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1. Introduction

Jensen's inequality has lately received some attention for it appears to be closely
connected not only to the usual notion of convexity but also to much more general kinds of
convexity. Since these are the basic constitutive assumptions for lower semicontinuity results,
we somehow expect to relate both. This is the goal of this paper. As a matter of fact, this
standpoint opens the gate to a different way of understanding weak lower semicontinuity
based on Jensen's inequality, which might be very useful in more general situations than
the ones described here (see [14]). The principal ingredient in all this is the concept of
parametrized measure or Young measure. And when we talk about Jensen's inequality we
mean Jensen's inequality with respect to this parametrized measure. These were originally
introduced as a tool to deal with non-convex problems in the Calculus of Variations. We
show that they are very helpful in working with regular variational principles as well. Indeed,
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the structure of Young measures is deeply connected to weak lower semicontinuity. Some

basic references are [5], [3], [7], [19], [22]. Previous work which greatly motivated this point

of view is Kinderlehrer, Pedregal [15], [16], [17].

Assume we have a sequence of measurable functions, {£j}, bounded in some space
Zp(ft) for some regular open, bounded set ft. Then the sequence of pth powers, {|^j|p},
is bounded in i 1 ( f t ) . Under these circumstances, there is a subsequence of the Zj% not
relabelled, and a family of probability measures, {vx}x€W> *^e corresponding parametrized
measure, such that whenever the composites (f{zj) converge weakly in Ll(Sl) they do it
towards the function

?(x)= / <p{\)dvx(\).

This means
lim / <p(Zj)dx = / <pdx, (1.1)

for any measurable E C ft. We assume that the functions Zj take values in R m . But usually

the main difficulty to be overcome is to make sure that for a particular (p the composites

{tp(zj)} converge weakly to something 6O that we have equality in (1.1). This might be a

tremendous job. And yet we claim that for weak lower semicontinuity we just need inequality

in the right direction

liminf / <p(zj)dx> I I <p(\)dvx(\)dx. (1.2)
i—°° JE JEJK™

Theorem 3.1 gives a general condition under which, even though the Young measure repre-
sentation (1.1) may not be valid, we still have inequality (1.2). If now Jensen's inequality
holds for (f and almost any individual i/x, then

liminf / <p(zj) dx> I I <p(\)dvx(\)dx > I <p( I Xdux(X)) dx.
i—oo j E JEJK^ JE KJR™ J

where

z{x) = / Adi/X(A), a.e. x € ft,

is the weak limit of the z / s . We are also able to avoid the usual growth hypothesis in
(1.2), so that as a consecuence we introduce a concept of quasiconvexity, stronger than Hl>p-
quasiconvexity (see [5]), but suited for continuous functions without any growth requirement.

In section 2, we collet some basic facts concerning existence of parametrized measures

and weak and biting convergence; we also remind the reader of the different notions of
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quasiconvexity and review the basic facts about HltP-Young measures as introduced in
[17]. Next, we prove inequality (1.2). This essentially requires to understand the difference
between weak and biting convergence. And in section 4, 5 and 6, we deal succesively with
weak lower semicontinuity in three different situations but always through parametrized
measures and Jensen's inequality. Those are superlinear growth, no growth assumptions
and linear growth.

2. Notation and preliminaries

The existence theorem for Young measures suited for our purposes is the following.
It can be found in Ball [3] and Matos [19].

THEOREM 2.1 Let il C Rn be Lebesgue measurable and let Zj : Q —• R m be a

sequence of measurable functions such that

sup / <KMz)|)ds<oo, (2.1)
j Jo

for a function g : [0,oo) —• R with lim^oo g(t) = oo. Then there is a subsequence, again
{ZJ}, and a family of probability measures {^i}r€n, depending measurably on x, in such a
way that given any measurable E C ft,

f{zj)-*(vx,f)inL\E) (2.2)

for any continuous f : R m —• R such that {/(ZJ)} is sequentially weakly relatively compact

in LX(E).

The measurable dependence on x means that for any continuous / as in the theorem,
the function of a;, {i/x, / ) is measurable in ft. We will take g(t) = tp most of the time, so that
for a sequence of functions uniformly bounded in Xp(fi), 1 < p < oo, we will have associated
a parametrized measure with the property that whenever a subsequence converges weakly
in LX{E) for E C ft, the weak limit can be represented through its parametrized measure.
We call then (2.2) the integral representation for / in terms of the parametrized measure.

