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1. INTRODUCTION

In this paper, we study multiplicity of solutions to certain semilinear elliptic equations
on HN. The basic idea is as follows: given finitely many solutions (at low energy), to
translate their supports far apart and patch the pieces together to create many "multi-
bump" solutions, i.e., solutions with most of their mass lying in a finite disjoint union
of balls. Recent work by Coti-Zelati, Ekeland, and Sere [CES]; Sere [S]; and Coti-Zelati
and Rabinowitz [CRl], [CR2] has introduced original and powerful ideas which permit the
construction of such "multibump" solutions via variational methods. In particular, they
are able to find infinitely many homoclinic-type solutions to periodic Hamiltonian systems
([S], [CRl]) and to certain elliptic equations of nonlinear Schrodinger type on KN with
periodic coefficients ([CR2]). The goal of our paper is to modify the techniques of [S],
[CRl], [CR2] in order to fit variational problems which are only "asymptotically periodic".

We present the method through two general examples of semilinear elliptic equations
on RN . One is the "indefinite" nonlinear Schrodinger equation with periodic potential,
introduced in [AL]:

(_A + V(x) - E)u = ±W{x)\u\*~2u (1.1)

where V is periodic and bounded, W(x) > 0 is asymptotic (as \x\ —• oo) to a function
which is periodic with the same period as V, p > 2 (and p < 2N/(N — 2) if N > 3), and E
lies in a gap of cr(—A + V(x)). As in [AL], we will apply a dual variational approach to the
study of (1.1), in order to circumvent the technical problems caused by the indefiniteness
of the linear operator. In [AL], it is shown that (1.1) possesses at least one solution in the
case that W is periodic. [B J] have shown the existence of one solution with asymptotically
periodic W, but under the assumption that W approaches its periodic limit function from
above. The case where W(x) —• 0 as \x\ —» oo has been extensively studied (see [AL],
[HS] and the references contained there); this problem is substancially simpler due to the
relative compactness of the nonlinear term.

The other example we treat is the scalar field equation studied in [CR2],

-Au + u = /0r,u) (1.2)

Here /(x,i/) > 0 is continuous, asymptotically periodic in x for each fixed u, and satisfies
certain superlinear growth conditions.

•Partially supported by NSF grant DMS-9104293



Elliptic equations of nonlinear Schrodinger type arise (in N = 3 dimensions) in nonlinear
optics in modelling phenomena such as graded light guides, laser-induced plasmas, and
optical channelling of lasers. These models include a "Kerr effect" in which the self-
interaction of light beams leads to a nonlinear relationship between the index of refraction
and the field intensity |tc|, and hence the appearence of a nonlinear potential term of the
form /(x,tx) = /i(z, |u|2)u (see [Be]).

Our methods continue in the direction pioneered in [S], [CRl], and [CR2]. These tech-
niques provide, roughly speaking, ways of gluing "approximate solutions" together to ob-
tain a genuine solution. There have been many works on "gluing approximate solutions"
by using the implicit function theorem (see, for example, [Ta], [Sc], [Sm], [Ka], [Oh], [Po]
and the references therein) where more precise information on the linearized problem is
needed. However it seems that the methods in Sere ([S]), Coti-Zelati and Rabinowitz
([CRl], [CR2]) have provided an elegant way to glue approximate solutions for certain pe-
riodic problems where it is difficult to obtain as precise information as needed for applying
the implicit function theorem.

The second author has given a slight modification to the minmax procedure in [CRl]
and [CR2] and has applied it to certain problems where periodicity is not present, for
example, the problem of prescribing scalar curvature on S3 and S4 (see [Lil] and [Li2]).
However the modification there does not seem to apply to the problem we discuss in
section 2 of the present paper. In particular, we are unable to push through the argument
in [CRl] (section 4, step 3,4) with our indefinite dual functional. Instead we introduce an
auxilliary functional (Jn) which has been inspired by the works of Sere ([S]), Coti-Zelati
and Rabinowitz ([CRl], [CR2]). This auxilliary functional is introduced in section 3 to
deal with our indefinite functional in the asymptotically periodic case. In addition, it
seems clear that by using our auxilliary functional one can generalize the results in [S] (on
homoclinic orbits to Hamiltonian Systems) to the asymptotically periodic case. An almost
identical auxiliary functional can also be used in H1 spaces, where we must replace the
discontinuous cut-offs used in defining our auxilliary functional in the dual setting. We
have, in section 5, given a sketch of such an application and thus given a different proof
of a slightly more general result (asymptotically periodic case) than that of Coti-Zelati
and Rabinowitz ([CR2]). One can see that in our proof we do not need to consider a
minimization problem as in [CRl] (section 4, step 3,4), and we hope that this may be
advantageous in dealing with certain situations where the minimization problem can not
be handled.

Our results (Theorems 4.1, 5.1) follow the lines of [S], [CRl] and [CR2]: we define a
mountain pass value c, and prove that only one of the following two conditions may hold:
either the associated periodic functional has infinitely many critical points with critical
value bounded by c + a for some a > 0; or the original functional has infinitely many
critical points near each level kc for each k = 2,3, To prove this result, we suppose
that the first case does not hold, i.e., that there are only finitely many critical points
(of the periodic problem) at level c. In section 2, we prove a Concentration Compactness
result (Lemma 2.4), which shows that (because of asymptotic periodicity) the Palais-Smale
condition is violated via sums of translates of critical points, which have no strong limit
as the distance separating the pieces tends to infinity. However, it is shown (Lemma 2.5,



following [S], [CRl]) that, under our assumption of finitely many critical points at level c,
the (PS) condition holds along the pseudo-gradient flow for the functional. In section 3 we
introduce our auxilliary functional, which permits us to create mountain pass constructions
at levels kcy k = 2,3, . . . Then, by modifying an argument of Sere (see Lemmas 4.2, 5.2), we
may compare the dynamics of the pseudo-gradient flow for the auxilliary functional with
the dynamics of the flow for the original functional and therefore construct a deformation
at level Arc, k > 2.

Notations. We write IP = LP(RN) throughout, and denote the standard LP(RN) norm

by ||w||p. We write q = with p as in equation (1.1). Xs denotes the characteristic
P- 1

function of the Borel set 5. The open ball of radius r about v 6 L9 is written as B(v, r).
We also represent the action of integer translation on functions by * : ZN x L9 —> L9,

* •!>(*) = !>(* - 0

where f € ZN and v € L9. Finally, we denote by C various constants whose precise value
may change from line to line.

2. CONCENTRATION-COMPACTNESS

In this section, we define our variational functionals and present lemmas which charac-
terize their Palais-Smale sequences.

Suppose that V £ L°°(RN) is periodic with respect to some TV-dimensional lattice which
(for simplicity) we take to be ZN. Then the Schrodinger operator H = — A + V is defined
as a self-adjoint operator on its domain H2(RN) C L2(RN). By Floquet-Bloch theory,
the spectrum cr{H) consists of bands. In what follows, we will assume that V is chosen
such that its spectrum contains a gap, i.e., that there exists an open (non-empty) interval
(a, 6), b < a, such that

b < inf <r(JT), (a, 6) n a(H) = 0

We also fix a value E € (a, b).
We will use the following estimates concerning the operator (H — E)~l:

LEMMA 2.1. (H — E)"1 is an integral operator satisfying:

(a) (H - E)~l : L*(RN) -> L\KN) is a bounded operator for 1 < s < +oo,
0 < ^ — \ < 7f- I*1 P&rticuJar, there is a constant C such that

<C\H\q\\v\\q Vl<q<2 (2.1)

(b) The operator XB(X)(H - E)'1 : L'(RN) -* L*(RN) fat as in (a)) is compact
for B a bounded set in Rw.

(c) There exists constants C > 0 and « > 0 such that ifu,v€ Lq(RN) (1 < q < 2)
are such that supp u and supp v are disjoint, then

I/v(H-E)~ludx (2.2)
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where d(u,v) = dist(supptz,suppt?)
(d) (H — E)~l commutes with integer translations in x: i.e., if(€ ZN and T^V(X) =

v(x - £), t i e n **(# - E)-1 = (if - JS)-1^.

Properties (a)-(c) follow from estimates of Simon [Si] which show that (H — E)~x is an
integral operator whose kernel fc(x,y) decays exponentially as \x — y\ —• oo.

Now, consider a function 1 < WQQ € L°° which is periodic with the same period as V,
and suppose that 0 < W € L°° satisfies:

lim (W(x) - Woo(aO) = 0 (2.3)

We consider the following problems in W

(H - E)u = ±W(x)\u\p-2u (2.4)

(H - E)u = ±Woo(x)\u\J>-2u (2.5)

where Jf, E are as above, and 2 < p < +oo when JV = 1,2, 2 < p < — when JV > 3.

