value -» for some choices X(*) € A . Thus one cannot

minimize (Pw) *
n the usual sense. One way to overcome that difficulty is

to consider the expression

(1.7) J(M-)) = «im inf f f f (X(Z) ,A' (Z) ,X" (Z))dZ
L J0

and to look for a stretch field which minimizes J. In this paper we

employ a more refined criterion to specify what is meant by a minimal

solution for (P^). one which is a weakened version of that known in the

control theory literature as the overtaking optimality criterion ([B & H],

[Ca], [A & L]). The modification which we introduce is closely connected

with the notion of minimal energy configuration employed by Aubry and le

Daeron in the analysis of an infinite discrete model for crystals which

undergo phase transitions in their ability to conduct electricity

([A & D]). This model, due to Frenkel & Kontorova, is the object of

current research by several investigators ([A & D], [G & C], [C & D],

[Ma]).

The paper is organized as follows. In section 2 we specify our

notation and analyze the fixed endpoint variational problem, with f as in



(1.1), corresponding to the integral in (P^) but taken over a bounded

interval. In section 3 we describe our criterion for a solution of (P^) to

be minimal. In section 4 we demonstrate the existence of a minimal energy

solution, and in section 5 we establish our main result: there always

exists a periodic minimal solution for (P^). Then in section 6 we prove

that in the special case (1.4), (1.5) there is a threshold effect; for

fixed a,c there is a value b 0 > 0, such that for b € (0,b0) the

periodic minimal solution mentioned above is constant, while for b > b^

the inf imum of I is -^ and the periodic solution whose existence was

shown in section 5 is nonconstant. Finally, in an appendix (section 7) we

establish an analytic result utilized in section 4 which may be of

independent interest.



§2. The bounded interval problem

In pursuing our goal of analyzing the infinite semi-interval problem

2
(Pw) we begin by considering, for each T > 0 and x,y € K , the following

variational problem for real valued functions on [0,T]:

Minimize the functionalrT

(PT) IT(w(*)) = f(w(t),w(t), w(t))dt,
1
 JQ

P )
1

w(«) € Ax y = {v € r'^O.T) : (v(O),v(O)) = x, (v(T),v(T)) = y}.

The function f = f(w,p,r) is assumed to be smooth and to satisfy

(i) f. r r>0

(2.1) (ii) f(w.p.r) > a|x|a - b|p|P + clrT - d, a.b.c.d > 0,

(iii) f(w,p,r) i <p(w,p) + c'lrT, c' > 0,

where a,t > 1, {3 > 1 satisfy |3 < a, p < T, and <p is continuous.

If we utilize the Sobolev spaces X = 1^(0,1), Y = WltP(O,T),

Z = w (0.T), then it is an elementary consequence of the Arzela-Ascoli

theorem that these Banach spaces are compactly imbedded as follows:

Z C Y C X.
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Hence by a re su l t of Lions-Magenes [L & M, v . l , p. 102] i t fol lows that for

each 17 > 0 , there e x i s t s a C(TJ) > 0 such that

(2.2) | | v | | 1 > p < H M o p + C(ri)\\y\\ p , V v €
W W JL

It follows that

\\M\ p P p
J L JL» J_»

so that for TJ < 1

[2(C(r,) + Ti):fl|v||P
p. V v € ^ ^ ( O . T ) .

JLJ

Putting T)' = [2T>/(1 - i7)]^bc we conclude that for each 17' > 0 there

ex is t s D(TJ') > 0 satisfying

(2.3)

T* TT T*

f P f P f
T TT T

f b|v(t)|Pdt < T)' f c|v(t)|Pdt + D(T)') f |v(t)|Pdt.
J o JQ J 00

Now for each 6 > P and a > 0 there exists a K = K(r]',6,a) > 1

satisfying

ar6 + D(T,')(T,') V I D(T7')(T7') Xr P , V r > 0.



Moreover, for each t > j3 and c > 0 one has

c r + c > c rp , V r > 0.

Hence (2.3) ensures that for some P = P(TJ') > 0 one has

(2.4)
X T

(T,')"1 f b|v(t)|Pdt < f ( c R o T + a|v(t)|a)dt + P,
J 0 J 0

(e.g., P(T)') = D(T7')(T]') 1K^T + cT will do). By taking 17' < 1/2, say, we

deduce that for some constants R = R(T>') > 0, Q = Q(TJ') > 0 one has,

X X

(2.5) f f(v(t),v(t),v(t))dt > f R|v(t)|Pdt - Q,
J 0 J 0

Thus I = IT is bounded below on A for each T > 0, x,y € K .
l x, y

Remark 2.1 By utilizing the existence for each T' > T > 0 of a bounded

extension operator E : W^f^(O,T) -* W >P(0,T'} (E can be chosen uniformly

bounded for T,T' € [c,C] whenever 0 < c < C < ») one readily concludes

that C(T|) in (2.2) may be chosen uniformly for T varying in any compact

subinterval of (0,«>). Thus the constants P.Q.R in (2.4) and (2.5) can be

chosen uniformly for T varying in any such interval.

Moreover, we have the following result.
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Theorem 2.1 The function UT : R
2 x R2 -» R defined by

(2.6) U (x,y) = inf IT(w(-))

satisfies

(2.7) «im UT(x,y) =

M+H- T

Note: Hereafter we omit the subscript T where no confusion will arise.

Proof: Given M > 0, it follows from (2.5) that

I(v(-)) > M whenever J |v(t)|Pdt > |{M + Q]

Thus it will suffice to show that even for those v(#) satisfying

(2.8) J |v(t)|Pdt < g[M + Q],

one has I(v(#)) > M provided that |x| + |y| is sufficiently large.

Suppose first that |xj | = |v(0) | is sufficiently large so that (2.8)

implies

(2.9) |v(t)| > S , 0 < t < T.
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where S satisfies

(2.10) S" > ^[M + dT + |<Q + M)].

Then by (2.1 ii) and (2.8)-(2.10),

(2.11) I(v(-)) > f a|v(t)|adt - f b|v(t)|Pdt - dT > M.
J0 J0

Similarly, if |y11 = |v(T) | is sufficiently large, (2.8) again implies that

(2.9) holds and (2.11) follows.

Finally, suppose that (2.8) holds while |x-|,|y-| are sufficiently

small so that the preceding argument does not apply. Note that (2.8)

ensures that for some tQ € (0,T)

|v(to)| < [^KM + Q)]
1 / P =:a.

Thus if jxgl = |v(0)| > Sr, where S' satisfies

(2.12) S' > a + c 1/nrT1/nr'[M + |{M + Q) + dT] 1 / n r ,

then Holder's inequality gives

\vyx.) |dt > S' - a , (- + -j
0 J J0 T T
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Hence (2.1 ii), (2.8), and (2.12) imply

(2.13) I(v(-)) 2 M.

A similar argument leads to (2.13) if |yo| = |v(T)| > S'. This

concludes the proof. 0

Remark 2.2. A simple modification of this argument (basically by replacing

T by T/2) reveals that (putting m(w):= max{|w(t)| + |w(t)|. t € [0,T]})

That is, for each M > 0 there exists a rectangle

QM = {x : |Xj| < S, |x2| < S'}

such that Ij(w(#)) > M for any w(#) such that the corresponding

trajectory t » x(t), 0 < t < T, is not entirely contained in Q*

It is an elementary exercise to show that UT(
#,#) is bounded on

bounded sets, for instance by constructing polynomials belonging to A
x,y

for each x,y € IR . We proceed to show that Up(»,») is actually

continuous.

