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RELAXATION OF QUASICONVEX FUNCTIONALS IN BV(Q,RP) FOR
INTEGRANDS f(x,u,Vu)
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Abstract. In this paper it is shown that if f(x,u,.) is a quasiconvex function with linear growth then the relaxed
functional in BV(Q,RP) of

u—- Lf(x.u(x),Vu(x)) dx
with respect to the L! topology has an integral representation of the form ,
F= [fxux),Vux)dx + J K(x,u (x).utx),v(x)) dHN.1(x) + [ £2(x,u(x), dC(u))
Q () Q

where Du = Vu dx + (u* - u)®V dHx.;LZ(u) + C(u). The proof relies on a blow up argument introduced by the

authors in the case where u e W' and on a recent result by Alberti showing that the Cantor part C(u) is rank-one
valued.
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1. Introduction
In this paper we study the relaxation & (.) in BV(Q, RP) of the functional

u— J f(x,u(x), Vu(x)) dx,

where f(x,u,.) is quasiconvex, grows at most linearly with possibly degenerate bounds and
satisfies some technical continuity conditions. We obtain the integral representation

F @) = Jf(x,u(x),Vu(x)) dx

+ f K(x,u"(x),u*(x),v(x)) dHN.1(x) + J f=(x,u(x),dC(w)) (1.1)
2w |

where the distributional derivative ADu is represented by!
Du = Vu dx + (ut - u)®v dHN 1L Z(u) + C(u).

Here Vu is the density of the absolutely continuous part of Du with respect to the Lebesgue
measure £N, Hn.; is the N-1 dimensional Hausdorff measure, (u* - u-) is the jump of u across the

interface X(u) and C(u) is the Cantor part of Du. As usual, the relaxation is defined by

F () = inflyy {liminf, [ f(x,us(x),Vun(x)) dx | upe W1 and u, - uin L1}
Q

and f~ denotes the recession function

f(x,u,tA)

f=(x,u,A) := limsup;— e t

As opposed to the convex case, it may not be possible to replace in the latter definition limsup by
lim, as illustrated by Miiller [Mii]. However, it turns out that f~ is positively homogeneous of
degree one and quasiconvex (see Remark 2.2 (ii)).

The proof of (1.1) is divided into two parts. In the first part, carried out on Sections 2, 3
and 4, we show that the representation in (1.1) is a lower bound for & (.), i. e. if u € WH1(Q;

[RP) are such that u, = u in L1(Q; RP), u € BV(Q, RP), then

liminf, [ fxun(0.Vua) dx 2 [ fxou().Vu) dx +
Q Q )

IRank-one matrices in MP™N are represented by tensor products of the form a®b, withae RP,be RN, where
(a®b)jj :=2a; b;

forl1<isp,1<j<N



IK(x,u'(x),u"’(x),v(x)) dHn.1(x) + C(J' f=(x,u(x),dC(u)). (1.2)
Z(u) u)

Here we use the blow up argument introduced in [FM], and the characterization of the surface
energy density K(x,a,b,v) is based on the work on relaxation of multiple convex integrals in
BV(Q; RP) by Fonseca and Rybka [FR]. The latter was derived from a conjecture by Fonseca and
Tartar [FT2] concerning the isotropic singular perturbation problem for solid materials (see also
Ambrosio and Pallara [AP]). The analysis of the Cantor part relies on a rank-one property of C(u)
obtained recently by Alberti [Al] (see Theorem 2.11). v

In the second part of this paper (Section 5) we assert equality in (1.2). We use the same
arguments exploited by Ambrosio, Mortola and Tortorelli [AMT]. '

Under the convexity assumption on f(x,u,.) the integral representation (1.1) was obtained
first by Dal Maso [DM] in the scalar case p = 1, by Goffman and Serrin [GS] and Reshetnyak [R]
when f depends only on Vu, while Giaquinta, Modica and Soucek [GMS] treated the case where f
= f(x,Vu). In the vectorial case p > 1, the result was proven by Ball and Murat [BM] and by
Reshetnyak [R] provided f = f(A) is convex and u € W11(Q; RP). Fonseca [Fo] and Kinderlehrer
[K] extended the latter to the class of functions f = f(x,Vu), with f(x,.) quasiconvex. When f =
f(x,u,.) is convex, Aviles and Giga [AG] obtained lower semicontinuity results in the BV setting
(see also Ambrosio, Mortola and Tortorelli [AMT], Ambrosio and Pallara [AP] and Fonseca and
Rybka [FR]) .

Here we generalize our previous work in [FM], where, under the same assumptions, we
identified the absolutely continuous part of & (u), proving that

u- l!f(x,u(x),Vu(x)) dx

is lower semicontinuous in W11 with respect to the L1 topology. As mentioned in [FM], the study
of this problem was motivated by the analysis of variational problems for phase transitions.
Equilibria of materials are often associated to minima of a bulk energy

) : = ?[ f(x,u(x),Vu(x)) dx .

where the possibility of a phase transformation is related to the nonconvexity of f(x,u,.). Here the
function spaces involved should allow discontinuous vector-valued u, and a linear growth
condition on f(x,u,.) suggests, naturally, the need to relax I(.) in BV. In addition, singular
perturbation problems derived from phase transitions such as the one considered by Modica [Mo]
(see also Baldo [B], Fonseca and Tartar [FT1], [Gul], [Gu2], Kohn and Sternberg [KS], Owen
and Sternberg [OS]) lead us to energy densities of the type

f(x,u,A) = 2 YW(u) h(A)



where W vanishes at more than one point, thus preventing the coerciveness of f(x,u,.) and -
suggesting the need to consider degenerate bounds for f.

We remark that the convexity techniques employed on previous related works cannot be
used in our context. Also, Sverak [S] and Zhang [Z] provided examples of quasiconvex functions
with linear growth that are not convex. More recently, Miiller [Mii] constructed functions that are
positively homogeneous of degree one and quasiconvex but not convex.

As we were writing this paper we became aware of a result by Ambrosio and Dal Maso
[ADM] providing the relaxation of

uo [ f(Vux) dx
S ¢

in the L1 topology, where f is a quasiconvex function such that
0<f(A)<CA +1AN).

The remainder of this article is organized as follows. In Section 2 we introduce the notion
of recession function for quasiconvex integrands and we recall some results on measure theory and
on the theory of functions of bounded variation. We state the relaxation theorem, Theorem 2.16,
and we introduce the surface energy density K. Sections 3 and 4 are dedicated to showing that

F ()22 g[f(x,u(x),Vu(x)) dx + J K(x,u"(x),u*(x),v(x)) dHN.1(x) + Jf“(x,u(x),dC(u)).
Z(v)

The absolutely continuous part of this inequality is treated at the end of Section 2 and we follow the
argument in [FM], while the jump and the Cantor parts are studied in Sections 3 and 4,
respectively. In Section 5, and using the same reasoning as in Ambrosio, Mortola and Tortorelli
[AMT], we show that there is equality in (1.1). Finally, in the Appendix we provide the proofs for
three results on measure theory and functions of bounded variation which we could not find in the
literature although they are well-known to experts in the field.

2. Preliminaries
In what follows Q C RN is an open, bounded set, p, N 2 1, MP™ is the vector space of all

pxN real matrices and SN-1 := {x € RNI lixll = 1}. Given v € SN-1, Q, is the open unit cube

centered at the origin with two of its faces normal to v, i. e. if {vy V2, ..., VN.1, V} is an
orthonormal basis of RN then
Qv:={xe BNI kvl 12, Ixv I 1R2,i=1, .., N-1}.

Definition 2.1([Mr]). A function f : MP™N ;R is said to be quasiconvex if

f(A) < m—fl——(m l! £(A+Vo(x)) dx @.1)



for all A € MP™N, for every domain D C[RN and forall ¢ € Wé"'(D; RP).

We define the recession function of f by

f~(A) :=lim sup,_,_ {2

t

Remark 2.2. (i) If
f(A) ISC( + 1A 1) 2.2)

then, using a density argument, one shows easily that the inequality (2.1) holds for all ¢ €

W, (D; RP). Also, (2.1) can be extended to all Q - periodic functions ¢ € W1(Q; [RP), where Q
is a cube in RN (see Theorem 3.1 in [BM], Kohn [Ko]).

(ii) f~ is a quasiconvex function and is positively homogeneous of degree one. This class of
functions was studied by Miiller in [Mii], where he shows that these hypotheses do not imply
convexity of f. To prove that f= is quasiconvex, let A € MP™N and let ¢ € Wé'“(D; [RP) for some

domain D ¢[RN. Choosing ty — +eo with
. f(t, A
=(a) =tim _,, A
by (2.1) we have
f(txA)
t

< (mealsD)q( Jf(tkA + V(t0(x))) dx

- (EealsT)zk Jf(tk(A +Vo(x))) dx.

Defining
H(x) := C(1 + 1A + Vox)II),
by (2.2) we deduce that

f(A) SHmSup, |, ToeacDi: Jta +7900) ax
- JHE) ax -
timinf, . ms [ [HE) - (A +7900)] dx
Q

which, by Fatou's Lemma, yields

A< rogep | lim sup, .. i (A +7000)) dx
D

1
measD

f=(A +Vo(x)) dx. |



Definition 2.3. A function u € L}(Q; RP) is said to be of bounded variation, u € BV(Q;
RP), if foralli e {1,...,p},j€ {1, .., N} there exists a Radon measure M;j; such that

0
j w00 2260 dx = - [900) diy
9x;
| o]
for every @ € C:)(Q). The distributional derivative Du is the matrix-valued measure with

components ;.

We briefly recall some facts on functions of bounded variation. For more details we refer
. the reader to Ambrosio, Mortola and Tortorelli [AMT], Evans and Gariepy [EG], Federer [Fe],
Giusti [Gi], Ziemer [Zi].

The approximate upper and lower limit of each component u;, foralli € {1, ..., p}, are

given by .
u; (x) :=inf {te Rl lim . Zl{u; > t}NBx,£)] =0}
1 * €—0 eN N 1 ’

and
u; (x) :=sup {te lRllime_)of]; Pal{u; < t}NB(x,£)] =0}.
(3

The set X(u) is called the singular set of u or jump set and is defined by
) = &1 {xe QluKx) <u )}
=

It is well known that Z(u) is N-1 rectifiable, i. e.
T(u) = C.')l K,UE
n=
where Hn.1(E) = 0 and K, is a compact subset of a C! hypersurface. If x € Q\X(u) then u(x) is
understood as the common value of (uf(x),...,u;(x)) and (u; (x),...,u;,(x)), which may be +e or

-e0 in some components. It can be shown that u(x) € RP for Hn.j 2. e. x € Q\Z(u) (see [Fe],
4.5.9 (3)).

