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1. Introduction

This report provides the essential aspects of an invited presentation

made by the first author during a "Workshop on Shear Bands" held at Carnegie

Mellon University, March 23-25, 1992. The workshop was under the auspices of

the Center for Nonlinear Analysis, a Center of Excellence funded by the Army

Research Office. The organizers were Professor Morton E. Gurtin of Carnegie

Mellon University and Dr. John Walter of the Ballistics Research Laboratory.

The purpose of this investigation is to demonstrate a mathematical

description of the formation of a shear band which exploits the extreme

thinness of the band. The assumption of a very narrow scale for shear bands

is well justified by experimental observations (e.g. [1],[3]). The analysis

will be developed within the context of a one-dimensional theory analogous to

that considered in [2],[4],[5],[6].

In the one-dimensional theory, the shear band is represented as a spatial

line of discontinuity, across which there are jumps in the value of certain

physical quantities. In particullar, expressions for the jumps in velocity,

temperature gradient and stress gradient are derived in terms of a single

function. The continuity of temperature and stress across the shear band, as

well as the inherent symmetries of the problem are maintained.
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In dimensional form, we consider the governing equations of momentum,

elasticity and energy, respectively as

(1.1) ?Vfc - S. ,

(1.2) St - /i(V. - f) ,

(1.3) 2cvTfc - k T ^ + ASf , -L < y < L, t > 0 ,

where V(y,£) is the velocity, S(y,fc) is the shear stress and T(y,£) is the

temperature in a slab of thickness 2L centered at y - 0. The material

constants p, /x, c and k are the density, elastic shear modulus, specific

heat, and thermal conductivity, respectively. The constant A scales the

conversion of plastic work into thermal energy. The plastic strain rate

function f is defined by a flow law,

(1.4) f - f(S,T,T) ,

in which certain types of work hardening effects have been incorporated

through the explicit dependence on F.

The boundary conditions at the ends of the slab are

(1.5) T ( ± L , t ) - T 0 , V ( ± L , t ) - ± V * ,

with appropriate compliance of the stress. The initial conditions are

(1.6) T(y,0) - TQ , Stf.O) - SQ , V(£,0) - VQ(£) .

Here TQ, SQ and V are positive constants, while the initial velocity VQ(y) is

a continuously differentiable function with the properties

(1.7) VQ(-5r) - - Vo(£) , VQ(± L) - ± V* f V£(£) > 0.
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The continuity of VQ(y) together with (1.7) implies that VQ(0) - 0, so that

there is no initial velocity slip.

It is consistent with (1.1)-(1.7) to impose the symmetry conditions

(1.8) T(£, t) - T(-£,fc), S(?,£) - S(-£,e), V(£,£) - - V(-£,£).

In our analysis to follow we will assume that the possible presence of a

shear band can be described by the strong localization of f along the line of

symmetry y - 0. Moreover, our nondimensionalization of the slab thickness

will be chosen so as to locate the ends of the slab at an (essentially)

infinite distance from the centerline. These concepts are physically

reasonable and allow for some mathematical simplifications of the problem.

To nondimensionalize (1.1)-(1.7) we introduce the scalings

0 - T/TQ, s - S/SQ , v - V/V*.

(1.9)

t - i/t , y « y/i , 7 - Ptr/SQ , 7 - /itf/S0

and parameters,

(1.10)

- kS^c^V* , t -

p - p/i(V*/S0)2 , A -

Under the assumption that L/i » 1, we express (1.1) to (1.3) as

(1.11) pvt - sy,

(1.12) st - v y - y9

(1.13) 0 t - 9 ^ + AS7, - « < y < «, t > 0.
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The flow law for the plastic strain rate takes the form

(1.14) 7-7<s,e,7>.

The boundary conditions become

(1.15) 9(± »,t) - 1, v(± »,t) - + 1,

with appropriate compliance of the stress. The initial conditions are

(1.16) 6(y,0) - 1, v(y,0) - vQ(y),

where vfl (y) is continuously differentiable with

(1.17) vQ(-y) - - vQ(y), vQ(± ») - ± 1, v£(y) > 0, vQ(0) - 0.

The symmetry conditions (1.8) become

(1.18) 6(y,t) - e(-y,t), s(y,t) - s(-y,t), v(y,t) - -v(-y,t).
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2. Derivation of the Jump Conditions.

We treat the (possible) presence of a shear band by requiring that it

be confined to a small neighborhood of the origin ( - € < y < c ) . This

confinement then allows for (possible) jump discontinuities in velocity,

temperature gradient and stress gradient across the infinitesimally thin

shear band located along the axis of symmetry (y - 0). It will be seen that

such discontinuities must be associated with a strong localization of the

plastic strain rate at y - 0.

