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1. Introduction

In the study of non-linear oscillators arising in mechanics, there are many examples of

systems of ordinary differential equations whose right—hand sides are not Lipschitzian or even

one-sided Lipschitzian and, therefore, whose solutions are not covered by classical theorems on

uniqueness and continuous dependence. With such examples in mind, OWEN k WANG [1]

and WANG [2] have introduced the notion of a weakly Lipschitzian mapping, have established

generalizations of classical uniqueness theorems, and have given specific examples from

mechanics to which their theorems, but not the classical ones, apply.

Our purpose here is to establish a counterpart for weakly Lipschitzian mappings of the

classical Gronwall inequality for Lipschitzian and one-sided Lipschitzian mappings ([3], p. 13).

Our inequality implies not only the uniqueness theorems of OWEN & WANG ([1], Theorems

2.1 and 4.1), but also theorems on continuous dependence of solutions upon initial data that

apply to all of the examples considered in the studies [1] and [2].

The principal tool that we use here in proving a Gronwall inequality for weakly

Lipschitzian mappings is an inequality for concave functions or for convex functions that

generalizes inequalities established in previous studies ([1], [4]). The present inequality, here

called a "separation inequality", provides a lower bound for a line integral as the underlying

curve varies within a specified class of curves, all having the same initial point and all having

the same final point. The line integral itself provides an example of an "action with the

dissipation property", and the lower bound yields a "lower potential" in the sense of OWEN

([5], Chapter IV; see also [6]). These facts show that the separation inequality has a

counterpart in thermodynamics. Moreover, our proof of the separation inequality is

considerably less technical than the proofs of its counterparts in the previous articles ([1], [4]).

Although our statements and proofs of the GronwalJ inequality and theorem on

continuous dependence are given for classical solutions of ordinary differential equations, there

are straightforward modifications of our arguments that yield corresponding results for Filippov

solutions. The nature of these modifications can be inferred from the discussion in Section 4 of



the article [1]. As was noted in that article in the case of "restricted uniqueness" of solutions,

the hypotheses that here give "restricted continuous dependence" of Filippov solutions on

initial data also give existence of Filippov solutions.



2. A Separation Inequality

In this section we prove a "separation inequality" for concave, non-decreasing or for

convex, non-decreasing functions. This inequality generalizes the corresponding inequalities

[1, Lemma 2.2], [4, (5.8)] in our earlier studies, and the proof that we give here is substantially

less technical than the proofs given in [1] and [4].

Lemma 2JL: Let I be an interval in R, let G : I —» R be a non-decreasing function that is

concave or that is convex, and for each x, y € I, put

max{x ,y}

J (G(z) -G(min{x,y}))dz

min{x,y}

max{x,y}

J (G(max{x,y})-G(z))dz

min{x,y}

if G is concave,

(1)

if G is convex.

Furthermore, for each t > 0 and each pair x(-): [0,t] —• I, y(-): [0,t] —• I of absolutely

continuous functions, put

(2)
0

If a) G is concave and x(-) and y(-) are non-decreasing or if b) G is convex and x(-)

and y(«) are non-increasing, then there holds

(3)



We note that if x(0) = y(0), the inequality (3) and the definition of hg in (1) imply

•fcMO. y(-)) > o, (4)

which is the inequality obtained in the articles [1] and [4]; if, in addition, G is increasing,

then, by (3) and (1), equality holds in (4) only if x(t) = y(t). Therefore, the integral

C7Q(X(*), y(*)) is positive if the graphs of the two functions x(*) and y(*) coincide initially

at the common point (0, x(0)) = (0,y(0)) and are separate at time t: (t,x(t)) # (t,y(t));

the integral vanishes if the graphs never separate. For this reason, we refer to (4) and to its

generalization (3) as separation inequalities.