We next define the operators (Birman-Schwinger kernel- see [RS]),

L = wV'iH - E)-lWll*

Clearly, L and LQ© satisfy (a)-(c), and L^ satisfies (d). Define the functionals

for v € L9(RN), where q = is the dual exponent to p. The motivation behind these

functionals is the following nonlinear version of the classical Birman-Schwinger principle
(see [RS]) which was introduced in [AL]: for each distinct critical point of J (resp. distinct
mod ZN critical point of Joo), there exists a distinct solution of (2.4+) (resp. distinct mod
ZN solution of (2.5+)). The same holds for (2.4-) or (2.5-), as we merely switch the sign
of the quadratic term in each functional, and all of the following analysis goes through

without change. Note that the condition 2 < p < +oo (when JV = 1,2), 2 < p < —

(when JV > 3) implies that

ON
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Note also that by Lemma 2.1 (d) above, JQO(T^V) = Joo(^) for all f € ZN.
Denote by C the critical points of JQO. In [AL] we show that C is non-empty. Define also

Jl = {veLq: J(v) < t]
J8 = {v€Lq: J{v) > s}
Jl = j a n J*

and similarly for (Joo)*? (̂ oo)«? (^oo)i- Ifl addition, we will use the notation: Cf = C D J*,
c\ = c n Jj.
LEMMA 2.2. 0 is an isolated critical point of both J and JQ©, i.e., tiere exists v > 0 so
tiat for any i; which is a nontrivial critical point of either J or JQO, \\v\\q > u > 0

PROOF: Suppose v is any nontrivial critical point of J (the case for JQO is identical). Then

0 = J'(v)v= I \v\q - fvLv

Using (2.1), we obtain

J\v\' = JvLv<C\\v\\*
with C independent of v. The result follows, as q <2. |

LEMMA 2.3.

(i) There exists /3 > 0 with Joo(u) > 0 for any v € C\{0}.
(ii) If v € C\{0} and Joo(v) = b, then

PROOF: (i) If u € C\{0}, Lemma 2.2 yields ||t>||, > i/ > 0. Again, we have

J v\" =

SO

gives the desired equality. |
REMARK: The same conclusions hold if we replace JQO by J.

We now demonstrate a Concentration-Compactness property for our functional JQQ.
Namely, we show that Palais-Smale sequences fail to be compact because mass may split
off and translate to infinity (see [Lns] for the Concentration-Compactness method).



LEMMA 2.4. Suppose {vn} is a sequence in Lq(IiN) such that (as n —* ooj

Joo(vn) ^d>0

J'ooM->0 (inL?(RN))

Then, there is a positive integer m < oo, m critical points {t^}j=i,...,m C C fl (Joo)c,
and m sequences of integer coordinate vectors {y£}j=i,...,m C Z^ such that along some
subsequence n —* oo:

(2.6)

I K - ] • > < ' > ( *

rf i

PROOF: We denote by y(i;) = |i?|^""2i;; then note that

By standard arguments, the sequence {vn} is uniformly bounded in Lq(RN). Using Step
5 in the proof of Lemma 3.1 in [AL], there exist constants a > 0 and R > 0 and a sequence
{yl

n} eZN such that

/ \vn\qdx>a (2.7)

Set Vn\x) = un(^
and Ĵ oC n̂ ) == ^o
as Vn ) with

ZN-invariance of Joo, we have Joo(vn ) = Joo(vn) —• ̂
0 as n —» oo. Extract a subsequence (which we will still denote

Next we examine the convergence of t4 and
-koo^n1 ,̂ clearly there exists 7 £ LP(RN) with g(vi
with supp<̂ > = 5. Then

= O(1)\\<P\\L'{S)

(t41}). First, as 0(t#}) = J ^ t ^ T ) +
) — 7 weakly in L*. Let <p € C0°°(RN)

iv^ - v£>) .

as Zoo : Lg —> Lp is locally compact. Therefore, exhausting R7^ by compact sets Sm —* R N

(as m —» 00) and taking a diagonal subsequence, there exists 7 € I^(RN ) with „(*)>
q 7

in the Lp
loc sense, and consequently g(vn

l\x)) - • 7(2:) and vn
l\x)

everywhere. As we already have vn -* v(1), it follows that 7 =
together yields

g(vM) -^ ^(^(1)) weakly in Xp and strongly in Lv
l
loc

)) almost

. Putting this

(2.8)



In addition, we have (by the weak Lq and almost everywhere convergence of % ) that for(
any compact S 6 R^

f\v^-v^=f\v^-\v
Js Js

by (2.8); i.e., t£> -» v™ in Xfoc.
Now we show that the limit function v(1) € C\{0}. Let ip € X«(RN). Then,

0 = Urn J^O

by applying (2.8) and the boundedness of XQQ, and so v^ 6 C. Suppose that v^ = 0. Let
V? € Cg°(KN) such that V>|BH(O) = 1 (where R is as in (2.7)) and 0 < ip(x) < 1. By local
compactness, ipLvn —•• 0 strongly in Lp(IlN) and hence:

0 = Hm
n—>oo

> liminf / |^ a ) |9 > a > 0
n-*°° JBR(O)BR(O)

by (2.7), and so v^ £ 0.
Now let's compare the critical value with the value d. As

d = lim Joo(fn) = Hm (Joo(»n) ~ oJ»(w»)i;«»

= lim

and by Lemma 2.3,

we see that Joo(v(1)) < d with equality if and only if Vn = vn(- + yi) —»• v(1) strongly in
Lg. Thus, in the case that Joo(v^) = cf, the Lemma is proven, with m = 1.

If this is not the case, i.e., if 0 < Joo(^^) < d, then define a new sequence



We have Vn —* 0 in L9 and almost everywhere. We now claim that Vn is again a Palais-
Smale sequence for JQO, but with lower energy than vn. By the boundedness of L^ and
the weak convergence of Vn , we have

J „? y y W . i^W + 0(1)

In addition, we claim:

and *(

(where the second statement is interpreted in the strong L* sense.) The first of these
statements is a direct application of the Brezis-Lieb Lemma [BL]. For the second one, we
use the following basic estimate: there exists C > 0 so that for all a, b € R,

\g(a + b) -g(a)- g(b)\ <

Let e > 0 be given. Fix R > 0 so that / |X |> R |t>(1)|" < C~pep. Applying the estimate with

a = Vn and b = v^\ we have

<C\ \v™\'\ <e
l\x\>R J \J\x\>R

On the bounded set {\x\ < iZ}, we use the strong local convergence as in (2.8):

(7
\J\

\x\<R J
1/P

f ) [
\x\<R J \J\x\<R

\x\<R ) V|x|<K

and so we arrive at the second part of the claim as e is arbitrary.
As a result of the claim, we have

and
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We now repeat the above argument for the sequence vn , obtaining {JZ2} C ZN and
v (2) € C\{0} with vn

2\x -zl)-± r (2)(x) in £* and almost everywhere. Note that z\ must
be unbounded, as v{

n
2)(x) — 0. Set y2

n = yn + z2
n. As before, Joo(v(2)) < d - Joo(v(1)), with

equality if and only if the convergence vn (x — zn) —• v^2^(x) is strong. If so, we are done
and m = 2. If not, we continue the process a third time.