Theorem 2.2 For each T > 0, the function
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U T : K
2 x K 2 -> K

defined in (2.6) is continuous.

2
Proof: 1. Lower semicontinuity. Given x,y € IR , it follows from the

convexity and growth conditions (2.1 i), (2.1 ii) [cf. (2.5)] (recall that

T > 1) that there exists a minimizer w(#) € A for the functional I T

x, y i

(cf. Morrey [M, Theorem 1.91] or Giaquinta [G, Theorem 3.1]). Moreover by

(2.4) one obtains the estimate

(2.14)

U (x,y) = f f(w(t),;(t),w(t))dt > (1-T)') f (c|w(t)r+ a|w(t|a)dt -
1 J0 J0

Given any sequence (x. ,y, ) -» (x,y), let us denote by w,(#) a minimizer

belonging to A , k > 1. It follows from (2.14) and the local

boundedness of Up that the functions {w, (•)} form a bounded subset of

w ' (0,T). Since nr > 1 we can suppose, by extracting a subsequence and

re-indexing, that for some v(#) € w f

wk(*) -»v(*) weakly in W
2'^.

Thus

(2.15) wk(t) -*v(t), wk(t) ->v(t), uniformly in [0,T],

wi,( # ) •* v( #) weakly in L*.
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These relations ensure by a lower semicontinuity result of Tonelli's (e.g.

cf. Giaquinta [G, Ch. 1, Theorem 2.3]) that

(2.16) f f(v(t),v(t),V(t))dt * «im inf U (x, .y ).
J 0 k-*»

Moreover, by (2.15)

(v(O).v(O)) = x , (v(T), v(T)) = y ,

so that (2.16) implies

U (x,y) < €im inf UT(x. ,y
1 k*> l K

This completes the proof of lower semicontinuity.

2. Upper semicontinuity. Let w(#) € A denote as above a minimizer

for Lp, and suppose (x. ,y, ) -» (x,y) as k -» <». Put

u = x - X, Y = y - y,

k k
so that u ,v -» O as k -> «>, and define

\ ( t ) = ^ + l^t + c^t2 + dkt
3,



15

where the coefficients are chosen so that

(2.17) (6k(0).6k(0)) = u
k. (6k(T),6k(T)) = v

k, k > 1.

(Explicitly

= V \ = V Ck

uk - vk) + T(uk

It is easy to see that

(2.18) 6k(t),6k(t),6k(t) -» 0 uniformly for t € [0,T], as k -» «>.

We define

= w(t) + 6k(t) , k > 1.

Then z, (•) € A by (2.17), so that (2.18) impliesK V yk

i |w(t)| + 1, 1^(01 i |w(t)| + 1. 1^(1)1 < |w(t)| + 1

for all t € [0,T] and all sufficiently large k. Consequently since w(*)

and w(») take values in bounded sets (2.1 iii) implies that
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< const + c(|w(t)| + if

< A + B|w(t)T , t € [O.T]

for some constants A, B and all sufficiently large k. It now follows

from the definition of Zj-f*) an<i tne dominated convergence theorem that

UT(x,y) = IT(w(-)) = «im J
k-*> J0

and since

this implies that

UT(x,y) > «im sup U (x ,y )
1 k*> X K K

By a simple modification of the above proof, utilizing the extension

operators EL, T, , from W '^([0,T]) to W f^([0,Tr]), we can easily deduce

Corollary 2,3. The mapping (T,x,y) » UT(x,y) is continuous for T > 0,

x,y € R2.
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§3. The optimality criterion

We will treat problem (Pw) as a minimization, in the limit as T -* »,

of the following functionals

rT
= f(w(s),w(s),w(s))ds,

Jo

(3.1)

w(-) € Ax:= {v C ̂ l : (v(0).;(0)) = x}.

(Since this is an equilibrium problem, the use of T as parameter should

cause no confusion.) However, in many cases it turns out that for every

w(#) € A one has IT(w(
#)) -* °° as T -» °°, in which case the

minimization of I00(
w(*)) ̂ 8iS n<> meaning. Alternatively, it may turn out

that there are functions w(#) € A for which IT(w(
#)) -» -<*> as T -* «>,

in which case a straightforward minimization of ^(wf*)) again has no

meaning.

As pointed out in the introduction, one way to reduce this difficulty

is to minimize the 'average energy over large intervals', that is to

minimize the functional J defined by

(3.2) J(w(-)) = tim inf-jr IT(w(-)). w(-) € A

The inf imum of the values assumed by J, namely

(3.3) jx = inf J(w(-)) . w(-) € Ax,

is then called the minimal growth rate of the energy (it is easily seen
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that 11 is independent of the initial vector x). Unfortunately, this

approach also suffers from a serious drawback, which we describe for the

case in which the infimum in (3.3) is actually attained. Given an interval

[ O . T Q ] , where T Q may be arbitrarily large, let wQ(*) be any given

element of A subject only to the condition

Now define wQ(*) on the half axis [TQ,00) in such a way that

s » wQ(s + TQ) is in Ax, with

1 fT
inf f(w (s),wo(s),w (s))ds = JLX.
» 0 ^TT-*» 0 T

Clearly the extension of W Q ( # ) t o [0*00) obtained in this way satisfies

J(wo(-)) =|i . wo(-) € Ax.

This is an unsatisfactory situation since for us the infinite horizon

problem (P^) is merely a mathematical idealization for modelling problems

on large intervals, while the above function wft(
#) is a very poor

approximation on an interval of length T-., where T^ may be very large.

This arbitrariness in the definition of w(*) on an initial interval can be

removed by imposing some condition of stationarity. However, most

conditions of this sort, such as periodicity say, are rather artificial.



19

Another type of optimality criterion for infinite horizon problems was

introduced in the economics literature by Gale [Ga] and von Weizsacker [vW]

and has been used in control theory by e.g. Brock and Haurie [B & H],

Carlson [Ca] and Artstein and Leizarowitz [A & L]. It is referred to as

the "overtaking optimality criterion".

Definition 3.1. A function w (•) € A will be called overtaking minimal

relative to x if

«im sup[IT(w (•)) " IT(w(-))] < 0, for all w(-) €

Thus if w (•) is overtaking minimal then for each e > 0 and

w(*) € W^'c with x(0) = x (0), there is a T Q such that

* (•)) < JjCwCO) + e» for every T > TQ. This implies, in particular,

that w*(») is a minimizer of J in (3.2).

Just as the minimal growth rate criterion of minimizing J(#) is too

loose, since there are infinitely many functions with a minimal 'average

energy over large intervals', the overtaking optimality condition is too

strict, and in general there will be no overtaking minimal functions.

However, a closely related notion was considered by Aubry and le Daeron

[A & D] in their study of the discrete Frankel-Kontorova model describing

one-dimensional crystals with phase transitions (cf [N]). There they

minimized an energy expression of the form
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M

' W l t h

as N,M -» » using the following criterion. A sequence {x, }, <x) is called

a minimal energy configuration if for each M,N > 0 the inequality

M * * M

W - 2k=-N k k + 1 k=-N

N
holds for every increasing sequence {Xi}k N satisfying

X-N " X~Nf

An analogous criterion can be adapted to our framework, as follows.

* .2 1
Definition 3.2. A function w € Wt' is called a locally-minimal energy

configuration if

J f(w*(s),w*(s),w**(s))ds < J f(w(s),w(s),w(s))ds

for each T, ,TO such that 0 < Tn < To and each w € W2' 1([T1 ,TO])

satisfying:
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If in addition to the above property w (•) also provides the minimal

growth rate of energy, then w (•) is called a minimal energy

conf igurat i on.

