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Abstract. We obtain the r(L*(Q)) - limit of the sequence

where E£ is the family of anisotropic perturbations

Ee(u) := j W(u(x)) dx + e2 J h*(x.Vu(x)) dx

of the nonconvex functional of vector-valued functions

The proof relies on the blow-up argument introduced by Fonseca and Muller [FMl].
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1. Introduction.

In this paper we obtain the r(LKQ)) - limit of a family of anisotropic singular perturbations

of a nonconvex functional in the vector-valued case. The study of this problem was motivated by

the analysis of variational problems for phase transitions.

We consider the nonconvex energy

E(u) = J\V(u(x))dx (1.1)
n

where Cl is an open, bounded, strongly Lipschitz domain of IRN, u : Q -* ERP and W supports two

phases. The problem

(P) minimize E(.) subject to the constraint

TTTT I u(x) dx = m, where m = 6a + (l-6)b for some 8 € (0,1) (1.2)
meas(£2) J

has infinitely many solutions which are piecewise constant functions of bounded variation, u =

XA& + (1- XA)^ with meas(A)« 6meas(Q). In order to determine a selection criterion for resolving

this non-uniqueness one studies the properties of the limits of sequences of minimizers for the

quasiconvex perturbed problems

E£(u) = f[W(u(x)) + £2h2 (x,vu(x))] dx (1.3)

where the relevant notion of convergence in this context is T-convergence as introduced by De

Giorgi [DG] (see [At], [DM], [DD] for more recent expositions). Hence we are lead to the problem

of identifying the r(L!(Q)) - limit of the rescaled energies

J£(u):=-E£(u).
£

We show that if W satisfies a certain growth condition and attains the minimum value of zero at

exactly two points a and b and if h grows at most linearly in the last argument and satisfies some

technical continuity conditions (see Section 2) then the r(U(Q)) - limit of Je(.) is given by

dHN-i00 ^ u € {a,b} a.e., u € BVJo(u) =
I +«> o t h e r w i s e

where v(x) is the normal to the interface Qrv)*{u=a},

K(x, a, b, v(x)) := inf { J [LW($(y)) + j<h-)2(x V£(y))] dy : \ e **(a, b, v(x)), L >

, b, v) := {^ e H*(Qv ;IRP): %(y) = a if y.v = -1/2, %{y) = b if y.v = 1/2, and \ is periodic

with period one in the directions of vl,...,vN.1),



{VI,...,VN-I,V} forms an orthonormal basis of IRN, Qv is the open unit cube centered at the origin

with two of its faces normal to v and the recession function fc°°is given by (see [FM2])

= lim

We will also show that a sequence of minimizers of (1.3) will single out the solution of (P)

for which

is a minimum, recovering the Wulff shape as the preferred equilibrium configuration (see [Fo],

[FM3], [Tl], [T2], [W]).

As remarked by Gurtin [G2], the assumption that W has two potential wells of equal depth

involves no loss of generality; indeed, because of the constraint (1.2) we can always add an affine

function of u to the integrand in (1.1) without changing the solution set of (P).
In the isotropic scalar case, i.e. if u : Q -> tR and h = 11.11, the FQLKQ)) - limit of J£(.),

Jo(.), was studied by Gurtin [Gl], [G2] and Modica [Mo] who showed that

J0(u) := i n ^ j {lim infn_H«J f(x,un(x),Vun(x)) dx : un e WU(Q;IR), un -> u in V }

where f(x,u,A) = 2VW(u) h(A). This result was generalized by Owen and Sternberg [OS] to
anisotropic functions h with linear growth for which h2 is convex. The isotropic vector valued
case, i.e. if u : Q -» ERP (p>l) and h = 11.11, was studied by Kohn and Sternberg [KS], by

Sternberg [S] and by Fonseca and Tartar [FT] who obtained the representation

Jo(u) :={ K P e r « ( t u = a l ) i f u(x> € fa,b} a.e.
1 +«> otherwise

where
1

K = 2 inf { jVW(g(s)) lg'(s)l ds : g is piecewise CK g(-l) = a, g(l) = b } .

The paper is organized as follows; in Section 2 we mention some results on functions of
bounded variation and sets of finite perimeter and state the theorem characterizing the F - limit of
the functionals J£ (see Theorem 2.9). In Section 3 we obtain a lower bound for the F - limit and in
Section 4 we conclude the proof of Theorem 2.9 by constructing sequences un € HH^;[RP) and En

—> 0+ such that

(un) = J0(u).

The results of Sections 3 and 4 rely on a lemma (cf. Lemma 3.2) which allows us to modify a

sequence near the boundary without increasing its total energy. In Section 5 we show that the F-

limit of a sequence of minimizers of (1.3) selects the solution of (P) which minimizes the integral

over the interface of the surface energy density.



2. Preliminaries. Statement of the Theorem.

In what follows C1C IRN is an open, bounded, strongly Lipschitz domain, p, N > 1,

{ei,...,eN} is the standard orthonormal basis of [RN and MP** is the vector space of all pxN real

matrices. If A e MP*N let HAH := (tr{ATA))lf2.

Given v € SN 4 := {x € IRN : Hxll = 1} we denote by Qv the open unit cube centered at the

origin with two of its faces normal to v, i.e. if {vlv.MvN.! v} is an orthonormal basis of IRN then

Qv:« {x € IRN : Ix.Vil < j f Ix.vl < j f i = 1,...,N-1}.

Definition 2.1.([DG]) Jo(.) is the HUffi)) - limit of the sequence J£(.) if and only if
i) given any u € L^itR1*) and any sequence uE such that u£ -»u in LK^tR1*)

J0(u) < lim inf£_»o* J£(u£);
ii) given any u € LK^IRP) there exists a sequence u£-» u in Ll(Qi\Rp) such that

We recall briefly some facts on functions of bounded variation and sets of finite perimeter

which will be of later use in this paper. For more details we refer the reader to Evans and Gariepy

[EG], Federer [F], Giusti [G] and Ziemer [Z].

Definition 2.2. A function u € L!(^;tRp) is said to be of bounded variation, u €

BV(£2;[RP), if for all i e {l,...,p}, j € {1,...,N) there exists a Radon measure \L\j such that

Jui(x)|^(x) dx = - f<t

for every (J) € CQ(Q). The distributional derivative Du is the matrix-valued measure with

components |iij.

Definition 2.3. A set A C Q is said to be of finite perimeter in Q if XA € B V(Q), where

XA denotes the characteristic function of A. The perimeter of A in Q is defined by

Pcrn(A) := sup { fdiv(J>(x) dx : $ € Cj(Q;lRN), II0L < 1}. (2.1)



The approximate upper and lower limit of each component u*, for all i € {l,...,p), are

given by

u*(x) := inf {t € IR : limE«>o*"L i?N[{ui > t) n B(x,e)] * 0}

eN

and

uT(x) := sup {t € IR : lime_>o* «^N [{UI < t} n B(x,e)] « 0}
e N

where B(x,e) is the open ball centered at x and with radius e. The set X(u) is called the singular set

ofu or jump set and is defined as

Ku)=u{x€Q:uT(x)<uf(x)} .

It is well known that £(u) is N-1 rectifiable, i.e.
X(u)= u K n u E

where HM.JCE) = 0 and Kn is a compact subset of a C1 hypersurface.

Theorem 2.4. If u e BV(£2;[RP) then for HN.! a.e. x € X(u) there exists a unit vector

v(x) € SN-1, normal to £(u) atx, and there exist vectors u~(x), u+(x) € [Rp such that

lim£-»o+ — J |u(y) - u+(x)lN/(N-D dy = 0,
eN {y€B(xfE):(y-x).v(x)>0}

lim£^0
+ - J |u(y) - u-(x)|N/(N-i) dy = 0.

£N {y€B(x,£):(y-x).v(x)<0}

We note that it may happen that u*(x) * (u±(x))i.

If un € BVCQitRP) converges to u in LKQjtRP) then

IDul (Q) < Urn infn-^ IDuJ (Q) (2.2)
where IDul denotes the total variation measure of Du. If u € BV(Q;[RP) then Du may be represented

as
Du = Vu dx + (u+ - u-) ® v dHN.! [ I(u) + C(u) (2.3)

where Vu is the density of the absolutely continuous part of Du with respect to the N dimensional
Lebesgue measure £N and HN.i is the N-1 dimensional Hausdorff measure. The three measures in

(2.3) are mutually singular, if HN.!(B) < +<» then IC(u)l = 0 and there exists a Bonel set E such that
J£s (E) - 0 and IC(u)l(B) = IC(u)l(BnE) for all Borel sets BC D=1N. The following version of the

Besicovitch Differentiation Theorem was proven by Ambrosio and Dal Maso, [ADM] Proposition

2.2.



