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Abstract

H-measures were recently introduced by Tartar [Thmo] as a tool that might provide much
better understanding of propagating oscillations.

Partial differential equations of mathematical physics can (almost always) be written in the
form of a symmetric system:

where A* and B are matrix functions, while u is a vector unknown function, and f a known vector
function.

In this work we prove a general propagation theorem for H-measures associated to symmetric
systems (theorem 3). This result, combined with the localisation property ([Thmo]) is then used
to obtain more precise results on the behaviour of H-measures associated to the wave equation and
Maxwell's system.

Particular attention is paid to the equations that change type: Tricomi's equation and variants.
The H-measure is not supported in the elliptic region; it moves along the characteristics in the
hyperbolic region, and bounces of the parabolic boundary, which separates the hyperbolic region
from the elliptic region.

This work is supported in part by National Science Foundation grant 8803317 and by Army Research
Office contract DAAL03-91-C-0023.



 



1. Introduction

H-measures
In the study of continuum physics, the equations governing the behaviour of continuous

media can be divided into two classes: balance relations and constitutive assumptions.
While the Young measures were good for the study of oscillation effects, they proved

inappropriate for the study of concentration effects. In a way, as a measure depending on
the variable x only, Young measures were not well suited to describe any effect that depends
on a particular direction in space.

The H-measure is a Radon measure on the spherical bundle over the domain Q in con-
sideration (in general, the base space of the fibre bundle is a manifold £2, while the fibre
is, of course, the unit sphere 5n~1). For a single parametrisation (suppose 17 C R n is an
open domain) it is a measure on the product £1 x 5'n"1 . In order to apply Fourier transform,
functions defined on the whole of R n should be considered and this can be achieved by
extending them by zero outside the domain. After such adjustment, the following theorem
can be stated (for details see [Thmo]):

Theorem 1. (existence of H-measures) If (ue) is a sequence in L 2 (R n ;R p ) , such
L2 '

that ue k 0 (weakly), then there exists a subsequence (uc ) and a complex matrix Radon
measure fi on Rn x S"*"1 such that for all (puw € C0(Rn) and ip G C(Sn~1):

lim
ff'\O

(1) R

Rn x Sn-l

The Fourier transform used above is defined in the following way:

while its inverse is:

v(x) := :Fv(x) := / e 2** x

The derivative of a Fourier transform and the Fourier transform of a derivative satisfy:

Remark. The notation a ® b denotes the complex tensor product of two vectors. It is defined as a linear
operator, acting on a vector v by: (a <g> b)v := (v • b)a, where v • b = YA=I vi& is the complex scalar product.

Variables in fi are denoted by x = ( i 1 , . . . , i n ) (or x = (x°, x 1 , . . . , xn) when this is more convenient),
and dk = ^fr- Similarly for the dual variable £ = (f1,.. . ,£n ) , where derivatives are denoted by dl = ^ - .

Summation with respect to repeated indices (one upper, another lower) is always assumed over the
whole range of indices, except when explicitly stated otherwise.
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In a certain sense the H-measure measures how far is the given weakly convergent se-
quence from a strongly convergent one: for strongly convergent sequences the H-measure is
zero.

One difference between H-measures and Young measures is readily seen: H-measures
depend on the dual variable £, so if the equation under consideration describes a physical
phenomenon that propagates, there is a priori hope that the H-measure can see the direction
of propagation.

A class of symbols and associated operators
The H-measure theory shares some ideas with the linear theory of partial differential

equations; namely the theory of pseudodiSerential operators (see [Hlpd] or [Tipf]). That
theory was motivated by the study of differential operators of the form: Lu = P(x, D)u (of
course, the goal is to solve the equation Lu = / , and to study the regularity properties of
its solutions), where P is given by:

while Dj is defined to be Dj = ^ dj. This study was extended to the case where P is not
a polynomial in £.

If we apply such an operator L on the function u expressed via Fourier inversion formula:

ti(x) = /

we obtain the expression that makes sense even if P is not a polynomial in £.:

/

Considering the form of the function P, we can rewrite the above expression in the following
form:

P(X,JD)U(X) =
|a|<m

So, the operators just considered can be written as a sum of the terms of the form: Lu(x) =

( )( )

More generally, a classical pseudodifferential operator is a linear operator A : £'(H) —>
such that there is a function a, an amplitude, in the space C°°(fi x Rn) , with addi-

tional boundedness properties on the derivatives, such that:

(for details, see [Tipf]).
The above approach is suited for the equations written in the form :

a%d%u + hu = / .
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But, the equations of continuum mechanics are usually written in the conservative form:

ft(afu) + bu = / ,

so a slightly different approach seems more natural.
If a is a function in £, while b is a function in x, we consider the following linear operators

on functions defined in x:

Bu(x) := 6(x)u(x) .

Lemma 1. (first commutation lemma, [ThmoJ) If a G C^S11"1) and b € C0(R
n) then

the above defined operators belong to £(L2(Rn)) (i.e. they axe bounded linear operators
on L2(Rn)j, and their norms coincide with supremum norms of a and b (respectively).
Moreover, the commutator C := [A, B) = AB — BA is a compact operator on L2(Rn)
(denoted C € /C(L2(Rn))j. ,

We axe now ready to define the symbols and corresponding operators. An admissi-
ble symbol is a function P G C(Rn x Sn"1) that can be written in the form: P(x,£) =
J2k &*(x)aJb(O; w i t h ak € C(5n"1),6jk € Co(Rn) and such that the following boundedness
condition is satisfied: J2k \\ a* ||oo || fyfc ||oo< oo.

We say that an operator L € £(L2(Rn)) has an admissible symbol P if that operator
can be written as a sum: L = J ^ A*i?fc(mod/C(L2(Rn))); where the operators Ak and Bk
are defined as above. Let us denote the space of such operators L by H.

Among all the operators corresponding to a given symbol P we can choose the standard
one: Lo := £ * AkBk. It satisfies (for u € L2(Rn) ^

/ ,()tz(x) dx

Thus, Lo is well defined—it does not depend on the choice of the representation for P.
The above definitions lead to correspondence between multiplication in Ti/K, and the

multiplication of symbols.
Remark. If we consider the operator L := ^k BkAk, where Ak and Bk are as in the decomposition of
the standard operator Lo, we have for u € L2(Rn) D.