It is clear that if w (•) is overtaking minimal then it is also a

minimal energy configuration. In the next section we will construct for

each x € R a w (•) € A which is a minimal energy configuration. The

analysis given there will involve a reformulation of (Pw) in discrete

terms, but as will be seen, the reformulation is not an approximation to

The discrete problem to be analyzed in §4, is of the following type.

Consider expressions of the form

(3.4)

2 °> 2
for a given x € R , where X = {XJ-II-^Q is a sequence in R such that

XQ = x and v : R x R -» R is a continuous function satisfying

(3.5) v(x,y) -> «> as |x| + |y| -* «>.

Remark: It will be seen that if x(*) = *|[] is (globally) bounded for

the locally-minimal energy configuration w(#) then w(») is automatically

a minimal energy configuration.

It is desired to minimize C^(X) as N -» «>, either in the overtaking sense
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or in the weaker sense of minimal energy configuration. A study of this

problem was presented in [L]. There it was shown that when (3.5) holds one

can restrict attention, insofar as optimality considerations are concerned,

to sequences X lying inside some fixed ball:

V k > 0,

where L > 0 is a constant which does not depend on X (see [L], Theorem

8.1). Moreover the following result was proved ([L], Theorem 3.1).

Theorem 3.3. Let v : R x R -» R be a continuous function satisfying

(3.5). Given an x € R consider the expressions Qy(X) where xi~ = x.

Then there exist constants ]x and M such that

00

1. For every X = {*; }̂ _o t*ie inequality

N
Z [v(x .^ + 1) - M] > "
k=0 K K + 1

holds for all N > 1,

2. There is a sequence XT satisfying

| Z [v(*£.x£+1) - n ] | < M , VN
k=0 K K l
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The scalar }i describes the minimal growth rate for average energy of

the energy expressions C*r(X) in (3.4). By Theorem 3.3 every such

expression is bounded below by a linear function of N whose slope is JLX,

while there is a sequence A for which CL(X ) is bounded both from above

and below by such functions.

Definition 3.4. A bounded sequence X will be referred to as a minimal

energy sequence if for each N~ > N. > 0 the inequality

v ( xk' Xk+l ) -

N9-l

N2
holds for every sequence (x

k}t_N satisfying

Now it has also been shown [Lf Prop. 5.1] that Theorem 3.3 is

equivalent to the following result.

Theorem 3.5. Let v : R x K -* K be continuous and satisfy (3.5). Then

v(»,*) can be decomposed in the form

(3.6) v(x,y) = ix + ir(x) - ir(y) + G(x,y),
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where jn is a constant, ir : R -* R is continuous, and 0 '• R x R -» R

is a continuous function satisfying

(3.7) min 6(x,y) = 0 , for every x € R2.

y€R2
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§4. Existence of a minimal energy configuration

In this section we will prove the existence, for each x € R , of a

minimal energy configuration in A . The construction will be given in two

stages. First we consider a discrete reformulation of our problem and

3€ ?t oo

construct a minimal energy sequence A = {x. k ,> for it (recall

Definition 3.4). This sequence will determine the values of (w (*).w (#))
00

at the points (kTkrv, for some fixed T > 0, of a minimal energy

configuration w (•) via,

(w*(kT),w*(kT)) = x* , k > 0.

Then w (•) will be determined in each interval [kT,(k + 1)T] as a

minimizer over f ' ([kT,(k + 1)T]) for

Kk+1)T
f(w(s),w(s),w(s))ds, subject to

9 9

For a fixed T > 0 consider the function IL, : K x K -* R defined in

(2.6). Examine the energy expressions associated with IL,, namely the

quantities ^(X) defined for each sequence X = {XJJJLQ C R2 by

(4.D
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The following result will be proved.

Theorem 4.1. For each fixed initial value x^ = x € R there is a bounded

minimal energy sequence X .

Proof: By Theorem 2.1 the function UT(»,») satisfies

UT(x,y) -* <» as |x| + |y| -* <».

Then by Theorem 3.5 one can decompose IL, in the form

(4.2) UT(x,y) = TJL^ + irT(x) - ir

with JLU, a scalar, IT* : R -• R continuous, and ftp : R x R -» R

continuous function which satisfies,

(4.3) min 9T(x,y) = 0 , for each x € R2.

y€R

Now define {x, },_A recursively as a sequence which satisfies

(4.4) ** = x0 , 6T(4^+1)=0 . k = 0,1,2
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This scheme is applicable for each x~ € E by (4.3), and it results in a

bounded sequence as follows easily from Theorem 3.3(1) and the fact that

ir(y) -* «> as |y| -> *. We claim that X = {x,},. is a minimal energy

2
sequence. For suppose that 1 < M < N and that X is any sequence in IR

satisfying

(4.5)

Then (4.2) implies that

(4-6) A

while by (4.4) one has

{ 4' 7 )

Comparing (4.6), (4.7) in the light of condition (4.5) and the

nonnegativity of 6T(*.
#) yields

which concludes the proof.
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We will now use the minimal energy sequence X to define a minimal

energy configuration w (•).

Consider, for each integer k > 0, problem (PT) posed in the beginning

of section 2, with (x,y) = (x. ,x . . ) . As indicated in the proof of lower

semicontinuity in Theorem 2.2, there exists a minimizer w, (•) for this

problem. Now define w : (0,00) -» R as follows

(4.8) w*(t) = w, (t - kT) , t € [kT,(k + 1)T) , k > 0.

thus w pi™ /, t xT1 minimizes the expression

Kk+1)T
f(w(s),;(s),w(s))ds , w(-) € r-^EkT.Ck + 1)T]),

JkTkT

subject to the conditions x(kT) = x. , x((k + 1)T) = x. - , where we denote

x(s) = \*\ l\ (thus by the proof of Theorem 2.1 x(#) is a bounded function

from (0,«>) to IR ). We proceed to demonstrate that this construction does

provide a minimal energy configuration.

Theorem 4.2. The function w (•) defined in (4.8) is a minimal energy

configuration for problem (P^).

In order to prove Theorem 4.2 we will need to compare, for each

w(#) € A , the quantities
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f(w(s),w(s),w(s))ds and I f (w*(s),w*(s) ,w**(s))ds

for every pair T 9 > T- > 0, not just integer multiples of some fixed

T > 0. This will require the use of two results given below.

00

}
00

Lemma 4.3. Let {av}i,_i ^ a n increasing sequence of positive numbers

such that a, -» <» as k -» °°. Consider numbers T > 0 with the property

that for every m > 1,

(4.9) inf{ak - nT : k I m, n I 0, a k > nT} = 0.
k,n

Then there is a set D C [0,«>) with m(DC) = 0 such that every T € D

satisfies (4.9). (Here m(ds) is Lebesgue measure and D denotes the

complement of D in [0,°°)).

The proof of this lemma will be given in section 7.

00 9 ~

Now set S := {X = {^^z) c K : *Q = x}. let S denote the set of

periodic sequences in S , and consider the scalar JLU, and the function

iTj{m) appearing in the decomposition (4.2) for U T(
#,*). It has been shown

(cf. [L] §3, Prop. 5.1) that the following formulas define a juu, and a

TTT(*) for which (4.2) holds:

(4.10) JJU, = inf[£im inf ^ C^(X)] = inf[£im ^
1 S m w JN1
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(4.11) irT = inf [«im inf[a,(X) -
S L N-*> n

Remark 4.3a. Here the lack of dependence of |L, on x follows

immediately from the form of (4.10), while its lack of dependence on T

follows readily from Lemma 4.3, so that we obtain a JLI € R such that

(4.12) ^ = U . for all T > 0.

