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Abstract. We obtain the r (L*(Q)) - limit of the sequence
1
Iz(u)=;Eg(u)

where E; is the family of anisotropic perturbations
Ee(u) := ] W(u(x)) dx + & J h*(x.Vu(x)) dx
of the nonconvex functional of vector-valued functions
Eq(u) = ‘! W(u(x)) dx.

The proof relies on the blow-up argument introduced by Fonseca and Mdiller [FMI].
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1. Introduction.

In this paper we obtain the I'(L1(2)) - limit of a family of anisotropic singular perturbations
of a nonconvex functional in the vector-valued case. The study of this problem was motivated by
the analysis of variational problems for phase transitions.

We consider the nonconvex energy

EQu) = JW(u(x)) dx (1.1)
Q

where Q is an open, bounded, strongly Lipschitz domain of R, u : Q — [RP and W supports two
phases. The problem
(P) minimize E(.) subject to the constraint

1
meas(Q) lu(x) dx = m, where m = 6a + (1-8)b for some 6 € (0,1) (1.2)

has infinitely many solutions which are piecewise constant functions of bounded variation, u =
xa2 + (1- xa)b with meas(A) = Bmeas(£2). In order to determine a selection criterion for resolving

this non-uniqueness one studies the properties of the limits of sequences of minimizers for the
quasiconvex perturbed problems

Ec(u) = d[[W(u(x)) + £2h2(x,Vu(x))] dx (1.3)

where the relevant notion of convergence in this context is I'-convergence as introduced by De
Giorgi [DG] (see [At], [DM], [DD] for more recent expositions). Hence we are lead to the problem
of identifying the I'(L1(Q2)) - limit of the rescaled energies
Je(w) := L Ec(w).
€
We show that if W satisfies a certain growth condition and attains the minimum value of zero at

exactly two pointsa and b and ifh groWs at most linearly in the last argument and satisfies some
technical continuity conditions (see Section 2) then the I'(L1(Q)) - limit of J¢(.) is given by

Jo(w) ={ jw.w___all((x,a,b.v(x)) dHy,(x) ifue {a,b} ac.,ue BV
+o00 otherwise
where v(x) is the normal to the interface Q0* {u=a},

K(x, 2,b, vex)) s=inf { [ [LW(E(y) + {0n=)20VEG))] dy : £ € 2(a, b,v00), L >0},
b, .

(a,b,v) = {£ e H(Q\;RP) : E(y) =aif y.v=-1/2,k(y) = bif y.v = 1/2, and £ is periodic
with period one in the directions of v,,...,Vx, },



{V1,...,VN-1,v} forms an orthonormal basis of R¥, Q, is the open unit cube centered at the origin

with two of its faces normal to v and the recession function h* is given by (see [FM2])
h=(x,A) := lim sup_y. o)

We will also show that a sequence of minimizers of (1.3) will single out the solution of (P)
for which

Jorst o K2V €y )

is a minimum, recovering the Wulff shape as the preferred equilibrium configuration (see [Fo],
[FM3], [T1], [T2], [W]). |

As remarked by Gurtin [G2], the assumption that W has two potential wells of equal depth
involves no loss of generality; indeed, because of the constraint (1.2) we can always add an affine
function of u to the integrand in (1.1) without changing the solution set of (P).

In the isotropic scalar case, i.e. if u: Q — R and h = ILll, the I'(L1(2)) - limit of J¢(.),

Jo()), was studied by Gurtin [G1], [G2] and Modica [Mo] who showed that
Jo(u) := in{un] {lim infn_H.,‘! f(x,un(x),Vun(x)) dx : up € WLY(Q;R), u, = uin L! }

where f(x,u,A) = 2Y¥W(u) h(A). This result was generalized by Owen and Sternberg [OS] to
anisotropic functions h with linear growth for which h2is convex. The isotropic vector valued
case, i.e. if u: Q — RP (p>1) and h = ILIl, was studied by Kohn and Sternberg [KS], by
Sternberg [S] and by Fonseca and Tartar [FT] who obtained the representation

| K Perq({u=a}) if u(x) € {a,b} a.e.
Jo(w) '-{ +o0 otherwise

where
1

K =2inf { !\/W(g(s)) Ig'(s)t ds : g is piecewise C!, g(-1) = a, g(1) = b}.

The paper is organized as follows; in Section 2 we mention some results on functions of
bounded variation and sets of finite perimeter and state the theorem characterizing the I - limit of
the functionals J¢ (see Theorem 2.9). In Section 3 we obtain a lower bound for the I - limit and in
Section 4 we conclude the proof of Theorem 2.9 by constructing sequences u, € HI((Q;RP) and g,
— 0+ such that

l_imn—-»oojsn(un) = Jo(u).
The results of Sections 3 and 4 rely on a lemma (cf. Lemma 3.2) which allows us to modify a
sequence near the boundary without increasing its total energy. In Section 5 we show that the I'-
limit of a sequence of minimizers of (1.3) selects the solution of (P) which minimizes the integral
over the interface of the surface energy density.



2. Preliminaries. Statement of the Theorem.

In what follows QC R" is an open, bounded, strongly Lipschitz domain, p, N 21,
{ej,....ex) is the standard orthonormal basis of RN and MPxN is the vector space of all pxN real

matrices. If A € MPN et llAll := (t(ATA))12,
Givenv e SN-! =(xe RN : lxll = 1} we denote by Qy the open unit cube centered at the

origin with two of its faces normal to v, i.¢. if {V;,...,vx..V} is an orthonormal basis of R" then

Qv:={xe R¥ :Ix.vil<%, Ix.vl <%, i=1,.,N-1}.

Definitioﬁ 2.1.([DG)) Jo(.) is the ITL!(£2)) - limit of the sequence Jg(.) if and only if
i) given any u € L1(Q;[RP) and any sequence ug such that ug = u in L1(Q;RP)

Jo(u) £ lim infe_,0* Je(ug);
ii) given any u € L1(£2;[RP) there exists a sequence ug — u in L1(Q;[RP) such that

Jo(u) = limg_y0* Je(ug).

We recall briefly some facts on functions of bounded variation and sets of finite perimeter
which will be of later use in this paper. For more details we refer the reader to Evans and Gariepy
[EG], Federer [F], Giusti [G] and Ziemer [Z].

' Definition 2.2. A function u € L1(£;[RP) is said to be of bounded variation, u €
BV(;RP), if for alli € {1,...,p},j € {1.....N] there exists a Radon measure p;; such that

L)
nf i ()ge00) dx = - fooodu;
for every ¢ € C(l,(Q). The distributional derivative Du is the matrix-valued measure with

components L;;.

Definition 2.3. A set ACQ is said to be of finite perimeter in Q if yo € BV(Q), where
%A denotes the characteristic function of A. The perimeter of A in £2 is defined by

Perg(A) := sup { A[divcp(x) dx : ¢ € CHQRY), gl < 1). @.1)



The approximate upper and lower limit of each component u*, for all i € {l,...,p), are
given by .
uF(x) ;= inf {t € IR : limgo*"" i2y[{ui >t) n B(x,e)] * O}
e" |
and 1
UT() :=sup {t€ IR : limg >0* . «*N[{Ul <t} nB(x,e)] «0}
e
where B(x,e) isthe open ball centered at x and with radiuse. The set X(u) is called thesingular set
ofu or jump set and is defined as P

Ku):ui={1x€Q:uT(x)<uf(x)}.

It iswell known that £(u) is N-1 rectifiable, i.e.
X(u)="tK ,uE
whereHM.JCE) = 0 and K, is a compact subset of a C* hypersurface.

Theorem 2.4. If u e BV(£2[R") then for Hy.! ae x € X(u) there exists a unit vector
v(x) € SV, normal to £(u) atx, and there exist vectors u~(x), u+(x) € [R° such that

limgvo+ - I u(y) - u+eINC-D dy = 0,
N YEB(E) (yX)V(XI>0)
limeno” - 3 Ju(y) - u-GININ-) gy = o

M {yEB(X.E):(yX)-v(x)<0}

We note that it may happen that ul* (X) * (US(X))i.
If u, € BVCQItRP) convergesto u in LKQjtRP) then

IDUl (Q) < Urn inf,-" 1DuJ (Q) (2.2
where IDul denotesthetotal variation measure of Du. If u € BV(Q;[R") then Du may be represented

as .

Du=Vudx + (u+t-u)®vdHn![I(u) + C(u) (2.3)
where Vu is the dendty of the absolutely continuous part of Du with respect to the N dimensional
L ebesgue measure £y and Hy.i isthe N-1 dimensonal Hausdor ff measure. The three measures in

(2.3) aremutually singular, if Hy.!(B) < +<» then IC(U)l =0 and thereexists aBond st E such that
J£ (E) =0 and IC(u)I(B) = IC(u)l(BNnE) for all Bord sets BC D=I! The following version of the

Besicovitch Differentiation Theorem was proven by Ambroso and Dal Maso, [ADM] Proposition
2.2. '



Theorem 2.5. If A and p are Radon measures in Q, p 2 0, then there exists a Borel set E

C Q such that u(E) = 0 and for every x € (supp k) \E

dA x) := lim L AMx+£C)
dp &0 p(x+eC)

exists and is finite whenever C is a bounded, convex, open set containing the origin.