Theorem 25. If X and \i are Radon measures in Q, |i £ 0, then there exists a Borel set E

C Cl such that p,(E) = 0 and for every x € (supp |i) \ E

— (x) := lim£_>o*

exists and is finite whenever C is a bounded, convex, open set containing the origin.

Theorem 2.6- Let A be a subset of Cl such that Per^(A) < +«>. There exists a sequence
of polyhedral sets {Ak} (i.e. Ak are bounded, strongly Lipschitz domains with 9Ak = Hi u H2 u
... KJ Up where each Hi is a closed subset of a hyperplane {x € IRN : x.Vj = a*}) satisfying the

following properties:
i) j?N [((Ak n Q)\A) u (AXAk n 0))] -4 0 as k -

ii) Pern(AiJ —> Per^(A) as k —» +<»;

iii)HN.1OAkn3Q) = 0;

It can be shown that (see [FM2], Lemma 2.6) if Pero(A) < -H>O then for HN-I a.e. x € Q n

^ n (x+5Qv(x))) = 1. (2.4)

Let W : [Rp -> [0, -H») and h : Q x M P ^ -> [0, +«>) be continuous functions satisfying the

following hypotheses:
(HI) W(u) = Oifandonlyifu€ {a,b};

(H2) there exist constants c>, c> 0 such that

for all u€ [Rp and for some q > 2;

(H3) there exist constants Q, C > 0 such that
Q HAH - C £ h(x, A) < C (1 + HAH)

for all x € fi and for all A €

Let h°°: Cl x MP** -> [0, +«) be the recession function, i.e.

h~(x, A) := l i m s u p ^ ^ h ( x ; t A ) .

In addition to (H1)-(H3) we will also need the following hypotheses:
(H4) there exist 0 < m < 2 , C , L > 0 such that

for all (x, A) € Q x MP*N and for all t > 0 such that t IIAII > L;

(H5) for all xo e H and for all e > 0 there exists a 8 > 0 such that



I h2(xo, A) - h*(x A) I «S e C (1 + HAH2)

whenever Ix -xol < 8.

It is an easy consequence of the definition of recession function that

Lemma 2.7. Under the hypotheses (H3) and (H5) the following hold:
i) C, IIAII £ h-(x, A) £ C HAH, for every (x, A ) e f i x MP*N ;
ii) For all xo e SI and for all e > 0 there exists a 8 > 0 such that

I (h-)2(xo. A) - (h~)2(x A) I £ e C IIAII*
whenever Ix -xol < 8.

Let (a, b, v) e IRP x IRpx SN-1, let {v,,...,vN.,, v} form an orthonormal basis of IRN and

define the class of admissible functions
«Z(a, b, v) := {% e HHQv ;IRP): £(y) = a if y.v = -1/2, %(y) = b if y.v = 1/2, and $ is

periodic with period one in the directions of Vj,...,vN.i},

where the boundary values of 4 are understood in the sense of traces. A function 4 is said to be

periodic with period one in the direction of v, if

for all k e Z, y e Qv.

Our surface energy density K : Cl x [Rp x IRP x SN-J -»[0, -K») is defined by

K(x, a, b, v) := inf { J[LW(£(y)) + j ^ h - ^ x V^(y))] dy : % € ^ (a , b, v), L >
Qv

We examine some continuity properties of K. In what follows C denotes a generic

constant.

Proposition 2.8. Under the hypotheses (H2), (H3) and (H5) we have:
i) 0 < K(x, a, b, v) <, C (1 + llallq + llbllq+ lib-all2) for all (x, a, b, v) e Q. x [Rp x [Rp x SN1;

ii) For all xo e ft and for all e > 0 there exists a 8 > 0 such that Ix - xol < 8 implies

IK(x, a, b, v) - K(xo, a, b, v)l < eC (1 + llallq + llbllq + lib-all2).

Proof. We follow here the proof of Fonseca and Rybka [FR].
i) Fix (x, a, b, v) € ft x !Rp x 1RP x SN*1 and let

Clearly £ 6 «?(a, b, v) so, by (H2) and Lemma 2.7 i),



0 <, K(x, a, b, v) £ f[LW(S(y)) + £<h-)2(x,V$(y))] dy £

<; f[LC(l+H4(y)llq) + £ IIV£(y)lP] dy £ const. (1 + Hall* + llbllq + lib-all*),

since ll£(y)ll < ̂ Ib • all + |llb + all £ Hall + llbll.

ii) Fix xo e Q and E > 0. By Lemma 2.7 ii) choose 8 > 0 such that Ix - XQI < 8 implies

I (h-)*(xo, A) - (h-)2(x, A) I £ e C HAH2. (2.5)
For all n e N choose Z# € £tf(a, b, v), Ln > 0 such that

J[LnW(£n(y)) + q(h-)2(xo,V4n(y))] dy ^ K(xo, a, b. v) + j .

By Lemma 2.7 i) it follows that

/ £ J L ^ K(x0, a, b, v) + \

and so

fj ^ IIV^n(y)l|2 dy < K ( X ° ' a^b> V ) + 1 <, const. (1 + llallq + llbllq + lib-all2).

Hence, if Ix - xol < 8, by (2.5) we have

K(x, a, b, v) - K(xo, a, b, v) < Ji^(h-)2(x,V^(y)) dy - Ji^(h-)2(xo,V^n(y)) dy + £ <

£ \T-

< f r - EC HVUy)«2 dy + ^ eC (1 + llallq + llbllq + lib-all2) + - .
JMI n n

Let n-> oo to obtain

K(x, a, b, v) - K(xo, a, b, v) £ eC (1 + llallq + llbllq + lib-all2).

In a similar way we obtain
K(xo, a, b, v) - K(x, a, b, v) £ eC (1 + llallq + llbllq + lib-all2).

The main result of this paper is the following

Theorem 2.9. Let (H1)-(H5) hold and let



U0-J.1 + eh*(x,Vu(x))] dx.

Then the rQLKQW-limit of the sequence J£(.) is given by

= | Jnna
I

Jo(u) = | JnnaV*} K ( x ' a > b » v ( x ) ) dHN»(x> » f u € {a,b}a.e., u e BV
I +«» o therwi se

We divide the proof of Theorem 2.9 into two parts. The first part, corresponding to item i)

of Definition 2.1, will be shown in Section 3 and the second part is proven in Section 4.

3. A lower bound for the T - limit.

In this section we prove that the FCLKfi)) - limit of J£(.) is bounded below by Jo(.).

Proposition 3.1. Let (H1)-(H5) hold and let u € L1(Q;tRp) be given. If £n->0+ and if un

e HKQjORP) is such that un -+ u in D(O;[RP) then

lim infn^o f [-W(un(x» + enh2(x,Vun(x))] dx ^ J0(u).

The proof relies on the following lemma which allows us to modify a sequence near the

boundary without increasing its total energy.

Lemma 3.2. Assume that (HI), (H2) and (H3) hold and let

{ b if y.v(x) > 0
a if y.v(x) < 0.

Let p be a symmetric mollifier and set vn = pr *uo where p (x) = (—)Np(—) and {en} is a

sequence of real numbers such that £n -* 0*. If {un} is a sequence in H!(Qv ;IRP) converging in

to uo then there exists a subsequence {£ } and a sequence {w^} in H!(Qv ;IRP) such

that Wk -» uo in LKQvjtR^* wk - ^ on 9Qv and



f [—W(wk(y)) + ^h2(

QJ ^

lim

Qv

Slim infn_« f [ -W(u a (y» + enh2(y,Vun(y))] dy.. f [-W(un(y» +

Proof. Step 1. Assume, without loss of generality, that

l i m i n H

Q J
V

f [~W(un(y)) + enh2(y,Vun(y))] dy =

f [-W(un(y)) + enh2(y,Vun(y))] dy < +~. (3.1)

We begin by showing that un -> uo in Lq(Qv;lR
p). Indeed, after extracting a subsequence, we have

un(y) -* «o(y) a.e. and by (3.1),

J WfonCy)) dy = EnJ ^-W(un(y)) d y - * 0 as n->+00.

By (H2),
llun(y)-uo(y)llq^C(W(un(y)) + l)

and so by Fatou's Lemma,

f C dy = f Urn infn.^jC (W^Cy)) + 1) - HUnCy) - Uo(y)llq] dy <

< lim infn_^r J C W ^ y ) ) dy + J C dy - J Uu.Cy) - uo(y)llq dyl

Therefore,

lim supn_H« J llun(y) - uo(y)llq dy = 0.

Also, as q £ 2, we conclude that un -» uo in L2(Qv;[Rp) as n -> +<».