Lu(x) =

and this is exactly the operator with the symbol P in the framework of the linear theory (note an additional
assumption in that theory that the symbols have to be smooth).

Let us note that L and Lo differ only by a compact operator on L2(Rn): L-Lo = £ * (Bk Ak - AkBk) =
J2k [Bk,Ak], because by the first commutation lemma each of the commutators is compact, with the norm
less then 2 || ak ||oo II h ||oo (we use the fact that a uniform limit of compact operators is compact).
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2. Symmetric systems

Localisation property for symmetric systems
We consider the following system of partial differential equations for a vector function

u : f2 —+ RP (ft C R n ) :

(2) A îbU + Bu=f .

For each k € { 1 , . . . , n} , A* is a continuously differentiate hermitian (p x p) matrix function
(additional properties that we need will be specified below), while f is a function from fi
into R*\ B is a continuous matrix function.

In order to apply the theory of H-measures, we consider two sequences of functions (u€)
and (f e) such that for each e (2) is satisfied. Let us first assume the following convergences:

u c - ^ - 0 (weakly),

f*321>0 (strongly).

For simplicity, we assume that all the functions ue,fe have their supports* in a compact
subset of Q. Now we can easily extend these functions by 0 to the functions defined on the
whole R n . (In order not to unnecessarily complicate the notation, we shall still denote these
extensions by uc,f e.) Having their supports in a compact subset of Q, the extensions of the
functions uc,fc converge as above.

The equation (2) (for ue,f e) can be rewritten in divergence form:

dk(A
kue) = f €

where g e - ^ 0.

Theorem 2. (localisation property) If the sequence ue —* 0 in the space L2(Rn)p

defines a H-measure p, and if ue satisfies:

d*(A*ue) - 0 in the space (Hj^(ft))' ,

where Ak are continuous matrix functions on Q C Rn; then for P(x,£) := £fcA*(x) t ie
following identity is satisfied on Q x 511"1:

(This result implies that the support of the H-measure /x is contained in the set {(x, £)
Q x 5 n - 1 : detP(x, £) = 0} of points where P is a singular matrix.)
Dem. For any ip G Cj(H) we have:

<pdk{A
ku*) .ku*)

If this is not the case, one can multiply the equation (2) by a cutoff function <p € V(Q).
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As A*ue —> 0 weakly in the space (L2(fl))p, therefore strongly in (Hlo*(ft))p as well, we
have that #*(<£>A* uc) —> 0 strongly in the space

This gives that fef(<pAkue) —> 0 strongly in the space (L2(ft))*\ (Note that :F(<^A*ue) —>
0 pointwise.)

We can now multiply (forming the tensor product) this strongly convergent sequence by
a weakly convergent one, Pfau*)^^), and pass to the limit, obtaining the claim.

Q.E.D.

Propagation property
By w\Tm(Rn) we shall denote the space of functions w with derivatives up to order m

belonging to the image by the Fourier transform of the space L1(Rn), equipped with the

norm:
\\w\\Xm:=

Lemma 2. (second commutation lemma, [Thmo]) Let A and B be standard opera-
tors as defined before, with symbols a and 6, satisfying one of the following conditions:
a) aeC1(Sn'1)andbeX1(Rn).
b) aeXfoc(R"\{0})<mdbeCl(Rn).

Then the commutator C := [A,B] € £(L2(Rn),H!(Rn)) and, by extending a to a
homogeneous (of degree zero) function on Rn, VC has symbol (V^a • V

Theorem 3. (propagation property for symmetric systems) Let the matrices Ak be
of class Co(ft). If for every e the pair (ue,fe) satisfies the system (2), and both sequences
(uc) and (f e) converge to zero weakly in L2(fi), then for every xf>, function of class CQ on Q
and of class X1 on S1*""1, the H-measure associated to the sequence (u*,f €):

satisfies the equation:

(3) (M (2Retr/i12, V} = 0

where S is the hermitian part of the matrix B, i.e. S := | (B + B*).
Tie H-measure fi is associated to the pair of sequences (uc,fe), with block fin corre-

sponding to ue and ^22 to fc, while nondiagonal blocks correspond to products of uc and

Dem. Let us act by a scalar pseudodifFerential operator A with a sufficiently smooth symbol
a (a is a homogeneous function of the dual variable £ = (£i,... ,£n) € Rn \ {o} ) on the
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equation (2), with u and f replaced by ue and f €. The left hand side gives us (derivatives in
x commute with the operator .A):

A(Akdku
€) = Adk(A

ku€) -
= dk[A(Aku*)]-A(dkA

k)u*
= dk[A(Akue) - A*4uc] + dk{A

kAue) - A(dkA
k)u£

c + (dkA
k)A\f

where A4' denotes the operator d*(.A A* — A*«4), which, by the second commutation lemma,
can be expressed as the operator A4 with the symbol £kd

ladiAk up to a compact operator,
that is included in the compact operator K, as well as the operator (dkA

k)A — A(dkA
k)

(the compactness of the last operator is a consequence of the first commutation lemma).
Thus we have got the equality (here we use the first commutation lemma, this time for

the term with B, and include the compact part in the operator K):

Akdk{Aue) = -BAue + A1e- Mu€ - Kue .

Multiplying it by ue from the right (using complex scalar product), and adding the result to
the equation (2) multiplied by Aue from the left, we obtain:

Akdk{Aue)- ue + Aue- A*d*uc = -Aue- Bue - BAue- ue

^ j +A1eue

Using the fact that (A*)* = A*, the left hand side can be written in the form:

dk(Aue) • Akue + Au€ - Akdku
e .

We would like to write these two terms as a derivative of a product; clearly, that product
cannot be a scalar, but should be a matrix (tensor), so that contraction with Ak (for each
k) gives a scalar. A natural candidate is the tensor product of two vectors, whose action
on an arbitrary vector v is given by (a ® b)v := (v • b)a. If the scalar product of the two
matrices is defined to be: A • A := tr(A*A) (where tr is the unique linear extension of the
map t r : a ® b i—• a • b), then the following identity* is valid: a • Ab = (a ® b) • A. Now we
can rewrite the left hand side of (4) as:

[dk(Au£) ® ue + Aue ® dku
e] • Ak = dk(Aue <g> ue). Ak .