By Lemma 2.2, Jooiy) > fi > 0 for any t; G C\{0}, and so this process must end after
a finite number m of iterations, giving v$T\x - z™) -+ v (m)(x) strongly in Lq, z™ € Z N

unbounded and

Vn Vn ^ zn Vn

with v™{x) = C - 1 ( x - z^"1) - v<m-1)(ar), i.e.,

and Joo(v(m)) = d - ^ J ^ 1 Joo(^(i)). This proves the Lemma. |

REMARK: A similar concentration compactness lemma holds for J: with the same hy-
potheses as Lemma 2.4, there exists a critical point i;̂ 0^ of J (possibly trivial), a positive
integer m < oo, m critical points {i>^}j=i,...,m C C C\ (Joo)d> and m sequences of integer
coordinate vectors {3/£}.;=i,...,m C ZN such that along some subsequence n —• oo:

\yf
n\ -> oo & lyj, - y^| -» oo

in

J(v(0))

Now, as in [AL] we may construct a mountain pass value for Joo. Let

T = {7 € C([0,1]; L*) : 7(0) = 0, J(7(l)) < 0}
r

and define

Too = {7 € C([0,1]; V) : 7(0) = 0, Joo(7(l)) < 0} K ' ]

From Lemmas 3.11, 3.12 of [AL], we have c > 0, and via Theorem 3.1 of [AL] (or Lemma
2.4 above), J©© has a critical value less than or equal to c. In fact, for the particular
nonlinearity g(v) = ±|r|9~2v, it is easy to show that c is the smallest nontrivial critical

9



value of Jo©. To see this, if t; 6 C\{0}, multiplying the Euler-Lagrange equation
g(v) by v, / 1 ; • Lc&v = / \v\9 > 0 and so

As Joo(Rv) < 0 for R > 0 sufficiently large, 7(t) = tiJv € T and so

c < max
~ o<t<H

tq

\i V ( / |« | f)2 / ( <- s

We seek the following type of multiplicity result: if 3^ has finitely many critical points
(mod Z^) near the level c, then then we will construct infinitely many critical points for
J near each level fcc, for A: = 2,3 , . . . In particular this implies that the functional JQQ will
either have infinitely many critical points with energy near the level c, or else it will have
infinitely many critical points at each energy fee, k = 2 ,3 , . . . , and hence in either case it
must possess infinitely many of critical points. Henceforth, we shall always assume that
we are in the second case, and we introduce the hypothesis on J^:

there exists 0 < a < - such that Cc+a mod Z N is finite and Cc+a = Cc. (*)
2 v J

Notice that the assumption Cc+a = Cc in (*) does not pose any real restriction. The
reason is that once C**a mod ZN is finite, the critical values of JQO in the interval [c, c + a]
will be finite, so we can always make a small enough to insure that c is the only critical
value of J in the interval [c, c + a].

When hypothesis (*) holds, we may deduce further properties of our functional J(v) for
t; nearby those points which are of the form ]CjLi v^\' + V*) where v^ € C£+a, yJ € Z^,
\y* — yJ | is large for i ^ j - The following lemma is due to Sere [S]:

LEMMA 2.5. Assume (*) holds.
(a) There exists ro with 0 < ro < ^/3 (wJbere v is as in Lemma 2.2) such that for all

u e Cc+a,t; G C with u^v,

\\u-v\\q>3r0.
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(b) Forallp<r0,

(^)||p : «;€ | J B(v,ro)\B(v,p)} > 0

(c) If »<»),...,»(*) € Cc+a, and y£ € ZN wiii Umn^oo|^| -+ oo (for ali 0 and
limn_oo |y|, - y£| -* oo (i ̂  j), then

k k

lunmfinf{|| J'(w)\\p : u, € B(^t;W(-+ y ^ ) , r o ) \ S ( ^ ^ ) ( - + y>),p)} > 0

PROOF: Although the proof follows the same lines as in [S], this result is central to all of
the ideas in the paper, so we provide full details here,
(a ) A s Cc+a/ZN is finite, w e wri te Cc+a/ZN = {u^\...,u^}.

For i ^ j , we have

Urn ||o« - fi«>(. + y) | | f = ||C(0|| + ||C(i),| >2u>0
N,|yHcx>

by Lemma 2.2. Therefore there exists a large constant R > 0, such that,

inf ||u<*> - tZ«>(- + y)||g > i/.

As {fik')(- + y) : j = l , . . . , m , y € ZN , |y| < R} is discrete, we can choose an
0 < ri < i//3 such that for any u , v 6 Cc + a with u ̂  v, we have ||t/ — v|| > 3ri . To allow
v to belong to C, we only have to notice that, if we choose 0 < ro < n small enough, we
will have B{u, 3r0) D C = B(u, 3r0) D Cc + a for all u € Cc+fl(= Cc). Hence we have proved
(a).
(b) Note that

|J %ro)\i?(t;,p)= (J e
t = l

Now, suppose for some fixed i there is a sequence vn £ B(u^\ro)\B(u^\ p) with J^Vn) —•
0. By Lemma 2.4, there exist integer translations y£, (1 < j < k for some integer k) with

lim \yl
n -y'n\ = +00, for / / ; (2.12)

(as n —*• oo) and critical points v^ with ||t;n — ]£*=1 v
(j)(- - !/i)j|g - • 0. It follows from

the triangle inequality and vn G B(u^\ro)\B(u^\p) that (for n sufficiently large)

k

p/2 < \\J2vii)(- - VJn) - 0(0ll < 2ro ' (2.13)

11



First, we must have k = 1. Indeed, if k > 1, then from (2.12) we have (say)
limn_*oo \yi\ = °o for j = 2 , . . . , k and we see:

= liminf

> (Jfc - l)i/ > 2r0

which contradicts (2.13), and so necessarily ib = 1. But when k = 1, we have from (2.13)
that

which contradicts part (a).
Thus, \\JU\p must be bounded below on the finite union U £ i B ( f i ( l ^ r

Using (2.11) and translation invariance, we obtain (b).
(c) The proof follows the same lines as (b). Define wn = X}j=i v^\' + Vn)i
as in the statement of (c). Suppose for a contradiction that there exists a sequence of
functions vn € J3(wn,ro)\£(wn, p) with J'(vn) —* 0. Applying concentration compactness
(see the Remark following Lemma 2.4), there exists an integer m, u^\... , t / m ) G C,
4 , . . . , z™ € ZN with |z^| -+ c» and | 4 - 41 -* °° (* # i)^ ^ d a critical point u<°) of J
such that

As vn € B(u>n,r0)\B(u)n,p), we have

ib mu(i)(- - ̂ «) -u(0) - E w(0(- -
We now sketch a proof of why this is not possible.

First, if u<°> ^ 0, then

E . E ^ > 2r0

by Lremma 2.2 (contradiction).
The next possibility we treat is that one of the sequences y£ remains far from the zx

n for
all t; ie, we suppose (without loss of generality) that

\yl
n-zl

n\-+oo for alH = l , . . . , m

12



(In particular, this must occur if k > m). If so, then the term v^\- — y*) splits from the
sum as N —* oo,

k m k m

ii £ vU)(- - vb - £ u(0(- - *i)ii = ii E vU)(- -vti-H «(0(- - 4)ii + II»(1)II+o(i)
i=l i=l j=2 t=l

> i/ > 2r0

as in the previous case.
Of course, another possibility is that one of the sequences zl

n remains far from the y£ for
all j . (This situation must occur if m > A:.) If so, then we reach the same contradiction as
above.

. The final possibility is that m — k and (renumbering our sequences if necessary,) there
is a constant C so that

If so, then using |y£ — yx
n\ —* oo, the sum splits by pairs,

k m k
w(. - 4)11 =

>3A:r0

using part (a), and again arriving at a contradiction. This proves (c). |
REMARK: Following [CES], [S], we say that a functional F satisfies the (PS) condition if
whenever there is a sequence vn with F(vn) convergent, F;(i;n) —> 0, and ||t;n — vn - i | | —> 0,
then vn has a convergent subsequence. Lemma 2.4 implies that (under the hypothesis (*)),
J satisfies the (PS) condition. Furthermore, a functional which satisfies (PS) gives rise
to a deformation theorem (see [CES]).

REMARK 2.6: As in section 5 of [CRl] we may carry out the analysis for our problem by
replacing condition (*) with the following weaker hypothesis:

there exists 0 < a < | and v0 € Cc such that v0 is isolated in Cc + a . (2.14)

Using (2.14) instead of (*) requires replacing Cc+fl by {v0} in Lemma 2.5 and later in
Lemmas 3.3, 4.2, and 4.3. We should point out, though, that while the methods described
here under the hypothesis (•) extend to more general nonlinearities (ie, non-homogenous),
using (2.14) relies on more restrictive conditions on the nonlinear term in the functional-
see [CRl] or our discussion in section 5.