Theorem 2.6. Let A be a subset of Q such that Perg(A) < +ee. There exists a sequence
of polyhedral sets {Ay} (i.e. Ay are bounded, strongly Lipschitz domains with Ay =H; UH; U
... U Hp where each H; is a closed subset of a hyperplane {x € RN : x.v; = 0;}) satisfying the
following properties: '
i) Znl((Ax N QNA) U (ANAR N Q)] = 0 as k — +oo;
ii) Perq(Ax) — Perq(A) as k — +os;
iii) Hx (0Ax N 0Q) = 0;
iv) Zn(A) = £n(A).

It can be shown that (see [FM2], Lemma 2.6) if Perq(A) < +oc then for Hy.j a.e.x€ QN

o0*A
1im5_,0+8;_1 Hn.1((Q A 9*A) A (x+5Qvex)) = 1. 2.4)
Let W : RP — [0, 4+<<) and h : Q x MPXN — [0, +e0) be continuous functions satisfying the
following hypotheses:

(H1) W()=0ifand onlyifue {ab};
(H2) there exist constants c,, ¢ > 0 such that
¢, llulf- c < W(u) <c (1+ llull9)
for all u € RP and for some q 2 2;
(H3) there exist constants C,, C > 0 such that
C llAll- C<h(x, A) <C (1 +11All)
for all x € Q and for all A € MPXN,
Let h=: Q x MPXN — [0, +oo) be the recession function, i.e.

h*=(x, A) := lim supl.*,,.,ﬁ";;").

In addition to (H1)-(H3) we will also need the following hypotheses:
(H4) thereexist0<m<2,C,L >0 such that ‘
2 2-
| (2, A) DA ¢ o MAET

for all (x, A) € Q x MPXN and for all t > 0 such that t Al > L;
(HS) for all xg e  and for all € > 0 there exists a 8 > 0 such that



I h2(xg, A) - h3(x A) | <€ C (1 +11AlI2)
whenever Ix -xgl < 8.
It is an easy consequence of the definition of recession function that

Lemma 2.7. Under the hypotheses (H3) and (H5) the following hold:
i) C, Al £ h=(x, A) < ClIAll, for every (x, A) € Q x MPXN ;
ii) For all xg € Q and for all € > 0 there exists a § > 0 such that
I (h=)2(xg, A) - (h=)2(x, A) | <€ CIIAII2
whenever Ix -xgl < 6.

Let (a, b, v) € RP x RPx SN-1, Jet {v,,...,Vn.;» V} form an orthonormal basis of RN and

define the class of admissible functions
d(a,b,v):={Ee H(Qy;RP): E(y)=aifyv=-1/2,E(y)=bif yv=1/2,and § is
periodic with period one in the directions of v,,...,Vn.1},
where the boundary values of £ are understood in the sense of traces. A function € is said to be
periodic with period one in the direction of v; if

E(y) =&y + kv)
forallke Z,ye€ Q..
Our surface energy density K : Q x RP x RP x SN-1 — [0, +0) is defined by

K(x, 2, b, v) := inf { ﬁLW(g(y)) + Th=2x VE)] dy : E € 24(a, b, V), L>0]}.

We examine some continuity properties of K. In what follows C denotes a generic

constant.

Proposition 2.8. Under the hypotheses (H2), (H3) and (HS5) we have:
i) 0 S K(x, a, b, v) £ C (1 + llall + lIbll? + lib-ali2) for all (x, a, b, v) € Q x RP x [RPx SN-1;

ii) For all xg € Q and for all € > 0 there exists a & > 0 such that Ix - xgl < 8 implies
IK(x, a, b, V) - K(xq, &, b, V)l <€C (1 + llall? + libll? + lIb-all2).

Proof. We follow here the proof of Fonseca and Rybka [FR]
i) Fix (x, a, b, v) € Q x [RP x RPx SN-1 and let
a+b

E)=0b-a)Fyv)+—5-
Clearly £ € £4(a, b, V) so, by (H2) and Lemma 2.7 i),



0<K@xabv)s [[LWEG) + [=xVEQ] dy <

< f[LC(1+n§(y)u‘1) + % IIVE(y)II2] dy < const. (1 + llall3 + IblI% + lib-ali2),

since IE(y)Il S lb - all + Zilb + all S lall + bl

ii) Fix xoe Q and £ > 0. By Lemma 2.7 ii) choose & > 0 such that Ix - xq! < 8 implies
I (h=)2(xo, A) - (h=)2(x, A) | <€ CIIAI2,
For alln € N choose &, € &(a, b, v), Ly > 0 such that

[ILaW (Eaty)) + -0=2(x0,9Eay)] Ay < Ko, 3, b, V) + 1
Q

By Lemma 2.7 i) it follows that
= € e IR dy < f—<h~)2(xo.V§n(y)) dy < K(x0, 3, b, V) + =

and so

f-ﬁ:llVﬁn(y)llz dy s—xo. a’cb’ V) * 1 const. (1+ lall® + bl + lib-all),

Hence, if Ix - xgl < J, by (2.5) we have

(2.5)

K(x, a, b, v) - K(xg, a, b, V) £ fﬁ—n(h“)z(x,VQn(y)) dy - ff:-(h“)’(xO,Vén(y)) dy + %S
Q Q '

s @fil; I(h=)2(x,VEn(¥)) - (h=)2(x0.VEn(y))I dy + ;ll-s

< f ﬁ eC IIVEL (2 dy + % <eC (1 + llall? + libll9 + Hib-ali2) + %

Letn—eoto obtam
K(x,a, b, V) - K(xo, a,b,v)SeC(1+1al?+ llbllq+ lIb-all2).
In a similar way we obtain

K(xo, a, b, V) - K(x,a,b,v) SeC (1 + llall? + bl + lb-ali2). W

The main result of this paper is the following

Theorem 2.9. Let (H1)-(HS) hold and let



Je(u) = f [l—W(u(x)) + eh2(x,Vu(x))] dx.
(9]

Then the I'(L1(£2))-limit of the sequence J¢(.) is given by

Jo(u) ={ jw.‘mll((x,a,b,v(x)) dHx.,(x) ifue {a,b}ae.,ue BV
+o00 otherwise

We divide the proof of Theorem 2.9 into two parts. The first part, corresponding to item i)
of Definition 2.1, will be shown in Section 3 and the second part is proven in Section 4.

3. A lower bound for the I' - limit.
In this section we prove that the I'(L1(2)) - limit of J¢(.) is bounded below by Jo(.).

Proposition 3.1. Let (H1)-(H5) hold and let u € L1(Q;RP) be given. If e,—0* and if u,
€ H1(Q;[RP) is such that u, = u in L1(Q;[RP) then

lim inf, .. J [iW(u,,(x)) + £5h2(x, Vup(x))] dx 2 Jo(u).
Q

The proof relies on the following lemma which allows us to modify a sequence near the .
boundary without increasing its total energy.

Lemma 3.2. Assume that (H1), (H2) and (H3) hold and let

[ b ifyv(x)>0
“°(Y)’{ a if y.v(x) < 0.

Let p be a symmetric mollifier and set v, = R/e *ugy where Pue x) = (—I—)Np(—’s-) and {e,}is a
. B o & &

sequence of real numbers such that €, — 0*. If {uy,} is a sequence in H!(Qy ;RP) converging in

L1(Qy;[RP) to ug then there exists a subsequence {&;‘k} and a sequence {wy} in H}(Qy ;RP) such

that wy = ugin L}(Qy;[RP), wy = Y, o0 oQy and



lim Supgasee f [LW(Wi(Y)) + Ah2(y.Fwily)] dy <
Q\} A
Slim infy_« T [-W(Ualys + enh2(y.Vun(y))] dy.

Proof. Step 1. Assume, without loss of generality, that

*im afnaie £ [AW(UNY)) + @20y Vun(y))] dy =
Qv 7

= limaese f [-W(U(Y)) + &2y VUn(y))] dy < +~. (3.)
.
We begin by showing that u, -> uo in LQ,;IR). Indeed, after extracting a subsequence, we have

un(y) -* «o(y) ae. and by (3.1),
J WfonCy)) dy = EnJ *-W(un(y)) dy-* 0asn->+00.
% 3

By (H2),
Hun(y)-uo(y)II*"*C(W (un(y)) + 1)
and so by Fatou's Lemma,

f Cdy=f Uminfn.AjC (WACy)) + 1) - HIG) - Uo)llY] dy <

< lim infn_"[JQvC WAY)) dy + JJ.. Cdy - Ja, UuCy) - ugy)ll* d)jl

Therefore,

lim supn_H« JHun(y) - uo(y)ll% dy = 0.
Q

Also, as q £ 2, we conclude that u, -» uo in L3(Qv;[RP) as n -> +<».
Step 2. For simplicity assume that v = ey and denote Qv = Q. Notice that

* bi fYN>B|
W=-1 ¥
Il a ifyy <- e
and : -
vy e sA(ab,ey), 11VVIL = Od/e,,) and suppVv, C {Iynl < £,}. (3.2

Also v, -4 uo in L*(Q[RP). Let Tn = Q\OnQ where 0 = (1 - llu, - VoIl I3 YN so that



meas Ty, = llu, - v,,llzw — 0asn— +oo,
LetM=c(1+ 2Iluollg) where c is the constant appearing in the growth condition of W and define
2M
EnVllug - vyliz