Moreover the function TTJ(*) is (almost) independent of T > 0. In fact by

using Lemma 4.3 we are able to prove the following.

Proposition 4.4. There exists a continuous function TT(») : K -» R and a

set D C [0,«>), with m(DC) = 0, such that

(4.13) TTj(x) = TT(X) for every x € K2 and T € D.

Moreover, the decomposition (4.2) for UT(*,
#) can be replaced by

(4.14) UT(x,y) = TV + TT(X) - ir(y) + 6j(x,y), V x,y € R
2 and T > 0,

where 0' is a continuous function which satisfies the condition



31

(4.15) min 9|(x.y) = 0 , for each x € R2.

y€K2

Proof: By the proof of Theorem 2.1 it can be seen that the set

S = S (T) of all sequences {X} € S for which the £im inf in (4.11)
XX X

does not exceed T T ^ X ^ ) + 1 has the feature that

(4.16) X€ si *X =
2

where K Q is a compact subset of IR which depends on the choice of x~

and T > 0. Moreover by Remark 2.1 it follows that for each interval

0 < a < T < j 3 < < » the compact set KL can be chosen sufficiently large so

that (4.16) is valid for all S (T), a < T < /5. Furthermore, the proof of

Theorem 2.1 together with Remark 2.1 also implies that there is a compact

set K.. D K^ with the following property. Given any X C L and

T € [a,/3], let w(*) : [0,«>) -* R be defined as in (4.8):

(4.17) w(t) = w, (t - kT), t € [kT,(k + 1)T) , k = 0,1,2,

1 2
with wk(') € W ' ([0,T]) a minimizer for problem (P_) corresponding to

(x,y) = (^'Xif+i)- Then the associated function x : (0,«>) -» K defined

by

, t * 0
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satisfies

(4.18) x(t) € Kj , all t > 0.

Fix T € [a,/3]. Given any e > 0 let X = X(e) € S 1 be such that

for this sequence the *im inf on the right of (4.11) is within e of

irT(x); let w (•) € A be the function associated with X(e) as in (4.17);

and let xe(») be the corresponding R -valued function. Thus xfc(t) € K1 ,

for all t > 0. Next let N. -» °° be a sequence of integers satisfying
J

(4.19) *im inf[C^(X(e)) - NT,*) = ̂ [ a , (X(e)) - HTrf.

Set af = N.T, k > 0. Then by Lemma 4.3 there is a set

D = D C ^ ^ - o ) c (.°'m) o f f u l 1 measure for which the condition (4.9) holds.

00

Given any T' € D let the sequence Y = (y.) ._-. be defined as

y.. =x e(jT') , j 2 0,

with x (•) as above. Clearly it follows that

(4.20) UT,(yj.yj+1) < J f f(we(s),we(s), we(s))ds , j > 0.
J *

Now by (4.9) there exists a sequence M^ -» <*>, £ 2 1, such that
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-• 0.

If we denote by a. that element of (a, } satisfying

then we obtain by use of (4.16)

r €
(4.21) < - f(w (s)w (s),w (s))ds - n(£u - M T')

JM T, e e e Kg t,

- f (a|w (s)|a - b|; (s)|P - d)ds - u(e^ - IT'),JM T, e e K^ «
€

where we have used (2.1 ii) to obtain the last inequality. Now xe(t) € K..

for all t > 0, so the integrand in the last integral in (4.21) is bounded

uniformly, while by (4.9) «im inf{a, - M«T'} = 0. Hence (4.21) implies

that

(4.22) Vj.ixo) i V Q ) + fe • V T' €
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By taking a sequence e -» 0, we deduce that the set

m=0

has full measure. Moreover it follows by (4.22) that

(4.22') TT,(*O) S »T(*o) • for all T' € D*.

Now set

(4.23) ^(XQ) = inf{»T(j^);T > 0}.

It will be seen below that H^XQ) * -«>. Given 5 > 0, select T:= T g > 0

such that

+ 6.

Thus we obtain from (4.22') the existence of a set D* = D (6) such that

M((D*)C) = 0 and

, for all T' € D*

By taking a sequence 6- -» 0 and setting D (x,.) = fl D (6.) we
* U « 0 *

deduce
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that

XX

(4.24) ^,(3^) = ̂ (XQ) for all T' € D

Note that if in (4.23) ̂ (x^) = -00. the same basic reasoning would show that

= -« for all T' in a full set D , contradicting the fact that

€ R.

The continuity of the function TT(#) defined as in (4.23) now follows

from the observation that for any sequence y n -* 3c. there are values

T' € n D (yn ). Hence by the continuity of irT,(*),
n=0 U' n X

To demonstrate (4.13), it suffices to examine a countable dense set

^ 00
2 ©̂̂

(z.} C R . Then setting D = fl D (z.) we conclude that whenever T' € D
i=0 X

TrTr(z.) = TT(Z.) , i > 0.

It now follows by the continuity of TTJ,(*) and TT(*) that (4.13) is valid.

It remains to prove that (4.14), (4.15) hold. Examine for each T > 0

the function 9^(*,0 defined by

(4.24) e^(x,y):= UT(x,y) - Tjz + ir(y) - TT(X) , x,y € R2.
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Since (T.x.y) » Up(x,y) is continuous (see Corollary 2.3) it follows that

the function

(T.x.y) » e^(x,y)

is continuous, and we know by (4.13) that

(4.25) ftf(#.#) = 6T(
#.O . for all T € D.

It follows from (4.24) that 0'(x,y) -» » as |y| -• <», uniformly on compact

sets of the form

(T,x) € [a,|3] x S.

Thus there is a bounded set S1 such that 0'(x,y) = 0 with

(T,x) € [a,p] x S ^ y € S.. This together with the fact that for all

T € D

(4.26) min 0|(x,y) = 0 for x € S,

implies the validity of (4.26) for all. T > 0. • (Prop. 4.4.)

Proof of Theorem 4.2: Given T2 > Tj > 0, let w(*) € W^* satisfy
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=x*(T 1), x(T2) =

w (•)
where x(.) = (*<;>) . x*(-) =

with w (•) defined as in (4.8). We shall suppose that neither T\ nor

T 2 is a multiple of the fixed T relative to which w (•) was defined

(the other cases are simpler). Denote by M,N the nonnegative integers

determined by

Tj € ((M - 1)T,MT) , T 2 € (NT,(N + 1)T).

Then we can estimate

r
T2 N-l
L f(w(s),;(s),w(s))ds 2 U (x(T ),x(WT)) + Z U (x(kT).x(k + 1)T))
J 11 m Al l k=M [

+ UT _NT(x(NT).x(T2))

> (T2 - Tjjjz + ^(xfTj)) - ir(x(T2))J

where we have utilized (4.13).

We proceed to show that w (•) yields equality:
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T2
(4.28) J f(w*(s),w*(s),w*(s))ds = (T2 - T^jx + ir(x(T2)) - ^ ( x ^ ) ]

For this we examine the integral over [(M - 1)T, (N + 1)T]. By the

definition of w (•) we have

. f(w*(s),w*(s),w**(s))ds = (N-M+2)T|n + ir(x*
J(M-1)T

On the other hand, using the decomposition into integrals over the

intervals [(N-ljT.Tj], [Tj.Tg] and [T2>N+1)T] we obtain by (4.14)

f(N+l)T „ . « . „ ,
f(w (s).w (s),w (s))dr }> U _ f M _ n T (J(M-1)T lj (M ljl

,x (T

U ( N + 1 ) T_ T (xH(T2),x**((N+l)T))

(N-M+2)T*i + ^ ( ( M - I K ) ) - TT(X*((N+1)T))

^^* ^ ^ ^ #̂ p» ^ ^^^ & &W% ^ ^ ^ ^ 0 f ^^^ f FW^ ^ ^"* ^

( M_ 1 ) T(x ((M-l)T),x (Tj)) + 9j _T (x

*(T)*(9(N+1)T-T (x*(T2).x*((N+l)T))

By comparing these two decompositions we conclude that each of the 8r



39

terms is 0. In particular

9' (x*(T ),x*(T9)) = 0,l2 lj 1 2

whence (4.28) follows.
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§5. Periodic minimal energy configurations.