Step 2. For simplicity assume that v = eN and denote Qv = Q. Notice that

* w - { b i
f
fyN>£"

I a if yN < - e n

and
vn e sA(a,b,eN), IIVvJL = Od/e,,) and suppVvn C {lyNl < £„}. (3.2)

Also vn -4 uo in L*(Q;[RP). Let Tn = Q \ OnQ where o^ = (1 - llun - vnllJ
/3)1/N so that



meas Tn = llun - v n l ^ - » 0 as n -» +00.

Let M = c (1 + 2lluollq) where c is the constant appearing in the growth condition of W and define

kn € Z+ as kn as [ ] + i, where [y] denotes the integer part of y. We divide Tn into

n - Vnll2

measTn K _ _ _
slices of measure—r-—,Tn=ySj and Sj are of the form Xjj Q\XjQ where 0<Xj < 1,

^1 = 0^ and X^+1 = 1. Consider a family of smooth cut-off functions 9J1 € CQ (O^Q u u S£) such

that 0 £ 9J1 £ 1, 9]1 = 1 on o^Q u Ju S£ and IIVtflL-of ^—— | for j = 1,. . .^. Using these
k=1 V' lUn-v^J

functions (pj1 we will consider convex combinations of un with vn across the slices Sj1. We claim

that there exists m e W such that, for all n > m there exists j e [ lf... Jcn) such that

+ (un(y)-vn(y))®V9Jl(y))] dy < Vllun - vnll2. (3.3)

Assuming (3.3) holds, for each n > m we obtain a slice S<n> e {S" : j = l,...,kn}, S<n) = S"(n) such

that, setting

wn(y) = <p(n)(y)un(y) + (1 - <p(n) (y))vn(y)) = | ^n j * y ^ ^

where B W = ^ u t Sj1 and A00 = Q \ (B(n) u SW), then

[ 1W(un(y)) + enh2(y,Vun(y))] dy ̂

QJ

lim supn^. f l-WMniy)) + enh^y.Vu^y))] dy

[ f [-W(wn(y))+enh2(y,Vwn(y))] dy - f [-W(vr

4 ** J **
Urn supn^.[ f [-W(wn(y))+enh2(y,Vwn(y))] dy - f [-W(vr(y))+enh2(y,Vvn(y))] dy

4 * J *

10



+(Un(y)-vn(y))®V(p<n>(y))] dy].

By (3.3) and Step 1 the last tenn is bounded by Vllun-vnll2 which goes to zero as n-++«>. We

show that the second term also goes to zero. Indeed, by (HI), (H2), (H3), (3.2) and since {vn} is

bounded in L°° we have

f [-W(vn(y)) + e»h2(y,Vvn(y))] dy <, f [~W(vn(y)) + Enh2(y,Vvn(y))] dy ^

}enCHVvn(y)ll2dy + j r

£ C[2(measTn)(
N-1VN + enmeasTn] - » 0 as n -» -H*

Hence,

[-W(un(y» + enh2(y,Vun(y))] dy £

_^. f [-W(wn(y)) +lim supn^o I [-W(wn(y)) + enh2(y,Vwn(y))] dy.

On the other hand,

wn(y) - uo(y)H dy = Hmn HD0| 1 Hun(y) -uo(y)H dy + I w Hvn(y) - uo(y)ll dy •

J)ll(p
(n>(y)un(y) + d-(p(n)(y))vn(y) - uo(y)ll dy]

un(y) - uo(y)H dy + f llvn(y) - uo(y)H dy] = 0

since un -> uo and vn -> uoin L!(Q;IRP).

Step 3. It remains to show (3.3). We begin by proving that

limsupn_H«.S JWCqfCy^n^+d-qfCyMvnCyMdySM. (3.4)

Indeed, by (H2) and since un -> uo and vn -* uo in L/KQj

Urn supn_*_ I J W(9]l(y)un(y)+(l-^(y))vn(y)) dy

<: Urn supn_H« rC(l+ll^(y)un(y)+(l-^(y))vn(y)ll<i) dy <,

11



<S lim SUIWH. fc(l+llun(y)llq+llvn(y)!lt») dy £ C(l+2lluollJ) = M,

To show (3.3) we argue by contradiction. If (3.3) were false then for all m € N there would exist

n > m such that for all j e {l,...,kn}

f [-W(9[(y)un(y)+(l-<pjl(y))vn(y)) + Enh2(y,(p[(y)(Vun(y)-Vvn(y))+Vvn(y)+

+(un(y)-vn(y))®V^(y))] dy > Vllun - vnll2.

Then by (H3), for this subsequence

-(p[(y))vn(y)) dy > enVllun - vnll2 -

-En2 rh2(y,<p"(y)(Vun(y)-Vvn(y))+Vvn(y)+(un(y)-vn(y))®V(P]1(y)) dy

s?

* enVllun-vnll2- Cen^easS" - C en
2 J HVun(y)ll2dy - C ej J HVvn(y)ll2dy -

-c £n2kn2
2/3 J »un(y)-vn(y)ll2 dy .

llun - Vnll2' SS

Summing the above inequality from j = 1 to j = kn we obtain

I rW(cp[(y)un(y)+(l-<p;(y))vn(y))dy

2 kn £„ Vllu»-vnll2- C^^easTn -.C ejj HVun(y)ll2dy - C zj JIIVvn(y)ll2 dy

- C[enknllun-vnll2
2/3]2.

By choice of kn,

knenVllun-vnll2^2M

and
C [£nkn llun - vnll^]2 S C [2M llun - vnllj/6 + c llun - vnll

2/3]2 -^ 0 as n ^ +00

12



and by properties of vn,

C zf\ IIVvn(y)ll2 dy £ C ej f — dy = Ce^measTn)^-1)^ -» 0 as n

Therefore, since En J HVun(y)H2 dy is bounded, it follows that

Urn supn^o I fW(9]l(y)un(y)+(l.(p;(y))vll(y)) dy * 2M

contradicting (3.4). •

Proof of Proposition 3.1. Step 1. We begin by proving the proposition in the case where u
= XA00a+(l-3CA00)b w^h Per^(A) = +©o. As Jo(u) = +©© it suffices to show that for any sequence
£n -» 0+ and for any un e H!(^;tRp) such that un -» u in LKQ;[RP) we have

J [~W(un(x)) + enh2(x,Vun(x))] dx -4 +oo.

We argue by contradiction. Suppose that there exists a subsequence (which we continue to denote
by En and un for convenience) such that

J [^W(un(x)) + Enh2(x,Vun(x))] dx £ const,

n n

Then, by the growth condition on h, we have

f [—W(un(x)) + EnCIIVun(x)l|2] dx ^ const.

which, by the Cauchy-Schwartz inequality, implies

JvW(un(x)) l!Vun(x)ll dx ^ const. (3.5)

Let

f(r) := infiu îsr VW(u),

where
a+b

If we set

13



r0 := I — I,

then by (H2) there exists ri > ro such that

J f ( r ) d r > |
r0

 z

where
1

K = 2 inf { fv\V(g(s)) lg'(s)l ds : g is piecewise C1, g(-l) = a, g(l) = b}

Let

M : =

and define
1

<p(v) := inf { f T(7(s)) lly f(s)ll ds : y is a piecewise C1,Y(-l) = a, y(l) = v}

where

T(u):=min{VW(u),M}.
This function was studied by Fonseca and Tartar [FT] where they showed that

i) 9: IRP -» [0,4oo) is a Lipschitz function

ii) if u € HUatRP) then cpou € HK^IR15) and IIV(cpou)(x)ll < VW(u(x)) HVu(x)ll a.e. x €

n.
Hence, since 9oun -4 cpou = (l-XA>9(b) in L1 strong, from the lower semicontinuity formula (2.2),

ii) and (3.5) we have

9(b)PerQ(A) = I D O - X A W (^) ^ Mm inf n ^ fllV(cpoun)(x)ll dx < const.
a

contradicting the fact that Pero(A) = +00.
Step 2. We now turn to the case where u = XA(x)a+(l-XA(x))b with Per^(A) < +00.

Assume, without loss of generality, that

l i m i n g f[-W(un(x))+enh2(x,Vun(x))]dx = l i m n ^ r[-W(un(x))+enh2(x,Vun(x))]dx <+00.