For a bounded sequence in X1(Q) we may not have compactness in the weak * topol-
ogy. The best one can have is Chacon's biting lemma. Let us recall what is meant by biting
convergence ([23]). The sequence {/*} C Xx(f2) converges in the biting sense to / £
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and is denoted

if there is a non-increasing sequence of measurable sets {E*} such that \E*\ —* 0 and

We may restate Chacon's biting lemma by saying that a uniformly bounded sequence in

contains a subsequence converging in the biting sense to a function in Xx(ft) ([6], [8]).

This lemma yields a sufficient and necessary condition for biting convergence to be-

come weak convergence. Its proof is elementary and can be found in [17], but for the

convenience of the reader we also include it here.

LEMMA 2.2 Let fk : il —• R + (fk > 0) be a sequence of measurable functions in

X1(J1), converging in the biting sense to f €

A subsequence converges weakly in X1(fl) if and only if

liminf / fk{x)dx < I f(x)dx. (2.3)
*-*<*> Jo Jn

And, {fk} is weakly relatively compact in Ll(il) if and only if

limsup / fk(x)dx < I f(x)dx. (2.4)

In reality, inequalities (2.3) and (2.4) pan be changed to equalities, but we will keep

this formulation for it seems less restrictive.

Proof. The only non-trivial thing is to show that inequality (2.3) implies weak con-

vergence.

Let {Ej} C ft be the sequence of subsets associated with the biting convergence so

that If^l -+ 0, £j+i C Ej and

We may assume

lim [ fkdx< I fdx<oo. (2.5)
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Suppose that no subsequence converges weakly in Ll(Sl). By Dunford-Pettis, there is

an € > 0 and a subsequence {kj} such that

0 < £ < / fk'dx, Vj large,
JEJ

for outside Ej we do have weak convergence. In particular, if t > j , since fki > 0,

0 < £ < / fkidx< I fkidx,
JEi JEj

and for fixed j , and i > j ,

I fki dx = / fki dx+ [ fki dx
JQ JEJ Ja-Ej

fkidx.
JQ-Ej

Finally, letting t —* oo,

lim / fki dx > e+ / fdx.

This is true for every j , and consequently

lim I fki dx>€+ I fdx,
*-̂ 00 Jn Jn

against (2.5). «

After Ball and Zhang [7], we identify biting limits with the help of Young measures.

LEMMA 2.3 Let wk : ft C R n —• Rm be a sequence of vector-valued functions with

associated Young measure {vx}xen- If<P • Rm - • R is continuous and the sequence {<p(wk)}

uniformly bounded in i1(Ji) , then (possibly for a subsequence)

<p(wk) A ^(X) = (vx, <p) = / v>(A) dux(\) (2.6)

The proof is nothing more than the fact that whenever <p(wk) converges weakly in
Lr(E)y E C fl, the limit has to be ^p(x) by theorem 2.1. This weak convergence holds in
i1(J2 — Ej) and \Ej\ -+ 0, so that the biting limit is equal to Tp(x) a.e. x € ft. Note that in
particular Tp £
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We say that a function (p : M —• R ( M is the space of matrices) is quasiconvex or

dff
1»oo-quasiconvex if

for any u € #otCO(ft), and for any matrix A. If this inequality is true for any u €

then we say that <p is #ltP-quasiconvex. Both definitions are independent of the set ft and

they are the same when <p does not grow faster than the pth power ([5]).

An Hl'p- Young measure is a parametrized measure in the sense of theorem 2.1 associ-

ated to a sequence of gradients, {Vu J} , such that {ttJ} is bounded in H1'p($l). The key fact

proved in [17] is that we can always assume that {|VuJ |p} is weakly convergent in £*(ft)

and therefore it is an equiintegrable family of functions. In other words, if {Vi/J} generates

{vx}X€Q then there is another sequence {Vv J} , such that {|Vt;J|p} is weakly convergent in

X*(ft) and whose parametrized measure is the same {vx}X£Q- Another important fact is that

in this situation each individual vx can be understood as a homogeneous (i.e. independent

of the point in ft) J?1|P-Young measure for a.e. x € ft (see [17]).