) meas T, L R n n n
k,, slices of measure 5 T,,=jt{sj and S;' are of the form A;;; Q\Aj Q where 0<Aj' < 1,

k,e Z*ask,=[ ] + 1, where [y] denotes the integer part of y. We divide Ty, into

Al= 0, and )u“knﬂ = 1. Consider a family of smooth cut—off functions ¢ € Cg (0,Q U kLiJl S} ) such
-1 . k

that0< <1, ¢=1on,QuU S Sy and V]l = O(-—"T,3 for j = 1,...k,. Using these
k=1 lhy,=vylh

functions (p;‘ we will consider convex combinations of u, with v, across the slices S;'. We claim

that there exists m € N such that, for all n > m there exists j € {1,....kn} such that

j [ iW(cg.‘%y)un(yMl-cp;’<y»vn(y)) + enh2(y, 9] (") (Vun(y)-Vva(y)+Vvn(y)+

n
5

+ (Un(y)-Va(Y))®V @ (y)] dy < Vilup - valla. 33)

Assuming (3.3) holds, for each n > m we obtain a slice S® e {S}1 tj=1,...ky}, S = S;‘(n)- such
that, setting

vp ify e B

= (ﬂ) - (n) =
wr(y) = 0™(y)un(y) + (1 - 9™ (y))va(y)) {Un ifye A(M

k,
where B = U S and AP = Q\B™ U S™), then
Fin)+1

My e f (W (un(y)) + £nh2(y, Vua(y))] dy 2
3 €n
lim suppsse | [~ W(un(y)) + Enh2(y,Vun(y))] dy =
A®) '

= lim SUPp—ysee] f [éW(wn(y)Henh’(y,an(y))] dy - [-l-W(vn(y))+snh2(y,an(y))] dy
Q B®

- J [ean(cp“')(y)un(y)ﬂl-<p<")(y))Vn(Y)) + Eqh2(y, 0™ (y)(Vup(y)-Vvp(y)+Vvn(y)+
0

10



+(un(y)-va())®VoRy))] dy].

By (3.3) and Step 1 the last term is bounded by Viluy, - voll; which goes to zero as n—+00. We
show that the second term also goes to zero. Indeed, by (H1), (H2), (H3), (3.2) and since {vn} is

bounded in L= we have
J [éW(vn(y)) + €xh2(y,Vvy(y))] dy SJ [iW(vn(y)) + €ph2(y,Vva(y))] dy < X
B® ' 4

[,
< — Cd
En T~ liyyi<e,} Y
< C[2(measT)N-DN 4+ g measTy] — 0 as n — +oo.
Hence,

liMMp s Qf [E“wwn(y)) + eah2(y,Vua(y))] dy 2

2 lim supn_n..f [iW(Wn(y)) + Enh2(y,VWn(y))] dy.
Q

On the other hand,

+I¥ £ C Ile,,(y)ll2 dy + L Ceydy<
o ltyniee,} n

limn_H,.JQllwn(y) -yl dy = lim_, . [Lw hu,(y) —up(y)il dy + Lw Iva(y) = up(y)ii dy +

+ ] d[) Hp®(y)un(y) + (1-9™(y))Va(y) - uo(y)ll dy] <

S limpyie| ({ llun(y) - ug(y)ll dy + 4 llva(y) - ug(y)ll dy] = 0
since u, = ug and v, = upin L1(Q;[RP).
Step 3. It remains to show (3.3). We begin by proving that
lim spp,,_,*.,.}::“l J WO Yua+(1-9/(y))Vay) dy < M.
s '
Indeed, by (H2) and since u, — up and v, —-) upin LYQ;RP)

k,
tim 0Py 3 f W@ @)ua)+1-¢]¢)valy)) dy <

5

< 1im suPniee [ CCAHIQ IUa(Y)+(1-9] ¢)IVa(IY dy <

11

(3.4)



< 1im SUPp—s e JC(l+llun(y)llq+llv,,(y)llq) dy < C(1+2lugl?) = M.

To show (3.3) we argue by contradiction. If (3.3) were false then for all me N there would exist
n > msuch that for all j e (1,....k,)}

J [ éW(qF'(y>un(y>+<1-<p;‘<y»vn<y» + Eah2(y, 0¥ (Vun(y)-Vva )1+ Vva(y)+
S )

+HUny)-Va)NOVE D] dy > Vg - vallp.

Then by (H3), for this subsequence

f W@ ua)+1-9¢))Valy)) dy > e VTag - Vallz -
st

J

— &2 (h2(y,0M)(Vun(y)-V¥a(y)+VVa()+un(y)-vay)@VQI ) dy 2

S;

2 epVilug - vollp - CsnzrneasS_'il - Cep? jIqu,,(y)llz dy - C g2 Jllen(y)llz dy -

n n
5j 5

€n?kn?
- C—E s [llug(y)-va(y)li2dy .
“Un - Vnnz sn
J

Summing the above inequality from j = 1 to j = k, we obtain

ky

2 f WO )uny)+(1-¢'(y))va(y)) dy 2
F n

§;

> ky, € VITog - Vol - Cen2measTy - C e,.zJ IVug(y)i2dy - C e,,21j IVva(y)li2 dy -
n n
- Clenknllug-vnl2P12,

By choice of kp,
ky, €n Vi, - vyoll; 2 2M

and
C [Enkn llun - vallZ®]2 < C [2M llug - valh"® + €5 llug - vall2>)2 = 0 as n = +oo

12



and by properties of v,

C 2\ Vv ()l dy £ C g -

TaNlynies)

dy = Ce*measTn)*-H)" -» 0 as n — +ee.

Therefore, since Enj HVu,(y)H?dy is bounded, it follows that
Y3

K
Un SUIOW‘O_ll JfW(9]'(y)un(y)+(I.(p;(y))v”(y)) dy * 2M
F n

§;

contradicting (3.4). .

Proof of Proposition 3.1. Step 1. We begin by proving the propostion in the case where u
= XA00a+(I-3CA00)b "~ h Per”(A) = +©a As Jo(u) = 48D it suffices to show that for any sequence .
£n -» 0+ and for any u, e H'(*;tRP) such that u, -» u in LKQ;[R") we have

J [iN(un(x)) + eh2(,Vua())] dx -4 +0o.

We argue by contradiction. Suppose that there exists a subsequence (WhICh we continue to denote
by En and u, for convenience) such that

J [*W (un(x)) + Enh2(x,Vun(Xx))] dx £ const,
n n
Then, by the growth condition on h, we have

lf [—lW(un(x)) + EnClIVu,(X)I|2] dx " const.

which, by the Cauchy-Schwartz inequality, implies

JVW U, (X)) 'Vu(x)ll dx ~ congt. (3.5)
Let
f(r) := infiuris VWD),
where '
atb
iz

If we st
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ro:=|%P-l,

then by (H2) there exists r) > rp such that

r
[ dr > 5
ro

where 1
K =2inf { J\/V_VTg(T)) Ig(s)! ds : g is piecewise C!, g(-1) = a, g(1) = b .
Let -
Mi=max o, YW@
and deﬁpe 1
o(v) :=inf { JT(y(s)) Ily'(s)lf ds : vy is a piecewise C!, y(-1) = a, y(1) = v}
where

T(u) := min { VW(),M]}.
This function was studied by Fonseca and Tartar [FT] where they showed that
i) @: [RP — [0, +oo) is a Lipschitz function

i) if u e H1(€;[RP) then @ou € HI(Q;RP) and IV(@ou)(x)ll £ VW(u(x)) IVux)ll a.e. x €

Q.
Hence, since @ou, = Qou = (1-xa)@(b) in L1 strong, from the lower semicontinuity formula (2.2),

ii) and (3.5) we have

@(b)Perg(A) = ID(1-x2)e(b)! () < lim infn_,.,JllV(cpoun)(x)ll dx < const.

contradicting the fact that Perq(A) = +oe.
Step 2. We now turn to the case where u = ya(x)a+(1-xa(x))b with Perq(A) < +co.

Assume, without loss of generality, that

Lim infp—. f (LW (un(x))+£5h2(x, Vun(x))Jdx = limp e f[—l-W(un(X))+enh2(x,Vun(X))]dx < oo,
Q En 9] En

We must show that

iy [ [2W(00) + €0 Vur)] dr 2 | K(x,8,b,v(x)) dHya(x). (3.6)
G €n QN3°A

14



Using the blow up method introduced by Fonseca and Miiller [FM1] we reduce the problem to
verifying the pointwise inequality (3.8) below. As the integrands éW(un(x))mnhz(x,Vun(x))

form a sequence of nonnegative functions bounded in L! there exists a subsequence (still denoted
by &, and u, ) and a nonnegative Radon measure p such that

i—wcun(.)) + €-h2(,Vu,(.)) — p weakly * in the sense of measures
ie. forall p € Co(Q)

J 0(x) [2W(un(x)) + £ah2(x,Vua(x))] dx = J(pdu asn— 4w, (3.7)
g €n
Using the Radon-Nikodym theorem we may write {4 as a sum of two mutually singular
nonnegative measures U = B,Hy | (2 N 0°A) + Y. We claim that

Ha(X0) 2 K(x0,a,b,v(x0)) for Hy, a.e. xp € Q N d*A. (3.8)
Assuming that (3.8) holds we consider an increasing sequence of smooth cut-off functions, @y €
Co(Q2), with 0 < @x < 1 and supy Qx(x) = 1 in Q and we obtain

lifMp e f [LW(un(x)) + Eah2(x, Vun(x))] dx 2
€n
Q
. 1 2
2 limp e fwx) (W (ua(3)) + eah2(x,Vugx)] dx = J(pk(x)du(x))z
9]