3. THE MIN-MAX SCHEME

The goal in this section is to construct a min-max argument leading to critical points
for J at the level kc, for A: > 2 an integer.
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Let k > 2 be a fixed integer. We choose k sequences of points in Z N , {xnij} (J = 1,. • . , A:
and n = 1,2, . . . ) and an increasing sequence of real numbers Rn > 0 (n = 1,2 , . . . )
satisfying:

Jimjzn)t | = oo (3.1)

lim \xnii-xnj\ = oo, i f i ^ i (3-2)
n—^00

Rn < - min(in ,i, \xn,i - xn,j\) for all n > 1 (3.3)

Hm Rn = +c» (3.4)
n—*oo

We then decompose a function t; € Lq(TR.N) as follows:

= v -

Note that (3.2)-(3.4) together with (2.3) yield the following useful estimate:
Given e>0 there exists N = N(e) such that for alln>N and for all v € L9(RN)

\\(L - Xoo)Hn,,||LP < €||Mn,i||L. * = 1,. . . , fc (3.6)

Next we introduce a sequence of auxilliary functionals, Jn. As in [S], we wish to separate
regions of space and remove the "interaction term" connecting these regions. In [S] this is
done by splitting the real line into two half-lines. However, in order to treat the asymptot-
ically periodic case (and also to construct solutions at energy kc for fc > 3 in the periodic
case in dimension N = 1,) we need to consider sequences of "multibump" functions whose
components move away from the origin and away from each other as n —* oo (this being the
basis for the work of [CRl], [CR2].) Hence, in building our auxilliary functionals we use
restrictions to expanding balls which travel far apart as n —• oo, and remove the interaction
term between these balls. By building the support properties into the auxilliary functional
(as in [S]), we will be able to use a deformation theorem without relying on an additional
variational problem as in [CRl], [CR2]; by following expanding balls we force our minmax
sequences to approach the periodic problem near infinity, and can arrive at "multibump"
functions with arbitrarily many bumps. So we define our auxilliary functionals as:

= \j W " E l J\?\»,iL[vU (3.7)

We also define a class of paths,

I t = {7 € r : supP 7(t) C £*„(*„,,) and 7(<) € J 3 c / 2 for all t € [0,1]} (3.8)
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where T is defined in (2.9).
The basic idea is to glue together k paths jj € TJ

n in order to obtain suitable sets for
a min-max value at kc. The following lemma introduces a scheme for cutting off and
translating which will be used again in the proof of Lemma 3.3.

LEMMA 3.1.

(a) Let 7 € Too- Then there exists N = N(f) such that for all n> N, [xnj *7]n,j € T£
and

Joo(7(<)) = J

(b) For each j = 1 , . . . , k,

c = inf max Jooilit)) = h'm inf max J(i(t))
7 € r o o 0 < f < l KIK " fi~ooriO<t<l W V "

PROOF: First, take 7 € Too- Then we have 7(0) = 0 and JOO(T(1)) < 0. Using (3.1) and
(3.4), we obtain N\ = ^ ( 7 ) so that for all n > N\ we have J<x,([xn,j *7(l)]n,j) < 0. Then,
(3.6) implies that there exists JV = N(j) > Ni(f) so that for all n > N we have (setting

y-j(i) (3.9)

Then, for n>N, -yn<j(t) satisfies 7 n | i (0) = 0 and J(7n,;(l)) < 0, so 7 n > i € T{.
Next we show that (a) holds if we replace J by J<x, on the right hand side, ie, for each

max Joo(7(0) = U m max Joo([afnj * 7(0Jn,;) (3.10)
<t^l n-»oo0sivl

Jiolds for all n > Â 2 for some iV2 =
To prove (3.10), we first fix j and 7 6 Too? and let c > 0 be given. It is easy to

see that JQO satisfies the following estimate: for any M > 0, there exists some positive
constant A = A(M) > 0 such that ||J^(ti)|| < A{M) for any ||u|| < M. Now we
choose M > 0, such that, maxo<t<i{||7(*)||} < M/2. We then take 6X > 0 so small that

< c. As JOO(T(<)) ^S uniformly continuous for t € [0,1] there is a 62 > 0 with
)) - •7oo(7(*i))l < ^ / 2 whenever |t2 - *i| < S2. Cover [0,1] with (finitely many)

open intervals J, of width 62. Call it- the midpoint of each /,-, and denote U{ = 7(̂ 1 )• For
each i, there exists R(i) such that

Set R = maxil(i). As each t € 1% for some choice of i, we have

-tt,-||, <«5i (3.11)
*l>*(0 '

15



Now choose N > 1 so that Rn > R for all n > N. Then

IK,; * 7(0 " [*n,; * 7(0].jllf < 11(1 " XB,(«.j))(««J * 7(0)llg

= 11(1 - X«»(o))7(Ollf < *

via (3.11). We therefore obtain, from the mean value theorem and the choice of M,

I Joe ([*«,; * 7(01-j) " Joo (7(0) I = I Joo ([Xn,j * 7(01» j ) ~ •>« (*» J • 7(0) I
< A(M)\\[xnJ * -r(t))n>j - xnJ * 7(0ll«
< A(M)61

<€

for each t € [0,1]; taking the max and noting that e was arbitrary, we see that (3.10) holds.
Now to conclude the proof of part (a), we only need to show that

Jfim^ max |J(7n,;(0) " Joo(7».;(0)l = 0

But, as ||7n,j(0ll — ^ ( T ) uniformly in <, and using (3.6) (and arguing as in (3.9)) we obtain

nj(t)) - Joo(7».i(0)l =

uniformly in t € [0,1], and so (a) holds.
Prom (a), we see that (for n sufficiently large)

<C2€

inf max Joo(7(*)) < inf max J(y(t)) + e
€rO<t<l °°V / w / - r ; 0<t<l W W y

To obtain the opposite inequality, observe that for any 7 € F£, we have 7 € Too for all n
sufficiently large. This proves (b). |

Next we introduce min-max constructions which give rise to a mountain-pass situation
at level kc. First define

The advantage of these paths 7 are that
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and so Lemma 3.1 yields
Jfcc= lim inf max Jn(7(<)) (3.12)

The problem with the class f „, however, is that it is not invariant under the pseudo-
gradient flow for either J or Jn.

Following Sere, we define yet another class Fn. First, denote by Oj (1 < j < k) the set
of vectors t € [0,1]* with jth component tj = 0 and similarly 1̂  (1 < j < k) the set of
vectors t € [0,1]* with jth component tj = 1. Then define f n to be the collection of all
7 : [0,1]* —* Lq satisfying the following conditions on 5[0,1]*:

1 . = 0 ( ? = 1 k)

) ]^ < (k- \)c

Note that fn C fn. Note also that although fn is defined (as is Sere's analogous T)
by conditions on the boundary of the cube d[0,1]*, it is not true that 7 € f n satisfies
«Ai(7(d[0,1]*)) < (k — | )c , due to the uncontrolled term involving [v]n,*+i which appears
in (3.7). In constructing our deformation arguments, we will need to exploit the fact that
this term is non-negative, and choose paths for which it tends to zero as n —• 00.

LEMMA 3.2. (Lemma 6 of [S]; Prop. 3A of [CRl])

kc = Una inf max Jn(lf(t))

PROOF: AS fn C fn, we have

inf max Jnilit)) > inf max Jn(7(0)

for each n > 1, and so (3.12) and Lemma 3.1 yield

fcc>limsupinf max Jn(7(*)) (3.14)

To prove the lemma, we will show that for any 7 € f „, there exists f € [0, l]k such that
Jn(7(*)) >hc.

Fix 7 € f n and let e > 0 be given. We remark that (using (3.6)), there exists Ni = #1(7
such that for all n > N\

max I J([7(0ki) " ^oo([7(0]n,i)| < * (3.15)
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and so there exists N = N(j) such that (3.13) holds with Joo replacing J throughout. So
take n > N in what follows.

Consider Jn o [ 7 ] ^ . As [7(0i)]n,i = 0 and Joo([7(li)]n,i) < 0, then any curve a(s)
joining the edges {ti = 0} and {*i = 1} in [0,1]* is such that [7(^(^))]n,i belongs to To©.
By the mountain-pass structure of Jo©} this curve must intersect the level set (JOo)""1(c).
Thus, (Joo)""1^) separates the edges {tx = 0} and {<i = 1} in [0,1]*. Let 6 be such that
•^oo([7]n,i) > c — c for 7 in an ^-neighborhood of (Joo)~1(c). As [0,1]* is compact, this
neighborhood has finitely many components. Choose a component, Di which separates
the edges {ti = 0} and {ti = 1}; JDi is connected and joins the edges {*, = 0} and {<t- = 1}
for each i == 2 , . . . , k.

Now repeat the process, using [7]n,2 to obtain a connected set JD2 C D\ separating
D\ n {<2 = 0} and D\ D {<2 == 1}, but joining the edges {t{ = 0} and {ti = 1} for each
i = 3 , . . . , k. On J?2? ^oo([7]n,2) ^ c — c. Continuing, we obtain D\ D D2 D • • • D Dk-i
with Joo([7]n,i) > c — 6 (1 < i < fc — 1) in -Dit-i? and -Djb-i connects the edges {tk = 0}
and {tjk = 1}. Thus we can find i€ G Dik-i with Jc»([7(*€)]n,ik) > c — 6. For this t€,

it

(Joo(l7(f.)]»j) - 0 (^ing (3.15))

> Jb(c - 2e)

Letting c —• 0, we get the desired inequality. |

Next we choose some special paths in Fn which stay close to translates of critical points
of J. We follow Lemma 9 of [S] and also Prop. 2.22 of [CRl].