We formally say that Jensen's inequality holds for a continuous function <p : Rm —• R

and a probability measure v supported in Rm if

ip{X)dv(X) > <,

3. A previous theorem

One important fact for a general approach to weak lower semicontinuity is the fol-

lowing. It has two main advantages. On the one hand it will enable us to understand weak

lower semicontinuity on arbitrary measurable sets. And on the other, it will allow us to

avoid the usual growth conditions on the integrand.

THEOREM 3.1 Let g : R+ —• R + be a continuous function with limt-*oo0(*) = °°>

and z* : ft —• R m , a sequence of vector valued functions defined in a regular open bounded

set ft C Rn , such that

sup / g{\zj\) dx<oo. (3.1)
3 Jil



3. A previous theorem 7 8-5-1992

If {vx}xen is the parametrized measure associated to the z* 's according to theorem 2.1, then

liminf / <p(zj) dx> I I <p(\)dvx(\)dx, (3.2)
i—oo JE JEJK™

for any measurable E C ft and for every continuous ip such that

inf J^>0. (3.3)
-oo g{\\\) ~

Notice that we are assuming that any subsequence out of the {z*} give rise to the
same parametrized measure and we are not saying anything about the weak limit of {z*}.

On the other hand, <p is also allowed to take on the value +oo.

If the function g takes the value +oo from some value R on, then the condition on the

sup implies that the sequence is uniformly bounded in the X°°-norm, and condition (3.3) is

fulfilled for any continuous function.

Under the hypothesis of the lemma the sequence {<p(z*)} may fail to be weakly
relatively compact in JL1(H), SO that the integral representation in (3.2) might give the
wrong answer. And yet, under the further restriction expressed in (3.3), we have inequality
in the right direction in order to prove weak lower semicontinuity.

A previous step in the proof of the theorem is the following lemma in the spirit of de
la Vailee Poussin's compactness criterion in X1.

LEMMA 3.2 Assume that (p, g and {z*} are as in the theorem, i.e., conditions (3.1)

and (3.3) hold. Then

lim / \<p(zj)\dx = 0, (3.4)

uniformly in j .

Proof. Let e > 0. There is a C€ > 0 such that

¥>(A) > -€5(|A|), |A |>C 6 ,

by (3.3). Let D€ = min {<p(\): |A| < C€}. If a < min {Q,£>€} then clearly the set



5. A previous theorem 8 8-5-1992

is empty and

\<p{z*)\dx= [ -<p{z*)dx

= / -v (z*) dx

< e / g (1^1) d
•/{*(" )<«.l*'" !><?«}

<tAf,

uniformly in j , where M is a uniform bound for the X1-norms of {ff(|^J|)}^ g

We now divide the proof of the theorem in two easy steps.

Step 1. Assume (p > 0. If the liminf in (3.2) is not finite, there is nothing to do. If it

is finite, then for any subsequence, which we do not relabel, giving the liminf we have that

{v?(zJ)} is uniformly bounded in I}{E). Therefore by lemma 3.3 the biting limit is given

by

/

If there is a subsequence converging weakly in Ll (E) then we have equality in (3.2) according

to theorem 2.1. And if there is some subsequence not converging weakly then we can certainly

apply lemma 3.2 and conclude

/ 7p(x)dx < liminf / <p(zj)dx.
JE i-*00 JE

In any case we obtain the inequality.

Step 2. Changing the lower bound 0 by any other constant does not make any

difference in step 1. Consider then for a < 0 the function

a.

In this way, we may conclude through step 1,

liminf / <pa (z
j) dx > I I <pa(\)dvx(\)dx.

j-oo JE JEJK^

And since the vx's are probability measures

liminf / <pQ(zj) dx > / / <p{\)dvx{X)dx,
j—oo JE JEJIV*
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for any a < 0. But now

dx (a -

< I
A*(")<<»}

dx.

And this last quantity may be made small uniformly in ,; by lemma 3.2. Therefore we get

(3.2). u

When we deal with a bounded sequence in £p(£2), 1 < p < oo a lower bound such as

is sufficient for having the inequality (3.2). And for p = oo the inequality holds for any

continuous (p.

Condition (3.3) is sharp in the sense that we cannot allow functions (p with

Aoo

and still have inequality (3.2). The now classical example is due to Tartar (see Ball and

Murat [5] and Dacorogna [9]).