We should do the same with the right hand side; it is the sum of traces of the tensor products
(here we use a simple identity a • b = (a ® b) • I, with I being the identity matrix). The right
hand side of (4) thus becomes:

* This can easily be checked using components. On the other hand, if an intrinsic proof is preferred, the
general case can be reduced to the case where A is of the form c ® d (by linearity).

6
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Multiplying the equation (4) transformed in this way by a scalar test function w €
and integrating, we* get:

(dk(Au£ ® uc), Akw) = -(Aue ® uc,u;(B + B*)> + (Ate ® uc + >lue ® f e,™I)
- (Mil* ® uc,u;I) - (Kue ® uc,u;I) .

After integrating the left hand side by parts, we can pass to the limit e \ 0, because of the
L2

assumption that fe » 0. We shall denote the H-measure (it is an (2 x 2) block matrix
measure, with (p x p) blocks) associated to the sequence (uc,f e) by:

M21 M22

Clearly, fin is the already defined H-measure associated to the sequence (uc). In the limit
(due to the compactness of K, the last term on the right hand side converges to 0) we obtain:

(5) (/zii, a dk{A
kw) - aw(B + B*) - £kd

la dtA
kw) + (fi12 + tou&w) = 0 ,

where the symbols of the operators A and M appear.
Let us take ^(x,£) := a(Z)w(x). Then the Poisson bracket of P and rf> is:

We can now write (5) in the form:

(6) <Mii,{P,V>} + rJ>dkA
k - V(B + B*)) + (2Retr/x12,^) = 0 .

If s > 1 + f, then H5(Rn) C X^R71). Thus the equation (6) has a meaning for any
rnf31

V7 € CQ J(Rn x 5 n - 1 ) . By density, the formula can be understood even for ifr of class Cj
on Rn and X1 on S*1"1 (and homogeneously extended outside Sn"1).

Q.E.D.
Remark. In a similar way, starting from the equation:

instead of (2), one could obtain a formula similar to (6):

Remark. As a notational convenience we decompose H-measure $x into blocks. In the examples, while
discussing the localisation property, $in might be denoted by $i for simplicity. After obtaining additional
relations among the components of the H-measure, we shall return to the notation described above.

We shall denote duality product with the same symbol (.,.), regardless of the type (scalar or matrix) of
the functions. In any case the result is a scalar. If the functions appearing are matrix functions, we assume
that their scalar product has been taken before integration.
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3. Hyperbolic equations

The wave equation

Let us consider the wave equation in n-dimensionaJ space:

We assume that p : Rn x Rjf —> R+ and A : Rn x R j —• Psym (the values of A
are symmetric positive definite matrices). We would like to rewrite the wave equation as a
symmetric hyperbolic system. Denoting the time t = x° and do := Jj, the wave equation
can be written in the following form:

(7) do(pdou) - J2 diia^dju) = g

In order to reduce the second order equation to a first order system we must introduce new
variables: VJ := dju, for j = 0 , . . . , n.

The previous transformation gives us only one equation. In order to make the system
with n + 2 unknowns formally deterministic, we have to provide n + 1 more equations.
Clearly, adding the definition equations for v* would lead to a formally deterministic system,
which, unfortunately, is not symmetric. Besides these, we have, by the Schwarz's theorem,
the following (n + l)(n + 2)/2 symmetry relations d%Vj = djVi, for i, j = 0, . . . ,n as well.
One choice* of (n + 2) equations, that will lead to a symmetric hyperbolic system, requires
taking the derivatives of the product in (7) (summation over z, j = 1, . . . ,n):

pdovo — a%JdiVj + dopvo — {d%a%*)vj = g .

This will be the second equation of the system. For the first, we shall just take the definition
of VQ. The remaining n equations will be the symmetry relations, with one index being 0,
but multiplied by the matrix A T = A. So, the system we shall consider is (summation over

8QU — VQ = 0

(8) pdovo — a^diVj + &°t>o + VVJ = g

where 6° := 5o/>, V := —did1* = [—div A T p , for j = 1, . . . ,n. This system can be written in
the required form.

Before writing it down, let us note that the first equation in (8) is the only one where u
appears explicitly. Thus, we can solve the system for Vi first, and later use the solution in
order to obtain u. This reduces the system to n + 1 unknowns v = (VQ, . •. , vn) and n + 1

The only one I know of.
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equations:

(9)

0 0 - ai l

—a

-a"

'1

6°
0

0

-<z

61

m

bn

V =

It is clear that A1 are all symmetric, A0 is even positive definite (because p > 0 and A
is positive definite). Thus, we have written the wave equation in the form of a symmetric
hyperbolic system.
Remark. Such a system is symmetric hyperbolic (see [Fshl]) if there is a vector | such that £* A* is a

positive definite matrix. Clearly, £ := (1,0,. . . , 0) gives P 0
0 A , which is positive definite.

In particular, the system to which we reduced the wave equation is hyperbolic in the sense ofPetrovski:
for every vector £ the matrices: A(£, A) := £* A*—A£* A* have simple elementary divisors, and detA(£, A) = 0
has real eigenvalues A. B

If we assume that the initial data were given for the wave equation by u(0,.) =
,.) = ui, we can take:

i;0(0,.) = ui

and

i;t(0,.) = diuo ,for i = 1,.. . ,n

as the initial data for the system (9). The relation u(0,.) = uo determines the initial condition
for the time derivative of u.

Due to the fact that uo is defined on Rn, we can compute its derivatives in the spa-
tial directions. We should still check whether the identities defining vn (and therefore the
symmetry relations) are valid.

For any i = l , . . . , nwe have:

(The first equality follows from the regularity of AT , because AT(#ov — Vx/vo) = 0 implies
dovi = divo.) Now, we have the fact that do(vi — diu) = 0, and v% — d{u = 0 at t = 0, and we
conclude that the last identity holds for any t > 0.