LEMMA 3.3. Assume that (*) holds. Let TQ be as in Lemma 2.5 and 0 < r < ro- There
exist v ( 1 ) , . . . , t?(m) € Cc (m = m(r) < ooj and tx = ei(r) > 0 such that for any 0 < e < tx

there exists a sequence {7^} and nt > 0 such that for alln>n€:

0) % € f „
(ii) %(<) n (Jn)k c . ( C lU[i , m ] *

 B ( £ * = i viai)(x - *».<).r) &r «D t € [0,1]*
(Hi) %(*) C (Jn)kc+f for allte [0, l]fc

PROOF: Again the modifications of Sere's proof are minor, but we provide some details
for the reader's convenience.

Define
/1 = inf{||Jio(tD)|| : w € | J B(v,r/2)\B(v,r/4)}
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By Lemma 2.5 (b), /i > 0. By (*) there exists 6 > 0 with 6 < min(—,a) such that

Fix a 7 6 F such that
c + a (3.16)

As {7(t) : 0 < t < 1} is compact, there is a finite number v ( 1 ) , . . . , r ( m ) € Cc of critical
points such that {7(<) : 0 < t < 1} intersects 2?(v(l),r/2), i = 1,. . . ,m.

Now, let €i = 5/4, and suppose that c < €i. Fix p, 0 < p < r/4 such that

Consider a pseudo-gradient vector field Vp for Joo, with

M'V,(v)<-l if V € (JooCigX f | J B(u,p)) (3.18)

v)|| < 2||J^(t;)||-
1 for all „ € (Joo)SJ\ ( (J B(u,p)) (3.19)

\tt€Cc /

J'OO(V)-VP(V)<° fovattveL* (3.20)

Vp(t;) = 0 if i; € (Joo)c"6 U (Joc)c+6 U ( | J B(u, p/2) ) (3.21)

We will use the flow

ds'
f)(O,v) = v

to deform our curve y(t) to lower values of Jo©.
Arguing as in [CRl] or [CES], the flow T?(S,V) is defined on all of («s,v) € [0,oo) x Lq.

We define
all t € [0,1]

Step 1: We will show that 7* satisfies:

7 e € T (3.22)
m

7£(<) n (JocOc-^ C |J B(v(l),r/2), for all 0 < < < 1 (3.23)
»=i

7*(<) C (Joo)c+* for all t € [0,1] (3.24)

By (3.20), Joo(»7(s,t>)) is non-increasing in 3, and so 7* € F. Now fix t € [0,1], and
consider t; = f(t). By (3.16), (3.18), there are two possibilities: either (i) rj(s,j(t)) must
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intersect (Joo)c~6f2 or (ii) rj(s,i(t)) remains in (Joo)c-6/2 but intersects Uuecc^(u ' /9) *n

time s < 6. If j{t) belongs to case (i), we have j€(t) € (Joo)c~6/2, and (3.23), (3.24) are
satisfied at such t. When 7(t) belongs to case (ii), there exists uo € Cc and $o € [0,6] such
that *7(so,7(t)) € B(UQ,P). By (3.17), for such t we have

and so (3.24) is satisfied for such t. We claim now that in this case,

7*(t) = »?(«,7(0) € * ( » « , r / 2 )

for some i = 1,. . . ,m (and therefore (3.23) holds for such t). First, we show that 7*(<) =
17(6,7(t)) G «B(iio, *72) f°r the same uo as above. If not, then the trajectory 17(5,7(t)) must
cross 9B(iio,r/4) and 9J3(tio,r/2) at times 5 = 61,52 (respectively), with so < si < S2 ^ &•
K so, then (using (3.19)),

and so the trajectory must stay within B(uo, r/2). Now, u0 must necessarily belong to the
collection {v(t)}. If not, then by the choice of the v(t), 77(0,7^)) = 7(4) £ B(tio,r/2), so
again there must be times 0 < si < 62 < ^ for which the trajectory rf(s^(t)) intersects
9B(uo,r/2) and 9J5(uo,r/4) (respectively). The same calculation as above leads again to
a contradiction, and so the claim holds, and step 1 is finished.

Note that in this construction the choice of the critical points v^ depends on the value
of r, but not on the value of e < €\. This will be important later, when we will fix a value
of r but "squeeze" c, and it will be essential that our choice of v^ does not vary.

Step 2: Cutting and pasting.
To construct 7^ € f n , we translate and cut off as in the proof of Lemma 3.1: we can

find nc sufficiently large such that for n>n€, [xnj * 7c]n,j € FJ and satisfies

; * 7€ki n Jc_£ C
t=i

for all 0 < t < 1. Then, summing over j ,
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(where, as usual, we write i = (<i, . . . ,<*)). is the desired path. |

REMARK 3.4: Note that for each t € [0,1] %(t) is supported exactly in the union of the
k balls, U t i **.(*»,0i and s o 7^ € f n and hence [%(t)]»f*+i = 0 for all t € [0, 1]*. In
particular, we have for these particular paths that

(Jn) ( fc-* )c (3.25)

This fact will be crucial in applying our deformation lemma to 7^, as the flow we will
define will preserve (J n ) ( *~^ c , and hence the deformed path will remain in f „ (see the
proof of Theorem 4.1).

REMARK 3.5: The proof of Lemma 3.3 above does not at all use the homogeneous structure
of our nonlinearity, and so generalizes to certain other nonlineaxities (see for example [S]
or section 3 of [AL].) We remark that in the homogenous case (or in the case where
the nonlinearity satisfies a condition such as (f.6) of section 5), Lemma 3.3 simplifies
somewhat. In particular, a similar result may be proven with the weaker assumption
(2.14) instead of (*). In the statement, we would remove the reference to the critical
points v*1) , . . . , v*m) € Cc, and replace (ii) by

(iT) 7n(*) n (Jn)*c-< C B C C L vo(- - *»,.-), r) for all t € [0,1]*.
where vo is the isolated critical point from (2.14). In the proof, choose 7 6 T in (3.16) to
be 7(i) = tRvoi where R is chosen large enough so that J(RVQ) < 0. Then J(7(t)) < c for
all t G [0,1], and there exists an €1 = €i(r) with

(Joo)c-£ C B(v0> r/2), for all 0 < t < 1

(cf (3.23)) holding for all c < €1. Thus, the deformation step can be avoided in this case.

4. THE DEFORMATION ARGUMENT

In this section, we study the deformation of our auxilliary functionals Jn in order to
prove our multiplicity assertion below.

THEOREM 4.1. Suppose (*) holds. Then for all k > 2, v^ 6 Cc (1 < j < k), there exists
y such that, J has critical points lying in neighborhoods

for all but finitely many n.

Applying Theorem 4.1 to the periodic functional Jco, we recover the results of [CRl], [S]
on the existence of infinitely many solutions for (2.5), with or without the condition (*):
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COROLLARY. (2.5) possesses infinitely many (ZN-distinct) solutions in H2(JElN).

To prove Theorem 4.1, we argue by contradiction: suppose that for some k > 2, v^ € Cc,

there exists a sequence of n going to infinity such that

J has no critical points lying in B(\^ v^\x — xnj), ro

Note that in [S] attention is focussed on the level 2c, and the hypothesis (***) is replaced
with the stronger assumption that C mod ZN is finite. A different minmax procedure is
introduced in [CRl] and [CR2] which allows one to work at levels kc (k > 2). Working with
our auxiliary functional also allows us to reach higher levels fee, k > 2. The conclusion
above coincides with that of [CRl] and [CR2]; however, their method is substantially
different. In particular, we were not able to push through their localization argument
([CRl] section 4, steps 3,4) with our indefinite dual functional. Here we introduce our
auxiliary functional which can take care of the asymptotically periodic case.

LEMMA 4.2. Assume both (*) and (**k) hold. Then there exists n € (O,ro) such that for
any 0 < p < ^ and any collection v^l\.. . , v ^ € Cc there is a constant fip > 0 and an
integer Ap > 0 so that for all n > Ap,

v € £(£><»(• -xntj),ri)\B(J2v(i\' -xnti),p)

there exists Vv € L9 with

J'(v)-Vv>nP, J^Vv>fip

\\vv\U < i
LEMMA 4.3. Assume that (*) and (**k) hold. Let ri < ro be the number in Lemma 4.2.
Suppose that v^\..., v(A) € C with J(v^) = c, j = 1 , . . . , k. Then there exist

such that for all n> N and for all e < 8 there exists a homeomorphism <pn (depending on

(4.1)

if v <£ (Jn)kc-2t n ( B(y2vU)(x ~ Xn,j),ri) | then <pn(v) = v (4.2)
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The proof of the above two lemmas axe essentially due to Sere. However we need to
make some modifications to fit our auxiliary functional Jn, so we skech the proofs in the
Appendix.