We must show that

limn_>« f [ -W(u n (x» + enh2(x,Vun(x))] dx ^ J K(x,a,b,v(x)) (IHN.^X). (3.6)
tf En Qnd'A

14



Using the blow up method introduced by Fonseca and Muller [FM1] we reduce the problem to
verifying the pointwise inequality (3.8) below. As the integrands —W(un(x))+enh2(x,Vun(x))

En

form a sequence of nonnegative functions bounded in L1 there exists a subsequence (still denoted
by En and un) and a nonnegative Radon measure \x such that

~W(un(.)) + enh2(.,Vun(.)) -* \i weakly * in the sense of measures
en

i.e. for all q> e Co(Q)

. <p(x) [ -W(u»(x» + enh2(x,Vun(x))] dx -> J<pdn as n -» 4 ~ . (3.7)

Using the Radon-Nikodym theorem we may write [L as a sum of two mutually singular
nonnegative measures |J. = îaHN.i|_(Q r> 9*A) + p*. We claim that

^a(xo) £ K(xo,a,b,v(xo)) for HN.! a.e. xo € Q. n d*A. (3.8)
Assuming that (3.8) holds we consider an increasing sequence of smooth cut-off functions, q>k €
Co(Q)> with 0 < q>k < 1 and supk <pk(*) = 1 in Q and we obtain

limn_*o f [-W(un(x)) + enh2(x,Vun(x))] dx ;>

pk(x) [-W(un(x)) + enh2(x,Vun(x))] dx = U (
en d

* J<pk(x)Mx) dHN.J/Q n 9*A)(x) £ f <pk(x)K(x,a,b,v(x))
n nn3'A

Letting k —> +«»and using the Monotone Convergence Theorem we conclude (3.6).
Step 3. It remains to show inequality (3.8). By Theorems 2.4 and 2.5 for HN., a.e. xe Cl

n 3*A we have

•j - | |u(y) - bl dy = 0
8" {y€B(x,8):(y-x).v(x)>0}

; J |u(y) - al dy = 0
«>" {y€B(x,8):(y-x).v(x)<0}

and

ii) Ha(x)!

HN.1L(Qna'A)(x+5Qv(x))

15



Choose a point x e f i n d*A such that i) and ii) hold. Let 0 < T| < 1 and let q> e CQ (QV(X)) be such

that 0 £ q> < 1 and cp = 1 on T|Qv(X). Using ii) and (2.4) we have

* Urn

lim J <p(££) [-W(un(y)) + ej^iy,Vun(y))] dy =

= lim sup*.** 8 limn^o fcp(y) [-W(un(x+6y» + £nh2(x+6y,Vun(x+8y))] dy ̂

Qvw

lim sups-rt* 5 lim sup n _^ f [—W(un(x+6y» + enh2(x+5y,Vun(x+5y))] dy. (3.9)
J en

Let
( b if y.v(x) > 0

w , 5 ( y ) = u n (x + 8y) ,uo(y) = j a i f y v ( x ) < 0 >

Note that, since un -> u in L1 and by i), we have

lims^o* limn^^ II wn>5 - u0 \iq^ =

[ J ||un(x+8y) - bll dy + J ||un(x+8y) - all dy]
Q { o >

= Iim5-»o+ [ J Hu(x+8y) - bll dy + Jllu(x+8y) - all dy] = 0.
Qvwn{y:y.v(x)>0} Qv(x>n{y:y.v(x)<0}

Since Vwn>5(y) = 8Vun(x+8y), from (3.9) we get

Ha(x) ̂  Hm sups_*o+ lim sup,,-^. [ | [—W(wn,5(y)) + ^(h~)2(x+8y,Vwn,5(y))] dy
J en o

+ f [8Enh2(x+8y,7Vwn,5(y)) - ̂  (h-)2(x+8y,Vwlu5(y))] dy]. (3.10)
J o b

Now,

J en h (x+ y , - wn,8 y - g

16



h. f |52 h2(x+6y,7Vwn,5(y)) - (h-)2(x+8y,Vwn,5(y))l dy
6 J 8

fa r |52 h2(x+5y,^Vwn,5(y)) - (h~)2(x+8y,Vwn,5(y))l dy
o J o

J182 h2(x+8y,|Vwn.5(y)) - (h-)2(x+8y,Vwn,8(y))l dy =: I1+I2

where, by (H3) and Lemma 2.7 i),

Ii ^ const.— meas(TjQV(X)n{liVwn.5lls5L}) 82 < const.EnS -»0as8-»0andn-»+«>
8

and, by (H4) (with t=l/8), Holder's inequality and (H3),

I2 ̂  X f C "Vw^)!!2^ 8m dy S

^ C S™"1 f £„ llVw. 5(y)ll2-m dy <

JenllVwn,6(y)l|2dy]1-m/2 =
(HVwlt8|l>8L}

= C 8m-i ej172 [ J en82 IIVun(x+8y)ll2 dy] 1*m/2 <

< c gm-i ^ [^52+ J 52£n h2(x+8y,Vun(x+8y)) dy] Uml2 =

= C (Sen)"/2 [en8 + J 8en h2(x+8y,Vun(x+8y)) dy] 1"m/2 -» 0 as 8-^0,
T1Qv(ll)n{IIVwn.8!l>8L}

since by (3.9) { J Se,, h2(x+8y,Vun(x+8y)) dy } remains bounded. So (3.10) reduces to

H,(x) ^ Urn sups_»o+ lim supn_^ | [ - W(wn,5(y)) + ^ (h-)2(x+8y,Vwn,5(y))] dy =
J £n 8

r f 8 e
lim sups-** lim supn-^ [ [ - W(wn>6(y)) + -f (h-)2(x,Vwn,5(y))] dy +

J En 8

17



+ f[^(h-)2(x+8y,Vwn ,5(y))-^(h-)2(x,Vwn ,8(y))] dy]. (3.11)

Fix e > 0. By Lemma 2.7 ii), (H3) and (3.9) we have for 8 small enough,

f *-f l(h-)2(x+8y,Vwn,8(y)) - (h-)2(x,Vwn,5(y))l dy £ ^ J eC IIVwn,8(y)ll2 dy =

: eC J £n8 IIVun(x+8y)l|2 dy ^ eC [e«8 + | en8 h2(x+8y,Vun(x+8y)) dy] =
•nQvd) 1iQv(x)

= O(e) as 8-*0, n-*+«>.

Hence,

»i.(x) ^ lim sups^o* Km supn_^. f [-W(wBf«(y)) + %h-)2(x,Vwn,5(y))] dy + O(e). (3.12)
J ^n • O

TjQv(x)

Let

lim sups-*- lim sup n _^ f [- W(w».8(y)) + ^ (h-)2(x,Vwn,5(y))] dy + O(e) =

(3.13)
En

where 8k -> 0+ as k -^ +*». Choose n(k) large enough so that, setting ak = - ^ , we have 0 < ak <

1/k, II wnoc),̂  - uo HL,(Qv(it)) ^ 1/k and

It (y))] dy =

I. W(wn(k) 6k(y)) + ak (h-)2(x,Vwn(k) ^(y))] dy + O(l/k). (3.14)

liQv(x)

Thus, defining vk(y) = Wn^^y), it follows from (3.12), (3.13), and (3.14) that

i
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f [— W(vk(y)) + a k (h~)2(x,Vvk(y))] dy + O(e)
J ak
v(x)

where vk -» uo in LHQv(x)) and ak -» 0+ as k -> -H». Changing variables we obtain

p f [A- W(vk(iiz)) + ak (h~)2(x,Vvk(tiz»] dz + O(e)J ak

H (3.15)

where ak = —, ak -* 0+ and uk(z) = vk(Tiz). Applying Lemma 3.2 to h°° and to the sequences
11

and ak we conclude that there exists a subsequence {Oj} C {ak} and a sequence {£i) e

;1RP) such that & -> uoin LHQv(x);lRp). £i € ^(a,b,v(x)) and

lim infi_H~ f [r- W(^(z)) + a, (h-)2(x,V^(z))] dz ^Jf [r- W(^(z)) + a, (h

f [-r- W(uk(z)) + ak (h-)2(x,Vuk(z))] dz. (3.16)
J ttk

Thus, by (3.15) and (3.16) we have

H,(x) > iiN-i u m infi.^. f [^- W(^(z)) + a* (h-)2(x,V^(z))] dz + O(e)

(3.8) now follows if we let t\ -» 1* and e -> 0*. •

4. An upper bound for the T - limit.

We now prove the second part of Theorem 2.9.

Proposition 4.1. Under the hypotheses (H1)-(H5) given any u € L 1 ^ ; !^ ) there exist

sequences en—>0* and un€ HK^IR1^ such that un —»u in LHftlR1*) and
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J *J- W(un(x)) + e, h2(x,Vun(x»] dx = J0(u).

It is clear that it suffices to consider the case where u = XA00a+(l-)CA(x))b with Pern(A) <

, since

[—W(un(x)) + enh2(x,Vun(x))] dx

implies that

limn^ofw(un(x))dx = 0
•to

and so, as un -> u in L^ftlR1*) and due to the continuity of W, we conclude that

u(x) € {a,b} a.e. x e Cl.