Let us now apply the general result for H-measures to the system (9) (note that for notati-
onal convenience we denote x = (z°,x') = (x°,xV . . ,z n ) and£ = (&,£') = (&,6>--->£n)).

The symbol of the differential operator is:

We assume that ve —>• 0 weakly in the space L2(Rj x Rn), satisfy the system (9) and
define the H-measure:

[MOO
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(where //oo is a 1 x 1 block, while fin is a, n x n block).
The localisation property gives us:

0 = pu _

This gives us the following relations between the components of the H-measure

The first identity is between scalaxs, the last between matrices, while the remaining two are
between vectors.

The second equality gives us (after taking the hermitian conjugate of the matrices, and
using the hermitian property of H-measures) />£o/*io = MiiA£'. If we multiply the last
equality by ^opA"1 and use the relation obtained from the second inequality, we obtain:

Taking into account the hermitian character of the H-measure /in, as well as the (real)
symmetry of A, we finally obtain:

so /in is supported on the set where det(A£' ® £' — P£QT) = 0. Similarly, from the first and
third equality we obtain: (A£' • £' — pCfyfioo = 0.

From the third equality, due to the invertibility of A, we get: /xoo£; = foMio- If we
introduce a (scalar nonnegative) measure v such that /zoo = £0^ (^ & == 0> then //oo = 0,
because £ ^ 0), we can express jiio = ^ o ^ (again, if £0 = 0, then /̂ oo = 0, and because of
the nonnegative hermitian property of H-measures, /iio = 0).

From the last equality we get: £oMn = £' ® A*oi = £o£' ® £v (we use the algebraic
identity A£' ® /iio = A(^' ® /iio))- This gives us the simple expression fi = £ ® ̂ 1/ (at least
when 0̂ 7̂  0).

From the first equality we finally get: £O(£QP — A£' • £f)v = 0, which in the case when
£o^O gives us that the support of v is contained in the light cone in the dual space.
Remark. At this point we have lost some information contained in the wave equation, because we
discarded a number of symmetry relations. Using them all, there would be no preference given to £o, and
we would be able to conclude that /i = £

In order to write down the propagation property, we first need to compute the Poisson
bracket:

10
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Now, adding the term:

- ( d i v « r A ) T

we obtain:

{P,V>}

Taking into account

=

. » -

the

f -dopil>
I °

2*/>S = c

form of / i

° T 1

h(p^) - 2dop4> -
(diAd tl>)i

, we have:

dlW)T , 1

Let us now take into account the right hand side as well. Assume that ge —»• 0 in
L2(Rn). So, the sequence (vc,(?c,0) converges weakly to zero, and defines a H-measure, that
is a (2 x 2) block matrix measure, with (n + 1) x (n + 1) blocks. The upper left block is just
discussed £ ® £i/, while the right upper block has all but the first column zero, so its trace is
equal to its upper left element:

After placing the derivatives on v, the propagation property takes the form:

A? • Z')dov + ft(A^' • *' - ptl)#{(0u) - 2divx,A • x'tou = 2Re7 .

Remark. The result we obtained is a generalisation of the result in Tartar [Thmo, 3.3]. Under a stronger
assumption that p and A do not depend on t = x°, the term ipdkA* — 2^S is zero, and the two results
coincide (up to a factor £<>)•

Example. Let us consider the one dimensional wave equation (in one space dimension):

putt - (aux)x = g .

This equation leads to the symmetric system:

11
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The corresponding symbol is: P(x,£) = £*A*(x) = ^+ °^ , where we use more convenient notation:

x = (<,*) and £ = (r,0-
For a sequence vc —- 0 weakly in L2(R2), defining the H-measure /i, localisation property gives us:

= Pit = f pTfi°° "" a ^ 4 ° 1

[-a&ioo + ra/iio

so (note that a > 0) r^fin = r£/ilO = £2/ioo- On the other hand £2/in = £T-f/ioi = ^r2/iOo. If either r or f
is zero, both /ioo and /in are zero, so ft is supported on the set where r£ ^ 0. On the support of $x we have:
pr2 = af2. If we define T2V = /iOo, we obtain the following expression for ji = ^ 0 ^i/, where «/ satisfies:
( P r 2 - a £ > = 0.

Let us now take into account the right hand side as well. Assume that ge —- 0 in L2(R2). So, the
sequence (vc, ge, 0) converges weakly to zero, and defines a H-measure, that is a (2 x 2) block matrix measure,
with (2 x 2) blocks. The upper left block is just discussed £®£y, while the right upper block has the second
column zero, so its trace is equal to its upper left element:

) := Urn

The propagation property reads:

The term with Poisson bracket is:

rp .-i _
x "W]

while the other term is:

-ax at \ Y [-ax 0 J [ 0

After we perform the matrix operations, the propagation property reads:

(v, ((/>r2 + ae)rp)t + rVr,t V • Vt,x(^
2a - r2p) - 2r(a^) = 2(ReT)

Thus, the measure v satisfies the following equation in the weak sense:

2 ? 2 - T2p) - 2r^atv =

Maxwell's system
We shall now present a more complicated example—the system of Maxwell's equations

in a material with electric permeability e, conductivity tr and magnetic susceptibility ft.
The system reads:

D' = rotH-J + F
B' = -rotE + G,

12
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together with div D = p and div B = 0, and with the constitutive laws:

() ()

B(.,t)«#*H(.,0-

Choosing E and H as variables and introducing u := L , , the system (10) can be written

in the form of a symmetric system:

»=o

where:

A ~ [O n \ ' A - [ Q i 0 J ' A - [ Q 2 0

The constant antisymmetric matrices Q* are given by:

Qi:=
0
0
0

0
0
1

0 '
- 1
0

, Q 2 : =
0
0

- 1

0
0
0

r
0
0

, Q 3 : =

,A 3 :=

0 - 1
1 0
0 0

0 Qj
Q3 0

The matrix B is of the form: B = fl _ , while the right hand side is f = L- . In the

above we have used the fact that the rotator (curl) of a vector field E can be written as:

rotE = diE1-
diE2-

0
0
0

0
0
1

0
- 1
0

#iE +
0
0

- 1

0
0
0

1
0
0

&E +
0
1
0

- 1
0
0

0
0
0

If we assume the uniform boundedness and symmetry of the permeability and suscepti-
bility tensors, the above system is even symmetric hyperbolic.