Proof of Lemma 2.1: We consider first the case a) G is concave and x(-), y(*) are

non-decreasing. By (1) and (2), both JQ and hg are symmetric functions, so it suffices to

verify (3) when x(0) > y(0). Three further possibilities arise

y(0) < y(t) < x(0) < x(t), (5)

y(0) < x(0) < y(t) < x(t), (6)

y(0) < x(0) < x(t) < y(t). (7)

For the case (5), we consider the curvilinear triangle

j( := {(x,y) | x(0) < x < x(^), y(^) < y < y(t) for some A € [0,t]} (8)



and the tripezoid

:= {(xjr) I y(0) < x < y(t), y(0) < y < x}

U {(x,y) | y(t) < x < x(0), y(0) < y < y(t)}. (9)

The open region <A U J is bounded by the curve C: d*—• (*(<*)> y(<*)),

parameterized on [0,t], the horizontal segment HL moving to the left from (x(0), y(0)) to

(y(0), y(0)), the slanted segment S from (y(0), y(0)) to (y(t), y(t)), and the horizontal

segment H R moving to the right from (y(t), y(t)) to (x(t), y(t)). Writing JQ in (2) as a

line integral

(G(x) - G(y)dx + (G(y) - G(x))dy = ^ T • d T , (10)

we can apply Green's Theorem to write

f F • dT - f F • dT - f F • dT - f
C HL S H R

F - d T

(G'(y)-G'(x))dxdy. (11)

(Because G is non—decreasing, concave, and, therefore, absolutely continuous and because

x(-) and y(-) are non-decreasing and absolutely continuous, it is easy to use appropriate

forms of Fubini's Theorem and the Fundamental Theorem of Calculus to establish Green's

Theorem in the present context.) Because G is concave and y < x for all

(x,y) 6 ji U y , the double integral in (11) is non—negative, and evaluation of the line



integrals along H ,̂ S and H^ yields in view of (10), (11), and (1):

x ( ( ) - G(y(0))dx

x(o)

fx(t)fx(t)
+ I (G(x) - G(y(t))dx

= -hQ(x(0), y(0)) + hG(x(t),

which is the separation inequality (3) when (x(0), y(0)) and (x(t), y(t)) satisfy (5).

Next, suppose that (x(0), y(0)) and (x(t), y(t)) satisfy (6) and, with ji given by (8),

put

:= {(x,y) 6 ^ | y < x} (12)

:= {(x,y) € a\x < y} (13)

:= {(x,y) € (x(0), x (t)) « (y(0), y(t)) | x < y} (14)

V := {(x,y) | y(0) < x < x(0), y(0) < y < x} (15)

Moreover, let V be the vertical path from (x(0), y(0)) to (x(0), y(t)), let H be the

horizontal path from (x(0), y(t)) to (x(t), y(t)), and let C, H-r, S, and Hp be as above.



We apply Green's Theorem twice to obtain the relations

f F • d T - f F -ft- f F • dt = [[ (G'(y) - G'(x))dxdy
Jc ^v •'H ^ J(

f F - d t + f F - d T - f F • d T - f F • d T - f
Jy JH JH ^S J

= ff (G'(y) - G'(x)dxdyJJ«/

F • d r
S

- f[ (G'(y) - G'(x))dxdy,

which yield upon addition and use of *4 = ^, U ji^

f F • <Tr - f P • d t - f
Jr. JH_ J

F - d r - I F - d r =
HR

f[ (G'(y) - G'(x))dxdy + ff (G'(y) - G'(x))dxdy
JJ.jtAl.st- JJ9/

- \ \ (G'(y)-G'(x))d*dy. (16)



Because G is concave and <A<y c *4o> we have

- G'(x))dxdy > 0

\\ (G'(y) - G'(x))dxdy < j j (G'(y) - G'(x))dxdy < 0,

and (16) then tells us that

f F • d r — f F - d r - f F - d r - f F . d r > 0 ,
C HR S HL

which, as in the case when (5) holds,' is the sepaxation inequality (3).

In the remaining situation for (x(0), y(0)) and (x(t), y(t)) when (7) holds, the

argument for the case when (6) holds also can be applied, provided only that one replaces Hj^

by the vertical segment V from (x(t), x(t)) to (x(t), y(t)) and S by the slanted segment

S* from (y(0), y(0)) to (x(t), x(t)).