Also, as in Step 1 of the proof of Proposition 3.1, we obtain Pero(A) < +00. We begin by

considering the simpler case where u = XA(x)a+(l-XA(x))b has planar interface and h and K do not

depend explicitly on x.

Lemma 4.2. Let (H1)-(H5) hold, let Q = Qv and

, . { b if y.v > 0
U(y) = i a i f y . v < 0 .

Then there exist sequences en-^0* and un € stf (a.b.v) such that un -> u in LHQv'.tR15) and

f [ - W(u»(x)) + enh2(Vun(x))] dx = K(a,b,v) = J0(u).

Proof. Assume, without loss of generality, that v = eN so that
, . f b if y.ew > 0

u ( y ) = l a i fy .eN < 0.

Denote Qv by Q and let Q1 be the projection of Q on tRN'!: Q' = {y e Q : yN = 0}. Let Ln > 0 and

^n€ ^(a,b,eN) be such that

l i n w _ f [L n W(Uy» + U 0»-)2(VUy))] dy = K(a,b,eN). (4.1)

For n fixed, define
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b if yN > E/2
k(y«XH) i f -e /2 ^ yN ̂  e /2

, a if yN < -e/2.

Clearly vn 6 £tf(a,b,eN) for all n e N, e > 0. Also,
e/2

•I »•• l l v . - UCy1."1) - bll dy

.1/2

= e [ f HUy f .YN) - bll dy = e {ll^Cy) - bll dy -» 0 as e -* 0+

for n fixed. Likewise UvJ - u-HLl(ff) = Hv» - a l l ^ -* 0 as e -+ 0* and so v*t-* u in LKQjIR') as

e -»0+. On the other hand

W(v"(y)) + ^

[^W(v^(y))+^(h- dy + f [^ h2(Vv^(y)) - £ (h-)*(Vv»(y))] dy =

where
e/2

[LjiW(v"(y))+-
e E

(h-)2(Vv"(y))] dy =

-e/2

e/2

I E

-e/2

21



• J [L.w<Uy)> + £ (h°°)2(v^(y))l dy (4.2)

and

r
nji j e e e2

f |£2 h2 (I

1—

+ J_ f
Lne J

QndlV^Cy

By (H3) and Lemma 2.7 i)

uye e

I? < — measQ Ce2 = const.?2 Ue L

and by (H4), HSlder's inequality and Lemma 2.7 i),

c em-i[
L n

< -^ e"-i [ J ^ IIV^n(y)ll2 dy]1'1"72 ^ C ( ^ r / 2 [ J q; (h-)2(V^n(y)) dy]1""172

^ Q Q

where by (4.1) { j y- (h~)2(V^n(y)) dy } is a bounded sequence. Choose E(n) such that e(n)

0+as n - 4 + « , ^ - ^ 0+, llv (̂n) - ullL,-»0 and

22



I J [L»w<Uy)> + r<h-)2(VUy))] dy - f [-^wCv^Cy)) + T^Wvn)(y))] dy I < i

J [^-W(un(y)) + 8nh2(Vun(y))] dy = limn^+- f [LnW(^n(y)) + ̂ (h-)2(VUy))] dy

= K(a,b,eN) = f K(a,b,cN) dHN.!(y).
JQ n {yN=0} |

Lemma 4.3. Let (H1)-(H5) hold and let

u ( jb if (x-ao).v > 0

\a if (x-ao).v < 0

for some ao e !RN. Define

#(ao,a,b,v,Ti) := {u € HHao+TlQitR1*): u(x) = b if (x-ao).v = Ttf2, u(x) = a if (x-ao).v = -T|/2

and u is periodic with period T| in the directions of VI,...,VN-I }.

Given a sequence e« -» 0+ there exists a subsequence {^ } and a sequence {vk} in ^(ao,a,b,v,Ti)

such that Vk -» u in LHao+TlQitR1*) and

f [—W(vk(x)) + enkh2(Vvk(x))] dx = TiN-

Proof. For simplicity, we assume that v = eN and we denote Qv by Q.

Case 1. Suppose first that ao = 0 and r\ = 1. By Lemma 4.2, consider ak -» 0+ and uk €

£tf (a,b,eN) such that uk -> u in LKQilR1*) and

f [—W(uk(x)) + akh*(Vuk(x))] dx = K(a,b,eN). (4.3)

d a

Fix k € N and define
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Vk.n(x) :*

Clearly v ^ 6 £0(a,b,eN) and

2ak

if
2ak

if - 15
2ak

f[-W(vk,n(x)) + dx =

• f [-W(vk,n(x)) + en(h~)2(Vvk>n(x))] dx + f [enh2(Vvk,n(x)) - en(h-)^(Vvk.n(x))] dx =:

=: Ii +12 (4.4)

where
In.
2ak

J En
Q1

en(h-)2(Vvk,n(x))] dx =

2ak

1/2

f [—W(uk(x)) + ak(h«)2(Vuk(x))] dx =

-1/2

= f [—W(uk(x)) + akh2(Vuk(x))] dx + J [ak(h-)2(Vuk(x)) - akh2(Vuk(x))] dx =

(4.5)

By (H4), Holder's inequality and (H3)

J ak[(h-)2(Vuk(x)) - h2(Vuk(x))] dx + J ak[(h-)2(Vuk(x)) - h2(Vuk(x))] dx

;Cak + J a k C IIVuk(x)U2mdx

24



J a k IIVuk(x)ll2 dx]1"11172 £
^II>L)

[ JakC + akh
2(Vuk(x)) dx] lm/2 - O(ak) (4.6)

since, by (4.3) { J akh2(Vuk(x)) dx} remains bounded. On the other hand
5

fen |h^Vuk(x-,^XH))-^(h
I £„ £„ En2

En J ak
2 £n

dx

dx

I ^ ( k ( , N ) ) ( )
En J a k

2 £„ £,, En

En
f I ^ h2(^Vuk(x',^xN)) - (h-)2(Vuk(x',^xN)) I dx =: ij + 1̂ . (4.7)

By (H3) and Lemma 2.7 i),

f C [ ^ (1 + II^Vuk(x',^xN)ll2) + IIVuk(x',%<)ll2] dx < C
J Otk2 En En En En£ n J Otk2 En En En En Ctk2

O(En) (4.8)

and, by (H4),

C — f — IIVuk(x',^XN)ll2-m dx ̂  C - ^ - J HVuk(x)U2-m dx =
P . I a k

m En aic"1'1 Q

(4.9)

Hence, by (4.4)-(4.9),
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_ ^ f [-W(vk,n(x)) + enh2(Vvk,n(x))] dx £ f [—W(uk(x)) + akh2(Vuk(x))] dx +

Q J ^ d ttk
lim p n ^ [ ( k , n ( ) ) n ( k , n ( ) )

QJ ^

for all k

and, by definition of K(a,b,eN)

K(a,b,eN) ^lim infn_^ f [-W(vk ,n(x» + e,MVvk,n(x))] dx.

Also,

f !uk(x',^XN) . U(X)I dx = 5!Lf | U k ( x ) . u ( x ) | d x .

Qr\{\xs\<tnf2ak}

Thus, for all k, choose e such that, setting vk := v w , we have— < 1 and

Urn supn_H« f [-W(vk,n(x)) + enh2(Vvk,n(x))] dx = (* [~W(v k (x» + ^h2(Vvk(x))] dx +

Then,

* ullL>(Q;IPp) " "Uk * ""mftOf) ^ 0 as k

and

[—W(vk(x)) + en ih2(Vvk (x))] dx = K(a,b,e N ) .

d £nk

Case 2. We now take Q = ao+ilQ for some ao € [RN and T| > 0 and we define

Setting
, . f b if x.eN > 0uo(x)=( a i f x . C N < o

by case 1, given ^ -* 0+, there exist a subsequence [ E ] and a sequence {v k } in £0(a,b,eN) such

that v k - > uo in L K Q ; ^ ) and

26



-H-f —W(vk(y)) + e iaVvk(y))] dy =

where

Kn(a,b,eN) = inf { f [LW($(x)) + ^ (h~)2(V$(x))] dx : $ € itf (a, b, CN), L > o } .

Note that, due to the homogeneity of h°°,

KT,(a,b,eN) = - in f { f [LTIW(E(X)) + — (h~)2(V£(x))] dx : % e £$(a, b, ts\ L > o ) =

= -K(a,b,eN). (4.10)

Forx€ ao+riQlet

n
Clearly uk 6 #(ao,a,b,eN,Ti),

J luk(x) - u(x)l dx = f lv k (^^) - u(x)l dx = r\" \ lvk(x) - u(ao+Tix)l dx =

= TJN J lvk(x) - uo(x)l dx -> 0 as k -» +00,

and, by (4.10),

-M- f [—W(uk(x)) + enkh2(Vuk(x))]
J n̂

r r 1I—^W(vk

dx =

—^O) + e^ h2(-Vvk(——))\ dx =

[—W(vk(x)) + e h^(Vvk(x))] dx = T]NK^b^eN)« TIN-I K(a,b,eN).