In this section we will demonstrate the existence of periodic minimal

energy configurations. In order to state our result concisely we introduce

the following notation for use with any integrand f of the sort described

in (2.1):

(5.1) mf:= inf{f(w,0fs) : (w,s) € R
2}.

We will prove the following assertion.

Theorem 5.1. Suppose that the integrand f in (P^) is such that

(5.2) ix < mf.

where JLX is the minimal growth rate for (P^)- Then there exists a

nonconstant periodic minimal energy configuration w (•) for (P^)-

If f has the further property

(5.1') inf{f(w,0,0) : w € K} = mf,

then whenever (5.2) fails there exists a constant minimal energy

configuration

w*(s) = w. V s > 0,
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where w € K is any value for which

mf = f(w,O,O).

Remark: It will be shown in §6 that (5.2) and (5.1') hold for a large and

interesting class of problems.

The following result, which characterizes those periodic

configurations which are minimal energy configurations, will be needed.

Lemma 5.2. Let w(#) be a periodic configuration of period T > 0:

w(t + T) = w(t) , V t > 0.

Then w(#) is a minimal energy configuration if and only if

1 PT
(5.3) f f(w(s), ;(s),w(s))ds = ji.

1 J0

Proof: By the definition of ]± [cf. (3.3)] one deduces the inequality

1 AT rT
< «im inf ^ f(w(t),w(t),w(t))dt = f f(w(t),w(t),w(t))dt.

Moreover if the inequality is strict then it is easily seen (using the

periodicity) that w(*) cannot be a minimal energy configuration. Hence
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(5.3) is certainly necessary for w(#) to be a minimal energy

configuration.

Now suppose (5.3) holds. Let v(#) be any configuration and let

T1'T2 *** a S*ven pair of points in [0f«°), with 0 < Tj < T^. We proceed

to show that if vCTj) = wCT^.vCTj) = w C T ^ . v ^ ) = w(T 2)^(T 2) = w(T2)

then

T T
(5.4) f f(w(t),w(t).w(t))dt < f f(v(t),v(t),V*(t))dt.

Let the integers m,n be determined by

(m - 1)T < Tj < mT , nT < T 2 < (n + 1)T.

We now compute the integral I over [(m - l)T,(n + 1)T] in two ways, as

follows. By (5.3) and the periodicity of w(»)

n p(k+l)T n
(5.5) 1 = 2 f(w(t).w(t)).w(t))dt = 2 u7 = (n - m + 1)JXT.

k=m-l JkT k=m-l

On the other hand, putting x(t) = (t\ we obtain

UT . ( r l ) T(x((^l)T),x(T 1)) +U r _T (x(T1),x(T2))+U(n+1)T_T (x(T2) ,
1 JL \ £

Using the decomposition (4.15) for U(#,») we obtain
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(Tr(m-1)T>+8T _(m_1)T(x(m-l)T).x(T1))+(T2-T1)^+eT _T (xfTj) ,x(T2))
1 ^ 1

+ ((n+l)T-T2)M + 6(n+1)T_T (x(T2),x(n+l)T)).

Thus by the nonnegativity of the functions (}(•,•),

(5.6) I £ (n - m + 2)Tfi + 6T _T (x(T-),x(T_)).

A comparison with (5.5) shows that equality holds in (5.5) and

0 (x(T ).x(t )) = 0.
i2 ix i z

Hence

T2
(5.7) J f(w(t),w(t).w(t))dt = u(T2 - Tj) + iKxCTj)) - TT(X(T2)).

On the other hand, since v(*) has the same end data as w(-),

T22
J f(v(t),v(t),v(t))dt > UT _T (xCT^.xC^)) > H(TrT2) + ir(x(T1))-Tr(x(T2))
T 2 *

J
Tl

Comparing this with (5.7) we conclude that (5.3) suffices for w(*) to be a

minimal energy configuration. D
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Proof of Theorem 5.1. Given x^ = x € R we consider the function w (•)

defined in (4.8). By theorem 4.2 this function is a minimal energy

configuration. We will examine the phase-plane orbit

t » x ( t ) =

I

Recall that w (•) was constructed by using the minimal energy

sequence (4.4). Such sequences are uniformly bounded if x^ belongs to a

bounded set in R , as follows from Theorem 2.1 and Theorem 8.1 in [L]. It

then follows that the orbits

t » x*(t),

with w (•) as above and ic. in a bounded set are uniformly bounded.

Suppose, for the sake of definiteness, that XQ lies in the first

O v \t

quadrant of R . Then t ̂  x1(t), where x..(#) = w(#) is the first

coordinate of x (•), is an increasing function so long as x (•) remains

in the first quadrant. Moreover by (2.7), x.(#) is bounded. Consequently

x (•) either crosses the x--axis and enters the fourth quadrant in finite

"time" or else x (t) converges (essentially) to the point (m.,0) as

t -» <», where M1 = 2±m x ^ t ) = sup{x1(t) : t > 0}. In the latter case, the
x ( t ) = s u p { ^

t-*»

finiteness of ML implies that for each e > 0, the fraction of the time

interval [0,T] during which x^(t) € (0,e) and x^(t) € (I^-e.Mj)

approaches 1 as T -» ». Hence when (5.2) holds this second possible
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behavior of x (•) contradicts the fact that w (•) is a minimal energy

configuration in light of (5.2) and the growth condition (2.1 ii) for f

as a function of r. On the other hand, when (5.2) is false and (5.1r)

holds, then the constant function w (s) = w, s > 0, is obviously a minimal

energy configuration (so that (5.2) is replaced by jx = m f ) .

Hereafter we will suppose that (5.2) holds so that x (•) crosses the

x--axis at some time t- > 0, and we have x^ftj) = 0, x~(t) < 0 for

t > t1 sufficiently small. The same reasoning as above when applied to

the decreasing function t -»x1(t) implies that there is a to > t1 at

which another insection of x (•) with the x..-axis occurs. In this manner

one obtains a sequence {t, }, v1 of successive times at which the orbit

x (•) crosses the x^-axis. We distinguish between two different cases.

(5.8) First case: The orbit x (•) intersects itself, so that for

some 0 < T2 < T 2 x*(T2) = x * ^ ) .

(5.9) Second case: The orbit x (•) does not self-intersect.

Proposition 5.3. Assume that (5.8) holds. then there exists a periodic

minimal energy configuration.

Proof: Let 0 < Tj < T 2 be as in (5.8), set T = T g - T and define for

each t

w(t) = W * ( T ) ,
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where r is the unique point satisfying

T- < T < T~ , t - T = nT for some integer n.