Theorem 2.4. If u € BV(Q; RP) then
() for ¥ya.e.xe Q

I'u()’) - u(x) - Vu(x).(x - y)INo-n dy ) JN-1IN = @;

. 1 '
lime o+ {———
€0 g {meaS(B(x,E)) e



(ii) for Hn.j a. €. x € Z(u) there exists a unit vector v(x) € SN-1, normal to Z(u) at x, and there
exist vectors u-(x), u*(x) € [RP such that

. 1 . =
im0t on lu(y) - u*(x)IN(N-D gy =0,
{y € B(x,e)l(y-x).v(x)>0}
lim o+ = | «(x)IN/(N-1) dy = 0;
0" n u(y) - w(x) y =0

€ (y € Bx,£)y-x).v(x)<0)

(iii) for HN.1 a. €. xg € Q\X(u)
1

lim_ .+ J lu(x) - u(xp)ldx =0
=% meas(B(xo.€)) B(xo.€) .
and for Hn.j a. €. Xg € Z(u)
+ -
lim,_+ . [ux)dx ="° (x) ; u(Xo),

meas(B(x0.€)) B(xy.e)

We remark that in general (u;* # (ut);. If u € BV(Q; [RP) then Du may be represented as
Du = Vu dx + (u* - u)®v dHN.j| Z(u) + C(u) (2.3)

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional
Lebesgue measure £ and Hy.; is the N-1 dimensional Hausdorff measure. The three measures in
(2.3) are mutually singular ; if HN.;(B) < +e0 then IC(u)I(B) = 0 and there exists a Borel set E such
that

ZN(E) =0and IC(u) IX) = IC(u) IXNE)
for all Borel sets XC Q.

Lemma 2.5. Let u e BV(Q; [RP), and let p € C(RN) be a nonnegative function such that
lp(x) dx =1, suppp =B(0,1) ,p)=p(-x) foreveryx € RN.
X
Let pp(x) := nNp(nx) and
U (x) := (ePo)(x) = J u(y) Palx-y) dy.

Then

@) j h(x) IVup,x)ldx < I(h-:p,,)(x) [Du(x)! -
B(x0.€) B(xg.£+1/n)

whenever dist(xo,0€2) > €+1/n and h is a nonnegative Borel function ;



(i) limy e [8(Vusc)ax= [ O@u()
: B(xo.€) B(x0.€)

for every function 6 positively homogeneous of degree one and for every € € (0, dist(x0,0L2))
such that IDul(@B(xq,€)) =0 ;
(iii) if, in addition, u € L=(2 ; RP) then for every xo € 2\ X(u)

un(xo) 2 u(xp) and (lu,-ulepy) (xo) =0
as n — oo,

The proof of this lemma can be found in [AMT], Lemma 4.5. The next result will be used in
Section 3.

Lemma 2.6. For Hy.; a.e. xg € Z(u)

hnle_m—;—l j lu*(x) - u(x)l dHN-1(x) = lu*(xo) - u(x0)!.
& ZwnoeQug)

In order to prove this lemma we need to recall some auxilliary theorems on measure theory that can
be found in [EG]. The following version of Besicovitch Differentiation Theorem was proven by
Ambrosio and Dal Maso, [ADM] Proposition 2.2.

Theorem 2.7. If A and W are Radon measures in €2, p 2 0, then there exists a Borel set E

C Q such that u(E) = 0 and for every x € supp H\E
dA . A(x+eC

x) 1= lim g s o)

du p(x+eC)

exists and is finite whenever C is a bounded, convex, open set containing the origin.

We remark that in the above result the exceptional set E does not depend on C. An
immediate corollary is the generalization of Lebesgue - Besicovitch Differentiation Theorem given
below.

Theorem 2.8. If 4 is a nonnegative Radon measure and if f € Llloc (RN,u) then

If(y) - f{(x)I d =0
e ”!C () - £(x)I du(y)

for 4 a. e. x € RN and for every bounded, convex, open set C containing the origin.



Proposition 2.9. If i is a Borel regular measure in RN and if A C RN is p-measurable

with H(A) < +eo then
MANB(E) _
em

limg_50 0

forHha. e.xe A.
2.10. Change of Variables Formula. If f : R" — R™ is Lipschitz, n £ m, and if
u:R" = R"is £, summable then
L uotteo ax = ‘[-[er £(y) u(x)] dHa(y).
R

Proof of Lemma 2.6. Since X(u) is rectifiable we can write
() = Gl K, UE
n=
where Hn 1 (E) = 0 and K, = @4(Ay), @, is C! and A, C RN-1 is compact. Let A be the set of

points of density 1 in Ay, i. e.
Hn.1(AnnB(X'e)) _ 1}

A = {x e Ayl limeo He (Boce) 2.4)
It is well known that
Hna(ANA) = 0. 25)
Hence
T(u) = G] ®,(A) UE
where

E = ..91 ®,(AM)UE, Hy (E)=0.
Indeed, by (2.5) and by the change of variables formula 2.10 we have
Hy.1 @n(AM ) < f [Zxeolin) Xama, x)]dHN ()

|RN
= | Xana () 10u(x) dHy(x) = 0.
RN-1
Setting
Kn = <1.>,,(An)



and as HN-1|_K!; is a Radon measure, by Theorem 2.8 there exists a set
E, C Kl; with Hy.j (Ep) =0

such thatif x € K‘:\En then

Tim ¢ 50 L [+ - w@) - (040 - w@] dHNa () =0.  (26)

HN.1 (Knt (x,€)) K;hB(x.e)

On the other hand, as
M=ot -ul Hn.LZ(w)
has finite total variation, by Proposition 2.9 there exists
Fn C K with Hy., (Fp) =0

such that
K((x0 + EQuixg)NIZWNK 1)
limg 0 =0 2.7

EN']

forevery x € K;\ F;. Defining

E* = Gl (E, UF,) UE
n=

then Hn.1(E*) = 0 and if xg € Z(u)\E*, with xge Kr; \E*, for € > 0 is small enough and after a
rotation of the coordinate axes, we may write
! - N - [] [ (] ! ! '
Knn(xo +€Quvxg) = {x € RN Ix = (x'g(x)), x"' € Anh(x0 +eQ")}

where Q' is the unit cube in RN-! centered at the origin and g is a C! function, Vg(x,) = 0. By

(2.7) we have
1 u((Xo + EQuiag)NK.)
imeso—— [ W) - vl dHya®) = limeso —
| A €
Z(u)(x0+EQv(x)) ,
=limg_,o$ j lu*(x',g(x)) - u(x", g V1 + Vg2 dx’
A N(x +€Q)

= lu*(Xg) - u"(xp)!

due to (2.4) and (2.6). |

10



Recently, Alberti [Al] showed that the density of the Cantor part C(u) is a rank-one matrix.
Taking into consideration Theorem 2.7 we have the following property.

Theorem 2.11. If u € BV(€2; RP) then for IC(u)l a. e. x € Q

D)x+eX) ..  Clu)x+eX)

AR = M gt e 0 1o xveX)

exists and is a rank-one matrix of norm one, for every convex, open set X containing the origin.

The following lemma provides an estimate on the HN.; measure of the level sets of
Lipschitz functions. A minor variation was obtained in [FM], Lemma 2.7, and for the convenience
of the reader its proof is presented in the Appendix.

Lemma 2.12. Let K C RN be a compact set, let v be a Lipschitz function on K and let
ACK be a measurable set. If 0 <a < b then

. 1
essinfie o tHha(lx e AV =t Sp [ Vvl ax.
An{asvsb)

In Section 4 we will treat the density of & (.) with respect to the Cantor part of the

derivative Du, and for this purpose we will need an uniform estimate on the measure |[Duj(B(x,tg))
with respect to IDul(B(xo.€)) .

Lemma 2.13. Let i be a nonnegative Radon measure on RN. For i a. e. xg € RN and for

every O<t<1 one has
limsupe o HBEOE) &
H(B(x0.€))
The proof of this lemma can be found in the Appendix.
In the sequel
f : QxRPXMP™N 5 [0, +<0)
satisfies the hypotheses:
(H1) f is continuous ;
(H2) f(x,u,.) is quasiconvex ;

11



(H3) there exists a nonnegative, bounded, continuous function g : QxRP — [0, 4+), ¢, C> 0
such that

cg(x, wlAll <f(x, u, A) < Cg(x, u) (1 + llAll)
for all (x,u,A) € QxRPxMP*N;
(H4) for every compact K CC Qx[RP there exists a continuous function @ with @(0) = 0 such that

if(x,u,A) - f(x',u',A)l € @(x - x| + lu - u'l) (1 + lAll) '

for all (x,u,A), (x',u,A) € KxMPXN_ 1 addition, for every xp € Q and for all 8 > 0 there exists €
> 0 such that if Ix - xgl <€ then

f(x, u, A) - f(xo, u, A) 2 -6 g(x,u) (1 + 1A 1)
for every (u,A) € RPxMP*N,

(H5) there exist C',L > 0,0 £m < 1, such that
A 1-
'fn(xs u, A) - f(x’ l:’ t' S C' g(x’ u) "A" m

tm

for every (x,u,A) € Qx[RPxMP™N and for all t > 0 such that t IAIlI> L.

The latter hypothesis will be used only to obtain a lower bound for the density of the jump
term on Section 3. (HS) is equivalent to the condition

if=(x,u, A) - f(x,u, AI<C g(x,u) (1+ lAlIl-m)
for every (x,u,A) € QxRPxMP™N,

The following properties are an easy consequence of the definition of recession function.

Proposition 2.14. If (H3) holds then

cg(x, wllAll < f=(x, u, A) < Cg(x, u) lIAll (H3")
for all (x, u, A) € QxRPxMP*N, If (H3) and (H4) hold then for every compact K CC Qx[RP there

exists a continuous function ® with (0) = 0 such that
if=(x,u,A) - f=x"\u,A)l < o(x - x'l + lu-u'l) Al (1-14‘)

for all (x,u,A), (x',u’,A) € KxMP*N, Also, for every xo € Q and for all § > 0 there exists € > 0
such that if Ix - xgl < € then '
f=(x, u, A) - f~(xg, u, A) 2 -0 g(x, u) llAll (H4)

for every (u,A) € RPxMP*N,

The goal in this paper is to obtain an integral representation for the relaxation & (.) in
BV(E2;RP) of

12



u- jf(x,u(x),Vu(x)) dx
Q

with respect to the L! topology, namely

& () :=inf(y,) {liminf, l[f(x,un(x),Vun(x)) dx | uge W1 and u, = uinL1}.

We introduce the surface energy density K(x,a,b,v) whose characterization is based on the work of
Fonseca and Rybka [FR] on the relaxation of multiple convex integrals in BV(Q; RP) (see also

Ambrosio and Pallara [AP]) which, in turn, was inspired by a conjecture of Fonseca and Tartar
[FT2] for the integral representation of the I'-limit of a sequence of rescaled singular perturbations

for the bulk energy of an elastic material that changes phase.
If (a, b, v) e RPx RPx SN-1 let {vy, ...,vN.1, V} form an orthonormal basis of RN and

define
(a, b, v):={fe WLI(Q;RP) I&(y) =aif y.v=-1/2,E(y) =bif y.v = 1/2, and § is periodic

with period one in the Vi, V2, ..., VN.] directions}.