Proof of Proposition 4.1.

Step 1. Assume first that u has planar interface i.e.

u ( x ) J b if(x-«o).v>O
I a if (x-ao).v < 0.
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Without loss of generality, assume that ao = 0 and v = e^. Let Q! = {x € Q : x^ = 0}. In order to

ensure that property (H5) and Proposition 2.8 ii) are satisfied uniformly we will woric on compact

subsets of ii. Fix e > 0 and let Q C C & be such that

HN.^Q'XIV^CXe). (4.11)

Since Q is compact we can find 8 > 0 such that Cl^x [-5/2,8/2] C C Q and (H5) and Proposition

2,8 ii) are satisfied uniformly in Cl^x [-8/2,8/2] i.e.

x,y € *Vx [-5/2,8/2], Ix-yl < 8 =» !h2(x,A) - h2(y,A)l £ eC(l+IIAII2), for all A € MP*N (4.12)

and
x,y € Q£'x [-8/2,8/2], Ix-yl < 8 => |K(x,a,b,v) - K(y,a,b,v)l < eC (l+llallq+llbllq+llb-al|2). (4.13)

We may write

"e^vCai + TiQOuco (4.14)

where HN-I(CO) = O(e), Qif := ai+riQ' are cubes with disjoint interiors, 0 < T| < 8 and

.^(ai + n Q J - u Q i C c f t .

Since dCl is Lipschitz it is possible to pick T| as above and so that

HN-i(proj{xN=0}(nn| lxNl < § } j x u Q / ) =: %_,(?) = O(e). (4.15)

We claim that given any sequence 0Cn -> 0+ there exists a subsequence {(£ } and a sequence {uk}

in HHHjIRP) such that uk -4 u in L K W ) and

l i m k , ^ ! -^-W(uk(x)) + a^hhxyu^x)) dx = f K(x,a,b,eN) dH^^x). (4.16)

By Lemma 4.3 given a sequence On -» 0+ there exist a subsequence {a^} and a sequence{uk
!)}

in #(ai,a,b,eN,Ti) such that uk
!) -»u in LJ(Qi;!Rp) and

- (4.17)

1}}By Lemma 3.2 there exists a subsequence [^) of { a ^ } and a sequence {wk
1}} in H1(Qi;IRp)

such that w£!) —> u in LKQi;^)* w£!)(x) = Y^X—^) for x € dQi (the Vj are mollifications of u)

and

Urn supk^« f [-TTTW(W^1)(X)) + p^^a^Vw^^x) ) ] dx <
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). (4.18)

By Proposition 3.1,

lim infk_^ f [-TTJWCW^CX)) + pSJWi.Vwf }(x))] dx £ T^-I K(ai,a,b,eN)
Q, "

which, together with (4.18), implies

limk_n_ f [-4tW(wk
1)(x)) + p(

k ^ ( a i / F w ^ x ) ) ] dx = T|N-i K(ai,a,b,eN). (4.19)

By Lemma 4.3 there exists a subsequence {ak
2)} of { P ^ } and a sequence {uk } in

&(a2,a,b,eN,"n) such that uk
2) -* u in LKQ ĵlRP) and

limk_H-. f [4^W(uk
2)(x)) + a(

k
2)h2(a2,Vuk

2)(x))] dx «T\N-I K(a2,a,b,eN).

Q2

Once again, by applying Lemma 3.2, we conclude that there is a subsequence {$ } of {ak } and

a sequence {wk
2)} in HUQ2;IR

P) such that wk
2) -> u in L1(Q2;CRP), wk

2)(x) = >fe(2)(^2) for x 6

[•
p(

k
2)h2(a2,Vwk

2)(x))] dx = r\^ K(a2,a,b,eN).

By induction we repeat the above argument in order to obtain subsequences {Pk
p)} C {Pk

p"1J} c

... C {p(
k

2)} C { p ^ } and sequences {w^} in H1(QJ;IRP) such that w ^ ^ u in LHQj;tRp),

i for x 6 dQj and

+ pk
j)h2(aj,Vwk

j)(x))] dx = TI^-I K(aj,a,b,eN)

for j = lf...,p. Consider the sequence {^} and for all j = l,...,p let [^} be the corresponding

subsequence of {w^} such that
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limk_>4~ f [ - ^ W C ^ x ) ) + P(
k

p)h2(aj,V^k
j)(x))] dx «i^N-i K(aj,a,b,eN). (4.20)

Define the sequence u^Cx) as follows,

Uk,e(x) = <

j?<x) if x e Qj

if xN

we have
: O(e) + £ Huk e - ull

L>(Qi.[Rp)

and so,

= 0.

Also,

p(p)h2(x,Vuk,c(x))] dxJ [^)W(uk,E(x)) +

= I f [^W(5?(x)) +

Q

dx

+ I f P(
k
p) [tfCx.VfcPcx)) - h2(ai.V^>(x))] dx +

+ f [-|
J "k

- p(
k

p)h2(x,Vuk.E(x))] dx

+ f p(
k

p) h2(x,0) dx =: h +1 2 + I3 +14,

where, by (4.20),

a if x N < - Ti/2

and i n f Q n j l x N l < y M \ (uQj) we define uktE(x) using the periodicity of {vp^}. Clearly u t E e

;IRP). As II^(P)II«, < const, and since

(( ( t in p \
meas 11 Q n \ lxNl <-^\ )\(uQ i) = O(e)

VV ^ Z J / i=l /
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•|N-i £ K(ai,a,b,eN)

and, since B?} -> 0+,

0.

Also, as u ^ is the periodic extension of vp<p> on (Q n •! Ix^ < y Y J \ (.'

a if x N < P(
k

p)

v

we have, by (4.15),

j) and

-p

As Tj < 6, by (4.12) and (H3),

lim eC dx <

£ fP(
k

p)eC

since by (4.20) { f p(
k

p) h2(ai,V^(
k

i)(x)) dx } remains bounded. Finally, we note that, by (4.11),

(4.13) and (4.14),

J K(x,a,b,eN)dHN^(x)-TI1^"1 VK(aj,a,b,eN)I £
ft1 vT

K(x,a,b,eN)dHN_1(x) + y ' f «K(x,a,b,eN)-K(ai,a,b,eN)ldHN_1(x) =
Qi

so to obtain the desired approximating sequence it suffices to let e -> 0+ and use a diagonalization

procedure.

Step 2. Now suppose that u has polygonal interface i.e. u » j^Aa + (l-XA)b where A C

Q is of the form A = Af n Cl, d*A n SI - 3*Af n Cl with A1 a polyhedral set (i.e. A! is a
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bounded, strongly Lipschitz domain and 3Af = Hi u ... u HM • Hi are closed subsets of
hyperplanes of the type {x e IRN: x.Vi = oq}). Notice that Step 1 corresponds to the case where A*

is a large cube. We claim that for any sequence ^ -» 0+ there exists a subsequence {En1} and a
sequence {un} in HK^IRP) such that un -+ u in LH^;IRP) and

-o f [^WCunCx)) + £nV(x,Vun(x))] dx = J K(x,a,b,v(x)) dHN.i(x). (4.21)

Recall that 3 * A n Q = 3* A1 n Cl = yj (Hi n ft). Let I = { i € {1,...,M} : U^v (H, nCl)> 0}. If

card 1 = 0 then u (x) = a a.e. in £2 or u(x) = b a.e. in Q so it suffices to take e^ = £n and un = u, for

all n. If card 1 = 1 then 9*A n £1 reduces to one planar interface and we are back to Step 1. Using

an induction procedure, assume that the result is true if card I = k ,k^M-l and we prove it is still

true if card I = k. Assume that
d*A n Q = (Hi n 0) u... u (Hk n Q).

Consider S := {x € [RN: dist (x, Hi) = dist (x, H2 u . . . u HM)}. Then S is locally the graph of a

Lipschitz function and for every xo € S there exists e > 0 such that

B(xo,e) n {x : dist (x, Hi) > dist (x, H2 u ... u HM)}

is connected. Also
k k

d*A n f i n S = { x e ( uH;) n Cl: dist ( x ^ ) = dist (x,H2 u ... u HM)> = u (Hj n Hx) n fi
i=l i=2

and so HN-I(9*A n f i n S ) = 0 because HN-i(Hi n Hj) = 0 for i * j . Let
Qi = {x € Q : dist (x,Hi) < dist (x,H2 u ... u HM)}.