2 Jcpk(x)u.(x) dHu QN 3"A)0) 2 [ @)K (x,8,b,v(x)) dHy. ().
Q~d"A

Letting k — +o0 and using the Monotone Convergence Theorem we conclude (3.6).
Step 3. It remains to show inequality (3.8). By Theorems 2.4 and 2.5 for Hy,a.e. x € Q
N 0°A we have

i) limgo* [ty -bidy = 0
N {ye B(x,5):(y-x).v(x)>0}

limps0* o -atdy = 0
N {ye B(x,8):(y-x).v(x)<0}

and

H(x+5Qwv(x))

Hy L (@9 A)(x+8Qu(xy)

ii) Ha(x) = limg_,0°

15



Choose a point x € Q M 9*A such that i) and ii) hold. Let 0 <1 < 1 and let ¢ € C;(Qu(x)) be such
that 0 <@ <1 and @ = 1 on NQy(x). Using ii) and (2.4) we have

Ha(x) 2 lim supg_s0 —(ﬁg-"‘-’-z lim sups0* =3 L f q>(L) du(y) =
x+8Q\,(
oL limg e f O(XZ) [LW(un(y)) + eah2(y, Vun(y)] dy =
N1 8 en T

X+5Qv(‘)

= lim sups—0* & limp_y4ee f o(y) [—W(un(X+8y)) + Eph2(x+8y,Vun(x+3y))] dy 2
Qv

2 lim supg_,0* & lim Sup;—y4eo f [éW(un(x+8y)) + e,h2(x+8y,Vu(x+8y))] dy. (3.9)
nQv(x)

Let
b ify.v(x)>0
w = un(x+8y), =
n,6(y) = Un(X+03y), uo(y) { a ify.v(x) <O0.
Note that, since u, = u in L! and by i), we have

limg_,0* limp4ee Il Wy 5 - U "Ll(va) =

= limg_0* limn_H..,[ fllun(x+5y) -blidy + _‘.llun(x+8y) - all dy] =
_ Qv {y:yv(x)>0} Qv ly:y-v(x)<0}
= limgo*[ [ a(x+8y) - bll dy + [iu(x+8y) - all ay] = 0.
QumNly:y.v(x)>0} Qv iy:y-v(x)<0}

Since Vwy 5(y) = 8Vup(x+3y), from (3.9) we get

. ) )
Ha(x) 2 lim sups_0* lim SuPn—y+e [ f [;W(wn,a(y)) + egn(h“)z(x+8y,Vwm5(y))] dy +
- MQuw

+ J[SE,, hz(x+8y,-;-an,5(y)) - %" (h=)2(x+8y,Vwp s(y))] dy]; (3.10)

Tle(x)
Now,

j I5e. hz(X+5y,-18-an.s(y)) ' %(h“)z(x+5)’,vwn.8()'))| dy =
nQv(x)
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=% f 152 h2(x+8y:lgv“'n.5(}’)) - (h=)2(x+8y, Vwns(y)l dy =

ﬂQv(x)
& 2 1 -2
=3 J 182 h2(x+8y, Vwa.s(y)) - (h") (x+8y,Vwa s(y) dy +
NQuyN{IIVw,, 5lt<SL}
En 1 . .
*3 JISZ hz(X+5y,ngn.s(y)) - (h=)2(x+8y,Vwp s(y))l dy =: I;+I2

NQu{IVw, gl>3L}
where, by (H3) and Lemma 2.7 i),

I < const.e-étl meas(MQux)N{Vwn sli<SL}) 32 < const.end — 0as 8 — 0 and n — +oo

and, by (H4) (with t=1/3), Holder's inequality and (H3),

€y 2-m ¢m
Ls— C' lIVw, sy 8" dy <
278 nQy N {IVw, gli>5L} i Y=

<C ! J IVw, s(yIE ™ dy <
Q) N {Ilen‘slbﬁL}&:rl n8Y d

< Com1g™? [ [ enllVwos(y)i2dy]! ™2 =
NQuuyN{1IVw, git>8L}

=Csm1e™? [ [ €n82 IV (x+8y)ii2 dy] 12 <
NQuy IV w, gli>5L}

sCom g [endt+ [ 8%, h2(x+8y,Vun(x+8y)) dy ] ™2 =
QN {IVw, gl>5L}

= C (dg,)™2 [e,,S + j 8¢, h2(x+3y, Vun(x+8y)) dy]]"“/2 — 0 as -0, n>+o
NQuay IVw, gI>5L}

since by (3.9) { | 8en h2(x+8y,Vuy(x+8y)) dy } remains bounded. So (3.10) reduces to
ﬂQv(x)

. 5 \
4(x) 2 lim Sups—y0* lim Supp_seee J [ Wonay)) + 2 (hm)2(x48y.Vwns(y)] dy =
Tle(;) :

. . ) n
= lim supso* lim supnosses | J[; W (wr5(y) + % (h=)2(x,Vwn5(y)] dy +
Qv

17



+ Jf["(h-)2(X+8y,VWn,5(Y))-"(h-)Z(X,VWn,8(Y))] dy]. (311)

Fixe>0. By Lemma 2.7 ii), (H3) and (3.9) we have for 8 small enough,

f*-f 1(h-)2(x+8y,VWn,g(y)) - (h-)2(X,VWn,s(y))l dy £~ JeC [IVwngy)lI*dy =
wz

= €C  JEn8 11Vu,(x+8y)l)2dy * eC [e«8 + | €,8 h2(x+8y,Vun(x+8y)) dy] =
nQvd) - 5iQu(x) .
= 0(e) as 8-*0, n-*+w>,

Hence,

».(x) A lim sups*o* Km sup,_*. | f [§W(wa«(y)) +%h-)2(x,Vwn,s5(y))] dy + O(e). (3.12)
J ”n « 0

TiQu(X)
Let

lim sups-*- lim sup,_ " JfEW(w».g(y)) + A (h-)3(x,Vwn,s(y))] dy + O(e) =
Qe

= Jimy s+ Lim SUPn—4ee J O wiw (v + 52 (h=)2x.Vw . (D] dy +O)  (3.13)

En mwg Ox g
Qv

£
where 8k -> 0+ ask -* +*». Choose n(k) large enough so that, setting a, =- " , we have 0< g, <

Kk, I WI'IOC),A - uo HL,(Qv(it)) AN 1k and

im SUDPn—+e | t W(Wn.sk()f)) + eslk (h-)z(x:vwn.sk(y))] dy =

Qv

L. W (Wago a(¥)) + @ (N)2(X.VWagy A(Y)] dy + O(IK).  (3.14)
) .

1iQv(x)
Thus, defining vi(y) = Wn~2y), it follows from (3.12), (3.13), and (3.14) that

.18



Ma(6) 2 imy oy J [-é— W(viy) + o (h=)2(x, Vvie(y))] dy + O(E)
K
MQvix)
where vy = ug in L1(Qy(x)) and oy — 0* as k — +eo. Changing variables we obtain

Ha() 2 limg e N J [-i— W(veM2)) + ax (h=)2(x,VviM2)] dz + O(e) =
k

=N imy e J[&L W(k(2)) + ox (h=)2(x,Vux(z))] dz + O()  (3.15)
K
Quw

where oy = 25’ o — 0* and Uy (z) = vi(Nz). Applying Lemma 3.2 to h= and to the sequences ui
n
and oy we conclude that there exists a subsequence {0y} C {0} and a sequence {&;) € H!(Qyx)
;[RP) such that &; — ugin L1(Qy(x);RP), &; € & (a,b,v(x)) and
lim inf, e J % W(Ei(2)) + 8 (h=)2(x,VE;(z))] dz <
QV(x) _
< limy e J [2- W(Ek(2)) + & (h=)2(x,Viie(2))] dz. (3.16)
Ok :
Qv(x)
Thus, by (3.15) and (3.16) we have
Ha(x) 2 N1 Lim infiy s J [:i‘ W(Ei(2)) + a; (h=)2(x,V&i(2))] dz + O(e) 2

Q,(x)
2 N1 K(x,a,b,v(x)) + O(g).
(3.8) now follows if we let n—1-ande—-0+* W

4. An upper bound for the I - limit.

We now prove the second part of Theorem 2.9.

Proposition 4.1. Under the hypotheses (H1)-(HS) given any u € L}(Q;RP) there exist
sequences €,—0" and u, € H!(Q;[RP) such that u, = u in L}(Q;RP) and

19



lifMp yie f [—61; W (un(x)) + € h2(x,Vua(x))] dx = Jo(u).
0 .

It is clear that it suffices to consider the case where u = ya(x)a+(1-xa(x))b with Perq(A) <
+o0, since

fiMp s 1er f [;‘n-wm..(x» + £ h2(x, Vup(x))] dx < 4o
Q

implies that
lim,_,,.. jQW(u,,(x)) dx=0

and so, as u, — u in L1(Q;[RP) and due to the continuity of W, we conclude that

u(x) € {a,b} ae.xe Q.
Also, as in Step 1 of the proof of Proposition 3.1, we obtain Perq(A) < +eo. We begin by
considering the simpler case where u = ya(x)a+(1-xa(x))b has planar interface and h and K do not

depend explicitly on x.

Lemma 4.2. Let (H1)-(HS) hold, let Q = Qy and

_Jb ifyv>20
"(Y)’{a ify.v < 0.