In the case where the hypothesis (*) is weakened (as in Remark 2.6) to (2.14), the proofs
are essentially the same," with Cc+a replaced by {t;0} (where v0 is the isolated solution
referred to in (2.14)).

We are now ready to finish the contradiction argument which proves Theorem 4.1.
PROOF OF THEOREM 4.1: Applying Lemma 2.5, we obtain an r0 > 0. Then take rx < r0

as in Lemmas 4.2, 4.3. Apply Lemma 3.3 to get €i = ei(r0) > 0 and v ( 1 ) , . . . , r ( m ) € C%
(m = m(r) < oo) such that for any e < t\ there exist n€ > 0 and 7^ € Fn C Fn with

)l t € [ 0 , l ] * , n>n€ (4.4)
a€[l,m]fc t=l

and %(t) C (Jn)*c+C for all t 6 [0,1]* and n > nc.
For n > N'k chosen sufficiently large, apply the Deformation Lemma 4.3 to obtain, for

each collection of k critical points v = (v^ai\..., t/a*)), a € [l,m]* and e < min{6, - } a

diffeomorphism y>j[ satisfying (4.1), (4.2). Let $ n be the composition of these diffeomor-
phisms <fin where the composition ranges over all the v = (v^Ql\..., v^Qk^) and a G [1,£]k.
Using (4.2) and Lemma 2.5(c), we see that the diffeomorphisms y>̂  commute, and so $
is well-defined. Recalling the discussion in Remark 3.4 we see that for this choice of 7^,
(3.25) holds, and so by (4.2) we see that

for each choice of n,#. Recalling also the definition of Fn via conditions on 9[0,l]* (in
(3.13)), we see that <£>£(7£) C Fn for each choice of n, v, and so

Now, by (4.4) and (4.1) we have *(%(<)) € (Jn)kc~€ for all < € [0, l]k. This contradicts
Lemma 3.2. |

5. A VARIATIONAL PROBLEM IN H1(RN)

In this section, we give a sketch of how to apply the method of the previous sections to
treat problems posed in £T1(Riv), and thus give a different proof of a slightly more general
result than that of Coti-Zelati and Rabinowitz ([CR2]).

We consider the following equation for tx 6 Hl(RN):

u = f(x,u) (5.1)

Here we assume that /(x,tx) = VttF(x,u) satisfies the properties:
(f.l) / € C 2 ( R N xR;R)
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(£.2) F(z,O) = / ( * , 0) = / « ( * , 0) = 0
(f.3) There exist constants ai,a,2 > 0 and s > 1 such that

TV + 2
where we restrict 1 < s < — if N > 3.

N - 2 ~
(f.4) There exist constants 6 > 2 and J2 > 0 so that for every \x\ > R and u £ H1 \ {0} ,

Note that (f.4) implies that there exists a constant 03 > 0 so that for all |u| large,

F(x,u)>az\u\$ (5.2)

Also note that (f.2), (f.3) together imply that there exists a constant C such that

\f(x,u)u\<±\u\* + C\u\>+1 (5.3)

In [CR2], it is assumed that / (# , u) is periodic in x\ we make the more general assumption
that / and F are asymptotically periodic:

(f.5) There exists a periodic function F^x.u) € C3(R iv x R;R), F^x + z,u) =
Foo(x,u) for all z € ZN , such that FQQ and /oo = VttFoo satisfy the following
relations: given any e > 0 there exists R > 0 so that for all \x\ > R and u € R

Next we introduce the functionals

\ 2 2 ( 5 - 4 )

a (5.5)

In [CR2] it is shown that J, JQQ € C1 and that critical points of J, JQQ correspond to
solutions of (5.4) and (5.5) respectively. We denote by C the critical point set of Joo9

we use J1, J*, etc. as in the previous sections.
Following [CR2], we introduce a mountain-pass value for Jo©

c = inf max Jooilit)) (5.6)

where
];fr1): 7(0) = 0, JTO(7(1)) < 0} (5.7)

Again we introduce the hypothesis (•),

there exists 0 < a < | such that Cc+a mod ZN is finite and Cc+a = Cc. (•)

and prove the following multiplicity result:
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THEOREM 5.1. Suppose (*) holds, and / satisGes (fl)-(f.5). Then for all k > 2, vu) € Cc

(I < j < k) J has critical points lying in neighborhoods

for all but finitely many n.

Again, in the periodic case, we remark (as in [CR2]) that, whether (*) holds or not,
Theorem 5.1 shows that Jo© has infinitely many critical points.

COROLLARY. If f satisfies (fl)-(f.4) and is ZN periodic, then (5.1) possesses in£ntely
many (ZN-distinct) solutions in fT1(RN).

REMARK: AS it is remarked in section 5 of [CRl], if we add the hypothesis
(f.6) For all w ^ 0, w € R, t"1f(x^tw)w is an increasing function of t > 0;

then (*) may be weakened to (2.14). (See [CRl] for a complete exposition.) If one does
wish to substitute (2.14) for (•), the immediate consequence for the theorems we state is
to replace Cc+fl with {VQ} where VQ is the isolated solution from (2.14).

To prove Theorem 5.1, we follow the same steps as in the previous sections:

LEMMA 5.2.

(i) 0 is an isolated critical point of both J and Joo, i.e., there exists v > 0 so that for
any v which is a nontrivial critical point of either J or JQO, \\V\\H1 > ^ > 0

(ii) There exists 0 > 0 so that J(u) > 0 for all u £ C\{0}.
(ii) If v € C\{0} and Joc(v) = 6, then

PROOF: Suppose v is any nontrivial critical point of J^ (the case for J is identical). Then,
applying (5.3), (and denoting the Hl(RN) norm simply by || • ||)

which yields (i), as s > 1.
To prove (ii), we have

<\\v\\2-eJF(x,v) via(f.4)

2 " "
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Hence we see that

by part (i). Both (ii) and (iii) follow from the above inequality. |

As for our dual functional, Joo also satisfies the concentration compactness property:

LEMMA 5.3. Suppose {vn} is a sequence in Hl(RN) such that (as n —» oo)

Joo(vn) -> d > 0

•£oK)-*0 (inH-\RN))

Then, there is a positive integer m < oo, m critical points {v^}j=i,...,m C C C\ (Joo)d,
and m sequences of integer coordinate vectors {y£}j=i,...,m C ZN such that along some
subsequence n —• oo;

The proof of this lemma is contained in [CR2].
Now, vmder the hypothesis (*) we have Lemma 2.5 holding for our functional J^:

LEMMA 5.4. Assume (*) holds.

(a) There exists TQ with 0 < ro < u/3 (where v is as in Lemma 5.2) such that for all
u e Cc+a, v € C with u^v,

(b) ForaUp<rQ,

\u-v\\Hi > 3r0.

| H - i : we |J B(v,rQ)\B(vyp)}>0

(c) Xv<1\...tvW e ce+a, and y'n € ZN with limn_oo|y^| -+ cc (for aJJ i) and
limn_oo |y; - y£| - K » (» # j), then

Uminfinf{||J'H||H-i : u, € V3n),P)}>0
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(The proof is identical to that of Lemma 2.5)
Now we construct the min-max argument (as in section 3) leading to critical points for

J at the level kc> for k > 2 an integer.
Let k > 2 be a fixed integer. We choose k sequences of points in ZN , {xnj} (j = 1 , . . . , fc

and n == 1,2,.. .) and an increasing sequence of real numbers Rn > 0 (n = 1,2,. . .) as in
(3.1)-(3.4). We must now define smooth cut-offs to replace the characteristic functions in
(3.5). Let pn,i e C£°(RN), i = 1 , . . . , k be such that:

0 < finA*) $ l (5-8)
j9n..-(x) = l if xeB(xniiyRn) (5.9)

supp^C B(xnii,2Rn) (5.10)

||V/?n,t||oo < j ^ (5.11)

where C > 0 is a fixed constant, independent of n,i. We also define

Now, we set
K i S ^ i - f , i = l, . . . ,fc + l (5.13)

Note that each [v]n,i € ff1(R^v), for i = 1 , . . . , k + 1 , and in fact [v]n,t €
for z = 1,. ..,fc.