Take <p : M 2 x 2 - • R, <p(A) = det A, and g(t) = t2. Then it is not hard to see that

.. . . detA 1 „
hminf s- = - - < 0.
A-oo \A\2 2

If un : il = (0,a)2 C R2 -^ R2 , 0 < a < 1, axe defined by

w n ( x ' y ) ? -T^C1 ~ y)n (sin(na:), cos(nx)),

so that

M 1 -y)n cos(nx) -̂  -
then vx = ô? for all x € fi, and

liminf / det(Vwn)rfx = - ^ ,
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but
r r

det(A) dux(A) dx = 0.

COROLLARY 3.3 Assume, under the same hypothesis of theorem 3.1, that

lim [ <p(z')dx= I I <p(\)dvx(\)dx. (3.5)

Then the whole sequence {<p(z*)} converges weakly in

The proof is nothing more than applying theorem 3.1 to a given measurable E C ft

and its complement ft — J5, keeping in mind (3.5). This yields

lim [ <p(zj)dx= I I v{\)dvx(X)dx.
j-OO JE J£ JRm

4. Weak lower semicontinuity

We may now prove that almost any weak lower semicontinuity result can be recast

through a particular Jensen's inequality for appropriate functions and probability measures.

In general and without any "a priori" distinction between the scalar case or the vectorial

case in the calculus of variation or between the cases with or without derivatives in the

context of [10], suppose we know that Jensen's inequality holds for <p and vx for a.e. x € fi,

for every possible Young measure coming from subsequences of the 2J's, and that theorem

3.1 holds for <p, then

liminf / <p(zj) dx> I I <p(\)dux{\)dx > / <p( I \dvx(X)\ dx, (4.1)
i—00

 JE JEJK^ JE \JK^ )

and if the z' 's converge weakly in the appropriate space to z, then the integral representation

z(x) = / Xdux(X), a.e. x € ft,

is valid regardless of the subsequence we are considering. Thus we get the weak lower

semicontinuity. Hence any time we have a Jensen type inequality for a function and a

family of parametrized measures, we obtain a lower semicontinuity result ioj the sequence

giving rise to the parametrized measure. In particular, we get immediately the following

general fact. Notice we do not need any growth restriction on y>.
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THEOREM 4.1 Let <p : R m —• R be a real continuous function such that

^O, 1 < p < oo,
| |

no estimates for p = cx>.

Tien tie weak lower semicontinuity property

liminf / <p(zj)dx> I <p(z)dx, (4.2)
i->°° JE JE

holds for any measurable E and any sequence zj; : fi —• R m converging weaWy in ip(Sl) to

z, if and only if <p is convex.

It is well-known that there is no restriction on the probability measures coming from

sequences bounded in Lp. Therefore Jensen's inequality holds for any probability measure

if and only if we have convexity.

In the context of compensated compactness, we have an example in which the lower

semicontinuity can also be reinterpreted in this way. We deal with linear partial differential

operators of the type

i.* ° k

with constant coefficients a^*. In [20], we even specialize to the kind of operators for which

the decomposition

A t i s f o . V t i . p d j ^ , (4.3)

is valid, being TT̂  and p,- the canonical projections onto A% and (Bi^jEj respectively, where

and u : Vt C Rp —* R9. Then theorem 1.7 in [20] unravels the structure of parametrized

measures for sequences of functions uniformly bounded and verifying Az* = 0: vx = f l i l i ux

where each vx
x is a probability measure supported over A{. Therefore, if <p is a function

separately convex over the Ai's, then Jensen's inequality holds for this (p and vx and we

have the weak lower semicontinuity result. In fact, this is the approach tacitly assumed in

[20].

The variational case, in which A =curl is much more delicate. We could begin declar-
ing a function <p : M —* R as quasiconvex if Jensen's inequality holds for any Young measure
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coming from a sequence of gradients bounded in Z°°(£l), so that weak lower semicontinuity

results for quasiconvex functions would be immediate. But then the task would be to iden-

tify these quasiconvex functions with the classical ones. See also [21] for further discussion

on rank-one convexity related to this setting. Likewise, we could say that a function is HltP-

quasiconvex if Jensen's inequality holds for it and Young measures associated to sequences

of gradients uniformly bounded in 2Z1 tP(ll) so that again we would automatically have weak

lower semicontinuity results for this class of functions. Under growth assumptions, these are

again the usual quasiconvex functions.