The verification of (3) when b) G is convex and x( •) and y(•) are non-increasing

follows from the case a) and from the facts:

(i) for all <* 6 [0,t]
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(ii) - x ( - ) and - y ( - ) are non-decreasing when x(-) and y(-) are

non-increasing,

(iii) z •—• — G(— z) is non-decreasing and concave whenever G is non-decreasing

and convex, and

We note that the separation inequality (3) is not sharp, but that the arguments

presented here can be used to obtain a sharp version of (3). Because the form of the sharp

version is rather complicated and is not useful in subsequent sections, we do not record it here.
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3. A Gronwall Inequality

Let n € IN, D c Rn + 1 , f: D —• Rn. and T > 0 be given, and consider the ordinary

differential equation

x(t) = f(t, x(t)), t 6 [0,T]. (17)

We say that x : [0, T] —> Rn is a classical solution of (17) if x is absolutely continuous,

(t, x(t)) e D for all t e [0, T], and x satisfies (17) for almost every t e [0,T]. In this

section, we use the separation inequality (3) to prove a Gronwall inequality for classical

solutions of (17) when f is weakly Lipschitzian on D in the following sense

[1, Section 2]: there exist m 6 {0, 1,..., n} and, for each j e {m + 1, ..., n}, an increasing

mapping G.: I. —» R, with I. an interval in R, satisfying

(WL1) for each j 6 {m + 1, ..., n}, f. > 0 and G. is concave, or f. < 0 and
j j J

G- is convex;

(WL2) there exists a locally integrable function L : [0, ») —» [0, QD) such that

for every (t, x), (t, y) in D, with x. and y. in I. for all
j J J

j e {m + 1,..., n}, there holds

(Px-Py).(Pf(t,x) -Pf(t,y))

+ 1 (G.(x.) - G.(y •)) (fit, x) - fit, y))
j=m+l J J J J J J

L(t)| |Px-Py||2; (18)
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here, for all x = (xp ..., xn) € Rn, we put

Px = P(x l f .... xn) = ( x r X2,..., xm> 0, ..., 0), (19)

and || • || denotes the Euclidean norm on Rn.

We note that if f is monotone, Lipschitzian, or one-fiided Lipschitzian, then f is

weakly Lipschitzian, and the examples given in the paper [1] provide many functions that are

weakly Lipschitzian but not monotone, Lipschitzian, or one-sided Lipschitzian. Although a

given function f can be weakly Lipschitzian on D for many choices of the intervals I., in

practice one typically chooses the intervals to be maximal.

We assume now that f is weakly Lipschitzian and consider two classical solutions x :

[0, T] —. Rn, y : [0, T] —• R11 of (17) that satisfy for each

j € {m + 1, ..., n} and for all t € [0, T]:

Xj(t) € 1. (20a)

and

y / t ) 6 Ij. (20b)

By (17), (18) and (20), we conclude that for almost every ^ € [0, T],

)) • (Px(^) -

E
j=m+l
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(21)

For each t e [0, T], we integrate both members of (21) from 0 to t and use the separation

inequality (3) to obtain

1 || Px(t) - Py(t) ||2 - *1| Px(0) - Py(0)

J (h.(x.(t), y.(t)) - h.(x.(0), y.
J •» J J J Jj=m+l

- P y ( « ) | | 2 d s . (22)

In this relation, we have put for each j e {m + 1,..., n} and f, r\_ e L.

ffa) :=hG((,V). (23)

Hence, we can write

i||Px(t) - Py(t)||2 + f ' h.(x.(t),Jfz j=m+l J J J

\ || Px(0) - Py(0) ||2 + I h.(x.(0), y/0))
j=m+l J J J

f* L(«) || PxU) - PyU) ||2ds, (24)
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and, noting that

2h.(£, 17) > 0 for all £, 17 € Ij and j € {m + 1,... , n}, (25)

we conclude that

rt
< *(0) + 2L(^)*(^)ds, (26)

Jn

•where we have put for each t 6 [0, T]

•(t) := || Px(t) - Py(t) ||2 + 2 1 h.(x.(t), y.(t)). (27)
j=m+l J J J

A standard argument applied to (26) yields the Gronwall inequality:

rt
< *(0) exp( 2L(^)ds), for all t 6 [0, T], (28)

J0

with *(t) gixen hy (27) and with x : [0, T] —• Rn and y : [0, T] —» Rn 13EQ classical

solutions oi (17) that satisfy (20).