Note that (3.2)-(3.4) together with (f.5) yield the following useful estimates:
Given e > 0 there exists N = N(e) such that for alln>N and for all v € Hl(RN)

J

Next we introduce a sequence of auxilliary functionals

Jn(V) = J2 J({v}n,i) + \ || bkn+1 ||2H1 (5.13)
1 = 1

and sets r£, f n , and f „ as in section 3. It is easy to see that (5.12) allows us to repeat
the argument for Lemmas 3.1, 3.2, and 3.3 to obtain the following two Lemmas:

LEMMA 5.5.

kc = lim inf max Jn(7(*))
n—°°7€fn0<t<l

LEMMA 5.6. Assume that (*) holds. Let ro be as in Lemma 5.3 and 0 < r < r<>. There
exist v^\..., r(m) € Cc (m = m(r) < oo) and ei = ci(r) > 0 such that for any 0 < c < tx

there exists a sequence {7^} &&d nc > 0 such that for all n> n€:

(0 ft € f n
(ii) %(t) (1 (Jn)kc- ( C U«€[i^]» B (S*=i v ( a i >(^ - * . , 0 , r) for aU t € [0,1]*

(iii) %(t) C (Jn)kc+( for allte [0,1]*

27



REMARK 5.7:

(a) The proofs of Lemmas 5.4 and 5.5 are essentially the same as those of Lemmas 3.2
and 3.3, and so they are omitted.

(b) The observations noted in Remark 3.4 remain valid here.

Now, the only step which remains is to prove Lemma 4.2 for our functional; once this is
done, then Lemma 4.3 and Theorem 5.1 will follow exactly as before, without any revision.
In particular, we again introduce the following hypothesis in order to derive a contradiction:
suppose that for some k > 2, v^ € Cc (1 < j < Jk),

there exists a sequence of n going to infinity,
k , v

J has no critical points lying in B{^^ v^\x — £n,j), H))

LEMMA 5.8. Under hypotheses (*) and (**k), Lemma 4.2 holds for J, Jn.

A proof of Lemma 5.8 is given in the appendix.
Now the proof of Theorem 5.1 follows exactly the argument given in section 4.

APPENDIX

In this section, we prove Lemmas 4.3 and 4.2. The proofs follow [S]. The main idea is
to compare the dynamics of the pseudo-gradient flows associated with J' and Jf

n.

DEFINITION A.I. Let /z(z) be an upper semicontinuous function on an open set O of
a Banach space. We say that a locally Lipschitz vector £eld V is a ^-gradient of a C1

functional F on O if for every x G O, F'(x) • V(x) > fi(x) and \\V(x)\\ < 1

We will also need a technical lemma from [S]: the proof is standard, and involves intro-
ducing an appropriate partition of unity.

LEMMA A.2. Let O be an open subset of a Banach space, F, G two C1 functionals on O,
and //, v two upper semicontinuous functions on O. Assume that for any x € O there is a
VxeE with

F'(x) • Vx > ii{x\ G\x). Vx > v{x), \\VX\\ < 1

Then there exists V, a /i-gradient of F and a v-gradient of G.

Now we present the proofs of Lemma 4.3 and 4.2.

PROOF OF LEMMA 4.2:

It is clear, with the choice of the auxiliary functional Jn, that there exists some constant
K > 0, such that, for any u € L9

y

NI' -K\\u\\2
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We choose ri € (0,r0) with the property sq > 2Ks2 for any 0 < s < 2rx. With this choice
of ri, it is clear from the above bounds that

J'(u)u > K\\u\\2, J » u > K\\u\\\ V ||u|| < 2n (A.O)

Now let p > 0 and t>(1),... t>(fc) € Cc be given. We claim that there is no sequence (t>/)j>o
satisfying:

k k

vleB(Y,vUH--*nlj),ri)\B(£,vU)(--*nl,j),p), ni-»,oo (A.I)

W € I«, J'(v,) • V < i||V|| or Jlt(vt) • V < i||V||. (A.2)

If such sequence exists, we set ui = v/ — 2 j « i v ^ ( * "" xn«,i)- There are only two cases to
consider:

Case One: For any -R > 0,

Urn ||ui • X{uimlB(xni>i,R))\\ = 0- (A.3)

In the following, we let J denote either J or Jn. Clearly

For any e > 0, using (A.3), (3.6) and the continuity of J1 at v^%\ we have ||J'(VJ •
XMmlB{xnlti,R)})\\ < e for R>Rt, I > l(e,R).

Choosing / large enough, we have | |t?j • x {KN \U^ B(X„ ,• ,R)} 11 € [p/2,2ri]. Hence it follows
from (A.O) that

> ^ g " " 1 ' X{aw\uf.1B(xnjl,,H)})ll

Choosing

and t < iir|, we have

This contradicts (A.2).
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Case Two: If Case One does not hold, then there exists m € (0, r0) and two sequences
R],R] > 0, such that, R] -» oo, (Rj -R})-> oo, Rf < n,, and

Without loss of generality, we can assume that

\WlXB(xnhi,R])\\ ~*rn€ (0,r0). (A.4)

for a fixed i.
Let

I* = l'm£{WJ'MW •• weUuecB(u,ro)\B(u,j)} (A.5)

From Lemma 2.5 we know that fj, > 0.
Set

=ViX{B(zn,.,,R])},

Then J'(u/) sph'ts,
/'(»/) = J'(v}) + J'(vf) + J'(vf). (A.6)

(Recall that J still denotes either J or Jn.) Clearly we see that

l im |h 2 | | = 0, (A.7)

I—»>OO

Hm Hv/ - t;*1^. - xn,,,-)|| = Urn ||u/XB(xnj ,,Hn|| = m € (0 ,r 0 ) , (A.8)

f < C (A.9)where C in (A.9) depends only on k and is independent of /.
Next we claim that (for all J sufficiently large) | |J'(f/)| | > f /x. Indeed, for / sufficiently

large, we know that \\vj - v(1)(- - *»,,,•)! I € [ f , r 0 ] . Hence 11^(^)11 > 2// because of
(A.5). But for all / large,

by (3.6), using the support property of vj. Thus the claim holds.
As a consequence of the above claim, there exists V} € L9 such that J'(v])-Vi > /i, ||V/||

1. Set

Obviously, 11W||| < 1.
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Using estimate (2.2) from Lemma 2.1, we have

\J'(v})(V, - Wt)\ < Cexp ( - * * ? " * ' ) ) - 0 as / - oo,

and therefore if / is sufficiently large

Moving to v?, it follows from (A.7) that

Jf(v?)Wl-+0 as/-4oc.

And, using the exponential decay of the kernel (Lemma 2.1, (2.2)) once again, we have

\J'(vf)Wi\ < Cexp ( - / c ^ " ^ ) ) - • 0 as / -+ oc. (A.10)

Therefore for / large enough, we have

w i > >

To treat Jn, notice that

lim J'n(v?)-Wi = 0 (due to (A.7)),

and in the same way as (A.10),

\J'n(v?)'wl\ < C e x p ( - / c — ^ — L ) ) - * 0 as I-> oo.

Therefore we have, for / large enough, that

This again contradicts (A.2).

PROOF OF LEMMA 4.2: We are given t; (1 ),,..,v ( fc ) e C with J(v^) = c, j = 1 , . . . ,fc.
Define wn = J2j=i v<<jH"-xnhj)- Applying Lemma 4.3 (with p = n /2 ) , there exists a con-
stant fi > 0 and an integer A such that for all n > A and for all v € B(wny r\)\B(wn,r\/2)
there exists Vv for which

vv > M, J ; . yv > /i, HKIIP < i (B.I)
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Set
f-Brfo (*£,§) (B.2)

and let c < 6. Set

M = sup{|| J » | | : ||H| < n + J2 h(j)\\] < oo

As lirQn_oo Jn(u>n) — &c and Af < oo, we can choose p = p(e) > 0 and A' > A such that

2 c - | < J n ( I ? ( t W ) ) < 2 c + | (B.3)

for all n > A'. Now set

fin = i in f{ | | J # H| | : t; G B(wn,ri/2)} (B.4)

CLAIM 1: There exists an integer A11 > A! such that /in > 0 for all n > A".
Suppose not. Then there exists a sequence n, —> oo with fini = 0 for each i = 1,2, . . .

Fixing i, there must be a sequence {t;J} C B{wni,ri/2) with J'(y\) —> 0 as £ —• oo.
Extracting a subsequence (still denoted {i^}), we have v\ —k v1 with J;(vf) = 0. As

\\v\ — u?n.|| < —, we have \\vx — ion.|| < — also, so there exists a (non-trivial) critical point

of J in each ball B(wnn n /2 ) , t = 19 2 , . . . , which contradicts (***).