In order to apply the H-measure theory we should consider a sequence ue —»> 0 weakly
in the space L2(Q) (i. e. E5, He —k 0). The right hand side term f is allowed to oscillate as
well; so take f e —» 0 weakly in the space L2(fi).

The H-measure corresponding to (a subsequence of) the sequence (uc) will be denoted
by:

me

The Radon measure fin is a 2 x 2 block matrix measure, with each block of size 3 x 3 .
In order to express the localisation property we should compute the symbol P(x,£) =

]Ci=o & Af (x) of the differential operator in (10):

13
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where 3 denotes (the matrix of) linear operator defined by its action on a vector v: Sv =
£' x v. In components [3]ik = cfJ'*£>, or:

0 -6 6
6 o - 6
- 6 6 o

Clearly, 3 is antisymmetric ( S T = — S) , so P is a symmetric matrix.
The localisation property states that P ^ n = 0. In our case this takes the form:

£0€ - S j I" l/c I/em] = \(0€^e + STi/me fauem + 3TUm 1 _ QJ [ J [ J
j ] =

3 {oft J [ I/mc I/m J [ Sl/e + ivtlVmt 3utm +

Thus, the following matrix equalities must be satisfied:

STi/mc = 0
(oei/em + S T | / m = 0

Sl/C + ̂ OM̂ mc = 0
Si/em + (oM^m = 0

In order to simplify the above equations, let us first study the case where £o = 0, so
£' 7̂  0. In this special case we have the following equations:

Si/me = Sl/m = Sue = St/em = 0 .

In doing that, we shall use the following simple fact from linear algebra:

Lemma 3. If SA = 0, then the matrix A is of the form: A = £' ® a, for some vector
a G R3.
Dem. First, let us denote the columns of the matrix A as vectors: A = [a^aa]. By the
linearity and definition of S , we have the following:

SA = [Sai Sa2 Sa3] = [£' x a2 £' x a2 $'xa3] = 0.

Thus, all the columns of the matrix A are parallel to the vector £', so we can write: a, = aj£',
and by arranging these numbers a, as components of the vector a we obtain the claim.

Q.E.D.

Using the lemma, as well as the hermitian property of the H-measures, we can conclude
that the blocks of the matrix H-measure satisfy: i/c = me^ ® £', i/m = mm£' ® £', i/em =
mem£f ® £' = i/^c; where mc and rnm are real, while mtm = mmc is a complex scalar
function:

In the case £o 7̂  0, we can try to simplify the calculations by dividing £ by £o- By this
transformation £0 is replaced by 1, while £' takes arbitrary values in R3.

14
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The matrix equations can be rewritten as:

6I/C = Si/me

eutm = Sum

Using the fact that 6 and p are invertible, we can express vt using i/mc, vm using i/cm; and
vice versa. Substituting, we can obtain the following relations that have to be satisfied:

(e + SfTlS)ue = 0

(/i + Se'lS)ume = 0

(fi + S6-1S)j/Cm = 0 .

In order for this system to have a nontrivial solution, it is necessary that matrices multiplying
the unknowns are singular. Thus, the support of the H-measure is contained in the set of
solutions of the equations:

det(e + SiTlS) = 0

det(/i + Se~lS) = 0 .

4. Equations of mixed type

Tricomi's equation
Let us consider the Tricomi's equation:

(11) y

(Some authors, like F. John, call the equation yd\u — d2u = 0 by the name of Tricomi.
There is no significant difference in taking the reflection with respect to x-axis, so I study
the equation as written in Tricomi's Equazioni a derivate parziali, called the equation T
there.)

The Tricomi's equation is of mixed type. The standard procedure for classification of the
second order linear partial differential equations in two variables, with highest derivatives
part in the form ad\u + 2bdzdyu + cdyU, for the Tricomi's equation gives us ac — b2 = j / , so
the equation is elliptic for y > 0, parabolic on the line y = 0 and hyperbolic in the lower half
plane y < 0.

The characteristics of the Tricomi's equation (in the closed lower half plane only) are the
solutions of the ordinary differential equation: ydy2 + dx2 = 0; or equivalently (—y > 0):

dx

15
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The solutions can be written explicitly in the form:

Jo

where xo is the point of intersection of the characteristic curve and the rr-axis (XQ = x(0)).

Alternatively, we can express y(x) = — y 9(x"^x°) ; and draw the graph:

Remark. It is a trivial exercise to repeat the proceeding arguments for the coefficient k(y) instead of t/,
as long as k is a sufficiently smooth function, having the same sign as y (Garabedian). A similar equation
was studied by Lavrent'ev and Bicadze (1950): d\u -f $(y)dyU = 0, where t?(y) = signy (a discontinuous
function).

Let us try to rewrite the Tricomi's equation as an equivalent first order system. Certainly,
we have to introduce two unknown functions:

t; := dxu

w := dyu .

With this notation, the equation can be rewritten in the form: ydxv — dyw = 0. These three
equations form a formally deterministic system. Unfortunately, it is not symmetric (so it is
not in the framework for the application of H-measures).

As in other examples, we can make use of the Schwarz symmetry for second derivatives:
dyv = dxw. This gives us one more equation, and we are free to chose three out of four. The

16
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following choice leads to a symmetric system:

dxu - t; = 0
—ydxv — dyw = 0

dxw - dyv = 0 .

The unknown u appears only in the first equation; so we can take this equation as its
definition (assuming that the initial condition for u is given), and try to solve the system of
two remaining equations, with unknows v and w.

We introduce the vector notation in the following way for the unknowns: ui := v,U2 :=
w. For variables, we occasionally write x for (z, y) and £ for (£, rj). Now, any solution of the
equation satisfies the symmetric hyperbolic system:

(12) A!axu + A2dyu = 0 ,

where the matrices are given by:

Clearly, A1 and A2 are symmetric, and for y < 0 the matrix A1 is positive definite (its
(simple) eigenvalues are 1 and — y). Thus, a symmetric hyperbolic system corresponds to
the Tricomi's equation in the lower half plane.