Then there exist sequences €,—0* and u, € &/(a,b,v) such that u, = u in L1(Q,;[RP) and

limy . f [iW(un(x)) + e h2(Vun(x))] dx = K(a,b,v) = Jo(u).
Qv

Proof. Assume, without loss of generality, that v = ey so that
_ { b ifyexn>0
u)=1a ify.ex <O.

Denote Qy by Q and let Q' be the projection of Q on RN-1. Q={ye Q:yn=0).LetL,>0and
Ene & (ab,eN) be such that 4
imp e f [LnW(E.m(Y)) + ﬁ (h“)Z(Vén(y))] dy = K(a,b,eN). 4.1
Q .

For n fixed, define

20



b if yn > €/2
vily) = V(YN = Q(y:zf) if -e/2 < yN S €/2
a if yn < -€/2.

Clearly v: e (ab.en) foralln e N, e> 0. Also,
3]

n n " 1 -
Vg - wHll 1gny = Ve = Blliy = f HEA(Y', e) -blidy =
g

an

=e” IE,(y'.yN) - bll dy = € [ IEq(y) - bll dy — O as e — 0*
" Q‘

0

for n fixed. Likewise llvl1 - u-IIL,(Q) = Ilv: -all, @™ 0ase— 0+and so v: — uin LI(Q;RP) as

€ — 0+. On the other hand

J (hn W) + 5 BTV en] =

Q

- QJ[]:: W) + 1 BTV dy + J [T h(VVp) - T (=T veo)] dy =

=L+l

where
[y

L n € n
1= J (52 W) + 1 BTN ¢y =
¢
-£/2
€2
= l;nw ' IN —l— h* 2V ' IN =
Qj[ 2 W(Enty' ) + 1_4.e( R(Veaty L] dy =

-€/2
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qu [L.w<Uy)> + £ (h°°)*("M(y))! dy 4.2)

I sJ £ h2(VVA5) - BTN dy =

T , L (=)2(VE(y )l dy =
|1n6 e e e” E
- Enl_ Fl202(1 vgnty, 1Y) - (h=)H(VEaly )] dy +
E
QN {IVELy ],i—N)IbLe}
+J_ Tieznzdvuy ) - aorviay Bpldy = L+ L
Lne J. e e €
QndIvVACy €

By (H3) and Lemma 2.7 i)

and by (H4), HSder's inequality and Lemma 2.7 i),

neE j HVE (' Lyii2-m gm dy < —Co emci J‘ ﬁ ”Vgn(y';L:‘)llz dy]!™? <
Lt £ Ln
Qn{IIVE,,,(y'.xS)lbL:} Qn{nv;,(y-,!:l)sbm

<€ I IV Gy A e gl (V)
" Q Q

whereby (4.1) { f )} (h~)4(V~,(y)) dy} isabounded sequence. Choose E(n) such that en) =
d -1

O+as n-4+«, ™ - N O+ IV, - ull,-»0and
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n n 1

Letu, = v:(n) and §, = -e—(L%) Then 8, = 0+, u, = u in L1(Q;RP) and

limn—H«J [SLW(“n(Y)) + 8nhz(vun(y))] dy = limp4e [an(gn()')) + liﬁh“)z(ygn()’»] dy

=K@aben)=] .  K(ab,en) dHy (y).
N {30} N) dHn_, =

Lemma 4.3. Let (H1)-(HS5) hold and let

{b if (x-ag).v > 0
ux) =9 .
a if (x-ag).v< 0

for some ag e RN. Define
B(ag,a,b,v,n) := {u € Hli(ap+nQ;RP) : u(x) = b if (x-ap).v = n/2, u(x) = a if (x-ap).v = -n/2
and u is periodic with period 1 in the directions of v;,...,VN.1]}.
Given a sequence €, — 0+ there exists a subsequence { %k} and a sequence {vi} in B(ag,a,b,v,n)

such that vy — u in L1(ap+nQ;[RP) and

limy s1m J [W(vix)) + g B2(Pve(x)] dx = INIK (@b,
€
ny

ao+nQy

Proof. For simplicity, we assume that v = eN and we denote Q, by Q.
Case 1. Suppose first that ag = 0 and | = 1. By Lemma 4.2, consider ay — 0* and uy €
&4 (a,b,en) such that uy = u in L1(Q;[RP) and
. 1
limy oo Qf [-W(we0) + xh2(Vug(x))] dx = K(abien). 4.3)
k .

Fix k € N and define
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r
b if D <xy<y
20y
Vin(x) =4 ur(x', 2xn) if Ixnl < 2
2 20
1 €n
a if - 5<xN < -—.
- 2 N 20

Clearly vy, € &(a,b,en) and

6{ [’:_nw(vk.n(x)) + £ah2(VVia(x))] dx =

= f [ean(vk.n(x» + En(h=)2(Vvin(x))] dx + J[enhz(vvk,,«x» - £(h=)2(Vvien(x))] dx =:
Q

=L+ (4.4)

where

&
20,

I = f [LW(vin(x)) + en(h=)2(Vvinx))] dx =
G &
&

2a k
1/2

- j [O%W(uk(x)) + ax(h=)2(Vug(x)] dx =
/ k
-1/2

= f [—I—W(uk(x)) + oxh2(Vug(x))] dx +J [ak(h=)2(Vug(x)) - oxh2(Vug(x))] dx =
g X | |
=L + 1. (4.5)

By (H4), Holder's inequality and (H3)

[ ol (=2(Vuyx)) - B2Vl dx + [ ol (0=)2(Vu(x)) - h2(Vuy(x))] dx

2
I
1

QN{IViylisL) QN (IVuyli>L)

SCox+ | ouClIVuy(x)lizm dx <
QI lboL)
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<O@)+@m2C[  [ox Ve dx] ™2 <
QN {IVyIbL)
< O(ay) + (a)™2C [JagC' + agh2(Vug(x)) dx]1™2 = O(oy) (4.6)

since, by (4.3) {Jaklﬂ(Vuk(x)) dx } remains bounded. On the other hand

101 SJ nl hz(——Vuk(x —xN)) - (h“)z(Vuk(x ——xN)) ldx =
€n €n En? €n

2
. h2< 2k 0 (x', ZExn)) - (h=)2(Vuy(x', ZExp)) | dx =
& ) 2 & €n €
g
2 2
= %l f I &% 12 E ey 0, Zx) - (B=)2(Vue(x', 22xn)) | dx +
€n o2 € €n €n

Q('\( lIVuk(x'.i%N)I!SLE,,/ak ]

2
+ 2 Jl -e”—hz( =X (x' -—xN)) (h=)2(Vuy(x' —xN)) |dx =: I + 12 4.7)
€n o2 €n €n €n
Qn(iv uk(x'.%:'xN)IbLa,/ak }
By (H3) and Lemma 2.7 i),
1 o 2 ) 0 2€q2
L<s— [—- 1+ II——-Vuk(x ,——xN)II ) + HVug(x' ,—xN)Il Jdx<sC—"—=
€n En €n €n €n 02
anvmx'.‘é"xn)usu,./au
= O(gp) (4.8)
and, by (H4),
2 akz m
2 <2 [ &y, x Expizm dx<C J IVug(x)li2-m dx =
€& ) o™ €n o ™!
Q
=: g™ h(oy). 4.9)

Hence, by (4.4)-(4.9),
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fim SUPpsee f [—;;wm.n(x» + Eh2(Vvia(x))] dx < Qf [aikwm(x» + axh2(Vuy(x))] dx +
Q

+ O(ay) for all k
and, by definition of K(a,b,en)

K(a.b,ex) < lim inf, .. d[ [;‘n-wm,n(x» + £ah2(Vvy n(x))] dx.

Also,
Hvgn - uIIL,(Qmp) = J-Iuk(x',gefxu) -u(x)ldx = a&ké lug(x) - u(x)! dx.
QN {ixni<en/204 }
S
Thus, for all k, choose enk such that, setting vy := Yon,s W€ have— <1 and
Ok

€

lim supp—steo f [':—nW(Vx.n(X)) + €qah2(Vvgn(x))] dx = J [—I-W(Vk(X)) + Enkhz(VVk(X))] dx +
Q ) oy

+ O(1/k).

Then,

llvg - ull < llug - ull —0ask = +oo

LY(QR") L\QR?)

and

limy e J’ [1W (vi(x) + g B2(Pv(0)] dx = Kaben)
€
¢ ™

Case 2. We now take Q = ap+1Q for some ag € RN and 7 > 0 and we define
hn(A) =h(2).
M

Settin
& b ifx.en> 0
up(x) = { a ifx.exn< O

by case 1, given g, — 0, there exist a subsequence {Fﬁk} and a sequence {vi} in & (a,b,eN) such

that vy — up in L1(Q;[RP) and
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time-H-f W) + 613V vi(y))] dy = Kntabexd,

Eo

where
Kn(@b,ey) =inf { £f[LW($(x)) +7 (h~),?(V$(x))] dx : $€ itf(a, b, CN), L >o0}.

Note that, dué to the homogeneity of h*°,
KT,(abey) = -linf { fILTIW(E(X)) + 1 (h~)*(VE(X))] dx : % e £3(a, b, ts\L > 0) =

= X @b,ey). (4.10)
1

Forx€ aotriQlet :
uy(x) := vk(%).