Clearly Cl\ is open and Cl\ n (H2 u ... u HK) = 0. Since Cl\ is the intersection of a strongly

Lipschitz domain with Q and dCl is locally Lipschitz it follows that Cl\ is also a strongly Lipschitz

domain. We would like to apply the induction hypothesis to Cl\ and to Cl \ Q\ := Q2- But, although

i i 2 n d*A = (H2 u . . . u HK) n Q consists of p flat interfaces and dQ2 is locally Lipschitz, it may

happen that Q2 is no longer connected. We write
2 u c

where a* are open, connected, strongly Lipschitz domains with ©i n C0j = 0 for i # j. It is easy to
verify that if i * j then <bj n ©j r\ O. = 0. Thus we only need to match the deformations across the

interfaces do)i n dCl\ n Cl. Fix 8 > 0 and let
Us={xe IRN:dist(x,S)<8},

U'5 = {x € 1RN : dist(x,S) < 6, dist (x,Hi) < dist (x^2 u ...

U j • {x e [RN : dist(x,S) < 6, dist (x,Hi) > dist (x,H2 u ... u

As Pern(A) < +«>, choose k = k(6) such that
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X PernO*A n ©0 < 8 (4.22)

and due to Proposition 2.8 i), we can also request that

2 J K(x,a,b,v(x)) dHN-i(x) < 6. (4.23)
fekd

Since Q\ contains only one interface, by Step 1, given any sequence en -» 0+ there exists a

subsequence {^} and a sequence {vn} in HK&i;^) such that vn -»u in LKQiilR1*) and

limn-M- f C-^W(vn(x)) + e(
B

1)h*(xtVvII(x))] dx = J K(x,a,b,v(x)) dHN.i(x).
J JI 1

9*A n coi contains at most M-l flat interfaces so we can use the induction hypothesis to obtain a

subsequence {e£2)} of { E ^ } and a sequence {u^} in HKcô ERP) such that u ^ -» u in L!(G)

and

limn >ioc j [*̂ 2)W(û  \x)) + e(
n ^(x.Vu^ (x))] dx = j K(x,a,b,v(x)) dHN-i(x).

We continue this process inductively in order to obtain subsequences {E^ 1 ^} C ... C {e^

and sequences {u£l)} in HKcOiiIRP) such that u£l) -> u in LKcOijtRP) and

limn_H« f [-^jjWCuJ^x)) + eJ"l'1>h2(x,VuJ>(x))] dx = J K(x,a,b,v(x)) dHN.!(x)

for all i a= l,...k. Consider the sequence {e*+1)} =: (an) and for all i = l,...,k let {^l}} be the

corresponding subsequence of {u^} such that

limn_>«« f [—WC^Cx)) + Onh^x.V^x)) ] dx = J K(x,a,b,v(x)) dHN.!(x) (4.24)

and let {v^!)} be the corresponding subsequence of {vn} such that

limn-H- f I—W(vi1}(x)) + onh2(xtVv<
n

1>(x))] dx = J K(x,a,b,v(x)) dHN.i(x). (4.25)

Define u(x) = XAf(x) a + (l-XAf(x)) b so that the restriction of u to Q is u and let
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wn(.) = - ^ p ( — ) * u .
(On)N On

Notice that wn is bounded in L~ and

HVwnIL = O(—); supp Vwn C {x € IRN : dist (x,L(u)) < On). (4.26)

Since wn -» u and v^ -» u in l^CUg n flijIR1^ we may use the slicing method to connect v^ ' and

wn across Ug n Cl\ (as in the proof of Lemma 3-2 we let M = C(l + 2llu!l^), C = max{c, c measfi}

and c is the constant appearing in (H2) and we divide Ug into kn slices of the form Si = {x e Ug :

ai < dist (x,S) < cti+i} where a i = 0, c^ + 1 « 5 and kn is given by [ ] +1, c n = llv^ ' -

wnllia{ n K>?\)- We obtain a sequence {rin} in H^QijDR11) such that Tin -> u in L^QiiIR1^. Tin ==

wn on dCli n Cl and, by (4.26), (HI), (H2), (H3) and (4.25)

Km SUPn_H« f [—W(Tln(x)) + Onh2(X,VTln(x))] dx <,
J OL

< Urn supn_>+4 f [—W(vJ}(x)) + a n h ^ V v ^ x ) ) ] dx +

+ ' f [—W(wn(x)) + anh2(x,Vwn(x))] dx] <.

J K(x,a,b,v(x)) dHN-i(x) + lim supn-n--—meas{x e Uj n Qx: dist (x,L(u)) < an} =

(4.27)

Similarly, for each i = 1 k, we connect ^ to wn across Ug rs ©i and we obtain sequences (p^

in HHcOiitRP) such that (pf -» u in L1(t0i;IRp), <P? = wn on d©i n ft and
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lim s u i w ^ f [—W«p?(x)) + anh2(x,V9(
n

i)(x))] dx <;

£ J K(x,a,b,v(x)) dHN-i(x) + C Pern(d*A n Ug n OH). (4.28)

Define
k . ~

un(x) := iyx)<p<°(x) + 5^p

Then,

k . ... (

^ X '9n (x) - u(x)l dx + I iTin(x) - u(x)l dx + C 1 meas{x € ©i: dist(x,I(u)) < On) <
i- lj rf! i-k+1

< T f Icpî Cx) - u(x)l dx + I lrin(x) - u(x)l dx + C meas{x € Cl: dist(x,L(u)) < On).
i-lj «i

Hence,
«_

/
'<Pn (x) - u(x)l dx + limn_»+oe J lTjn(x) - u(x)l dx +

C meas{x e Cl: dist(x,L(u)) < 0^} = 0
since L(u) is polyhedral. On the other hand, by (4.26), (HI), (H2) and (H3)

f [—W(un(x)) + anh2(x,Vun(x))] dx < £ f [—W(q>J>(x)) + anh2(x,V(p^(x))] dx +
d an i=1J an

f [—W(Tin(x)) + anh2(x,VTin(x))] dx + £ — meas{x e ©i: dist(x,L(u))
J a n i k i ai-k+ian

£ f [£ f [—W(cp?(x)) + anh2(x,Vq>il
i)(x))] dx + f [—W(Tin(x)) + anh2(x,Vnn(x))] dx +

i=i a n J a n

c °°
+ — meas{x e u 0);: dist (x,L(u)) < OL}.

an i=k-»-l l ^ l

Thus, by (4.22), (4.23), (4.27) and (4.28),
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lim supn_^ f [—W(un(x)) + anh2(x,Vun(x))] dx £ I J K(x,a,b,v(x)) dHN-i(x) +
tf a n >=1(Oina»A

+ C I PernO*A n Ug n ©0 + J K(x,a,b,v(x)) dHN.i(x) + C Perft@*A n U j n QO +
i = 1 d

+ C Pern(d*A n ( u CO:)) ̂
t=k+l

, |K(x,a,b,v(x))dHN.1(x)- £ jK(x,a,b,v(x))dHN-i(x) + CPernO*A nU s ) + O(6)

J K(x,a,b,v(x)) dHN.i(x) + O(5).
a

Hence we proved that for all 8 > 0 there exists a subsequence {(Xn(6)} of (En) and there exists a
sequence (un(5)} such that

i) limn_>+Jlun(8) - UHJ^IRP) = 0;

ii) lim supn_H~ f [-^—W(un(8)(x)) + o»(8)h2(x,Vun(8)(x))] dx

J K(x,a,b,v(x)) dHN.i(x) + O(8).
£lna*A

Let 8 = 1 and choose ni such that

and

H a ^Dh^x.Vu^dKx))] dx < J K(x,a,bfv(x)) dHN.i(x) + 20(1).

Suppose that a (1) = a . Now let 8 = y ̂ ^ choose n2 large enough so that

0^(2) = ^ with j2>ji,

and
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f [——W(u (2)(x)) + a (2)h2(x,Vu (2)(x))] dx < J K(x,a,b,v(x)) dHN-i(x) + 2 0 ( -
J anj(2) n2 "2 "2 nnd*A 2

Continuing this process, we choose n* large enough so that

onk(k) = c^ with jk > jk-i > «. > J2 > j i .

and

nk ^ \ J—W(unk(k)(x)) + c^(k)h*(xA\(k)(x))] dx < J K(x,a,b,v(x)) dHN-i(x) + 2O(j).

Then {o^ (k)) is a subsequence of {an} and defining vk:= i^ (k) we have v k -» u in L!(Q;[RP)

and

Urn s u p k _ ^ f [——W(vk(x)) + an (k)h2(x,Vvk(x))] dx < J K(x,a,b,v(x)) dH^Cx) .

This, together with Proposition 3.1, gives the result.