CLAIM 2: There exists an integer N > A" such that for all n > N and for all t; G
2?(u)n,ri/2) there exists Vv with

J\v)-Vv>nn, J » - K , > - ( M + 1), ||K||<1 (B.5)

and such that
J'n(v) -Vv>0 for all v € B(wn,n/2)\B(wn,p) (B.6)

First, for t> € B(wn,ri/2)\B(wn, p), apply Lemma 4.2 to obtain /i > 0 and Vv with

< 1 (B.7)

As J'(wn) —* 0 we have //„ —* 0 as n —• oo, and so p, > fin for n sufficiently large.
Now for v e B(wn,p), choose Vv, \\VV\\ = 1 so that

By the definition of M, we must have | J'n(v)-Vv\ < M, and so J'n(y)-Vv > -M > - ( M + l ) .
Thus all of the conditions in (B.5) and (B.6) are met.
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Next we define the (upper semi-continuous) functions

1
,p) J) = HXB(wn,ri) - HXB{wn,rxl2) - ( M + l)XB(

Note that for v € B{wn,r{) and n > JV,

J'(tO • V. > <*(*), J » • Vv > vo(x), \\VX\\ < 1 (B.9)

Applying Lemma A.2, there exists a Lipschitz vector field Vo which is simultaneously a
/io-gradient for J and a i/o-gradient for Jn on 2?(u;n,ri) for each n > N.

We will now choose a suitable cut-off for our vector fields. Define a (Lipschitz) function

0, if tM

k 0 < V>(v) < 1 otherwise

and set V = rj> Vo, \i = V'Mo* v = V^o- V" remains a /i-gradient of J and a i/-gradient of Jn

on B(tc;n,ri) for all n > N.
We use V to determine a flow

As ||V|| < 1, the flow is globally denned on R+ x L9.)

We now consider cases corresponding to the statements (4.1) and (4.2):
Case I: v $ (Jn)ic-2< fi B(wn, rj).

In this case, %l>(v) = 0, and so ip(t, v) = v for all t > 0.
Case II: v € (Jn)kc+t U B(t»n, n /2 ) .

Define

5 n = sup{| J(u) - J(w)| : u,v€J?(toB,ri)} (

CLAIM 3: There exists <i € [0, ̂ "-] so that one of the following two possibilities holds:

(a) <p(t1,v)€(Jn)kc-t, or,
(b) llrtii.tO-t,!!-**
Suppose neither possibility holds. Then il>(<p(ty v)) = 1 for all t 6 [0, ̂ - J , and hence

/
o
25

> M« ~
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which contradicts the definition of Sn in (B.I2).

We will now show that in case II, only possibility (a) can hold. So suppose that v is in
case II and satisfies (b) in Claim 3. If so then clearly there is a (minimal) to € [0, t\) with

Either t0 = 0 (in which case, t; = <p(to,v) € (^n)*c+c) or t0 > 0 and ||^(t0, v)-wn\\ = p (in
which case we also have y>(t0, v) € («M*c+% by applying (B.3)). Fix a (maximal) interval
[a,/?]c[t0 ,<i]sothat

*,([",/?]) C B(wn^)\B(wn^) (B.14)

As ||V|| < 1, we must have

£ " > (
and using (B.8) we see

±jn(<p(t,v)) = -J'n(<PM) • V < -ii < 0

and using the above estimate with (B.15),

< kc — e

via (B.2). Thus, even assuming case II(b), we arrive at <£>(ti,t>) € (Jn)*c~"% i-e., all v in
case II satisfy (a) of Claim 3.

CLAIM 4: If <p(tuv) e (Jn)kc~€ for some ti > 0, then so is <p(t9 v) € (Jn)kc'€ for all t > ti.
To see this, note that •§iJn((fi('t,v)) = —^(^(t,v)) • V((p(t,v)) which is non-positive

unless <p(t,v) enters B(wn,p) for t > t\. But by (B.3), B{wn,p) C (^n)jtc~I/2' anc^ s o

trajectory ^>(t,t>) cannot cross into B{wn^p) for t > t\.

Combining the results from cases I and II with Claim 4, we take

and (4.1), (4.2) will hold for the map y>n, n> N.
PROOF OF LEMMA 5.8: The proof is very similar to that for Lemma 4.2.

Our first task is to prove an analogous result to (A.0): there exists ri < ro such that
(throughout, we denote by || • || the norm in JET1(RiV),)

J'(u)u > K\\u\\\ J'n(u)u > K\\u\\\ V ||u|| < 2n (CO)
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To see this, we apply (f.4) to obtain:

J'n{u)u = £ {||[u]n)j||
2 - //(x,[u]n>0Mn,,j + ||[«].,*+1

As a consequence, there exists 6 > 0 so that for all tx with ||[u]n,i|| < 6 (t = 1 , . . . , fc)

t = i

Moreover, (using (5.8)-(5.11))

for all i = 1, . . . , A: + 1. So, there exists N so that (C.2) holds in fact for all ||w|| < 6/2 and
n>N.

Finally, we compare the right hand side of (C.2) with ||u||:

|Vu|2 + 2/?n,,uV/?n)i. Vu + |u|2|V/3n,,|
2 + 01M

fc+i

?ni,uV^n,i • Vu
i=l

but

for n sufficiently large, and so we obtain

JMu>\\\u\\2

for all n large and for all ||u|| < 6/2 = 2rx.

We now introduce a family of smooth cut-offs (p^R e C^°(RN), where £ G RN , R > 0
and

= l if
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for some constant C independent of f, R. Set also

k

i=i

Now we continue as in the proof of Lemma 4.2: let p > 0 and v^\...v^ € Cc be
given and assume that there is a sequence vi satisfying (Al) and (A2). Again we set
1*1 = vi — £ J = 1 v^(- - xnitj).

Again, there are only two cases.

Case One: For any R > 0,
lim ||tx/0/ R\\ = 0 (C*3)

l—•oo *

As before, J denotes either J or Jn. Let e > 0 be a small number. By (C.3), (5.12),
and the continuity of J1 at t / f \ there exist constants RQ > 0 and IQ > 0 such that for all
R>Ro and / > /0

R)II < S (c-4)
Now, given any 6 > 0, we can choose iZ > ilo so that

(C.5)

Then (using (C.3) and (C.5)) there exists h = /a(J?) such that for all / >

- 0|, Jl -

< ^ (C.6)

Now, J splits into pieces,

" 01,*)) + ^i,*

where JB/,r is supported in the union of annuli |J i=sl B(xniii,R + l ) \£(zn M - , jR). By (C.6),
vi is small in this region, and so (using the form of the functionals J, Jn) we see that J, Jn

will be small there: there exists /2 > 0 such that

\\EI,R\\ < \ (C.7)

for all J > l2.
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Choosing / large enough, we have ||uj(l - ^I,R)\\ € [p/2,2r{\. Hence it follows from (CO)
that

- tfi,*)) > K\\VI{1 - II>I,R))\\2

Choosing

and e < K%> we have

- Vi,R)) • V, + J'CVJV'/.R) • V, + E,,R • V,

- e||Vi|| (from (C.4) and (C.7))

This contradicts (A.2).

Case Two: If Case One does not hold, then there exists m € (O,ro) and two sequences
R},Rj > 0, such that, R] -> oo, (J?J - /?}) -» oo, Rf < n<, and

Without loss of generality, we can assume that

ll«i^i,Rjl|-»n»€(O,ro).

for a fixed i.
Let

H = i inf {|| J^(w)|| : to € UttecB(u,r0) \ B(u, y

(C.8)

(C.9)

From Lemma 5.3 we know that \i > 0.
Set

(CIO)

As in Case One,

where E\ is supported in annuli,

it

C |J - 1) UB(xniti,R] +2)\B(xniii,R} + 1))
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and so the conditions for Case Two imply that \\Ei\\ —> 0 as / —» oo.
Clearly we still have

||t,?|| = 0, (C.ll)
I—• OO

lim |k 1 -
/ — • o o

Ih'll < C. (C.13)

where C in (C.13) depends only on k and is independent of /.
Next we claim that (for all / sufficiently large) || J'(v/)|| > §//. (The proof of this claim is

identical to its counterpart in the proof of Lemma 4.2, and relies on the estimate (5.12).) As
a consequence of the above claim, there exists V} 6 H1 such that J'(vj) • V} > /i, ||V/|| = 1.
Set

U-HH-)
Obviously, \\Wi\\ < Co., for a constant CQ independent of /. We have (using (C.IO))

In addition, it follows from (C.ll) that

J'(vf)W, -> 0 as / -^ oo.

and J'{v] )Wi = 0 by (C.IO) again. Therefore for / large enough, we have

For Jn, we have

Um J'n(vf) -Wi = 0 (due to (C.ll)),
/—•»

Therefore we have, for / large enough, that

This again contradicts (A.2).
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