As usual, £ is periodic with period one in the v; direction if

E(y) =80 +kvi)
forallk € Z,y € Q,. The surface energy density K : Q x RPx [RP x SN-1 — [0, +<) is defined by

K(x, a b,v):=inf { [f(xE(),VEG)dy I1Ee 2@, b,v)}.
a

For a detailed study of this function we refer the reader to [FR].

Lemma 2.15. If (H1)-(H4) hold then
(a) IK(x,a,b,v) - K(x,a',b',v)l £ C(la -a'l + Ib -b'l) for every (x,a,b,v), (x,a',b',v) € QxRPxRPx
SN-1. |
(b) x,v) = K(x,a,b,v) is upper semicontinuous for every (a,b) € RPxRP;
(¢) K is upper semicontinuous in Qx[RPx[RPx SN-1;

(d) K(x,a,b,v) £C la - bl for every (x,v) € xSN-1 a, be RP.

13



Proof. First note that (c) is an immediate consequence of (a) and (b).
(a) Let £ € £&4(a,b,V), let 6 be a smooth cut-off function with0 €0 <1,0(t) =0if t > 1/2 and 6(t)

=1 if t < 1/4, and define
E(2y) if ly.vl < 1/4
E*(x)=9 O(y.v)b+ (1-6(y.v)b' if 1/4d<y.v<1/2
0(-y.v)a+ (1-6(y.v))a' if-1/2<y.v<-1/4
Then £* € &4 (a',b',v) and

K(x,a',b',v) < QI f=(x,E*(y), VE*(y)) dy

v

= [ [roEey2veey) dy +
J lyvicl/a

s

+ [ £=(x,8(y.v)b+[1-6(y.V)Ib, (b-b)®O'(y.v)v) dy
1/4<y.v<1/2

o

g

+ If""(x,G(-y.v)a+[l-9(-y.v)]a', (a'-a)®08'(-y.v)v) dy
-1/2<y.v<-1/4

d

hence, by (H3') (Proposition 2.14) and by the periodicity of §
K(x,a'b',v) < % [ £=x,£(y),VE®)) dy + Clla - 21 + Ib - bY)
ly.vi<1/2
2Q
= [ f=(x,E(),VEY)) dy +C(la - a'l + b - bl).
Qv
Taking the infimum in all £ € &/(a,b,v) we conclude that
K(®x,a'b',v) £ K(x,3,b,v)+ C(la - a'l + Ib - b'l).
(b) It is clear that
K(x,a,b,v) = inf { J f=(x,E(Ry),VE(RY)RT) dy | R is a rotation, Rey = v and £ € 2¢(a,b,en) }

where Q = (-1/2,1/2)N. Also, due to (H3') it suffices to consider smooth functions £. Let (xn,vn)

— (x,v) and given € > 0 choose a rotation R such that Rex = v, and let § € &f(a,b,en) be a

smooth function such that
K(x,2,b,v) - Jf"(x,é(Ry),Vé(Ry)RT) dyl <e.
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Let X be a compact subset of Qx[RP containing a neighborhood of {(x, ERy) |y € Q}. By (114;)
there exists a function ® with w(0) = 0 such that

if=(y,u,A) - f=(y',u’,A)l € o(ly - y'l + lu - u'l) HAll (2.8)
for all (y,u,A), (y',u',A) € KxMPXN, As f=(x,u,.) is quasiconvex (see Remark 2.2) by (H3') we
obtain a Lipschitz condition for f=(x,u,.), precisely

if=(x,u,A) - f~(x,u,B) ISCIA - BIl. 2.9
Choosing rotations Ry, such that Ryen = vy, by (2.8) and (2.9) and for n large enough we have
| [ FOBRDTERIRD dy - [ un bR, FERmR,) dy I <.
Q

Hence
T
K(Xp,a,b,vn) < f f=(xn,ERny), VE(Ray)R ) dy
Q

<e+ J f=(x,E(Ry),VE(RY)RT) dy

<K(®x,a,b,v) + 2¢
and letting € — 0 we conclude that
limsupp—+e K(Xp,a,b,vp) < K(x,3,b,v).

(d) Setting

Eo(y) = (b - a)(y.v) +22D

by (H3') we have
K(x,a,b,v) € QJ f=(x,E0(y), VEo(y)) dy

- Qj f=(x,E0(y).(b - 2)®V) dy < C la - bl. m

In what follows, if g is a positively homogeneous function of degree one and if [ is a [Rh‘ -

J g(dp)

| “f g(@(x)) dip)l,

valued measure we use the notation

to designate
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where Il is the nonnegative total variation measure and o : Q — S™m-! is the Radon-Nikodym -
derivative of p with respect to Il (see Goffman and Serrin [GS], Fonseca [Fo], Reshetnyak [R]).

Theorem 2.16. If (H1)-(H6) hold and if u € BV(Q, RP) then

T = ‘[f(x,U(X),VU(X))dx + IK(x,u'(X),u*‘(X),V(X)) dHn.1(x) +Jf"(x,u(X),dC(U))-
Z(u)

Remark 2.17. In the case where .
‘ f = f(x,Vu),
the surface energy density becomes
K(x, a, b, v) = f=(x, (b - a)®V)

and the jump term in & (u) reduces to

[ £=(x, @) - 0 x)®V(X) dHN.1X).

Z(v)

Indeed, setting

Eo(x) = (b - a)(v) +25->

and
P = {¢p e WLI(Q\:;RP) I (y) = 0if y.v =21/2, ¢ is periodic with period one in the v V2, ...,
VN.; directions},
we have
K(x,a,b,v) =inf { [ f=(x,V(E(y) +o()dy 19 e B}

v

= inf {Q[f"’(x, (b-a)®v+Vo(y)dyloe B }.

Thus, by (H3') and Remark 2.2 (i) and (ii) we conclude that
K(x, a, b, v) = f~(x, (b - a)®V) |

We divide the proof of Theorem 2.16 into two parts. In the first one we show that

F )2 g[f(x,u(x),Vu(x)) dx + jK(x,u’(x),u*’(x),v(x)) dHn.;(x) + d’. f~(x,u(x),dC(u))
Z(u)

and the second part asserts the reverse inequality. It is clear that the above inequality is equivalent
to proving

Theorem 2.18. Let (H1)-(H5) hold, let u € BV(Q, RP), u, € WL1(Q; RP) and suppose
that u, — u in L1(Q; RP). Then

16



liminf d[ £(x,un(x),Vun(x)) dx 2 Jf(x,u(x),Vu(x)) dx

+ Ko @.ut.vx) dHnae) + J =), acq).
Z(u)

Proof of Theorem 2.18. Due to (H3) we may assume without loss of generality that
liminf __ f[f(x,un(x),Vun(x)) dx=lim f‘;f(x,un(x),Vun(x)) dx < 4o

n

and u, € C;([RN; [RP) (see Proposition 2.6 in [FM] and also Acerbi and Fusco [AF]). Using the

blow-up argument as introduced in [FM], we reduce the problem to verifying the pointwise
inequalities (2.10), (2.11) and (2.12) below. As f is nonnegative there exists a subsequence,
which for convenience of notation is still labelled {u,}, and a nonnegative finite Radon measure p

such that
f(.,un(.),Vup()) = H weakly * in the sense of measures,

i. e. for all ¢ € Co(Q2)

d[cp(x) £(x,up(x), Vi (x)) dx — J(p(x) dux).

Using the Radon-Nikodym Theorem, we can write p as a sum of four mutually singular
nonnegative measures

M=K N+ LIt - IHn g Z() + 1 IC) |+ .
We claim that

Ha(x0) 2 f(xo,u(x0),Vu(xg)) for £y a.e.xp€ Q, (2.10)

K(x0,u"(x0),u*(x0),V(x0))
lu*(xp) - u-(xp)!

{(x0) 2 for lu* -ulHn.j|Z(u) a. e. xg € Z(u) 2.11)

and, using the same notation as in Theorem 2.11,
N(x0) 2 f~(xo,u(x0),A(x0)) for IC(u)l a.e. xo€ . 2.12)

Then, considering an increasing sequence of smooth cut-off functions ¢y, with 0 < @; < 1 and
supx @x(x) =1 in Q, we conclude that

lim ‘{f(x,un(xx\?un(x))dxzliminf,,_,+., ?[cmx) £(X,un(x), Vun(x)) dx

17



= [ dux
Q

2 J Pu(X)Hq(x) dx + f Px(x)E(x) lu*(x) - u(x)l dHN.1(x) +
()

+ J PLx)M(x) d IC(W)I(x)
> i Pr(x) f(x,u(x),Vu(x)) dx +

+ f ox(x) K(x,u"(x),u*(x),v(x)) dHN.1(x) +J Pr(x)f=(x,u(x),dC(u)).
Z(u)

Letting k — +oo, the result follows from the Monotone Convergence Theorem. u

The next two sections are dedicated to proving claims (2.11) and (2.12). The inequality
(2.10) concerning the absolutely continuous part is easily obtained. Indeed, by the Besicovitch
Differentiation Theorem (Theorem 2.7) for ¥xa. €. xg € £ the limit
K(B(x0.€))

meas(B(xo,€))
exists and is finite and Theorem 2.4 (i) holds. Here, and in what follows, we denote the ¥

Ha(x0) := lim¢ - o*

measure of a Borel set B by meas(B). Choosing one such xg, (2.10) now follows from Steps 1, 2
and 3 in the proof of Theorem 2.3 in [FM].

3. The density of the jump term.
Here we prove inequality (2.11). By Lemma 2.6, Theorem 2.4 (ii) and by Theorem 2.7,
for HN. a. e. xg € X(u) we have

@) limeot [ () - w0l dHa () = het(xo) - wlxo),
& Bun(xo+eQug)
.. : 1 +(x)IN/(N-1 =
(ii) lim,_+ [ ) -ur Ydy = 0,
SN
{y € B(x,e)l(y-x).v(x)>0}
and
Lim,_,,+ L lu(y) - u(x)IN(N-1) dy =0
—0 EN 4
{y € B(x,e)l(y-x).v(x)<0}
. H(X0+€Qv(xy))
(ii) {(xo) = lim _; o* =0

lu* - ut HN. 1 Z(u)(X0+€Qu(x))

18



exists and is finite.

Writting Q = Quirgy Q* =1 1 SQuith0<B<1letge C3(Q) be such that 0 < @ <
+ .