PROPOSITION 4.2 Let <p : M —• R be continuous and such that

<p{A)<C(l + \A\p), K p < o o ,

no restriction if p = oo.

Tien <p is quasiconvex if and only if

Adu{A))< I <p(A)dv{A),
JMM

for any homogeneous J?1|P-Young measure.

Proof. If Jensen's inequality is valid for any such parametrized measure, then in

particular, for any u 6 ^1>p(f2;Rm) with affine boundary values u(x) = Fx, x € #fi, we

consider the homogeneous HlfP-Young measure, i/, given by the average of 6^u as discussed

in section 2. Then

jiy [ <p{Vu)dx= I <p{A)dv{A)><p{l
l"l Ju JM JM

{)) {)
M

and (p is quasiconvex.

By truncation, we may well assume that <p is bounded below and quasiconvex. Then

the important fact is that for any homogeneous H1*-Young measure, i/, we can find a

sequence of functions, u* € if l lP(fl; R m ) , whose gradients give rise to v and whose pth power

is weakly convergent in i a ( f i ) as-discussed in section 2. Hence the integral representation

holds for such a 9, and

/ <p{A)dv(A) = Urn JL / <p(Vut)dx > <p{F).
JM J-+00 \il\ Jn

For the case p = 00, we always have weak convergence in i1(I2) for any continuous function

and the Young measure representation is valid. H
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We now have the following lower semicontinuity results.

THEOREM 4.3 Let the operator A in (4.3) be given, and let <p : R9 -* R be continuous.

Then the weak lower semicontinuity property

liminf / <p(zj)dx> I <p(z)dx, (4.4)
i—°o JE JE

holds for any sequence z' -^ z in L°°(il) such that Azj = 0 if and only if (p is convex on

each Ai separately.

And finally, for the variational case, A =curl, we have for p > 1,

THEOREM 4.4 Let <p : R m —• R be a reai continuous function such that

0 < liminf ^ < U r n s u p ^ < oo
A-oo |A|P ~ A-.ooF |A|P

no estimates for p =oo.

Tien the weak lower semicontinuity property

liminf / <p(Vuj)dx> f <p(Vu)dx, (4.5)
j-oo JE JE

holds for any measurable E and for any sequence u*' : fl —• R m converging weakly in Hl'p(il)

to u, if and only if<p is quasiconvex.

If we use succesively theorems 3.1 and proposition 4.2, we arrive at (4.1) for z* =

This is possible since almost every individual vx is a homogeneous HliP-Young measure.

5. Weak lower semicontinuity without growth restrictions

In the context of non-linear elasticity, it is crucial to have weak lower semicontinuity

results for stored energy functions which take the value +oo when the determinant of the

deformation gradient is non-positive in order to rule out interpenetration of matter. There-

fore, we can not keep any hypothesis regarding polynomial growth of the energy function.

This is the reason why existence theorems assume polyconvexity as a constituve assumption

rather than quasiconvexity ([4], [5]) since all weak lower semicontinuity results involving

quasiconvexity require polynomial growth on the energy function. We again take p > 1

throughout this section.
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In [5], Ball and Murat introduced the notion of JF1|P-quasiconvexity requiring that
for any u € H]tP(il) and any A € M,

^ [ (5.1)

The point is that under the hypothesis

c < <p(A) < C(l + |A|P) (5.2)

-ff1|J?-quasiconvexity reduces to the usual notion of quasiconvexity requiring (5.1) for smooth

functions with compact support, or equivalently for Lipschitz functions. They also proved

that #ltP-quasiconvexity, without the hypothesis (5.2), is a necessary condition for weak

lower semicontinuity and conjectured that it should also be sufficient.

We introduce a somewhat stronger condition, which we call closed H1 ^-quasicon-
vexity for reasons that will be clear soon, and prove that this is sufficient for weak lower
semicontinuity. We have been unable to show that this is necessary.

Let us reformulate the notion of 17 ̂ -quasiconvexity. For u £ HliP(Sl) with affine

boundary values u(x) = Fx, x £ #Q, we may consider the homogeneous IF1 fP-Young mea-

sure, vu, given by the average of S^u as in the proof of proposition 4.2. Then (5.1) translates

into

< I
JMM

which is Jensen's inequality for <p and vu. On the other hand, we know that, in the appropri-

ate setting, the probability measures vu are dense in the set of all homogeneous HliP-Young

measures with underlying deformation F. Therefore we say that a continuous function

(p : M —• R is closed iT1|P-quasiconvex if for any matrix F and any homogeneous HliP-

Young measure, y, with underlying deformation F, Jensen's inequality holds,

/ <p{A)dv{A).