Then the orbit t » ftn a s s o c i a t e d with this function is obviously

periodic of period T. In order to prove that w(#) is a minimal energy

configuration it is enough by Lemma 5.2 to show that (5.3) holds, or

equivalently, that

(5.10) J f(w%),;*(s),;T(s))ds = (T2 - TJ)M.
Tl

But arguing as in the proof of Lemma 5.1 we conclude that

T
r 2

f(w*(s),w*(s),#w**(s))ds =
JT

*-+ ir(x (Tj)) - ir(x (T2)) + ftj. _T (x (T^.x (T2))
£ JL

and that the 9T _T (•••) term must vanish. Since x (T2) = x (T.), the

above equality reduces to (5.10), which completes the proof. •

Proposition 5.4. Assume that (5.9) holds. Then there exists a periodic

minimal energy configuration.
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Proof' Recall the increasing sequences { t L . of successive times where

the orbit t » x (t) intersects the x^-axis. For every odd integer k we

define

(5.11) yk(t) = x*(t + tk) , 0 i t < t k^ - tk . k = 1,3,5

We proceed to show that there is an interval [O.Tj] such that

t, .. __ t, -» T- > 0 as i -• » for some subsequence of odd numbers

k. -» ». and there is an orbit y(») of the form y(t) = p ) | such that

(5.12) max |y (t) - y(t) | -> 0 as i
o<t<Tl

 Ki

In (5.12), when t, - - tk < T- we extend y, (•) to all of [0,7^] by

setting

• f o r

For yk(») in (5.11) we denote o^ = tfc+1 - tk_ Thus yk(0) and J

both belong to the Xj-axis and (y,)p(t) < 0 for 0 < t < a, . Moreover

since the orbit Yi^C*) is part of the minimal energy configuration x (•),

there is a bound

(5.13) |yk(t)| < M . 0 < t < c^



48

which is uniform for all k's. We show next that there is a bound of the

form

(5.14) a^ < TQ for all k = 1.3.5.... .

To prove (5.14) let e > 0 be small and consider the strip

Se = (x € K
2 : -e < Xg < 0}.

Observe that the boundedness of the first componenet of y^C*) ensures that

2M'the total time spent outside e cannot exceed T = , where M' is a

bound for |y«(*)l- But i^ ^ were very large compared to T then the

fraction of time spent by the orbit in S would be arbitrarily close to

one. For e sufficiently small we would have by (5.2) that

(5.15) inf f(x,p,s)
(x.p)€Se

s>0

Thus by (5.15) we would have for some 6 > 0

CL

(5.16) ^- J f(wk(t),;k(t),wk(t))dt > ii + 6,

(where w,(#) is the first component of y^C*))* provided that a, is

large enough. On the other hand since yi_(#) corresponds to a minimal
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energy configuration,

f(wk(t).;k(t),wk(t))dt = Ma^ + ir(yk(O)) -

which is below \i + 6 for a, sufficiently large. This contradiction

implies the validity of (5.14).

We claim that there is a C > 0 such that

(5-17) |yk(0) - y ^ ) U C , k =1,3.5

For by the construction of the (yk(*)} there are points x, z on the

x^axis, such that monotonical ly (this uses (5.9))

yk(0) -» x , yk(ok) -> z as k -» ».

Now x ^ z, since otherwise x (•) would converge to a point on the

x^-axis in contradiction to (5.2), so (5.17) holds. Now (5.17) ensures

that for some tQ > 0 one has

(5.18) CL > tn k = 1,3,5,... .
Q

Otherwise the quantities w,(t) would be unbounded. It thus follows from

(5.14) and (5.18) that there is a subsequence {k.}.^1 of the odd integers

with
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i

T 1 > 0 as i

Since {y, (•)) correspond to a minimal energy configuration it follows that
Ki

the quantitives

||w, (•)!! are uniformly bounded.
Ki L V

 %

Hence we may also suppose that

both converge uniformly on [0.T-] to limits v-(#) and v-C*

respectively. Since each y, (•) satisfies
Ki

.19) f f(w (t),; (t),w (t))dt = CL yx + Tr(y (0)) - ir(y {a. ))
JQ K± K± Kj K± K± K± K±

( 5 .

it follows, by letting i -» » and using the lower semicontinuity, that

r
T l

( 5 . 2 0 ) f ( v ( t ) , ; ( t ) . v . ( t ) ) d t < TUL + Tr(y(O)) - ir(y(T ) ) .
Jo i i i i i

where y ( # ) =

L
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Now consider the functions yi.(*) defined for every even integer k

by

yk(t) = x (t + tfe) , 0 < t < tk+1 - tk . k = 2,4,6

It follows by the same argument as above that there is an interval

[O,Tp],Tp > 0 and a subsequence {k.}.^1 of the even integers such that

~ O r M t

,(t)j
such that

|
0<t<rk

 ki

Then we have

Clearly

0 as

r2

(5.21) J f(v2(t).v2(t).v2(t))dt i UT2 + ir(z(O)) - TT(Z(T 2)).

(5.22) y(r2) = z(0) , y(0) =

Now define a periodic configuration v(*) as follows

v(t) =

0 < t i T,

< t
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while for t > T- + r~ v(t) is defined by v(t) = v(t'), where

t' € (O.T. + Tp)] is the unique point such that t - t' = n(T1 + T^) for

some integer n. In order to show that this is a minimal energy

configuration is suffices by Lemma 5.1 to prove that

VT2rV2
(5.23) J f(v(t),;(t).V(t))dt = (Tl

But (5.20). (5.21) and (5.22) imply that

Tl+T2l 2
J f(v(t),;(t),V(t))dt

whence (5.23) holds, which completes the proof. D
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§6. A class of examples; single- and double-well potentials.

In this section we study (P^) for integrands of the form

(6.1) f(w,p,r) = *(w) - bp2 + cr2 , b,c > 0,

where > K 0 is a smooth function satisfying

(6.2) >Kw) > a|w|a - d , w € IR , for some a > 2, a,d > 0.

Thus f satisfies conditions (2.1). Furthermore, condition (5.1)' clearly

holds:

(6.3) mf = inf{f(w,0,r) : (w,r) € R
2} = inf{f(w,0,0) : w € R} = min >//(•)•

We have the following result.

Theorem 6.1. Suppose that there are at most two absolute minimizers of

^(• ) : +(*) = mr *=* w € M, where M = {w-} or M = {w-.Wg}. Furthermore

suppose that

(6.4) >//" (w) > 0 V w € M.

Then for each fixed c,>//(*) a s in (6.1) and (6.2) there is a scalar

b0 = b o ^ c ; ^ * ^ > ° s u c h t h a t t h e m i n i m a l en^rgy growth rate for f,

jx = jx(b,c;>//(»)), satisfies
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< m
(6.5)

'f •

p. = mf '

for b € (bQ,«>)

for b € [0,b0].

Proof: Consider for all T > 0 and all *(•) € W?'1 the Rayleigh

quotient R ^ w ^ ) ) = RpM•);^ Q(•)) defined by

(6.6)

Si [^0(w(t))+cw
2(t)]dt

, if SQ w^(t)dt > 0
^2(t)dt

+00 otherwise

where is defined by

(6.7) " mf ̂  ° • V w € K;

thus *Q(w) = 0 «=» w € M.

We will prove that b_ > 0, where b Q is defined by

(6.8) bn:= inf RT(w(*)) . with x(*)
U T>0 '

x(O)=x(T)

Relation (6.5a) is a direct consequence of the positivity of bQ; for each

b > b Q there exists by (6.8) a periodic function w(«) of period T Q > 0

satisfying
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T

-±- i - b; 2 t cw2 t dt < o

0 ^0

Thus (6.5a) follows from the definitions (3.3), (6.7) of JLI and ^ 0(
#)-

Similarly, (6.5b) follows from Lemma 5.2 and the observation that when

b > b~ then for all periodic w(#) of period T~ > 0

T0

lo Jo u o,

whereas for the functions w(*)=w., w. € M , equality holds.