1,9 =1 on Q*. By (i) and (iii)

N ) H(xo+€Quv(xp))
C(xo) =lime — ¢ lu* - ut HN.1LZ(u)(X0+€Qu(xp)

1
= - limg 50 du(x)
lu*(xg) - u(xp)! eN %o +'[Q
1 . . 1 X - X0 |
0" (xg) - 0-(xg)] lim sup ¢ — o* lim, — N, "_LQ(p(———E ) f(x,un(x),Vu,(x)) dx

1
= Tu*(xg) - u-(xo)!

lim sup ¢ - 0* lim; 5 ({ € O(y) f(xo+Ey,un(xo+€Y), Vun(xo+ey)) dy

1
~ lu*(xp) - u(xp)!

lim sup ¢ 0* lim sup, — « [ €f(Xp+Ey,un(Xo+€y), Vup(xo+ey)) dy.(3.1)
Q#

Let
Up e(y) := un(xot€y),

ut(xg) if y.v(xp) >0

uo(y) :={ u-(xo) if y.v(x0) €0

As up, — uin L1, by (ii) we obtain
limg _ o* limp — - J lune(y) - uo(y)! dy = lime — o* QJ l(xg+ey) - w*(xo)l dy
+1im , o* Q[ l(xg+EY) - u(xo)dy = 0. (3.2)

On the other hand

1
lat(xp) - u-(xp)!

C(xp) 2 lim sup ¢ —0* lim sup; — o [ QI‘ f=(xo+€Y,un e(y),Vuy ¢(y)) dy

+ ](e f(Xo+£y,un.e(y)%Vun.e(y))- f=(xo+ey,une(y).Vune) ) dy ]  (3.3)

where, by (H3), (H3") and (HS)
I | € f(xo+Ey,une(y),~ 1 Vun.e()’)) f"(xo+6y,un e(¥),Vup e(y))l dy <

< meas(Q*N{ |[Vupell <€L}) € C(1 +2L) +
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+ [ gxorey une)) IVuge(y)ilmem dy
Q*N{lIiVupIt>el)

and so, as g is a bounded function, by Hélder's inequality, (H3) and (3.1) we conclude that
1
Q!* le f(xo+€y,un'5(y),; Vuge(y)) - £=(xo+€y,une(y),Vune(y)) | dy

$O© +Cem [ [ gxoreyunc)) V)il dy J1-m
Q

=0@©) +Cem [ [ e gxotey.un(xorey)) IVun(xo+ey)ll dy J1-m
Qt

<0@E) +Cem [ j € f(Xo+Ey,un(X0+EY), Vug(xo+ey)) dy ]1-m
er

< O(em).
Thus (3.3) reduces to

1
lu*t(xp) - u-(xp)!

L(x0) 2 Lim sup ¢ — o* Lim sup; — « { QL £=(X0,n,e(y): Vune(y)) dy

+ Q[ [ £=(xo+€y,une(), Vune(¥) - £=(X0,Une(¥) Vune(y)) ] dy } (3.4)
and (H4,), (H3) imply that

QI [f=(xo+ey,une(y),Vune(y)) - £(x0:une(¥),Vune(y)] dy
2- 8 [ € g(xotey,un(xo+ey)) IVun(xo+ey)ll dy
Qll
2- 8C [ & f(xotey,un(xo+ey), Vu(xo+ey)) dy
Q#

where, by (3.1), the set
{ [ ef(xo+ey,un(xo+ey),Vun(xo+ey)) dy |€ > 0, n positive integer }
Q*

is.bounded. Thus
o [ 0reyun9). Vune) - £-(roune4). Vi) dy 2 OG). (35)

Using a standard diagonalization procedure, by (3.2), (3.4) and (3.5) we construct a sequence
{vx} such that
vk — p in LI(Q)

and
1

- u(xp)!
Making the change of variables

C(xo) 2 o (xo) limy o Q[ f=(x0.vi(y),Vvi(y)) dy + O(3).
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Y 1+ o
setting
X
wi(x) := vk( T+ 8)
and using the invariance of ug under the above change of variables we have
wy — ugin LY(Q) (3.6)
with

(1 + §)!I-N
lu*(xg) - u(xp)!
In order to conclude (2.11) and taking into account the definition of K, we must modify wy on the
boundary of Q in such a way that the new sequence is in & (u"(xo), u*(xo), v(X0)) and the total

L(xo) 2 limy ({ f(x0,Wi(y),Vwi(y)) dy + O®). (3.7)

energy does not increase. This is accomplished with the help of the following lemma, well known
to experts in Gamma convergence. This result uses the idea of multiple cut-off functions which
appears frequently in connection with certain convexity hypotheses (see [DG], [DD]) . We are
grateful to G. Dal Maso for pointing out to us that these are not needed in the case of linear growth
conditions. We include a proof for the convenience of the reader.

Lemma 3.1. Let Q = [0, 1]N, and let f : QxRPxMP*N — [0, +e) be a Carathéodory

function such that
0 <f(x,u,A) SC (1 + 1Al
for some C > 0 and for all (x,u,A) € QxRPxMP*N, Let

_fJ b ifxn>0
“O(y)-'{ a if xy €0

and suppose that w, — ug in L1(Q; RP), where w, € W11(Q; RP). If p is a mollifier, pp(x) :=
nNp(nx), then there exists a sequence of functions &, € W11(Q; RP)n & (a,b,en) such that

En=pn*uoondQ, &,— upinLY(Q; RP)
and

lim inf_ _WJ £(x,Wa(X),VwWa(0) dx 2 lim sup_ . [ £(x,Eq(x),VEn(x)) dx.
R

Proof. Without loss of generality, assume that
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Liminf_ _”“J f(x,wn(x),Vwq(x)) dx = lim J f(x,wn(x),Vwy(x)) dx < +oo.

n S+
Define
Va(X) = (On* ug)(x) = Im.(x-y) uo(y) dy.
_ B(x,1/n)
Asp 20, supp p =B(0, 1) and
p(x)dx = 1,
B(C,1)

we have fori=1, ..., N-1

vax + &) = [ pn(x+ei-y) uo(y) dy =
mN

= jpn(x -z) up(z+e;) dz

[RN
= (Pn* uo)(x)
and so . .
wy)={ 2 ilff;p? 2 IVl=0@), vee H@ben. (38
Let :

0 3= \To7 - Va T T Kn i 1+ livglly 4 Ivgll 1), 5o o=
where [k] denotes the largest integer less than or equal to k. As o, — 0* we may assume that 0 <
a, < 1 and we set ‘
Qo=(1-0)Q, Q:=(1-0a,+is,)Q,i=1,...,k,
Consider a family of cut-off functions
¢ie C5(Q),0<i<1, gi=1in Qu, IVg; I = OG)

fori=1, ..., k,, and define '
W (x) 1= (1+ QiX)Va(X) + PIIWa(X).

As wg) = vp on dQ, by (3.8) we conclude that

whe 22(a, b, en). (3.9)
Clearly . ‘ '

ng) =Vw,in Qi, ng)= Vva on Q\Q;
and in Q;\ Q;; '
ng) = Vv, + @i(Vwy - Vvp) + (W - vy ) @V,

Due to the growth condition on f we deduce that
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J £, ), vwP0) dx < Jf(x,wn(x),an(x)) dx +
g

C é(l+ Iwn(x) - vn(x)}sl+ IWVWw,x)lIl + 1IVv,x)I)dx + C Q{L(l+ IVva(x)Il) dx
n X
QR

and averaging this inequality among all the layers Q; \ Q;.; we obtain

L J' £x, wP(x), VwP(x) ) dx < J' £(x, Wy(x), Vwg(x)) dx +
ka & o Q

e J A+ IVWaOON + V¥ dx + = [ 1wa(x) - VaR)K-dx + C Qc[zn(l + Vvl dx
n nox
Q
ie.

L i] f(x, w,(,i)(x), wa,i)(x) ) dx SI f(x, wy(x), Vw,(x)) dx +
kn {5 % Q

+0(1/n) +C Twn V5 T 1) +CQ£D(1 + IV, (x)11) dx.

By (3.7), as meas(Q \ Qo) = O(ay) and
Vvp(x) =0 if IxnN! > 1/n,

we estimate
1/n
Q&(l + IV, ()l dx € O(aty) + Ha1(QWQon{xn = 0}) [ O(n) dxn = O(aty).
-1/n

Thus, setting
€n:=O0(1/n) + C fllwy - vy “LI(Q) + O(ay),
it is clear that
€, — 0t
with -

k
kLn ; IQ f(x, wf\i)(x), sz)(x) )dx J‘Qf(x, w,(x), Vw,(x)) dx +€,,

and so there must exist an index i(n) € {1, ..., k,} for which
f f(x,w(lil(n))(x),Vw(lil("))(x)) dx £ J f(x,wn(x),Vwy(x)) dx + €.
Q

By (3.9) it suffices to define .
Eni= w(l:("». |
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End of the proof of (2.11). By (H3"), (3.6) and Lemma 3.1 there exists a sequence
{€) in & (u(x0), u*(x0), V(X)) such that
limy é £=(x0,Wk(y), Vwi(y)) dy 2 lim supy —; - J f=(x0,Ex(y), VEx(¥)) dy
which, together with (3.7), yields
| L) 2 IO g, w(xg), u(xo), VD) + OG)
fu*(xp) - u(xp)! ' LT '

Letting 8 — 0* we conclude (2.11). ‘ , u

4. The dehsity of the Cantor part.
Here we want to show (2.12), i. e. for IC(u)l a. e. xge Q

N(xo) 2 f=(x0, u(xp), A(x0)).

Let Q = (-1/2,1/2)N and Q(xo.€) := xo + Q. For IC(u)! a. €. xg € Q we have
Lo DuQx0E) _,
7 ICWIQx0:))

and so, by Theorem 2.4 (iii), Theorem 2.7 and Theorem 2.11, for IC(u)! a. e. xgp € £ the

following hold :
: H(Q(x0.€))
=limgy0————, 4.1
'fl(>co)l 0 (Q(x0g)) 4.1)
—_— hu(x) - u(xp)ldx = 0, 4.2)
meas(Q(xo.€)) Q(x{.sl)l 2 ERTER
: Du(Q(x0,€))
A(xg) = limg_y0 —————, IA(xp)ll = 1, A(x) = a®v, 4.3)
0= Bme0 B iQuoey 0
lime_o PWQE0EN _ o oy jim, o DUQ0E) _ (4.4)
eN-l eN
Also, by Lemma 2.13 we may assume that
‘ lim,;- liminf, o IDu I(Q(x0,6) \ Qxo:te)) _ 4.5)

IDu 1(Q(x0.€))
If g(xo,u(xp)) = 0 then f=(xo,u(X0),A(x0)) = 0 and (2.12) holds trivially. Without loss of

generality we may assume that '
u(xp) = 0, g(xo,u(x0)) > 0, Ag := A(xg) = a®eN where lal = 1.
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Step 1 [Diagonalization]. There exists a continuous function @ such that (t) — 0+ when t -0+

and for each 0 <t < 1 and each y € (t, 1) there exists a sequence {ry} such that, with Qy : =

Q(x0.1k), |
=0, m—c{luk(x)l dx = 0, 4.6)