One immediately obtains the following two theorems.

THEOREM 5.1 Let (p : M —• R be a closed JBrl»p-quasiconvex continuous function such

that
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Ifu* converges weakly to u in HliP(£t), then

liminf / (p(Vuj)dx> / <p(Vu)<fx,
i-oo JE JE

for any measurable E C ft.

THEOREM 5.2 Let (p be as above and such that

c(\A\p - 1) < <p(A), A € M.

Let A-lue Hl*(£l) :u-uo£ Hl*(Sl)} for u0 € Hl*(Sl) given and

J(ti)= /
Jn

Assume that J is not identically +oo in A. Then J admits absolute minimizers in A,

The proof of theorem 5.1 reduces to the chain of inequalities in (4.1).

PROPOSITION 5.3 i) Every polyconvex function G : M —• R is closed HliP-quasiconvexity

forp> N if M is the set of N x N matrices.

ii) Let g : R + —• R be a convex increasing function, and <p : M —• R+ a quasiconvex

function with pth growth, then G = g • <p is closed HltP-quasiconvex.

Proof. Let F € M and i/̂ a homogeneous #1>p-Young measure with underlying defor-

mation JF1, generated by the sequence {Vuk} where {|Vu*|p} is equiintegrable in Q.

i) Let us write G(A) = g(M(A)) where M(A) represents the set of all minors of

A € M, and g is any convex function. Then, for any p > N, and possibly for an appropriate

subsequence,
M(Vuk)~* M(F) in L1^).

Notice that this weak convergence Is also true for p = N because j \Vuk | \ is equiintegrable.

Then we have

L'M
and

/ G{A)dv(A)= I g(M(A))du(A)>g( I M(A)du(A)) = g(M(F)) = G(F).
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ii) In the same situation, apply g to both sides of the inequality

<p{A)dv(A)><p(F),/
M

and then use Jensen's inequality.

It is hard to grasp the nature of closed !T1>p-quasiconvexity. We do not even know how
to understand quasiconvexity. The main trouble is in the nonlocal character of quasiconvex-
ity. On the other hand, having the weak lower semicontinuity property for any measurable
set E C SI might be something too ambitious to have. There is however a more natural
property for a function to be closed J71|P-quasiconvex, which is sufficient. For a continuous
function (p : M —• R, let us define the p-quasiconvexification by

<£>£ = sup {tj): ip is quasiconvex, |^| < C(l + |-|p), some C > 0, ̂  < ¥>} •

PROPOSITION 5.4 Let <p : M —• R be such that it coincides with its p-quasiconvexification.
Then (p is closed HliP-quasiconvex. And in particular, it is H1**-quasiconvex.

Proof. Let v be a homogeneous #liP-Young measure, with underlying deformation
F. Since any quasiconvex i{> < <pm the above sup is closed #ljP-quasiconvex because of the
bound on ^, we have

And just notice that xj)(F) -* <p(F).

COROLLARY 5.5 In the situation of theorem 5.2, if(p is such that it coincides with its
p-quasiconvexification, then J admits absolute minimizers in A.

6. Weak lower semicontinuity under linear growth

It is interesting to look at the situation previously discussed and see what conclusions
we can draw under linear growth conditions, i.e., g(t) = t in theorem 3.1. Precisely the
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case p = 1 is always very special for well-known reasons and general existence theorems for

this kind of variational problems do not seem to be available. While for p > 1 the uniform

boundedness of a sequence of functions zj or of a sequence of gradients VuJ in Lp(il) is

enough to force weak convergence, this is not so for p = 1. And in variational principles

this uniform boundedness is the best one can obtain under coercivity assumptions. So if we

place ourselves in the situation of theorem 3.1 taking g(t) = t, what can we say about weak

lower semicontinuity?