Clearly uyx 6 #(@o0,a,b,eN,Ti),

Jlu(X) -ux)ldx = Flvi("™) - u)l dx =" \lvg(x) - u(@+Tix)l dx =

ag+Q
=TINJ lvi(x) - uo(x)l dx -> 0 as k -» +00,
Q
and, by (4.10),

me-M- f [W(U(x)) + ench2(Vu ()] dx =
] &

a+nQ

€

: 1, A 2 _ L _
lit s e J i—m WEid10) + €, EVV(==) dx =

Q

€
L

-=limk_,.....nNQ]' [iW(vk(x)) + (—;hh"‘(Vvk(x))] dx = TINK~b”eN)« TIM-I K(a,b,ey). |
Proof of Proposition 4.1.
Step 1. Assume firg that u has planar interfacei.e.
u (X LJ b If(X'<(O).V>O
1 a if (x-a0)v < 0.
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Without loss of generality, assume that ag=0and v =eN. Let Q' = {x € Q : xy = 0}. In order to

ensure that property (HS) and Proposition 2.8 ii) are satisfied uniformly we will work on compact
subsets of Q. Fix € > 0 and let Q'C C Q' be such that

Hpn(Q'\ Q) = O(). | (411
Since ' is compact we can find & > 0 such that Q¢'x [-8/2,8/2] C C Q and (H5) and Proposition
2.8 ii) are satisfied uniformly in Q¢'x [-5/2,8/2] i.e.
x,y € Q'x [-8/2,8/2], Ix-yl < & = Ih2(x,A) - h2(y,A)l < eC(1+llAlI2), for all A € MPXN  (4.12)

and
X,y € Q¢'x [-8/2,8/2], Ix-yl < & = [K(x,a,b,v) - K(y,8,b,v)| < €C (1+llall%+IIbllI%+Ib-ali2). (4.13)

We may write
Q'= g’,(ai +MQu o | 4.14)
where Hn.1(0) = O(g), Q;' := a;+1Q" are cubes with disjoint interiors, 0 <1 < 6 and
ig(ai +1nQ)=: ngQi cc Q.
Since 9Q is Lipschitz it is possible to pick 1 as above and so that
HN-x(Proj{xNﬂ}(Q”{ Ixnl < '2'} )\ ingQi') =: Hy_,(P) = O(e). (4.15)
We claim that given any sequence o, — 0* there exists a subsequence {q.k] and a sequence {ug}
in H1(Q;[RP) such that uy = u in L1(;[RP) and
nmk_,,,,jn-&n‘—kwmk(x)) o Va0 ix= [ Keabew dHy (. (416

By Lemma 4.3 given a sequence &, — O+ there exist a subsequence {a‘((l)} and a sequcnce{uf(l)}

in $(a;,a,b,en,n) such thatu (1) — u in L1(Q;;[RP) and

limy—+ee f [—(me“)(x» + afh2(ay, Vul(x)] dx =" 'K(apaben). (4.17)
By Lemma 3.2 thcrc exists a subsequence {Bkl)} of {a(l)} and a sequence {wf(l)] in H1(Q;;RP)

such that " — u in L}(Q;;RP), m(x) = ‘ﬁﬁl)(ﬂl) for x € dQ (the v; are mollifications of u)
'n .

and

lim SUPK—+ee J ["(T)W(W(l)(x)) + B(l)hz(al,Vw(l)(x))] dx €
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<lim mfk_".J [—= (l) uil)(x)) +ay )hz(a],Vu(kl)(x))] dx = nN-l K(a;,a,b,en). (4.18)

By Proposition 3.1,

Hm infi—ssn J (WD) + B h2ar, Vwx))] dx 2 V1 K(ar,a.b.en)

Q
which, together with (4.18), implies

hmk—)-mf[ V) + BPh2(a, VwV(x)] dx = NN K(ajaben).  (4.19)

By Lemma 4.3 there exists a subsequence {a(z)} of {B(l)} and a sequence (u )} in

2(aj,a,b,en,n) such that u(z) — u in L1(Qy;RP) and
Timy—1ee J [—WaP () + o Ph2a, VaP(x)] dx = 1N K(azab.en).

Once again, by applymg Lemma 3.2, we conclude that there is a subsequence {Bkz)} of (a(z)} and

a sequence {w(z)} in H!(Q,;[RP) such that w(2) — uin L1(Qy;RP), wf’(x) = \b§2)(m2) forx e
n
0Q; and

limy 1o f[ oV Ww2(x)) + B{Ph2(az, Vw2 (x))] dx = nN1 K(az,a,b.en).

By induction we repeat the above argument in order to obtain subsequences { Bf(p)} C [Bip'l)} C

. € {B?) ¢ (BLV) and sequences {wY) in Hl(QJ,fRP) such that w{’ — u in L1(Q;;RP),

wix) = ‘BE’(%) for x € 3Q; and
BiMy e J [—= W(w“’(x» + BUh2(a;, Vw(x))] dx = nN-1 K(aja,b.en)

forj = 1,...,p. Consxder the sequence { [i{p)) and for all j = 1,...,p let {§f)} be the corresponding

subsequence of (wf)} such that
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lifg e J' [—-—W(g,?)(x)) + BPh2a, VEP(x)] dx = 1N K(@zaben).  (4.20)

Define the sequence uk,s(x) as follows,
Ex)  ifxe Q
ue(X) =3 ifxy> /2
a if xy <-1m/2

and in (Q N { Ixpnf < %} )\ ( i§{Qi) we define uy ((x) using the periodicity of {ng»}. Clearly u, . €
HI(Q;RP). As II\BI(‘p)IL. < const. and since -

meas ((Q n{ Ixnl < = } )\(UQ, ) O(e)

we have
Huge - ull oy = OCE) + i'g Huie - ull 3, oo
and so,
limg—y0* [limg—4ee llug ¢ - ullLl (Qmp)] =0
Also,

J [ﬁwmu(x» + B0, Vu ()] dx =
S k
= % J‘[ : W(E_,(l)(X)) + Bip)hZ(a”Vgs)(x))] dx +
i=1 Bk
q
JB?) [h2(x,VED(x)) - h2(a;, VED(x))] dx +

. J [B_:PTW(uk.e(x» + B h2(x,Vuge(x)] dx +
K
QA {Ixn<n/2)NVQ)

+ f B h2(x0)dx =1, + L+ L3 + L,
Qn(Ixn>n/2) |
where, by (4.20),
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limk—H-“ Il = ﬂN'l £] K(aj,a,b,eN)
i=
and, since B® — 0+,

limy e Iy = 0.
. e . n P
Also, as u, . is the periodic extension of vg® on (Q m{ Ixpn < > } )\ ( ;{Qi) and
b if xy > B‘f )

. 1.. ®
vpP)(x) = with IV®ll. = O(—=) if Ixnt <
B 2 it xy < BY B B B
we have, by (4.15),
r Bip)

I < J C(=5+ BP) dx = 0).

As1 <8, by (4.12) and (H3),

P i -
lim supgsel2 < 3 f BP) eC (1+IVED()I12) dx <
i=1
G

< lim SUPg—+e § f B{P) eC [1+h2(a;, VEP(x))] dx = O(e)
i=1
o

since by (4.20) { JB(kp) hz(ai,Vﬁg)(x)) dx} remains bounded. Finally, we note that, by (4.1 l),.
Q

(4.13) and (4.14),

P
IL'K(x,a,b,cN) dHy &) - Kaabey) | <
i=1

P
< j e KGabey) dHy )+ Y, j K (x,8,b,e5) — K(aa,b,ep)l dHy_,(x) = Oe),
RATAL) =1
s0 to obtain the desired approximating sequence it suffices to let € — 0+ and use a diagonalization
procedure.
Step 2. Now suppose that u has polygonal interface i.e. u = xaa + (1-xA)b where A C
Qis of the form A = A' N Q, 0*A N Q = 0*A' N Q with A’ a polyhedral set (i.e. A' is a
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bounded, strongly Lipschitz domain and 3A" = Hi u ... u HM < Hi are closed subsets of
hyperplanes of the type {x e IR™: x.Vi = og}). Notice that Step 1 corresponds to the case where A*

is a large cube. We claim that for any sequence  -» O+ there exists a subsequence {En} and a
sequence {u,} in HKAIRP) such that u, -+ u in LHA;IR") and

limg ) f [*WCUNCx)) + £nV (x,Vua(x))] dx =  JK(x,a,b,v(x)) dHn.i(x). | (4.21)

M
Recall that 3*AnQ=3*A'nCl=yj (Hin ft). Let 1 ={ i € {L..,M} : U", (H, nCl)> 0}. If
= N

card 1=0then u (x) =aae in £2or u(x) =b ae in Q it sufficestotakee* = £nand u, = u, for
al n. If card 1 = 1 then 9*A n £1 reducesto one planar interface and we are back to Step 1. Using
an induction procedure, assume that theresult istrueif card | =k, kM -1 and we proveit is till
trueif card | = k. Assumethat
dFANQ=HinO)u...u (Hc n Q).