In the case where M = {w..} is a singleton, we note that by (6.2)

(6.4) there is a constant e such that

0 < e < |- +" (wx) and >//(w) > e ( w "" Wj)2 V w € R.

Hence it follows from (6.8) that

(6.9) b > inf R ^ ( w ( - ) - w ) = inf R?(w(-)) =-
u T > ( ) i l T > Q i

x(0)=x(T) x(0)=x(T)

where

l[ew2(t) + cw2(t)]dt

w2(t)dt
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It will be seen later that b1 > 0, whence bn > 0 as claimed.

To establish the positivity of b 0 when M = {w1,w~} is a doubleton

we begin by noting that (6.8) leads to an alternative recipe. We claim

that for each fixed y = r1
y2

IR2€ K we have

(6.8') b = inf
U T>0

x(0)=x(T)=y

This follows from the observation that a function w(#) of period T is

also of period kT for all positive integers k. Now for large k we can

join the end values assumed by x(*) on an interval of length kT to the

prescribed end values y (by extending w(#) onto the concentric interval

of length kT + 2, say) without making much change in the ratio (6.6).

Thus (6.8') holds.

Now take y = n where w^ is any interior point of the interval

l°J
[Wj.Wg]. Observe that shifting each w(«) € W^'c by an additive constant

k corresponds to translating the function >PQ(#) by amount k. Thus we

obtain the formula

(6.10) b = inf L(ir(')) = inf l£(w(-)).
u T>0 * T>0

x(0)=x(T)=y x(0)=x(T)=O

where R^wf*)) = R^wC*) ; ̂ 0(*-**))• Note that the zeros of this

translate ^Q(*) = ̂ Q(* - w^) are
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Wl ~ Wl W* ' W2 ~ W2 W*"

Next, for functions w(^) satisfying x(0) = x(T) = 0 we shall

examine the values assumed by the ratio in R^ over subintervals of [0,T]

where w(#) has constant sign. Given any such w(#) we decompose [0,T]

into three disjoint sets

A = {t : w(t) > 0}, B = {t : w(t) < 0}. C = {t : w(t) = 0}.

• ••
As is well known, w(t) = 0 a.e. on C, whence w(t) = 0 a.e. on C as

well. Hence

* (w(t))+cw

W * ) ) = To
SA ir (t)dt + JB w

(6.11)

fJA[Vw(t))+cw
2(t)]dt JB[^0(w(t))+cw

2(t)]dt]

Now denote by \p (•) any smooth nonnegative extension of ^ Q ( # ) from [0,<»)

to K which possesses no zeros other than w^ and which satisfies the

growth condition (6.2) on R. Likewise denote by >// (•) any smooth

nonnegative extension of X/'Q(#) from (-̂ .O] to IR which possesses no zeros

other than w- and which satisfies the growth condition (6.2). It then

follows from (6.11), using the fact that the open sets A,B are disjoint

unions of intervals, that
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(6.12)

inf B

L w(O)=w(T)=O

TO€[O,T]

.R,

Thus (6.10) implies

(6.13) bQ > min< inf
T>0

L w(O)=w(T)=O
T>0

w(O)=w(T)=O

We will proceed to show that both infima in (6.13) are positive. For the

sake of brevity, we focus attention in what follows on the quantity

inf
T>0

w(O)=w(T)=O

but the treatment of the quantity

inf
T>0

w(0)=w(T)=0

is carried out in an identical fashion.

Now by (6.4) and the construction of ^ (•) there is a constant

| *" (w2)e' = e(*L(-)). 0 < e < | *" (w2). such that
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(6.14) / ( w ) > e'(w - w 9 )
2 . V w € R.

Again shifting each w(») € W7' by an additive constant so as to
ioc

translate \p (•) we obtain

?(6.15) l £ I inf IC (W(-) - w9) = inf Rl (w(-)) =:*\
T>0 T>0 _

w(O)=w(T)=O w(0)=w(T)=-w2

e' 2
where R_ denote the Rayleigh quotient associated with ^(w) = e'w , i.e.

_ STQ [e'w
2(t) + cw2(t)]dt

/J w2(t)dt

Next we show that the infimum giving b' is not attained for small values

of T. Since the end conditions in (6.15) imply

rT •
w(t)dt = 0

it follows that for some tQ € [0,T], w(tQ) = 0. Hence by Schwarz's

inequality

T TT •# - HP

f w2(t)dt < r u t - 1 ) r w2(s)dS|dt < T 2 ^ r w
Jo Jo ^ o °
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so that for each w(*) entering (6.15) one has

Consequently for 6 > 0 sufficiently small we can give the following

alternate formula for the right hand side of (6.15):

(6.15') b' = inf R5'(w(-))
T>6 *

w(O)=w(T)=-w

We now relax the conditions on w(*) under which the infimum in (6.15') is

taken; it will only be required that on [0,T] w(«) 2 0. Clearly

(6.16) bj > inf R^'(w(-)):= b^.

Furthermore we observe that \>L is also given by the formula

(6.16') b' = inf Rf (w(«))
Z T€[6,26) '

This version of (6.16) holds because for each T > 6 the interval [0,T]

can be decomposed into finitely many disjoint subintervals

I. = [t.,t. + TQ) of common length TQ € [6,26); hence
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[e'w2(t) + cw2(t)]dt J"j [e'w2(t) + cw2(t)]dt

m i n

J* w2(t)dt

Finally, we use (6.16') to demonstrate the positivity of b'
•n

(positivity of the analogous quantity associated with \f» (•) is proved in

the same way), so that the positivity of bQ will follow from

(6.13)-(6.16). Let {(w (*),T )} ... denote a minimizing sequence for

(6.16'); i.e.

(6.17) R^ (wj-)) "*b£. with Tn € [6,26),wn i 0 on [O.T ].
n

Without loss of generality we can suppose that

(6.18) Tn ->TQ € [6,26].

Moreover by the homogeneity of R^ we can suppose that

T

(6.19) f ;2(t)dt = 1 , V n > 1.
J o n

For those values of n with T < T^ we extend w (•) from [O.T 1 onto
n u nv ' L nJ

[Tn.TQ] as that (linear) function corresponding to the identically zero

extension of ^ni*) onto [T ,TQ]. Denote the resulting function in

w ' (0,TQ) by wn(»). On the other hand, for values of n such that
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T 2 T n let w (•) denote the restriction of w (•) to [0,Tn]. In general

To
f w*(t)dt * 1,
Jo n

but it is easy to see that (6.17)-(6.19) imply

r ~2
(6.20) w^

~2
w (t)dt -* 1,

as well as

T T
(6.21) f w2(t)dt < M, f w2(t)dt < M,

Jo Jo n
V n > 1, for some M <

Hence without loss of generality we can suppose, by extracting a

•• 2
subsequence, that there is an element v(#) € L (0,T0) and continuous

functions v(*),v(#) for which

wn(-) ->¥(•) weakly in L2(0,T0),

(6.22)

w (•) ->v(0> w (•) ->v(0 uniformly in C[0,Tn],

That is, wn(-) ^v(*) weakly in ^ ^ ( O . T Q ) . It follows from (6.22) and
2

the sequential weak lower semicontinuity of the L -norm that
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(6.23) f ;2(t)dt = 1, R?'(v(-)) = f (e;V
2(t) + cV2(t)]dt = b'

Jo o Jo

This obviously implies the asserted positivity of b^f hence the positivity

of bj in (6.15) (as well as the positivity of bj defined in (6.9)). •

Corollary 6.2. Suppose that ^(#) as in Theorem 6.1 has a single absolute

minimizer (i.e., M = {w^) and in addition that ^(*) satisfies

(6.24) *(w) 1 e(w - Wj)2 , w € K, where e = ̂  +"

In this case the threshold value bn = bn(c ; *P{*)) is given by

(6.25) bQ =

Proof: According to (6.9)

(6.26) bn * V = inf

1
 T>0

x(O)=x(T)

We proceed to appraise b~ by making use of the arithmetic-geometric mean

inequality, followed by integration by parts, for functions w(*) in

(6.26):
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p

I [ew2(t) + cw2(t)] > I [-2/iS" w(t)w(t)]dt
J0 J0

(6.27)

p p p

w2(t)dt - w(t)w(t) 1 | = 2/i£" f w2(t)dt

This yields the inequality

(6.28) bj > 2/ec".