Step 3. Finally consider an arbitrary u = XA& + O-XA)b with Pern(A) < +<*>. By Theorem

2.6 there exist polyhedral sets A* such that j^ -> XA in L^Q), Pern(Ak) -4 Pern(A) and

meas(Ak) = meas (A). By Step 2 for every k there exist sequences E^ -* 0^ as n -> + oo, and

XA
 a + (i-J^ )b as n -> +oo in such that

• f t - ^ W ^ W ) + e(
n

k)h2(x,VuJ.k)(x))] dx = f K(x,a,b,v(x)) dHN.i(x).

J 4'
Consider n(k) such that

and

I J K(x,a,b,v(x)) dHN.!(x) - | [ - ^ W ( u ^ ( x ) ) + e^h2(x,Vu^(x))] dx

with 0 £ e^ < 1/k. Set vk = u ^ ) and ock * e ^ ; thtn
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vk -» XAa + d-XA)b in
and for every continuous function g: Qx[Rp -» [0,"H») we have

J g(x,v(x)) dHN-i(x) -» J g(x,v(x)) dHN.i(x).
fl d

As K(.,a,b,.) is upper semicontinuous there exist continuous functions gm : Qx[Rp -» [0,-H») such

that

and
K(x,a,b,£) = infm gm(x,%)

for every (x,£) € QxlRp, where we have extended K(x,a,b,.) as a homogeneous function of

degree one (see [FM2], Lemma 2.15 and Step 3, Section 5). Thus for all m

f [—W(vk(x)) + akh2(x,Vvk(x))] dx

J K(x,a,b,v(x)) dHN.i(x) < limsup k_>^ Jgm(x,v(x)) dHN.

Jgm(x,v(x))dHN.i(x).

Taking the limit when m —» +«> and using Lebesguefs Monotone Convergence Theorem we

deduce that

limsupk^o f [—W(vk(x)) + akh*(xfVvk(x))] dx < J K(xfafb,v(x))
J ak

which, by Proposition 3.1 concludes the proof. •

5. A constrained penalized minimization problem.

In this section we assume the following additional hypotheses:

(H6) W € W

(H7) there exist constants a, 5 > 0 such that

llu - all < 8 =* a llu - allq < W(u) <—Ilu - allq

a
and
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llu - Wl < 8 => a Hu - bllq < W(u) < — llu • bllq;
a

(H8) h2(x,.) is quasiconvex for all x € Cl.

In (H8) we could just as well have taken h(x,.) quasiconvex since by Jensen's inequality

the quasiconvexity of h2(x,.) follows trivially.

We consider the following minimization problem:

(Po) minimize

E(u)=f W(u(x))dx
subject to the constraint TZZ: I u(x) dx = m, where m = 6a 4- (l-8)b for some 6 € (0,1).

J meas(Q)jQ

Clearly any piece wise constant function of bounded variation of the form u = XA& + (1 - XA)b with

meas(A) = 8meas(Q) is a solution of (Po), so there exist an infinite number of solutions to this

problem. In order to single out one of them, and keeping in mind that the Wulff set is the preferred

shape for some types of materials for which the surface energy density is anisotropic (see [Fo],

[FM3], [Tl], [T2], [W]), we consider the family of anisotropic singular perturbations

Ec(u) = J [W(u(x» + e2h2(x,Vu(x))] dx

and the corresponding minimization problems

(PJ minimize E£(u) on i u € H!(Q;[RP) : —-1 u(x) dx = ml .
E 1 meas(Q)Jn J

Since h2 is quasiconvex, the growth conditions on W and h guarantee the existence of a minimizer

u£ of E£, by direct methods of the Calculus of Variations. We show that the solutions u£ of (P£)

select the solution of (Po) which minimizes the integral over the interface Q n 9*{u=a} of the

surface energy density, namely:

Theorem 5.1. Assume hypotheses (H1)-(H7) hold and let {un} be a sequence of

minimizers of E converging to uo in LKftlRfy Then uo is a solution of the problem:

(P) minimize Jan3*,u=a)K(x,a,b,v(x)) dHN.i(x) =: J0(u) on

V:= { u € BV(Q;DRP), u € {a,b} a.e.: ^ f u(x) dx = m l .
[ measui) JQ J

Proof. We follow the proof of Fonseca and Tartar [FT]. We assume that Cl = Q and that h
and K are independent of x. Since all subsequent constructions were based on this one it is easy to
see that the theorem remains valid in the general case.
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Step J. We begin by showing that there exists a constant C > 0 such that J (un) < C for

sufficiently large n. Indeed, let y be a smooth function with compact support that satisfies y(-l) =

0,7(1) = 1 and 0 £ y £ 1. Define

a i f x N > T ] n + en

wn(x)=i i f , x .

b

where Tin is chosen so that

m e a s ( { x € Q : x N > % + £„})+ fy(* N ' ^ d x = 6.
J ^

{xeQilxN-T^kc,,}

It follows that wn € H!(Q;IRP) and j wn(x) dx = m so by (H3) we have
JQ

h ("n> ̂  h K , ) ̂  T" f W(wn(x)) dx + £„ f C (1 + IIVwn(x)ll2) dx ̂
enJixeQilxN-^kE,,} JQ

£ const. max{W(v): v € [a,b]} + EnC + — f ly <(XN ' ^")|2 ||a . b||2 d x <
en J £„

^ const. [max{W(v): v € [a,b]} + 1 + lly *l£ Ha - bll2],

where [a,b] denotes the line segment joining a and b.
Step 2. By Step 1 and Proposition 3.1 it follows that uo e V and

lim infn-^J 0 0 ^ Jo(uo). (5.1)

Let u € V. It suffices to show that there exists a sequence en -» 0+ and a sequence {vn} in

H1(Q;IRP) such that vn -» u in L2(Q;IRP), l imn.^p (vn) = J0(u) and | vn(x) dx = m. Then, by
JQ

(5.1) and since un is a minimizer of E , we have

J0(u) = limn_»+J. (v,01 lim s u p , , . ^ (u,0 ^ Jo(uo)

and thus uo is a solution of (P). To prove the existence of {vn} we modify the sequence {wn}

constructed in the proof of Step 1 of Lemma 4.2 to obtain a new sequence satisfying

Hmn_^J£ft(vn) = limn_>+_J£B(wn) and J vn(x) dx = m.

Let Ln > 0 and £n € si (a,b,eN> be such that
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, defined

wg(x) = ̂ vJ(x',xN) = -

n(x))

b

Ux
. a

* 8

|2(V^n(x

if

if

if

))]dx

XN >

-8/2

XN <

= K(a

8/2

^ X N

-8/2.

8/2

We showed in Lemma 4.2 that

and

(5.2)

dx = J [L»W(Ux))

+ const.?— + const.(T-)m/2.

dx +

Letwg=ws + m - f wg(x)dx.Then f wg(x)dx = mand w5-4uinLJ(Q;IRP) as8->0 + . We
JQ JQ

claim that, for n fixed, 1- (Wg) = 1 (Wg) + O(8). Indeed, since Vw£(x) = Vwg(x),

'^[W(wJ(x))-W(wJ(x))]dx

where ,

^ W(a + m - JwJ(x) dx) dx + ^ W(b + m - JwJ(x) dx) dx +

^ [W(wJ(x) + m - JwJ(x) dx) - W(wJ(x))] dx.

Qn{|xNl<5/2}
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By (H7) and (5.2),

W(a + m - dx) dx £ ^ I f u(x) - w"(x) dxlq = O(8),

Qn{xN<-S/2}

^ W(b + m - Jw£(x) dx) dx £ ^ if u(x) - Wg(x) dxl'' = O(6),

Qn{xN>8/2)

and by (H6) and (5.2),

I Y [W(wg(x) + m - Jwg(x) dx) - W(wJ(x))] dxl £

Qn{|xNk5/2}

8
const.^ameas({x € Q : lxNl < 8/2}) I f u(x) - wj(x) dxl = O(8).

Choose 8(n) such that 8(n) -» 0+, -^ -» 0+, IIw" , - ull., -4 0 and

if dx - dxl < i

v n = fco and £„ = ^. Then ^ -4 0+, vn -4 u in L!(Q;IRP), f vn(x) dx = m and

(vn) = l im n _^ f [-W(vn(x)) + £nh2(Vvn(x))] dx =

n_H~ f dx

= K(a,b,eN) = f K(a,b,eN) dHN_j(x) = J0(u).
jQnfxusO}

Final Comments: In the isotropic case with no explicit dependence on x, i.e. h(Vu) = IIVull, it was

shown in [FT] that
K(a,b",v) = K
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where

K « 2 inf { fv\V(g(s)) h~(g\s)) ds : g is piecewise C1, g( - l )« a, g(l) = b } .

The same result was proved by [OS] in the anisotropic scalar case. We conjecture that, in general,
in the anisotropic case K > K.
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