Let us try to see what we can learn about it by using H-measures.
In order to apply the H-measure theory, let us consider a sequence of solutions, such

that ue —^ 0 in the space L2(fi) (weakly). The H-measure corresponding to a subsequence
of (u\,u\) is a 2 x 2 Radon matrix measure; denote it by:

Let us next write down the symbol, 2 x 2 matrix function P := £A* + 77A2 defined on
the spherical bundle (product) ft x S1:

Lemma 4. The H-measure /i corresponding to a subsequence of a L2 weakly convergent
sequence of solutions of the symmetric system (12), associated to the Tricomi's equation
(11), can be written as:

v ,

where v is a nonnegative (scalar) Radon measure on the spherical bundle Six S1, supported
inside the set N = {(x,y,£,rj) e ft x S1 : t]2 + y£2 = 0}.

17
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Dem. The localisation property for H-measures, in the case of a symmetric system, can be
expressed in the form: Pf/ = 0.

Let us first note that fx is supported inside the set where detP = 0, and this reduces to
the set N. Writing out all the terms of the product explicitly we get:

l
This gives us the following equations for the components of the measure fi:

03)

Besides these relations given by the localisation property of H-measures, we know that fi is
hermitian, so that diagonal components are real, while /x21 = /x12.

From the second and the fourth equation we can get: £2/x22 = T/2//11. Thus, it is natural
to express the matrix measure ft using only one scalar measure v. As £ ^ 0 on the set JV,
we define v by: /x11 = £2i/, and then follows that /x22 = rfv.

On the other hand, from the first two equations we directly conclude that the measures
/x21 and /x12 are real (because /x11 is) and absolutely continuous (on any compact set) with
respect to the measure /x11. Clearly, they can be expressed using v as stated above.

Q.E.D.

The lemma gives us the simple form of the localisation principle (for v):

(Ve + r,2)u = 0 .
Clearly, for y > 0 (upper half plane, elliptic region), v = 0. At the coordinate line x

(parabolic region), v is supported on two opposite points on the circle 5 1 , namely for rj = 0
(and thus £ = ±1). For y < 0 (lower half plane, hyperbolic region) v is supported at the
null set of TJ2 — (—y)£2 or, for given y, on the intersection of the circle S1 with the lines
V ~~ y/—y£ == 0 an<* V + yf—yt = 0. Notice that these two lines have the same slope as the
normals to the characteristics at the same point. Clearly, other entries of the original matrix
measure are supported for y < 0 only, and there they are different from zero wherever v is
not zero.

Furthermore, we know that £ and r\ are just the coordinates of a point on the unit circle
S1. This means that there exists an angle t? such that: £ = cost? and rj = sintf. But,
tgtf = | = i ^ ^ y , so ti is naturally restricted to the interval (—§, f) (at the boundary of
that interval v is zero).

More precisely, we have established that the measure v (and then the rest of /x as well)
is supported on a three dimensional manifold R2 x S1. We can choose a parametrisation of
the circle by the angle tf, so that the measure v will be zero outside two open submanifolds:
R 2 x U\ and R 2 x {/2; where U\ corresponds to t? € (-f , f) (while t/2 means t? G (f ,^f)).
Thus, we have reduced our study of the problem on the manifold to two charts, that are
diffeomorphic to (open) layers in three dimensional space.

After simplifying our problem using the localisation property, let us apply the propaga-
tion property.

18
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Theorem 4. The scalar measure v satisfies the equation:
2 - £3dvv = 0

on its support. The projection of the characteristics of this equation to the x,y plane are
the characteristics of the original (TricomVs) equation.
Dem. The general formula for symmetric systems:

(/*, {P, V>} + *dkA
k) + <2Retr/ii2, V>> = 0 ,

where the test function \j> is homogeneous of degree zero in the variables £,77, reduces to:

(the right hand side of the equation (11) is zero).
Let us compute the Poisson bracket:

—ydxt\) + ^drjip

Next take the scalar product of the matrices:

— y u i & i i i v — x i ^ / i —^ v i ^ /

= (v, (V2 - yl2)d^ - Ifrdyip + edv^) = 0 .

Thus, the measure v satisfies the following equation:

dx((v2 - yf» - Kndyv + i3dnv = 0,

or, after taking into account the localisation identity (TJ2 + y£2)v = 0:

2y(2dxv + 2rj£dyv - fd^ = 0 .

The equations of the characteristics are given by:

—* dr

f^
dr

which gives us that | | = i^/^y, that is the equation satisfied by the characteristics of the
Tricomi's equation.

Q.E.D.
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Remark. The last equation for characteristics is separable, and gives: ^^a^s/a = <*r-

The substitution 77 = siny?, dr) = cos<pd<p would give us / ccffi = ± Jdr, or tĝ > = r - fc . We can solve
the other two equations, but the computations would be tedious. In the next remark a pararnetrisation is
obtained with simpler computations.

Remark. The equation we obtained in the theorem involves ( and 77 as variables. Let us write the
equation involving the parameter 0 instead.

First note that we have already obtained during the proof of the theorem the following relation:

(14) <ji, {P, *}) = <*, tf - yt2)dxtP - TtriW + (30, V) = 0 .

Note that the function tp is homogeneous of degree zero in £ and 77, so for any a £ R + we have that
, y, <>£, 0:77) = V(x> J/J £>f?) j so> ^ei taking the derivative of both sides in a, we obtain: £0$V> + rfd^ = 0.
The function $ can be written either in variables x, y,£ and 77, or in x, y and ti. Formally: %l>{x, y, £, 77) =

> y, t?). From the relations: ^ = cos t? and 77 = sin tf, we obtain:

After combining with the above consequence of the homogeneity we get:

(15)

Now, we can change the variables in (14) and obtain:

(16) (v, (sin21? - ycos2 ti)dxij> - 2cost?sint?dyt/; + cos4 00*$) = 0 .

After placing the derivatives on the measure v\

dx ((sin2 0 - y cos2 t?)i/) - 2 cos tf sin tf0y 1/ + 0* (cos4 tfi/) = 0 ,

or, taking into account the localisation identity (sin21? + ycos2 t?)y = 0:

2 sin2 ddxv - 2 cos t? sin t?0y 1/ + cos4 00* 1/ + 4 cos3 dv = 0 .