——————i 1
T T(ON) Qf'“ﬂ")'ml@— Loy - [ue0- maqp foayl a0, @)

limsupy 4 BuTl(Qﬁ)— j f(x,ux(x),Vuy(x)) dx < n(xo), (4.8)
Q .
Du(
@_D(T)% - Ap 4.9
and
e 'D“'(%‘:l%]’(‘)"”k‘)) <ol - ). (4.10)

Indeed, by (4.2)
. . 1
limg_0 hrrln_,+.,m Q) Q[glun(x)l dx =0,

. . 1 1 _
hme_,<)111'r1,,_,+.,.,e DuiOn j lu,(x)- u(x) - mcas(Qs)Q-[ [un(y) - u(y)]dyl dx = 0,
Q
by (4.1)
limsup—_o KMSupp—s-ec m— [ £x,u0(x),Vun(x)) dx
Qe
: H(Q(x0,€))
<1 LAR)
e Qo)
and by (4.5)
liminf, IDul(Q(x0.€) \ Q(x0.t€)) <w(1-1).
IDul(Q(x0.€))
Hence, a standard diagonalization procedure yields (4.6), (4.7), (4.8) and (4.10) while (4.9)
follows from (4.3). ' n

Step 2 [Truncation]. For every 0 < € < gg there exist sequences vy € W1.1(Q;[RP ) and a;y — 0

such that
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"Vk le < €,
§mSUPL-»m Tt A £(x0,0,VVi(x)) dx < (1 + ©(E)) N(x0) @11)

and

rleél(Qk)_ 4 Vi) - ax - [ux) - E—asl@ ({u(y) dy]ldx -0, (4.12)

where w(e) — 0 as €= 0*. The proof of (4.11) is very similar to the argument used in proving

Step 3 of Theorem 2.21in [FM]. Firstly, by (4.2) and (4.6) we may assume that
’ 1
_ 2 — 2
® f lug(x)l dx < €2 and 2S00 fhax)ldx < g2 4.13)

Set

ay = aézsl—@ Q{ ug(x) dx

and define
Vi = ag + Qr( lug - ax ) (uk - ay)

where @y is a smooth cut-off function, 0 S @x < 1,262 < 5 Sty < %,

o) =1ift<s, o =0 if t21 loylle ST

Clearly, llvy - ayll. < tx <€/2 which implies that
vy lle < €,
Vvik = oxVug + (ux - 2)®@'k( lug - ag ) V luy - ax |

and

Vv I | Vugl + lug - ag | IV lug-agll.

tx - Sk

Thus, by (H4)
TD_U:(@ Af(xo,O,Vvk(x)) dx = m A[f(xo,O,Vvk(x)) - f(x,vg, Vvi(x))] dx

+ Tﬁu—}f@ 1d‘!’f(x,vk,Vvk(x)) dx
< iy @O@ +©) ﬂ{ (1 + Vvl dx + iy K{ £(x,vi, VVic(x)) dx
and so, by (H3) and as for k sufficiently large and € small
gxvitx) 2 B0 5 o,
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we have
[ fx0.0,.VVix) dx € e (0@ +6) Crp +
Dul(Q) 0% ¥ Tk = DulQo .

+ [Ca(O@) +€) +1] ﬁ%(@ [fxvi Vi) dx.  (4.14)
Q&

On the other hand, by (4.13) we have

meas(YQu{ lug-ay 1>t }) Smeas({x € Qx | lux(x) | 2 €2})

e~ _1
.s = I, o) ({‘luk(x)l dx

<C r':

which, together with (4.8) and (H3) yields
|D_u|1©5 }({ vV Vi) % € i A £(x,ux(x), Vuk(x)) dx

C 1 C
+ lug- agl IViug - aglldx + =0/ IVur(x) Idx  +
Dul(Qo tx - sk 'Qh{sﬁl&-ak ) Dul(Qo kan{sksli[k-ak ISy}
CI'N
k 1
* Du@o ¥ Do ) e 0) &
Cri c ;o
<n0x0) + o) + o * BUOD s s! pHN.1(lug - 24l =p M YQu)dp
+ ﬁ)‘ﬁ@ [ Vo) dx. (4.15)

YN s, Shug-ay <}
For fixed k and a. e. t; one has
1™
. . 1
limyg ¢ s ,[PHN-I( lug - agl=p N YQx) dp = tx HN.1( huk - ax | = e ¥Qx) (4.16),;
S .

and

Lim; — ¢, [ Wukiax = 0. (4.16)
QA (sSHy bst )

In view of Lemma 2.12 and by (4.4) and (4.8) we can choose t; € (2€2,6/2) and sy € (2€2, 1)
such that
C 1

&
C
: pHN.1(lug - axl =p M YQy) dp+ mrms IV ug(x)ldx
Du Q0 tx - Sx s! . Dul(Q) mn{w{ )
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c _1
SUk+-= IVug(x)! dx
-lne  Dul(Qo) Q! lu;-‘ak I<z/21;
N
1 T
<1k+0® Bugy o { klfs(:},uk(x),Vuk(x)) dx + Co®) Baray
< 1/ + w(e) (M(xo) + O (1)), 4.17)

where we used (H3) and the fact that g(xo,0) > 0. By (4.4), (4.14), (4.15), (4.16) and (4.17) we

conclude (4.11). To prove (4.12) we consider in Q = (-1/2, 1/2)N the rescaled functions

er

- k 1
ux(z) = m [u(xo +IyZ) - m+ca?$({u(x) dx],
rs'l
wi(z) = DulQ) [ux(xo + 1x2) - &),
N

w:(z) = —Iﬁlkl(m [vk(xg + 1¢2) - ag].

Then (4.12) becomes
%k
”i:lk - Wk“Ll(Q) —0 ask — +eo 4.18)

and

q[ﬁk(z) dz=0= ({wk(z) dz, IDul (Q) = 1.

As BV is compactly imbedded in L! we deduce that

{ug} is equi-integrable 4.19)
and by (4.7) we have
lhay - wy li gy — 0 ask = +oo, (4.20)
Moreover, by (4.4)
rf'l
M =g 2
* | |
w, (2) =@« (ﬁk@l) wi(2).
Ax
and .
lw, - wiliLlg) < flwg(x)! dx. 4.21)
QN wyRAe?)

Since {wy]} is equi-integrable by (4.19) and (4.20) and as
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meas({x € Q| Iwy(x) |2 A, €2}) = meas({x € Q| lu(xo + 1yz) - ax | 2 2€2})
<meas({x € QI lu(xg+ 1yz) | 2 €2})
C N

1 N
< grk *-(—Qk)&lgk(x)ldeC r, =0,

(4.18) follows from (4.21).

Step 3 [Main Estimate]. Let {vy} be as defined in Step 2. We claim that for all d > 0
Mnfk‘”“—lﬁﬁll'@k)— j £(x0,0,Vvi(x)) dx 2 f~(x0,0,A0) - C (1 - t). 4.22)
"

After extracting a subsequence we may replace liminf by lim. Also, without loss of generality we
assume that xo = 0 and we use the notation
1Qx = Q(xo, 1)
Defining
*(A) = f(x0,0, A)
then
iy s i) ﬂ{ £(x0.0,Vvi(x) dx =

=timgrie == [ £V W 00) dx (4.23)
Hk
n
where by (4.4)
k = IDLIEJQQ —> +oo

Ty

By (4.3)
Du(Q(xo,1))

Du(Q) = DIQXor) — Ap=a®enask = +oo

and by Proposition A.1 (see the Appendix)
ID - (DU Ag)Ao I(Q) = 0 as k — +o (4.24)

from which we conclude that
IDuy.¢;I(Q) =» 0 foralli=1,..., N-1.

Thus, it is possible (e. g. by averaging in xj,...,xN.; and smoothing in xN) to find a sequence of

smooth functions Ex(x) = Ex(xn) such that
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"gk’ ﬁk "LI(Q) -0, (4.25)

and fora.e.1€ (0, 1)

VE(tQ) - Duy(1tQ) — 0. . 4.25),
Fix T € (t, ) for which (4.25), holds. Then we may choose & > 0 such that (1 - §)t > t and we

may assume that

IDEx I(TQ\ 1(1-9)Q) < Dy I(Q\tQ)

_ DulQy |
- —Iﬁ%%@. (4.26)

We remark that, as &y depends only on x, its trace on 9(1Q) agrees with the trace of

- E (-1
Ex(1/2) - Ex(-1/2) Sen
T
where p is TQ periodic. Hence, taking into account (4.23), by (4.20) and using the construction

introduced in Lemma 3.1 we will modify w: on the layer TQ\ 7(1-0)Q so that it coincides with £y

Agx + p(x), Ay := = 1N VE(TQ)

on the boundary of TQ, and then we will apply the quasiconvexity property of f* (see Remark
2.2). Let

oy = —\/ Wk - wy lh 1) Ak =k [ IDE Q)+ ID wy I4Q) + 1], 5y := %.

k

By (4.18), (4.25), ox — 0*. We assume that 0 < oy < 1 and we set
Q=1t1-8)I-ox+isp) Q,i=1,..., A
Clearly
tQCQ CQ+C1Q.
Consider a family of cut-off functions
o€ C5 (@), 0@ <1, ¢i=1in Qi IVg; I = OG)

fori=1, ..., Ay, and define . .
w1 = (1 - GENEX) + GilxIW, (X).

We have

L (eruvwdonaxs - f fruVwi () dx +
K Ki
2 R
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c é [ 1Ex(x) - Wy )l o + -J—] dx + C [ IDE (QMQi-1)+ IDW, (QMQi 1]
k
QAR

+C f[uvgk(x)n +17dx
Kk
QQ
and averaging this inequality among all the layers Q;\ Q;.1, by (4.26) we obtain
IDul(Qy\t

1yl @) 1 * Dul(Q\Qy)
Ak}:“k J £ (uy VD)) dx < - J P Vw, (9) dx + C T Ko SE + 00y + 1.

Hence there must exist an index i = i(k) € {1, ..., Ay} for which

1 @ 1 * IDul(Q\
i P uTw P 00) dx < - J P (uaVwy () dx + C RIS 4 o(1/K)

and by (4.10), (4.23), (4.25),, by the quasiconvexity of f* and since f* is a Lipschitz function we
conclude that

limy e mgf(xo,o,vvk(x)) dx >

2 limsupy 4 [ e t(!f*(uka K (x))dx-C IDul(Qy) ]

. 1
= liMSUPK— 4eo ;— *(UkVEL(TQ)) - C (1 - 1).
k

In view of (4.9), (4.10) and (4.25);

Limsupy e 1Ag - VEX(TQ)! = Limsupy—y+ee |Ag - Dak(tQ)l = ljmsupk—)-o«' Ap- %1%5)‘ '

< limsupy—y e |%§%ﬁls@(1-o

therefore, due to the lipschitz continuity of f*

imSupy s see | —= P(iAG) - - P VELTQ) | < C (1 = 1).
Hk Hk

Finally,
s = f*(sAg)

is convex because rank Ag =1 and so
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HMSUPy 1§ P4(5A0) = Lt s1o 3 P4(5A0) = F(0,0,A0)
and we deduce that

Hmsupie - - £ VETQ) 2 (00,40 - C (1 -0,
and hence (4.22).