Consider S := {x € [R": dist (x, Hi) = dist (x, H2u... uHM)}. Then Sislocally the graph of a
Lipschitz function and for every xo € Sthereexistse> 0 such that

B(xo,e) n {x : digt (x, Hi) >dig (x, H2u ... uHM)}
is connected. Also

k k
d*AnfinS ={xe(uH;) nCl: dist (x”) =dist (X,Hz u ... u Hy)>= u (Hjn Hy) n fi
i=l =2

and O HN-1(9*ANnfinS) =0because HN-(Hi nHj) =0fori *j. Let
={x € Q : dist (x,Hi) <dist (x,Hu ... uHM)}.
Clearly CI\ isopen and CI\ n (H, u ... u Hx) = 0. Since CI\ is the intersection of a strongly
Lipschitz domain with Q and dCl islocally Lipschitz it followsthat CI\ is atso a srongly Lipschitz
domain. We would like to apply theinduction hypothesisto CI\ and to CI\ Q\ := Q.- But, although
li,nd*A = (Hyu... uHK) n Q conssts of p flat interfaces and dQ; is locally Lipschitz, it may
happen that Q,isno Ionger connected. We\Hlte -
2 Ty Vi

where a* are open, connected, strongly Lipschitz domains with ©i n Q) = 0for i #j. It iseasy to
verify that if i * j then & n ©j r\ O. = 0. Thuswe only need to match the defor mations across the

interfaces do)i n dCI\ n Cl. Fix 8> 0and let
Us={xe IR™dist(x,S)<8},

Us={x€ IR : dist(x,S) < 6, dist (x,Hi) < dist (x*2u ... W Hy)},
Uje {xe [R": dist(x,9) <6, dist (x,Hi) > dist (x,H, u ... u HQ)}.
AsPern(A) < +¢&, choosek = k(6) su_ch that
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T Perg(@*A N ;) <8 4.22)
i2k
and due to Proposition 2.8 i), we can also request that

> [Rxabvx) dHna®) < 8. (4.23)
i2k 9*Ano;
Since Q) contains only one interface, by Step 1, given any sequence &, — 0* there exists a
subsequence {t—:n D} and a sequence {vy} in H1(Q;;RP) such that v, — u in L1(Q;;RP) and

limp e J [-EWat) + ePn2x, Vva)] dx = [K(x,,b,v(x)) dHN.1(0).
a*ANQ,

0*A N w; contains at most M-1 flat interfaces so we can use the induction hypothesis to obtain a
subsequence {enz)} of {enl)} and a sequence { ”} in H1(®;;[RP) such that uf,l) — u in L1(w;;RP)

and

liMpyvee J [HWaPw) + e Vool de = [Kexabv(x) dHyax).
9*Anw,

We continue thxs process inductively in order to obtain subsequences {en(k”)] Cc .. C {ef,l)} C

{en) and sequences { } in H!(w;;[RP) such that u,(:) — uin LY(w;;RP) and

limp e J [ V@P00) + e8P Vel dx = [Kex,a.bv(x) dHn.1(x)
0*ANay

foralli= 1,...k. Consider the sequence {e,(,k”)} =: {ay) and for all i = 1,....k let { §S)} be the

corresponding subsequence of {uf)} such that

1My ee J [EWEPX) + anh2x VEDx)] dx = [K(x,a,b,v(x) dHy. 1) @24)
n 9*Anay,

('Y
and let {v,(ll) } be the corresponding subsequence of { vy} such that

limp s J [ WePm) + aah2x, VPNl dx = [K(xa,bv(x) dHya (). (4.25)
On 0*ANQ,

Define u(x) = yA'(x) a + (1-xa'(x)) b so that the restriction of u to Q is u and let

33



n()'z—)ip(—)*

Notice that wy, is bounded in L= and
||vw,,u..-0( ); supp Vw,, C {x € RN : dist x,Z@)) < a,,,}  (4.26)

1)

Since wy — u and vm —uin L‘(U 5 N £21;RP) we may use the slicing method to connect v, and

Wy, aCTOSS U's N Q (as in the proof of Lemma 3.2 we let M = C(1 + 2llullg), C = max{c, c measQ}
and c is the constant appearing in (H2) and we divide U'8 into k;, slices of the form S; = {x e U°5 :

o; < dist (x,S) < aj+1} where a; =0, ci =  and k, is given by [——ZM——] +1, Op= Ilvm

on( 0w

wnle(U ~Q, mp)) We obtain a sequence {n,} in H1(Qy;RP) such that N, — u in LY(Qy;RP), Nn =
w, on 9Q; M Q and, by (4.26), (H1), (H2), (H3) and (4.25)

5im SUPn—yse f [i—wm,xx» + ph2(x,VNa(x))] dx <
< lim SUPp—yeec| J [&LW(VS)(X)) + aph2(x, Vv x)] dx +

[ [-i—W(wn(x» + 0h2(x, Vwa(x))] dx] <

Uy Q

< IK(.x,a,b,v(x)) dHN.1(x) + lim sup,,.m.-g meas{x € U'8 N Q : dist (x,Z(u)) <oy} =
9*ANQ, n

= [Rxaby(x) dHn.1(x) + C Pern@*A A Uy A Q). @27
9*ANQ,

Similarly, for eachi = 1,.. .k, we connect §n) to wy, across U N ©; and we obtain sequences (p(‘)

in H1(w;;RP) such that ‘Pn —uin Ll(m;;IRP), <pn =wponow;NQand .
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1im Supp—ysee J [L-w(ePx)) + oah2(x,VoPx))] dx <

™
< [Kxabv(x) dHn.1(x) + C Perg@*A N Uy N o). (4.28)
3*Anw;
Define
@) <
Un(x) := 2 X, ) 00 (%) + % () Ta®) + & %, (x) Wa(x).
Then,
lup - ull 3 o oy
k
<3 f I0W(x) - ux) dx + | Max) -ux)idx + C E,{ncas{x € o : dist(x,Z(u)) < on} <
i=1 i=k+
o 1
i (i)(x) -u(x)l dx + ﬂ[l'nn(x) -ux)ldx + C meas{x € Q : dist(x,X(u)) < at,}.
i=1 1
Hence,

k
limp sl - Ul 3 gy € 3 11 Jkp(‘)(x) u()l dx + limp_y 4w nf Ma(x) - u(x)l dx +

[0y
+ limp 4 C meas{x € Q : dist(x,X(u)) < 0y} =

since Z(u) is polyhedral. On the other hand, by (4.26), (H1), (H2) and (H3)
f [-W (ua(x)) + ah2(x,Vun(x))] dx < >: [—W(cp“’<x)) + 0,h2(x,V “’(x»] dx +
o

[—W(nn(x)) + anh2(x,Vnp(x))] dx + )‘. £ meas{x € ; : dist(x,Z(u)) < an} =

i=k+1 0Ly,

= ,i j [=WoP(x)) + 0ah2(x,VoL(x))] dx + f [;‘-W(m(x» + agh2(x,VMa(x))] dx +
i=1 n .

©
C oo .
+ - meas{x € YT dist (x,Z(u)) < o, }.

Thus, by (4.22), (4.23), (4.27) and (4.28),
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k
lim Supp—+ee f (W (ua(x) + anb2(x,Vua(x))] dx < 3 J K(x,a,b,v(x)) dHN.1(x) +
a o) i=1¢o§na‘A

] o
+C T Perg@*ANU;na)+ [ K(xabv(x) dHy.1(x) + C Perg(@*A N Uz Q) +
i=] Q,no*A

+C Pel’n(a*A N ( :J mi)) <
i=k+1

< jK(x,a,b,v(x)) dHn(x) - E jK(x,a,b,v(x)) dHn.1(x) + CPerq(d*A N Ua) + O)
0NI*A i=k+1 ©NI*A A

= [Kxabvx) dHn.1(x) + O).
QNo*A

Hence we proved that for all & > 0 there exists a subsequence {a,(8)} of {€,} and there exists a
sequence {u,(8)} such that

i) limp—y+ellug(d) - ull =0,

LY(RP)

i) im Supp_ee f [%wmn(&(x» + an(®)h20x, Vun(®)(x))] dx <
S On

< [Kxabv(x) dHn1(x) + O®).
QNo*A

Let 8 = 1 and choose n; such that

llunl(l) -ull <1

LYQRP)

and
[——W(u (1)) + @ (D2x,Vy (DEN] dx S [Kxab,v(x) dHya(x) + 20(1).
am(l) l 1 .1 QN3*A -

Q

l .
Suppose that & l(1) =a. Now letd = 3 and choose n; large enough so that

an2(2) = ozJ2 with j; > 31

1
Ilun2(2) - uIIL,(Q;m,) 5-2-

and
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f—Lw(u {2() +a @NxVu )(x)] dx <

JK (x,a,b,v(x)) dHn-i(x) + 20(!-). .
anj(2) * :

nnd*A
Continuing this process, we choose n* large enough so that
Onk(K) = c™ withjy >jk-i > «. >J2 >ji.

1
Uy, (&) - ol o0y <K

and

L]
- Lnd*A

dI'[HITk\)/V(u,rKk)(X)) + Cl\\k)h* (\A\(k)(x))] dx £ .J K(x,a,b,v(x)) dH\-i(X) + 20(}).
&

Then {0" (k) is a subsequence of {an} and defining vi:= i (K) we have vi-» uiin L'(Q;[R")
and

Un supy_" f [—I—W(vk(x)) + a, (Kh2(x,Vvi(x))] dx £  JK(x,a,b,v(x)) dHACX).
‘i, Py META
This, together with Proposition 3.1, gives the resullt.
Step 3. Finally consider an arbitrary u = XA& + O-XA)b with Pern(A) < +<> By Theorem
2.6 there exist polyhedral sets A* such that ij'> XA in L"Q), Pern(Ak) -4 Pern(A) and

meas(AK) = meas (A). By Step 2 for every k there exist sequences E* -* 0* asn -> + oo, and g

n

-3 XAla+ (i-J*)basn->+ooin L1(€;RP) such that

limpra f1-2WAW) " R VUII)] dx = FK(x,abv(x)) dHy.i(X).