To begin with, theorem 3.1 is still true. If moveover we assume convexity on <p then

what we get is

liminf / <p (zj) dx > f I <p(\) dvx(\) dx > I <p( I Xdux(X)) dx.
i—oo j E JEJK™ JE KJK™ J

z{x) = / \dvx{\), a.e. x € £2,

then we have the weak lower semicontinuity result

liminf / <p(z*) dx > I (p(z)dx.
i—oo JE JE

How do the zJ's converge to zi According to lemma 2.3 this convergence is only in the

biting sense. Thus we have proved the following weak lower semicontinuity result.

THEOREM 6.1 If a sequence of jL1(fl)-functions, {^J}, converges to z in the biting
sense and <p is a convex function such that

or in particular (p is bounded below, then

liminf / <p (z*) dx > I <p(z)dx,
j—oo JE JE

for any E C fi.

In the variational case in which z* = VwJ\ u* € JT1|1(fi), we have again the same
trouble: uniform boundedness in H1%1(Q) does not imply weak convergence. However by the
Sobolev embedding theorems we do have strong convergence in Xx(n) towG X1(f2). The
function u may or may not be in Hlil(Q,). In case it is, lower semicontinuity results in all of
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Q have been proved by I. Fonseca and S. Miiller, [12] and [13]. In the worst possible case,

u is a BV-function whose gradient is a measure, and it is a natural problem to extend the

functional to BV-functions in such a way that it remains lower semicontinuous with respect

to strong convergence in X1(H). For this topic see also [2], [11].

This approach in terms of parametrized measures and Jensen's inequality yields a

lower semicontinuity result with respect to biting convergence in the gradient case for it

is also true that we can extract a biting converging subsequence to a gradient from every

bounded sequence in 2Tlfl($l). Indeed, in [17] it was proved that if {uJ} is a bounded

sequence in Hljl(Q) then there is a weakly convergent sequence, {v J } , in U l f l(ft) which

shares the parametrized measure with {tiJ}. Therefore, if {^x}x€n is the parametrized

measure for both {u*} and {vJ} then there is a u € JETlfl(ft) such that

Vu(i) = / Adi/X(A), a.e. x € ft,

and by lemma 2.3, Vuj -^ Vw.

On the other hand, proposition 4.2 is still true for p = 1 with exactly the same proof.

Hence,

THEOREM 6.2 If a, sequence of functions in J1»1(fl), {u*}, is such that their gradients,

{VuJ'}, converge in the biting sense to Vu, for u £ J5T1*1(ft) and <p is a quasiconvex function

with
0 < liminf ^ < Mm sup ^ r < °°>

A-oo |A| A_>OO |A|

then
liminf / <p (Vu') dx > / <p(Vu)dx9 (6.2)
i->oo JE JE

for any E C ft, measurable.

However, biting convergence is of no use in variational principles because of the fol-

lowing fact.

THEOREM 6.3 Let <p : M —• R be continuous, quasiconvex and such that

c(\A\p - 1) < <p(A) < C(\A\P + 1), 1 < p < oo,

and consider the variational principle

inf | / (p(Vv) dx : v € A \ ,
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for some suitable class A C fTltP($2;Rm). If {u*} is a minimizing sequence converging

weakly forp> 1 or in the biting sense for p = 1 to a minimizer u, then {|Vtt*|p} is a weakly

convergent sequence in

For the proof, just observe that

liminf / <p(Vuj) dx > I I <p(A) dvx{A) dx > I <p(Vu) dx,

but in this case we have equality throughout because we are dealing with a minimizing

sequence and a minimizer. Through corollary 3.3 we conclude that {<p(VuJ)} is weakly

convergent in 2/1(fi), and the lower bound on <p and the Dunford-Pettis compactness criterion

yields the result.

As a consequence, for p = 1 and whenever we have minimizers, minimizing sequences

should converge weakly to minimizers. The trouble with this resides in the fact that having

the weak lower semicontinuity property (6.2) for any measurable set is too ambitious. For

this reason, it is also plausible that if we restrict attention to all of ft, lower semicontinu-

ity results in the strong topology of X1(Q) are stronger than those with respect to biting

convergence. For a bounded sequence in J3rl>1(f2), {u-7}, we have associated a strong limit

in Xx(f2), w, and a biting limit t; € Hlyl(il). If u is also an H 1|1(ft)-function then it is

reasonable to expect

/ <p(Vu)dx> I <p(Vv)dx,
Ju Ju

for any quasiconvex function <p as in theorem 6.2, with equality only in the case u = v when

the given sequence converges weakly in H11
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