Step 4 [Conclusion]. By (4.11) and (4.22) we conclude that
(1 + w(g)) N(x0) 2 f~(x0,0,A0) - C (1 - 1)
and so, letting € — 0%, t = 1- we obtain

N(x0) 2 f=(x0,0,A0). u

Remark 4.1. If f(x,u,.) is convex then Alberti's result (Theorem 2.11) concerning the

rank-one property of the Cantor set is not needed. Indeed, by (4.20)

Iy - W, I ey = O ask — +eo forLya.c. € (0, 1).

Choosing T € (t, ¥) and using Jensen's inequality and the Gauss-Green formula, from (4.23) we

have

. . 1 *
Limy e _—IDull(QJ -yQ{ f(x0,0,Vvi(x)) dx = limy 4 E; ff*(ukak(x)) dx
| L

%k
2 limSupk—+< ':_f*( J-ukvwk x) dx))
k
Q
. ] *
= limSupyyee -~ (. f MW  (O®V(x) dHN.1(x) )
Y
T 1 (T j U (x)®V(x) dHN.1(x))
, lllk D |
Limsupy e L-f"‘( Dk (tQ))
k .

. 1 Du (tQx)
= L pu, 220
Limsupy ;4o e Mk IDul(xQy)

2 f=(x0,0,Aq) - Ca(1 - t).

)
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In the last step we used (4.9), (4.10) and the convexity of f. Taking (4.11) into account and letting

€ — 0+,t — 1- we conclude that

N(x0) 2 =(x0,0,A0).
To make the above calculation rigorous one should mollify uy, but this process poses no additional

difficulty. One thus obtains a proof of the lower bound needed in Ambrosio and Pallara [AP]

without recourse to the sophisticated geometric measure theory tools used in [AG].

5. Relaxation.
Due to Theorem 2.18, the proof of Theorem 2.16 is complete once we show that

T (u)Sﬂ[ f(x,u(x),Vu(x)) dx+ JK(x,u'(x),u"’(x),v(x)) dHN-l(")*’J f=(x,u(x),dC(u)). 5.1
Z(u)

The proof of (5.1) follows closely that of the analogous estimate in Ambrosio, Mortola and
Tortorelli [AMT]. It is divided into four steps and we begin by considering

T (A) = inf{un,{lim inf _ ff(x,un(x),Vun(x)) dx lu, € WI1(A; RP)and up = uin L! }
A

whenever A C Q is an open set.

Step 1. We claim that
& (u;A) is a variational functional with respect to the L! topology and

& (u;A) £ C (meas(A) +IDul(A)). (5.2)
We recall that & (u;A) is said to be a variational functional with respect to the L topology if
(i) & (;A)is local, i. e.

T WA)=F (v;A)

for every u, v e BV(A; [RP) verifyingu=va. ¢. in A;
(ii) & (;A) is sequentially lower semicontinuous, i. €. if u,, u € BV(A; RP) and u, — u in L1(A;
RP) then

F (w;A) <liminfy_y4ee & (Un A).
(iii) & (.;A) is the trace on {A C Q| A is open} of a Borel measure on the set B(Q) of all Borel
subsets of Q.

De Giorgi and Letta [DGL] introduced the following criterion to assert (iii) :

A set function o : {A C Q1 A is open) — [0, +<] is the trace of a Borel measure if
(a)aB)<a(A)forall A,Be X:={UCQIUisopen) withB CA;
(b) (A UB) 2 a(A) + a(B) for all A, B € X suchthat ANB = ;
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Cc)a(AUB)<a(A)+o(B)forallA,Be X;
(d) a(A) =sup {a(B) I B CC A} forall A € X.
The argument used to show that & (u;A) is a variational functional with respect to the L1

topology is exactly the same as in Theorem 4.3 of [AMT], where the only assumptions on f are
continuity and the bounds '
0 < f(x,u,A) <C (1 + lIAll).
Also, due to (H3), given u € BV(A; [RP) and considering a sequence of smooth functions u, such
that
u, = uin LI(A; RP) and 1 IVua(x)! dx = [Dul(A),

we conclude that
F@A) <liminf [ £0x,ua(x),Vun(x)) dx
A

< C (meas(A) + liminf____ A[ IVun(x)! dx ) = C (meas(A) + IDu I(A)).

Step 2. We claim that if u € BV(Q; RP) " L=(Q; RP) then

T (u; QZ)) £ J. f(x,u(x),Vu(x)) dx + j fe(x,u(x),dC(u)). (5.3)
CNI(u) \I(u) -
By Step 1 & (u; .) is a Radon measure, absolutely continuous with respect to £n +IDul. Thus (5.3)

holds if and only if for N a.e. xp€ Q

dZ (u;.)
—(x0) < f(xo,u(x0),Vu(x0)) (5.4)
d¥nN
and for IC(u)l a.e.xg€ Q
dZ (u; .)
—acwn (x0) < f=(x0,u(x0),A(X0)). (5.5)
We start by showing (5.4). Let {u,} be the regularized sequence defined in Lemma 2.5. Writing
Du = Vu dx + Dgu,
by Theorem 2.4, Theorem 2.7 and Theorem 2.8 for £\ a. €. xo € 2 we have
1 _
Lim — lu(x) - u(xp)! (1+ IVu(x)!) dx =0, (5.6)
€ meas(B(xo€) B(,({E) e
. IDsul(B(x0,E)) . [Dul(B(xo.€)) __. s
y ——————==0, + —————=exists and is finite, 6.7
B0 o B0 TN 2B
— 102009, 700) dx ~ £x0,2030),Vu(x0) 5.8)
meas(B(xo,€))

and
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d7 (u; .) ) ) )
Xg) exists and is finite.

d¥¢nN
Choose a sequence of numbers € € (0, dist(x,02)). Then
a7 (u; ) & (u; B(x0,8))

dgy =m0t T B o)

< liminf, o* minfy—ye ——— [ £ uax).Vua)y dx.  (5.9)

meas(B(x0,€)) B(xy.c)

Following [AMT], Proposition 4.6, we introduce the Yosida transforms of £, given by

f(x,u) := sup{f(x',u’A) - A[ Ix - x'l + lu - u'l} (1 + IAll) : (x',u") € QxRP}
for every A > 0. Then

()f;(x,u,A) 2 f(x,u,A) and £, (x,u,A) decreases to f(x,u,A) as A — +oo;
(i) fo(x,u,A) 2 f;(x,u,A) if A <7, for every (x,u,A) € QxRPxMPN;

(iii) If; (x,u,A) - f,(xu,A) S A(x - x'l + lu - u'l) (1 + HIAll)
for every (x,u,A), (x’,u',A) € QxRPxMPxN;
(iv) the approximation is uniform on compact sets. Precisely, let K be a compact subset of Qx[R?
and let 8 > 0. There exists A > 0 such that

f(x,u,A) < £, (x,u,A) < f(x,u,A) + & (1 + lIAll)
for every (x,u,A) € KxMpPxN,
Fix 8 > 0 and let

K := Bxo, 2009, B0, u 1),

By (i), (ii) and (iv)
f(x,up(x),Vua(x)) < f5(x,un(x),Vup(x))

< f; (X0,u(X0), Vup(x)) + A( Ix - xg! + luy(x) - u(xg)l) (1 + IVun(x)Il)

< f(x0,u(x0), Vup(x)) + 8(1 + IVugGll) + AL Ix - Xol + lup(x) - u(xg)) (1 + IVuyx)l). (5.10)
Taking into account that Vu, = pp«Vu + py+Dsu and that f(xg,u(xg), .) is a Lipschitz function, by
(H3), Lemma 2.5 and (5.9) we have
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d7 (ti; J) 1

oz, (X0 S liminfe o liminfy,.— [ [foutxo).(pasVu)(x)) dx +

meas(B(x0.£))  B(x.¢)
+ C IDsu I(B(x0,+1/n)) + (A£ + ) meas (B(xp,€)) + (A + O) ll?ul(B(xo,e + 1/n))
+% [ lua(x) - u(xo)l (1 + IVua)D) dx ].
B(x0.8)

Since )
My yee [ fGROUGO.(PreVRIX) dx = [ fx0.(x0).Vu(x)) dx,

B(xp.€) B(x0.€)

IDu | B(xq,€ + 1/n)) = [Dul (E(X(),e)) = [Du | (B(x0,£))
for a. e. €, invoking (5.7) and (5.8) one deduces

d& (u; .)

——(x0) £ f(x0,u(x0),Vu(xp)) + C6
d¥nN
+ A liminf ess ¢ 50" liminfy_y4e. 1 Ilun(x) -u(xp)l (1 + IVup(x)l) dx. (5.11)

meas(B(x0,€)) B(xp.e)

To prove (5.4) it remains to show that the last term converges to zero. By (5.6)
1

lim ¢ 0% LiMg—es [ hug(x) - ldx =
o — Bloc)) b x{.el)l (x) - u(xp)! dx
=lim ¢ 40t 1 flu(x) -u(xp) =0

meas(B(x0,€)) B(xp.£)
and by Lemma 2.5 and the dominated convergence theorem (with respect to the measure [Dul)

HmSuPyyeee | Hun(x) - 0(x0)! IVup(x)l dx <
B(xo.€) '

<limsupposim [ [ 10a(%) - 0ON Va0 dx + | (x) - u(xo)! Vua()l dx ]
B(x0.€) B(xq.€)

< imsupp—y+4e [ j(lun - ul*py)(x) IDul(x)+ I(Iu - u (xp)I*pp)(x) IDul(x) ]

B(xq.€+1/n) B(xg.£+1/n)
< limsupn_.,+..[ I(Iun - ulxpp)(x) IDul(x)+ I (lu - u(xg)l *pp)(x) |Dul'(x)
B(xg.e+1/n)\X(u) B(xg.£+1/n)\X(u)

+ 4llu Il IDUIB(xo,e+1/n) AZ()) ]

< | hux) - u(xp)! IDul(x)+. 4 lull.IDul (§(xo,s)r\2(u))

B(x0.€\E(u)
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< | hu(x) - u(xg)! IDul(x)+ 4 lll. IDgul(B(x0,€)). (5.12)
B(Xo.E)\E(u)

Taking into account that IDul(dB(x,€)) = 0 for a. e. € and that

f la(x) - u(xp)! IDul(x) < J hu(x) - u(xg)! IVux)l dx + 2 lhll. IDsul(B(xo,E)),
B(x0:8) B(x0.€)

we obtain from (5.6) and (5.7) that

limsup essg 0% LimSupp—y+ee N Ilu,,(x) - u(xg)! IVup(x)ldx =0

meas(B(x0,€)) B(xy.e)

and (5.4) follows from (5.11).
Next we prove (5.5), where using Radon-Nikodym Theorem we write
[Dul= IC(u)! + pt, where p and IC(u) | are mutually singular Radon measures.
By Lemma 2.5 (iii)
prtu (x) = u(x) forlC(u)la.e.xe Q
hence u is IC(u)l measurable and by Theorem 2.7, Theorem 2.8 and Theorem 2.11, for IC(u)! a. e.
Xo € Q we have