By assuming that 7 can localize into a spatially singular behavior at

the origin, it follows that the limit defined by

(2.1)

is not necessarily zero. The jump conditions for velocity, temperature

gradient and stress gradient can be derived in terms of F(t). It follows

from (1.12), (1.13) and (1.11), respectively, that

(2.2) <v> - v(0+,t) - v(0",t) - ̂ J J vydy

(2.3) <ey> - ey(0
+,t) - ey(o\t) - )%f

lim

- - A s(0,t) F(t),

(2.4) <sy> - sy(0
+,t) - sy(0lt) - p
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These results assume that s and 8 remain continuous at y — 0.

To illustrate how F(t) might be determined from (2.1), we consider the

rather typical circumstance in which the functional form of 7 contains a

very large multiplicative parameter. That is,

(2.5) 7(s,e,7) - B70(s,e,7Q) , B » 1 .

Many of the power law and Arrhenius law models of 7 yield expressions

in the general form of (2.5). Typically for s and 8 below certain critical

values, 70 is so small with respect to B that B7Q is essentially zero (no

plastic straining). Then, when s and 8 reach their critical values, 7Q

becomes order unity with respect to B, and hence B7~ is quite large (plastic

straining has begun) . If we take

(2.6) B - B(c) - 2? + ••• '

as a scaling relationship between the large parameter B and the width 2e of

the shear band, it follows that

y-0(2.7) F(t) - lia | ^ Q ^

Thus,

(2.8) F(t) - B070[s(0,t), 0(0,t), 70(0,t)] .
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3. Formulation of the Half-Slab Problem

In view of the symmetry conditions (1.18), we can now pose an

appropriate problem for the half-slab (0 < y < «) with boundary conditions

at y - 0 deduced from the jump relations (2.2)-(2.4). An important

implication of (2.1) is that the localization of 7 to the symmetry axis

y - 0 allows us to ignore this term in (1.12) and (1.13) when considering

only a half-slab. The contribution from 7 will be reflected through the

boundary conditions at y - 0. It is also convenient to eliminate v from the

statement of the mathematical problem by integration of (1.11) with respect

to time and utilizing the initial conditon of (1.16).

The half-slab problem ican then be expressed in the form

(3.1) st(y,t) - J J Syy(y,t')dt' + v£(y),

(3.2) et(y,t) - 9yy(y,t), 0 < y < «, t > 0

(3.3) ey(0,t) - - \ s(0,t) F(t), sy(0,t) - j F'(t),

(3.4) 6(«,t) - 1, s(co,t) - 1,

(3.5) 6(y,0) - 1, s(y,0) - 1.

The nonlinear coupling of s(y,t) and 8(y,t) arises through the dependence of

F(t) on s(0,t) and 8(0,t) as determined by a specific flow law.

It is straightforward to obtain expressions for 8(y,t) and s(y,t), in

terms of F(t), which satisfy (3.1)-(3.5). We have
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(»..,

J,- F<O)

(3.7) 0(y,t) - 1 + f f [«(t - t')]'Hexp[-y2/4(t - t') ]s(O,t' )F(t' )dt' .

It should be noted that if the slip velocity <v> - F(t) were given

£ priori, then (3.6)-(3.7) provides the solution of the half-slab problem.

However, that represents a very elementary view of the problem, which

ignores any dependence of the slip on stress and temperature, as implied by

the flow law (1.14).

In the more significant physical situations the slip velocity will

depend upon the stress and temperature in the shear band. In the case of

(2.8), if we suppress strain hardening effects for simplicity, and set

BQ - 1, then

(3.8) F(t) - 70[s(0,t), 8(0,t)] .

Equations for the determination of s(0,t) and 0(0,t) then follow by setting

y - 0 in (3.6)-(3.7) so that

(3.9) s(0,t) - 1 + J~p V Q ^ ] - & {}0[s(0,t), 9(0,t)] - 70d,l)} ,

(3.10) 6(0,t) - 1 + f f [*(t-t')r1/2s(0,t')70[s(0,t'), 8(0,t')]dt' .

^0

Typically, (3.9) will represent an algebraic equation, from which

s(0,t) can be determined in terms of 8(0, t). This determination would allow

(3.10) to be reduced to an integral equation for 8(0,t). Once 8(0,t) has
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been determined, then s(O,t) is known from (3.9). Thus F(t) becomes known

from (3.8), which implies that s(y,t) and 6(y,t) are then given by (3.6)-

(3.7).

As an illustrative example, consider the plastic strain rate flow law

to be of the form

(3.11) ^ - l j s V
9 , N * 1 , 0 > O .

This combination power and Arrhenius law ignores strain hardening effects.

With an initial velocity profile vQ(y) - ay, then (3.9)-(3.10) take the form

s ( 0 , t ) - l + a t -

8(0,t) - 1 +
'0

A numerical solution of this problem is currently under investigation.
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