The equations that the characteristics satisfy are:

dr
dd 4 0
- 7 - = COS4 0 .
dr

Note that the last equation implies that 0 increases with r increasing.
If we introduce a new variable a = tg0, we get da = c<ffi* = cos2 ddr. As C^^ = tg20 + 1 == <r2 -f 1,

after integration we get: j + <r = r + c. A s r i s only a parameter in parametrisation, we can choose c = 0.
Thus, <r, 0 and r have the same sign.

Expressing the first two equations of characteristics in variable a, we have:

dx dx da
dr d<r dr
dy dy da
r = = -2cos0sin0 ,

dr da dr
20
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so, from jfc = cos2 tf we conclude that:

£ = 2<r2
da

da

This gives us x(a) = f^r3 -f x0 and y(a) = -a-2 + j / 0 - Choosing y(0) = 0 for tf = 0 (coming from the initiall
condition), we have finally got:

Remark. Let us construct a measure v that is a solution of the equation given by the theorem 4. Using
the parametrisation of the support, we take the following ansatz for v:

Taking <p G CC(R2 x ( ^ , | ) ) , the action of u on ^ can be written as:

)p Q tg 3 ^ , -tg2t9, ̂  dti

Assuming that V> G CC(R2 x ( ^ j | ) ) , we have:

= — T - T f(sin2t? — y cos2 ti)dxip — 2 cos t? sin t?9j,i/i + cos4

cos4 t;L

Thus, the equation (16) reduces to:

/ w(ti) cos4 ti-jrtp xtg3t?, -tg2t?, t> dt? = 0 .
j dv \ 3 J

The last equation is certainly true for: tt;(t?)cos4 ti = C, where C is an arbitrary constant. So, the measure
i/, given by:

is a solution of the equation in Theorem 4. It moves along a characteristics, starting from (—oo, —oo, — f ) ,
bounces at the x axis, and continues towards (oo,— oo,|-).

A variant of TWcomi's equation
In order to get more insight into the above method, let us consider another equation,

which is merely an academic example (with no physical meaning):

(17) £
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in the plane R2. Proceeding in the same way as before, using the standard method for
classification of the second order equations, we see that ac — b2 = xy, so the equation is
elliptic for x and y of the same sign (thus, in the I. and the III. quadrant), hyperbolic for x
and y of different sign (in the II. and IV. quadrant); while it is parabolic on both coordinate
axes.

In the hyperbolic regions the characteristics satisfy the following ordinary differential
equation:

xy(dy)2 + (dx)2 = 0 ,

that can be written for x > 0 , y < 0 a s ^ = ±\/—y dy; and for x < 0,y > 0 as: -4^- =

±y/ydy.
Restricting our attention to the first case only, let us determine the equation of the

characteristics passing through the point (xo,yo) ^n *ke IV. quadrant:

r«.±r <=
JXQ V s Jyo

Integration leads to: 2(y/x — y/xo) = ^ f̂ Zx/1-?/— J/O\Z— J/o)- Taking the square of both sides
we finally obtain:

[(Vii /^j/o) =F

In particular, we are interested in the points (xo,t/o) on the x-axis as initial conditions, so
y0 = 0, and the equation of the characteristics reads:

X[V) =

(It is possible to express y as a function of x locally, but that would not serve any purpose.)
In the II. quadrant we have: x(y) = — (yy^y/3 T V~~xo)2- We have the following picture:
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Next we should write the equation as a symmetric system. In order to do that we
introduce: v := dxu and w := dyu. The equation reads: xydxv + dyw = 0. The same choice
of the equations as for the Tricomi's problem leads to the symmetric system:

dxu - t; = 0
—xydxv — dyw = 0

dxw - dyv = 0 .

If we introduce the same notation as before (for vector unknown and variables), and take
the first equation as the definition for u, we get the following system:

(18) [-J* »]«,.+
The matrices A1 and A2 (named as before) axe symmetric, and in the II. and IV. quadrant
A1 is positive definite; so the system is hyperbolic there.

Proceeding as before, we consider a sequence of solutions, and a subsequence defining
the H-measure /x. The function P reads now:

while the localisation principle P/t = 0 gives us:

V i i r\ r i i ^^sr 7^ ^ysr '/A* I Q

So, the equations for the components of the measure ft are

As for the Tricomi's equation, we can prove:

Lemma 5. Tie H-measure /i corresponding to a subsequence of a L2 weakly convergent
sequence of solutions of the symmetric system (18), associated to the equation (14), can be
written as:

where v is a nonnegative (scalar) Radon measure on the spherical bundle QxS1, satisfying:
(xy£2 + r\2)v = 0, and is supported inside the set N = {(x, j/, £, rj) € H x S1 : r/2 + xy£2 = 0}.
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Clearly, for xy > 0 (I. and III. quadrant), v = 0. At the coordinate lines v has the
support contained in the set where r\ = 0 (thus £ = ±1). For xy < 0 (II. and IV. quadrant),
v is supported on the null set of the polynomial rj2 — (—xy)£2 or, for a given point (x,y),
on the intersection of the circle^1 with the lines rj — y/—xy£ = 0 and rj + y/—xy£ = 0.
As before, these lines have the same slope as the normals to the characteristics at the same
point. Clearly, other components of the H-measure axe supported for xy < 0 only, and are
different than zero wherever v is.

Again, we can parametrise the circle by the angle t?; then tgt? = ? = ±\/—xy; thus
reducing the problem from the manifold to two charts.

Let us now apply the propagation property (given by the general formula):

t) + (2Retr/i12,V>) = 0 .

First, we have:

The Poisson bracket will have more terms as well:

o i r i r ' i - i o r*^ i o o r ^ i o o
-xydxtp

dni>

We can now compute:

(/x, {F, rPi) -

After adding the term — y£2Vs coming from dxA1, we obtain:

(19) (i/, (r?2 - ^2yx)5x^ - 2f i7df ̂  + ^ 3 ( y 5 ^ + xdvtl>) - yfV> = 0 .