H(B(x0.,€)) . Dul(B(x0.£)) . o
4 =, 1 + d , |
M50 IC@IB(0E) 0, lim,_, ) IBOoE) exists and is finite (5.13)
. eN _
lim,_,, ICW)I(B(x0.8)) 0 (5.14)
1

[PV | - HC(u)! 0, 51
C@IBog) s ) ui0! ICWI)= (5.15)
A(x) :=lim,_ 5+ '_((:_2_(@;)%((_7(%))); exists and is a rank-one matrix of normone,  (5.16)

w)IB(x,

1
liminfe ot —————— | f=(x0.u(x0),A()) dIC@)! = f=(x0,u(x0),A(x0)), (5.
O I EO0D) gl COEPAR) ACW) = o0 AGD). .17

and
47 (u; .) ) ) )
dIcw)l Xo) exists and is finite.
As before, using (5.10) and (5.12) one sees that

d7 (vu; .)( ) = limg .q* & (u; B(xq,€))
d ICQ)T 0= e 20" 4 B(x0))
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.. . {
< liminf; _,o* liminf,, 1 N
o T IC@)IB(oE)) B(x?[e)(x un(x), Vua(x)) dx
Slil'niﬂfe—)O* Ii 'l'lfn-H’ 1 [ jf(xo'u(XO)»vun(x))dx +

ICIBx0.E)) ~ Bxpe)

+@+2) [IVu,00ldx + (B +1e) measB(xo,8) +A [ lua(x) - u(xo)! (1 +1Vug(x)dx]
B(xq.€) B(xo.€)

< liminf, _,o* liminf, 1 [ £x0,u(x0), Vun(x)) dx +

e m B(xg.€)

+ limsupg 50 (& + Ag) [ IDul(B(xq.€)) + meas (B(xq.£))]

1
IC(u)I(B(x0.€))

. 1
A lim f—— | - |
+ SUPe —50 OB [-B_(xo.E{\ZI(.:J()X) u(xp)! IDul(x)+

+ [ lu(x) - uxp)l dx + 4 lll.IDul (B(x0,e)NZ(u)).].
B(x0.€)

By (5.13) - (5.15) and, due to the rectifiability of the jump set, as C(B(xq,£)NZ(u)) = 0 we

conclude that

OF W5 ) iminf, g+ liminf 1 [ [fxoutxo) Vuax) dx +
————(Xg) < liminf ndee T 0, »hen
d IC(u)! £ IC()I(B(x0:€)) ™ B(xp,¢) °
ey j lu(x) - u(xp)! IC(u)I(x) + 2A lhll. p(B(x0.E)))
B(Xo.E)

+4) llull.. IDul(B(xg,€) NZ(w)) | + C8

< liminfe o* lminfy yee ———— | £(X0,u(x0),Vun(x)) dx + C3. (5.18)

IC(u)I(B(x0:€)) B(xy.e)
Now we use Ambrosio and DalMaso's argument in [ADM], Proposition 4.2. Define

g(A) := SUP;» 0 f(Xo,u(Xo),tA)t- f(x0,u(x0).0)

Then g is Lipschitz continuous, positively homogeneous of degree one and the rank-one convexity

of f(xp,u(xg),.) implies that
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g(A) = f=(xo,u(xp),A) whenever rank A <1.

Thus, by (5.18), (5.14) and Lemma 2.5 we have

d7 (u; .) _ o 1
=t (X0) € liminfe 0* e ————— [ [f(x0,u(x0),0)+g(Vua(x))ldx + C3
TG *0 S liminfe g* minfy e -2 == Bm{ £x6:0:0.0)+8(V04 ()]
.. 1
= liminf, _* ———m@— (Du) + Cd
B B

1
+ — A(x)) dIC(u)! + g(du)] + C
ICW)I(B(x0.€)) B(x{e)[g( () dict = eta

and so, by (5.13), (5.16), (5.17) and Alberti's Theorem 2.11 we conclude that

d7 (u; .
-————,C(u ,) (xo) < liminf _yo* ! [ ] t=rou(xo).AG)) dIC)! +Cu(B(xo.)]+
aicw ICw) B0 pecaey

= liminfg 50

Cd
= f=(xo,u(xp),A(x0p)) + C9O.
It suffices to let § — 0.
Step 3. We show that
F IS [KEw®ux),vK) dHn (%) (5.19)

Z(u)
for every u € BV(Q2; RP) N L=(Q; RP). The proof is divided into three parts :
1. ux) = aXg®X) + b(1 - Xg(x)) with Perq(E) < +eo;
2.ux) =X a;Xg,(x) where {E,-}:; forms a partition of €2 into sets of finite perimeter ;

3. General case, u € BV(Q; RP) N L=(Q; RP).
1. Let u(x) = aXg(x) + b(1 - Xg(x)), Perq(E) < +e. We start by proving that for every open set
ACQ
T (w;A) < l f(x,u(x),0) dx + j K(x,a,b,v(x)) dHN.1(x). (5.20)
Z(u)nA -
a) Suppose first that

b ifx.v>0
u(x) = )
a ifx.v<

In Fonseca and Rybka [FR] ( Proposition 4.1 and Lemma 4.2) it was shown that if A = o + AQ,
is an open cube with two faces orthogonal to v then there exists a sequence u, € W11(A; RP) such

that

A[f(x,un(x),Vun(x)) dx = [fxu),0)dx +  [K(x,abv(x)) dHN.1(x)
A . Z(u)nA
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and so (5.20) holds.
b) Consider u as in a) and let A C Q be an arbitrary open set in RN.Letn be the plane
n:={xe RNIxv=0}.

It is clear that
n=1

A=u (VAp

40
where A, is an increasing finite collection of non-overlapping (i. e. with disjoint interiors) cubes Q

of the form a; + €Q, with edge length bigger than or equal to 1/n and such that
Hn.1(0Q Nr) = 0. (5.21)

Thus, by Step 1 _(m) and applying a) to a decreasing sequence of open cubes whose intersection is
the closed cube Q one has

FwQs [fxux0)dx + [Kxabv(x) dHy.1(x)
Q Z(w)Q

and so
T (w;A) €limy e & (U; VA

<limy 540X F@; Q)
QeA,

<liminf, 44X [ if(x,u(x),O) dx + IK(x,a,b,v(x)) dHn.1(x) ].
Qea, Q ZuyQ

By (5.21) and Lebesgue's Monotone Convergence Theorem we conclude that
F @A) <liminfy e [ [ )00 dx + [ K(x,a,b,v(x)) dHN.1() ]
VA, Z(uy(VA,)
= [ fxu00.0) dx + [ K(x,2,b,v(0)) dHy.1 (%)
ZunA
¢) Now suppose that u has polygonal interface i.e. u = Xga + (1-Xg)b where E is a polyhedral set
i.e. E is a bounded, strongly Lipschitz domain and 0E = H; U ... U Hy , H; are closed subsets of
hyperplanes of the type {x € RN : x.v; = o;}. Let A be an open set contained in Q and letI = {i €
{1,...M} | HN.1(HinA) > 0}. fANZ(u) =G, i.e. if card I = 0 then u € WL1(A; RP) and it
suffices to consider u, = u € W1II(A; [RP), with (5.20) reducing to
T (u;A) SA‘ f(x,u(x),0) dx.

The case card I = 1 was studied in part b) where E is a large cube so that Z(u)NQ2 reduces to the
flat interface {x € Q | x.v = 0}. Using an induction procedure, assume that (5.20) is true if card I

=k, k <M -1 and we prove it is still true if card I =k. Assume that
ENA=H;NnQuU..uH;NQ).
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and consider S := {x € RN: dist (x, H;) = dist (x, H, U ... U Hy)}. Note that Hy.1(S N Z(u)) =
0 because Hy.1(H; N H;) = 0 for i # j. Fix 8 > 0 and let
Us = {x € BN : dist(x,S) < 8},
Uy = {x e BN : dist(x,S) < 8, dist (x,Hy) < dist (Hy U ... U Hp),
U, = {x € RN : dist(x,S) < 8, dist (x,H;) > dist (x,H; U ... U Hp)).

Let
A;={xe A :dist (x,H)) <dist x,H U ... UHwm)}.
Clearly A; is open and A; N (H; U ... U Hy) = &@. We apply the induction hypothesis to Aj and to
A\A] := A to obtain sequences u, € WL1(A;; RP), v, € WL1(Ay; [RP) such that
up — uin LI(A;; RP), v, = uinLI1(Ay; RP)
and

i sie | £0x,0n(0), Vua(x)) dx € [f(x,u(0),0)dx + [ K(x,8,b,v(x)) dHN.1(x) + 8/2,
Al Al Ixu)(\"‘l

iy | fVa(),VVa() dx € [fxu(x),0)dx + [ K(x,a,b,v(x)) dHN.1(x) + /2.
Ay A Z(u)A,
As in Lemma 3.1 we will use the slicing method to connect uj, to vy,. Let p be a mollifier, pp(x) :=
nNp(nx) and define
Wa(x) = (Ppe W)(X) = {pn<x~y) u(y) dy.
B(x,1/n)
Asp 20, supp p =B(0, 1) and
p(x)dx = 1,
B(.1)

we have

IVwylle £Cn, supp Vw, C {x € RN| dist(x,Z(u)) € 1/n}. (5.23)

Let

a
an:=\/uw,,-v,, Itay Kni=nll+lwgllyy+Ivgliy ], s, :=k—:

where [k] denotes the largest integer less than or equal to k, set
U;:= U'ai, where &= (1 -, +isy) Uy, i =1, ..., kn,

and consider a family of cut-off functions
pie Wo™U),0< i€ 1, @i=1in Uy, IVe; ll = 0(&)
fori=1, ..., k,. Define '
v @) 1= (1 - gi)Wa(X) + Pi(X)un(x), x € Ay,
Then
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0]
un

Vug) =Vu,inU |, Vug) =Vw, in A)\U;

= wp on dA1NS,

and in U; \ U}
Vug) = an + cpi(Vun - an) + (Up - Wg ) ®V(Pi-

Due to the growth condition (H3) on f we deduce that
f f(x,u([:)(x),Vug)(x)) dx < jf(x,un(x),Vun(x)) dx +
A .
A

C f(1+ Iwn(x) - u,,(x)%+ IVwaGll + IVu ) dx + C [ (1+ IV w0l dx
U \U}, AN

and averaging this inequality among all the layers U; \U; ; and by (5.23) we obtain

J_i j f(x, 1W(x), VuP(x) ) dx < j f(x, u,(x), Vu (x)) dx,
ky &ty A,

+k£n J(l+ IVw,OH + Vv (x)I) dx + -E—n flwn(X) - vn(x)Q-s!; dx
Q

+C (1 +n)meas {xe U'snAll dist(x,Z(u)) < 1/n}.