We note that (28) remains valid when relation (18) in (WL2) is replaced by the weaker

condition
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(Px-Py).(Pf(t,x) -Pf(t,y))

? (G.(x.) - G.(y.)) {{.(t,x) - f.(t, y))
j=m+l J J J J J J

,2< L( t ) ( | |Px-Pyf + 2 S h/x.y.)). (18)'
j=m+l J J J
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4. A Theorem on Restricted Continuous Dependence

When f is one-sided Lipschitzian on D, then we may put m = n in (WL1) and in

(WL2); the set {m + 1,..., n} is then empty, the sums from m + 1 to n in (27) and (28)

are zero, and the Gronwall inequality (28) becomes

9 2 f1

|| x(t) _ y(t) |p < || x(0) -y(0) \f exp ( 2L(^d<*), (29)
J0

which is the classical Gronwall inequality for one-sided Lipschitzian mappings. Because

m = n in the case of one-sided Lipschitzian functions, the condition that x and y satisfy

(20) places no additional restriction on the functions x and y beyond the requirement that x

and y are classical solutions of (17). Therefore, (29) implies the following classical theorem on

continuous dependence of solutions: .if f is one-sided Lipschitzian then for each classical

solution x : [0, T] —* Rn of (17) and each sequence p 1—• y p :[0, T] —» Rn of classical

solutions of (17), if l imy p (0 ) = x(0), then the sequence p •—* y p converges uniformly to

x on [0, T].

We now shall prove a theorem on "restricted continuous dependence of solutions "when

f is only weakly Lipschitzian.

Theorem 4Jj Let f : D —> Rn be weakly Lipschitzian on D, let x : [0, T] —* Rn be a

classical solution of (17) that satisfies (20a), and let p •—• y p : [0, T] —> Rn be a sequence

of classical solutions (17) satisfying (20b) for each p € IN as well as the condition

l imy p (0 ) = x(0). (30)
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It follows that for every t € [0, T],

l i m yP(t) = x(t). (31)

If, in addition, there is a positive number A such that, for all j € {m + 1, •••, n} and all

£, Tj € I. with £ t ri, there holds

A

then the convergence in (31) is uniform on [0, T].

Proof: If we put for each t € [0, T] and p G M

*P(t) := || Px(t) - PyP(t) ||2 + 2 I h (x.(t), yP(t)), (33)
j=m+l J J J

then (28) applies with y replaced by yP, and we can write

exp
'0

rt
( 2L(^)ds) (34)
Jn

for all t € [0, T] and p G W. Therefore, for each t G [0, T] we conclude from (30), (33),

and (34) that l i m * p ( t ) = 0 and, because every term on the right—hand side of (33) is

non—negative,

l im | |Px ( t ) - P y p ( t ) | | 2 = 0 (35)
P"»0D
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and, for each j € {m + 1,.. . , n},

l i m h.(x.(t), y?(t)) = 0. (36)
P-KD J J J

Thus, in order to verify (31), it suffices to show for each j e {m + 1, •.., n} that (36) implies

l imy?(t ) = x.(t). (37)
p-*GD J J

Suppose, on the contrary, that (37) fails to hold for some j G {m + 1, ..., n}. Specifically, we

suppose that there is a subsequence p' •—• y? (t) of p i—• y?(t) and 6 > 0 such that

for every p7 there holds

yj'W > x/t) + 6. (38)

Suppose in addition that G. is concave. Relations (23) and (1) then yield for all px

k/x/t), y? (t)) = lx ^ (Gj W - G^tJJdy > J ^ (Gj(y) - G^OMir > 0 (39)
J J

which contradicts (36). A contradiction can be obtained in a similar manner when (38) is

replaced by

yj' (t) < xfi) - 6.

or when Gj is convex. Thus, (37) holds for each j e {m + 1,..., n} and (31) is verified.
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To verify that the convergence in (31) is uniform when (32) holds, we let

j € {m + 1, ..., n} be given, assume G. is concave, and note that for all t 6 [0, T] and p

6 M we have

P/x\

= fj? (Gj - Gj(xj(t))dy

( t ) A(y-Xj(t))dy = 4(y?(t)-Xj(t))2 (40)

if y?(t) > x.(t), and we have

A(x - y?(t))dx = 4<x.(t) - y?(t))2 (41)

if x.(t) > y^(t). (The proof when G. is convex is similar.) Relations (33), (34), (40) and

(41) then imply for every t e [0, T] and p € M

Px(t) - PyP(t) ||2 + A I | x.(t) - y?(t) | 2 < *P(0) exp (f* 2L( ,)ds). (42)
j=m+l J J JO

Relations (23), (30), (42), and the fact that A is positive and L is non-Hiegative then yield

the desired conclusion. •
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