This gives the following equation (in the sense of distribution) satisfied by v\

dx((v
2 ~ xyi2)v) - 2ir}dyv + d^yv) + d^xv) + yt2v = 0 .

Thus, we have proven the following:

Theorem 5. Tie scalar measure v satisfies the equation:

2ri2dxu - 2ir}dyv + £3(y^i/ + xdvu) - 2£2yv = 0 .

The projection of the characteristics of this equation to the x, y plane are the characteristics
of the original equation (16).
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Remark. The equations of the characteristics are given by:

— -2 2

dr
di-

dr

dl-~

dl-~

Remark. Replacing £ and 77 by the parameter r? in the equation (18), using the change of variables
formule obtained in the remark following Theorem 4, we get:

(v, (sin2 d - xy cos2 ti)dxi> - 2 cos t? sinddyxp + cos31?( - ysin t? + x cos t?)dt>^ - y cos2 tfiA = 0 ,

or in the sense of distributions:

d*((sin2 ti - xycos2 ti)v) - 2cost?sini?5yi/ + dt (cos3 ti(x cost? - ysint?)i/) + y cos2 tf*/ = 0 .

After using the localisation property we obtain:

2 sin2 t?3xi/ - 2 cos tf sin t?9yi/ + cos3 ti(x cos t? - ysin 0)9*1/ + 4 cos2 0 sin t?(* cos 0 - y sin ti)v = 0 .

The characteristics satisfy:

•r- = 2sin2t?
ar
dv
-p- = -2costJsint>
dr

— = cos3 t?(x cos t? - y sin 1?) .

Linear second order equation of mixed type
Next we shall try to state the main results, which we have obtained for two special cases,

in a general setting. For a function a € C1(fi; R) we study the equation:

(20) ad\u + d2
yu = 0 .

The characteristics of (20) satisfy following ordinary differential equation:

dx j —

dy
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and they are real for a < 0.
Introducing the same two unknown functions (first partial derivatives of u) as before,

this equation can be reduced to the following symmetric system:

Obviously, this system is symmetric, and for a < 0 it is even symmetric hyperbolic.
We consider a sequence of solutions uc —* 0 in L2, and the associated H-measure ft.

Using the same notation as before, we obtain the expression for the symbol:

Lemma 6. The H-measure ft corresponding to a subsequence of L2 weakly convergent
sequence of solutions of the symmetric system (21), associated to the equation (17), can be
written as:

wiere v is a noimegaiive (scalar) Radon measure on the spherical bundle il x S1, supported
inside the set N = {(s,y,£,i?) € ft x S1 : r?2 + a£2 = 0}.
Dem. The H-measure ft is supported inside the set where detP = 0, and this is exactly the
set N. Writing out all the terms of the product explicitly we get:

-v t
Besides these relations given by the localisation property of H-measures, we know that /x is
hermitian, so that diagonal components are real, while fi21 = /z12.

From the second row we get: £2//22 = f/V11. Thus, it is natural to express the matrix
measure /x using only one scalar measure v. As £ ̂  0 on the set iV, we define v by: /x11 = £2*/,
and then follows that /x22 = r^v.

On the other hand, from the first column we directly conclude that the measures fi21 and
/x12 axe real (because /x11 is) and absolutely continuous (on any compact set) with respect
to the measure fin. Clearly, they can be expressed using v as stated above.

Q.E.D.

The lemma gives us a simple form of the localisation principle (for v)\

From the lemma we can conclude that in the elliptic region (a > 0) v = 0. In the
parabolic region (a = 0) the support of v is contained in the set where r\ = 0 (and thus

In the hyperbolic region (a < 0) we have, as before, that v is possibly supported on the
null set of the function rj2 + a(x, y)£2. For the given point (re, y), this turns out to be at the
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intersection of the circle S1 with the lines 77 — y/—a(x,y)£ = 0 and 77 + y/-a(x,yj£ = 0. As
before, these lines are in the normal direction to the characteristics (^| = ±\/—a(x, t/)).

Theorem 6. Under the above assumptions on a, the H-measure v corresponding to a
subsequence of solutions of the equation (20) satisfies the following equation (in the sense of
distributions):

2 3 + 4£2dxav = 0 .

The projection of the characteristics of this equation to the x, y plane are the characteristics
of the original equation (17).
Dem. Let us first compute the Poisson's bracket:

0 -

0 i J ^ + [ - i o J ^ - [ 0 o j ^ - [ 0
-a(x,

Next we note that 5jtA* = ^ ft I. The general formula for symmetric systems (the

right hand side of the equation (17) is zero) gives us:
(22)

Placing the derivatives on the measure v we get:

which, after taking into account the localisation property (a£2 + TJ2)I/ = 0, becomes:

The characteristics satisfy the system:

dx 2
dr

5 ; = <

and the projections to the (x,y) plane are clearly the characteristics of the equation (17).
Q.E.D.
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Remark. Replacing £ and 17 by the parameter t? in the equation (22), using the change of variables
formula obtained in the remark following Theorem 4, we get:

(v, (sin2 d - xy cos2 d)dx$ - 2cos 1?sintidytp + cos31?( - dxasin t? + 5ya cos t9)5^^ - 8xa cos2 tty\ = 0 ,

or in the sense of distributions:

6X ((sin2 tf - xy cos2 tf)i/) - 2 cos t? sin tidyv + 3* ( cos3 tf(-dxa sin t? + dya cos tf)i/) + dxa cos2 tfi/ = 0 .

After using the localisation property we obtain:

2 sin2 ddxv - 2 cos t? sin ddyv + cos3 d{-dxa sin t? 4- dya cos t?)5,ji/ -I- 4 cos21? sin ̂ (Sra sin 1? - dya cos t?)i/ = 0 .

The characteristics satisfy:

dr

— = cos3 t?(-3xa sin t? 4- 9ya cos t?) .
ar

I would like to thank professor Luc Tartar for suggesting the research topic and for constant encourage-
ment and advice while writing this paper. It was an interesting experience to witness the developement of
the new theory, H-measures.

Some comments made by professor Victor Mizel helped me to simplify the computations while expressing
equations as equivalent symmetric systems.
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