Thus, there must exist an index i(n) € {1, ..., k,} for which

Up = u(':(n)) = uin L1(A}; RP),

and taking into account that Z(u) is a union of finitely many closed subsets of hyperplanes
Limsupp —yeo jf(x,?n(x),VEn(x)) dx <
A

| f(x,u(x),0) dx + I K(x,a,b,v(x)) dHN.1(x) + 8/2 + CHN.; (U'shAan(u)).
Al Z(u)nAl
Similarly, we may construct a sequence Vp such that

Vo =Wp0n9dA2NS,  vp— uinLl(Ay; RP),
BmSupy —ee If(x,?,,(x),vi,,(x)) dx <
&

[ f(x,u(x),0) dx + f K(x,a,b,v(x)) dHN.1(x) + 8/2 + CHN.; (U;NA2NZ(0)).
Ay T(u)Ay

We set _ _
En(x) := X, (X) un(x) + Xa,(X) Vn(x).
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Clearly £, € W11(A; RP), &, = uin L1(A; RP) and so
Z (wA) S liminf, e J £(x,E,(x), VEn(x)) dx

< limsupy j £, (%), VIa(x)) dX + Kmsupy —ym j £(x, v (x), Vv, (%)) dx
A Ay

< [fxu(x).0 dx + [ K(x,a,bv(x)) dHy.1(x) + 8 + Hy.; (UsnANZ()).
A Z(unA

As HN.1(SNZ(u)) = 0, letting 8 — 0 we obtain (5.20)
f) Finally, if E is an arbitrary set of finite perimeter in Q, by De Giorgi's approximating lemma
there exists a sequence of polyhedral sets Ey, such that
meas(E,AE) — 0, Perq(E,) — Perq(E).
On the other hand, by Lemma 2.15 a), b), there exists a sequence of continuous functions
gm : QxRN — [0,+90) such that
K(x,a,b,y) € gm(x,y) € Clyl for all (x,y) € QxRN
and
K(x,a,b,y) = infp, gm(x,y),

where we extended K(x,a,b,.) as a homogeneous of degree one function. Setting

un(x) := aXEga(x) + b(1 - XE(X)),
by Step 1, (i), (iii)

& (1;A) £liminfj 4. & (Up; A)

<lim infy e [ [ 10,0,(x),0) dx+ [ K(x,a,b,v(x)) dHy1(x) ]
Z(u)NA

= [fxu0,0) dx + limpsee | gm(XV(X) dHN.1(X)
A Z(u)NA

= [f(x,u(x),0)dx + J gm(x,v(x)) dHN.1(x).
A Zw)nA

Letting m — +ec and using Lebesgue's Monotone Convergence Theorem we obtain (5.20).
This inequality together with Step 1, (iii) yields
& (u;X(u)) Sinf {F (u;A) | A CQ, Ais open, Z(u)C A}
<inf { ‘{f(x,u(x),O) dx+ IK(x,a,b,v(x)) dHn.1(x) A CQ, Ais open Z(u)C A}
ZunA

= [K@wm.000.vx) dHna )
()

and we conclude (5.19). The cases 2 and 3 are now obtained as in [AMT] Proposition 4.8, Steps 1

and 2, respectively, where the upper semicontinuity of K is needed (see Lemma 2.15).
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Step 4. By Step 2 and Theorem 2.18 and as & (u;.) is a variational functional we have

Fu; Q)= J f(x,u(x),Vu(x)) dx + JK(x,u’(x),u*(x),v(x)) dHn.1(x) +
(u)

+ J f=(x,u(x),dC(u))
for every u € BV(Q; RP) N L=(Q2; RP). In order to extend this result to BV(Q; [RP), we use the
same argument exploited in [AMT], Theorem 4.9. Let ¢, € C(I,(IRP;IRP) be such that
on(y) =y ifye BO,n), Vol <1,
and fix u € BV(Q; [RP). Because it is important to have IV¢y|l. bounded above by one and not just

by an arbitrary constant C, we specify the norm we are using for matrices, namely

Al = sup {IAxI: IxI<1}.

Then
¢n(u) € BV(Q;RP) " L=(Q; RP),
Z(on(m)) C Z(u),
(@n(u)", On(W)*, Vonm)) = (@a(w), Oa(ut), V() if x € Z(¢n(u))
and

| g[chp,,(u)l < g ID(u)! for every Borel set B C Q. (5.24)

As & (,; Q) is a variational functional we conclude that
F (u; Q) < liminfy, , & ($n(u); 2)

=lirninfn_w[Jf(x,%(u),v(%(u))(x)) dx+ [ K0 0a(0)*Von(w)) dHN.1(x) +
Z(¢p(u))

+ J f=(x,0n(1),dC(dn(u))).

By Lemma 2.15 (c), (d) K is upper-semicontinuous and
K(X,$n(u)(x), $a(u)(x), V(x)) < C lu(x) - u*(x)!

and so, by Fatou's Lemma we obtain

limsupy — j K(x,9n(u)",0n(w)*,Vouu)) dHNIKX) £ I K(x,u"(x),u*(x),v(x)) dHN.1(x).
Z(0n(u)) ()
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On the other hand, setting
Q,:={xe Q\Z@): h(x) <n}

we have

| limsupn....“[f(x,%(u),vm(u»(x))dx =

=limsupn e[ [0 V@@)EN dx + [ £x,0a(),V(@a@)X)) dx ]
Q\(u) (SN NE(u)

< d[ f(x,u(x),Vu(x)) dx + C limsupy, —, « [meas(Q\2y) + ID($a ()2, )N\E()) 1.

By (5.24) we deduce that
limsup, 5 = ID(Gn)I((EQ2)\E(0)) € Limsupy - e D@IENE2,VE(W))) =0

and so

imsupy J £(%,00(0),V(0a(W)(x)) dx < Jf(x,u(x),Vu(x)) dx.

In a similar way
limsupy — « ﬂ[ £=(X,0(1),dC(0n(W)))

=limsupno e [ [ 0a@ACO@N + | £7(x,0n(0).dC0aw)) ]
Q\(u) (ENQUN(u)

< ‘{ f(x,u(x),dC(u)) + C limsupy _, « [meas(Q\Q,) + ID(05(u))I(Q\Q)\E(u)) ]
= ] fu09.9Cw). "

Appendix.
In this appendix we prove Lemmas 2.12, 2.13 as well the following proposition justifying
(4.24).

Proposition A.1. Let {1} be a sequence of RP-valued Radon measures on Q such that

Iugl(€2) = 1, and p(2) > a where lal = 1.
Then

Mg - (uk.a) al(Q) — 0.
Proof. By the Radon-Nikodym Theorem we may write
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Hi = Ag Il
where Ay : Q — RP is ljl-measurable and Ay (x)! = 1 for Iyl a. €. x € Q. Define

Oy = Ax - (Ax .a) a.

Then
logl2 =1 - (A .2)2
<2(1- A .a). (A1)
On the other hand
1 =limy e pi(€2).2
= limg ey oo J (h.2) dipg!
and so
“f [1 - (Ap.2)] dipg! = 0. (A2)

By (A.1) we have
Iy - (y2) al(Q) = J lou ()1 it

<c( n[ lo(x)12 dlpgl) /2

<C (J [1 - (Ag.2)] dipgl)!2

and the result now follows from (A.2). [ |

We recall that if w e W1=(RN; R) and g € L}(RN; R) then the change of variables formula

(or coarea formula) holds, namely
00

[ g0 VW)l dx = f ( [e() dHNa()) dr. (A.3)

RN woi(t)

For details see Evans and Gariepy [EG] and Ziemer [Zi].

Lemma 2.12. Let K C RN be a compact set, let ve Wl=(K) and let A C K be a

measurable set. Then

essinfie (o) tHhs ((x€ AV =t Sz [ Vvl dx.
. ANn{asvshb)
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Proof. Letvbea Lipséhitz extension of v to RN with compact support. Applying the co-

area formula (A.3) to

w(x) := v(x) and g(x) := ¥ 4(x) ’)([a’ b]G/(x))
we have

<00
| v ax = J‘ ([ 00 dHNa(0) dt
ANn{a<vsb} Vo)

b

= J’ Hya({x € A1%(x) = t}) dt.

As v and v agree on A, we can replace v by v and defining

o:=essinfiea b) tHN.I({x € AlV(X)=t})
we conclude that
b

J IVv(x)ldx = J‘ 1?tHN.l({xe Alvix)=1t})dt
An{asvsb) :
b

20 f 1?dt=oz In(b/a). ]

Lemma 2.13. Let p be a nonnegative Radon measure on RN. For p a. e. xg € RN and

for every 0 <t < 1 one has
H(B(xo.t€)) > N

limsupe—0 (A4)
7 LB(x08))
Proof. Let
. HB(x.E)) .
N: = {x € RNIlimg_,0————— does not exist}.
ZNB(x,8))
By the Besicovitch Differentiation Theorem (Theorem 2.7)
ZNnMN) =0,
and setting '
E:={xe RN lhmirxfe_,oM =0} U {x € RNIuB(x,)) =0 for some € > 0}

ZN(B(x,8))

we have
K(E) =0.

Thus, if xg € RN\ (E UN) we deduce that
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HBGoE)

im0 (Bxo)
with
o RBXotE) _ . " HB(xote)) INB(x0e)) LN(B(x0.€))
H(B(x0:E)) ZN(B(x0.te)) ENB(x0,£)) H(B(x0.8))
=N, . (A.5)

Now consider the set of points at which (A.4) fails, i. e.
: (B(x0.t£))
A :={xe RNI| limsup _,OE——————— < tN}.
7 LB (x0:))
By (A.5) we have that
ACEUN)

and so, it suffices to show that pL A is absolutely continuous with respect to £n. Suppose that we

prove that for every x € A
HBXE) .

A.
) (A0

liminf,

Then
AC U::I Ak

where
HB(x,E)) <k
ZN(B(x,8))

’

Ay :={x € A lliminf;_,0

and since uLAk is absolutely continuous with respect to £, with uLAk < k¥N, by the monotone
convergence theorem we conclude that
H(ANB) =0 whenever nN(B) =0.
It remains to prove (A.6). If x € A then by the definition of the set A there exists &(x) > 0 such that
H(B(x,t£)) < tN u(B(x€))

for every € € (0, 8(x)). Fixing ro € (t8(x), 8(x)) and setting r; := ti o we conclude that

HBK.E) .. RBx.1))
INBEE) ENB)
pBxI) [ BB pB&L))  UB)

tN ZNB(xr0) - RBOTD) KBXG2)  RB(X.K0))

liminfg_.,o

< limsupj e
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. BBXI) iy

T N ZN(B(x.10))

_ BBx)) _ u
ZNB(x,10))
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