J 4" - LY Wats)
Congder n(k) such that '
| uh) = O, 8 + (1%, DMy 0 S VK

and

| IK(xabv(x) dHy.!(x) » flt=2W (UR(x)) + eXh2(x,Vur(x))] dx 1< 1k
a*AD o

with 0 £ &M <1k Set vy =u”y and og * e”; thtn
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_ " vg = xaa + (1-xa)b in L1(Q;RP)
and for every continuous function g : Qx[RP — [0,+c0) we have

[sxve) dHna) > [ gxov(x) dHna(x).
0*A,NQ 9*ANQ

As K(.,a,b,.) is upper semicontinuous there exist continuous functions gm, : QxRP — [0,+e0) such
that

K(x,a,b,E) < g(x,E) < CIE|
and

K(x,a,b,8) = infy gm(x,8)
for every (x,£) € Qx[RP, where we have extended K(x,a,b,.) as a homogeneous function of

degree one (see [FM2], Lemma 2.15 and Step 3, Section 5). Thus for all m

limsqu—n-wf [;l-W(Vk(X)) + axh?(x,Vvi(x))] dx
k
Q

= imSupy 4o IK(x,a,b,v(x)) dHN.1(x) <limsup g4 j gm(x,v(x)) dHN.1(x)
*A,NQ *ANQ

= [emxven) dHNa ) .
9*ANQ

Taking the limit when m — +o0 and using Lebesgue’'s Monotone Convergence Theorem we
~ deduce that

HmSUpy oo f [;‘-wm(x)) + ah2(x, Vv))] dx € [ K(x,a,b,v(x)) dHy.1(x)
g k . 9*ANQ

which, by Proposition 3.1 concludes the proof. |

5. A constrained penalized minimization problem.

In t'his section we assume the following additional hypotheses:
H6) We Woo@P);

(H7) there exist constants &, & > 0 such that
lhy - all < & = o lhu - all9 € W(u) € lhu - all®
: a

and
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lhu - bl < & = oIl - bl S W) S lhu - bI;
a .

(H8) h2(x,.) is quasiconvex for all x € Q.

In (H8) we could just as well have taken h(x, .) quasiconvex since by Jensen's inequality
the quasiconvexity of h2(x, .) follows trivially.

We consider the following minimization problem:
(Po) minimize B

EQ) = LW(u(x)) dx

subject to the constraint —I—-I u(x) dx = m, where m = 6a + (1-0)b for some 6 € (0,1).
' meas(Q)Jg

Clearly any piecewise constant function of bounded variation of the form u = xaa + (1 - xA)b with
meas(A) = Omeas(Q) is a solution of (Py), so there exist an infinite number of solutions to this
problem. In order to single out one of them, and keeping in mind that the Wulff set is the preferred
shape for some types of materials for which the surface energy density is anisotropic (see [Fo],
[FM3], [T1], [T2], [W]), we consider the family of anisotropic singular perturbations

Ee(u) =d[ [W(u(x)) + €2h2(x,Vu(x))] dx

and the corresponding minimization problems
(P,) minimize Eg(u) on {u e H(QRP) : ] J u(x)dx=m}.
meas(Q) Jq

Since h? is quasiconvex, the growth conditions on W and h guarantee the existence of a minimizer
ug of Eg, by direct methods of the Calculus of Vananons We show that the solutions ug of (Pg)
select the solution of (Pg) which minimizes the mtegral over the interface Q A o0*{u=a} of the

surface energy density, namely:

Theorem 5.1. Assume hypotheses (H1)-(H7) hold and let {u,} be a sequence of
minimizers of Ee,, converging to upin L!(S;[RP). Then ug is a solution of the problem:

(P) minimize Iw.‘h)}((x,a.b,v(x)) dHy.,(x) =: Jo(u) on
- .mP 1 -
V.—{u € BV(Q;RP),ue {a,b} ae.: eas D) Inu(x) dx= m}.

Proof. We follow the proof of Fonseca and Tartar [FT]. We assume that Q = Q and that h
and K are independent of x. Since all subsequent constructions were based on this one it is easy to
see that the theorem remains valid in the general case.
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Step 1. We begin by showing that there exists a constant C > 0 such that J (un) < C for

sufficiently large n. Indeed, let y be a smooth function with compact support that sansﬁes Y-1)=
0,y(1)=1and 0 £y< 1. Define

a ' if XN > TNn + &
wa00 =9 Y&y, 4 -y B0 if ixy - Ml < £
b o if XN <Nn-€&p
where 1}, is chosen so that
meas({x € Q:XN> N+ &) + j'y(xN 11")dx = 0.
{xe Q:lxn-Nyk<ey) =

It follows that w, € H'(Q;RP) andj w,(x) dx =m so by (H3) we have

< <l w dx j01 IVw, GONI%) dx <

Je (ug) < Jg (wy) e Jine Qinyem 1.1 (wp(x)) dx +&,| C(1+1IIVw (x) )

< const. max{W(v) : ve [a,b]} +&,C +i le (xN “n)p lla - blI2dx <
€n €n

{xe Qixy-Tpl<en)
< const. [max{W(v) : v & [a,b]} + 1 + Iy "2 lla - bii2],
where [a,b] denotes the line segment joining a and b.
Step 2. By Step 1 and Proposition 3.1 it follows that up € V and

. lim infn_ﬁ..,Jen(un) 2 Jo(up). (5.1)
Let u € V. It suffices to show that there exists a sequence €, — 0* and a sequence {v,} in
H'(Q;RP) such that v, — u in LA(Q;RP), limp o Je (Vy) = Jo(u) andj v,(x) dx = m. Then, by

. Q

(5.1) and since up, is a minimizer of Ee.,’ we have

Jo(u) = Limp—ysee], (V) 2 im SUPn—1], (Un) 2 Jo(uo)

and thus ug is a solution of (P). To prove the existence of {vn} we modify the sequence {w;,}
constructed in the proof of Step 1 of Lemma 4.2 to obtain a new sequence satxsfymg

lim,,_,,Je (vp) =limy T (Wy )andJ- vp(x) dx =m.
LetL, >0 and £, € &4(a,b,eN) be such that
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limn-».-éf [LaW(En(x)) + f:- (h=)2(VEn(x))] dx = K(a,b,eN).

For n fixed, we defined

b if xN > 8/2
wg(x) = wg(x',xN) = E‘,n(x',’sg-) if -8/2 € xN S 6/2 H
a if xNy < -8/2.
We showed in Lemma 4.2 that
lwg - ull o gy = OG) (5.2)
and

J [%W(w;‘(x» + L—im(ng(x»] dx = Qf [LaW(En(x)) + -lf—n<h~)2<V§n(x»] dx +

_§_ d m/2
+ c:onst.Ln + const.(Ln) .
Letwz=wgz+m -—I wi(x) dx. Than wXx)dx=mand w3 — uinL'(Q;RP) as § — 0*. We
Q Q :
claim that, for n fixed, %/L"(va) = "8 /Ln(wg) + O(d). Indeed, since VGvg(x) = ng(x),

T @) =k, (W) + J =5 [W(HG00) - WOwho0)] d
Q

where ,

j =B WG (x0) - WOwjx)] dx =

JI-‘gl W(a + m - d[w:(x) dx)dx + JI:G& Wb +m - JWQ(X) dx) dx +

QA{XN<'8/2) Qh{XN>8/2}
+ I-f-sﬁ [W(wg(x) +m - Jwg(x) dx) - W(w'g(x))] dx.
QN {Ixnli<8/2)
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By (H7) and (5.2),

JL; W +m - Jw:(x) dx) dx £71 fu(x) - wyx) dx = O(8),
Qn{xN<-S/2}
AW(b + m - JwE(X) dx) dx £/ iD u(x) - Wdx) dxl" = O(6),

Q
Qn{xv>8/2)

and by (H6) and (5.2),

| Ke pwwdx) + m - dwdx) dx) - Wwdx))] o £
- Q )

Qn{|xnk5/2}

< const.’éameas({x € Q: Ixnl <8/2}) lq'f u(x) - wj(x) dxl = O(8).

Choose 8(n) such that 8(n) -» 0+,E-/\ -» O+, IW'e, , - ull,, -4 0and

n 5(n) —T .
S W () + TV, 000] O <

I (LW + £ 0Pt o J 5

Let v, —wfco and £, = ~. Then » -4 0", v, -4 u in L'Q;IRP), f va(x) dx = m and

!imn_,.....an(vn) =lim,_ ™ f [-\N(vn(x)) + £nh2(Vv,(x))] dx =
Q

= timy_H- F [LaW (6o + L GVta)]

=K(ab,ey) = f K(ab,ev) dHn_j(X) = Jo(u).
jOnfxusO}

Final Comments: In the isotropic case with no explicit dependenceon x, i.e. h(Vu) = II\Vull, it was

shown in [FT] that _
K@b"yv) =K
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where
1

K=2inf { [\]W(g(s)) h=(g'(s)) ds : g is piecewise Cl, g(-1) = a, g(1) = b} .

The same result was proved by [OS] in the anisotropic scalar case. We conjecture that, in general,
in the anisotropic case K > K.
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