Moreover equality holds in (6.27) if and only if

/e"w(t) + /c"w(t) = 0 a.e. t € [0,T].

It follows that

^ 1/4
whenever T is a multiple of T = (c/e) IT and w(#) has the form

1/4
(6.29) w(t) = C cos((e/c) t - 0), C,9 constants.

Hence (6.28) is actually an equality.

In order to verify (6.25) we now write (6.8) in the form
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(6.8') b = inf L W O + i , :
U T>0

x(O)=x(T)

Now when w(«) in (6.8') is replaced by Xw(»). * € (0,1) then (6.24)

implies that R_.(Xw(«) + w..) satisfies

Si (*(Xw(t) + w ) + cX2w2(t))dt Si (ew2(t) + cw2(t))dt

~ T 2-2 y~ ~ T^2
SlQ x w (t)dt Sl w^

On the other hand by the formula e = =• V (wt) and the smoothness of

we know that for each e > 0 there is a 6 > 0 such that

ev < >̂ (v + w-) < (1 + e)ev , |v| < 6.

(Consequently for each fixed w(*) as in (6.8') there exists 0 < X « 1

such that

(6.30)

Sl [(1 + e)ew2(t) + cw2(t)]dt (

.) + wx) < -̂  f-^ = Rj J (
J*Q w (t)dt

It follows from (6.8') and (6.30) that for each e > 0

inf 4(w(-)) i b i inf ld1+e)e(w(-))
T>0 ' U T>0

x(0)=x(T) x(0)=x(T)
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By (6.28) this is equivalent to

2/eTT i bQ £ 2/(l + e)ec,

so that (6.25) follows. D
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§7. Proof of Lemma 4.3.

We first prove the assertion of the Lemma for values of T in the

interval (0,1). Then for any T Q > 1 the assertion follows for all T in

the interval (0,TQ) by considering the sequence aJ = a^/TQ and applying

the result for T in (0,1) to the sequence {a/}. Thus the assertion

follows for all T in (0,«>).

Let e > 0 be fixed and let Ifc = (s^ - e.a^. For a fixed k we

define

A, = U - I. .
K v n k

n^ a

where for an interval I and a scalar c ? 0

- I = {x : ex € I}.
c l '

Then A, is the set of all points in (0,1) such that

EL - e < nx < a, for some integer n.

Thus U A, is the set of all points x in (0,1) such that the relation
k=m K

a, - e < nx < a, holds for some k > m, n > 1, and
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B = fi U A,
e 1 , k

m=l k=m

is the set of all x € (0,1) such that a, - e < nx < a, holds for

infinitely many pairs of integers (k,n). Our goal is to prove that

(7.1) m(B ) = 1 for each e > 0.

00

We then define B = D B- f , and (7.1) implies that m(B) = 1, so that the
n=2 1 / n

00 00

relation (4.9) holds for every T € B. Since B = fl U i it
m=l k=m

suffices, in order to establish (7.1), to show that

(7.2) m U A J = 1 for each m > 1.

This will conclude the proof of the Lemma, and the argument is given below.

We first examine the structure of the set A, . It is a union ofV
intervals — I, for n > a, . Put

(7.3) no= IT]*

(where [x] is the largest integer not exceeding x), and consider any

n < n~. Then
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n l n + 1

so that the intervals —I and — — y l are nonover lapping. That is, the

overlapping portions of A, are composed of

n>nQ
n k

(if — is not an integer, which can be assumed without loss of generality

*k
by suitable choice of e), and thus lie in the interval ( 0 , — ) . This

no

contains the interval (0,e) and is as close to it as we please for

large k.

The measure of the nonover lapping parts of A, is eZ — and

no
this can be approximated by e £og — , which in turn can be approximated by

*k
the quantity

6:= e «og 1/e.

The approximation is valid in the sense that the measure of the

nonover lapping parts of A, lies between (1 - 0)6 and (1 + 9)6 for any

prescribed small G > 0, provided that k is sufficiently large.

Now we take an interval (a,b) which is contained in (e,l) and we

estimate the measure of (a,b) (1 A, . Since (a,b) C (e,l), for large enough
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k only intervals in the nonover lapping part of A, will intersect (a,b),

so

m[(a,b) fl A ^ = e 2
k j€S

S being the set of integers {j : [a,/b] < j < [au/a]}, which implies that

m[(a,b) fl A ^ 2 e \ «og \ = §{-«og g) > |{1 - a/b)

if k is large enough. Thus

(7.4) m[(a,b) fl A, ] I |<b - a),

provided that k is sufficiently large.

00

We will now select a sequence of integers {k.}.- increasing to

f " 1infinity, and we will show that ml U A, = 1 for each i-.. Suppose
i=iQ iiQ i

A, ,. .. , A, to have been already chosen. Then U A- is a finite
1 Ke i=l Ki

union of intervals and so is its complement in (0,1), which we denote by

A*. We know that A* C (e,l) and we write it as a finite union of

m
intervals An = U J . For each J we select a closed interval K

2
 P=i p p p

satisfying
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(7.5) Kp C int Jp

(7.6) m(K ) > |m(J )

It follows from (7.5) that if k is sufficiently large then no interval in

e
A, will intersect both K and and U A. . It also follows from (7.4)
k P i=l i

and (7.6) that if k is sufficiently large then

(7.7) m[Kp n A ^ > £ e £ m(Jp) = f m(Jp).

Since we have only a finite number of intervals K we can find an

integer k large enough so that (7.7) holds for every p, 1 < p < m, and

we choose k~ 1 to be such an integer k. In fact by the same argument,

k~ - can be chosen large enough so that (7.7) holds for every K which

m
satisfies (7.5) and (7.6) where now U J denotes the complement of

P=l P

i
U A, for some in, 1 < in < i.

i=i0 *i 0 - 0 -

€
Now let in > 1 be given and denote the measure of U A, by jx..

i=i0 *l

We have the following relation
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u K 1 n
i ki Ji=iQ

 ki

m { f ( e , l ) \ U ^ l f i A } l u + Z f m ( J ) ,
u i= i n

 K i J Ke+i} e
 P=i * p

m
where the last inequality follows from (7.7) and, as above U J denotes

P=l

the complement of U A. . We thus deduce

(7.8)

m
We know, however, that ]xp + Z m(J ) = 1 (by definition) so that (7.8)

« j p

implies

(7.9)

00

The sequence {ffn}«_. is nondecreas ing and bounded by 1, so it tends to a

limit jit. Since for \x < 1 (7.9) implies that JLI- -• « it follows that
00

/z = 1, so the measure of U A, is equal to 1 for each in > 1. •
ii *i
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