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Abstract. In this paper it is shown that if f(x,u,.) is a quasiconvex function with linear growth then the relaxed
functional in

u-> f f(x,u(x),Vu(x» dx

with respect to the L1 topology has an integral representation of the form

ff(x,u(x),Vu(x))dx + JK(X,U-(X),U+(X),V(X))<1HN-I00 + J f~(x,u(x), dC(u))

where Du = Vu dx + (u+ - u")®V dHN.!L£(u) + C(u). The proof relies on a blow up argument introduced by the
authors in the case where u € W u and on a recent result by Alberti showing that the Cantor part C(u) is rank-one
valued.
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1. Introduction
In this paper we study the relaxation &(.) in BV(£2, [RP) of the functional

u-> ff(x,u(x),Vu(x))dx,

where f(x,u,.) is quasiconvex, grows at most linearly with possibly degenerate bounds and

satisfies some technical continuity conditions. We obtain the integral representation

f(x,u(x),Vu(x))dxf

+ J K(x,u-(x),u+(x),v(x)) dHN.i(x) + J f~(x,u(x),dC(u)) (1.1)
Ku) rf

where the distributional derivative Du is represented by1

Du = Vu dx + (u+ - u-)®v dHN-iLL(u) + C(u).

Here Vu is the density of the absolutely continuous part of Du with respect to the Lebesgue
measure if N, HN-I is the N-l dimensional Hausdorff measure, (u+ - u~) is the jump of u across the

interface Z(u) and C(u) is the Cantor part of Du. As usual, the relaxation is defined by

:= inf{Un) { Urn infn _ ^ J f(x,un(x),Vun(x)) dx I un€ W1-1 and un -» u in L1}

and f~ denotes the recession function

r«/ A\ r f(x,U,tA)
f°°(x,u,A) := hmsup \

As opposed to the convex case, it may not be possible to replace in the latter definition limsup by

lim, as illustrated by Miiller [Mii]. However, it turns out that f°° is positively homogeneous of

degree one and quasiconvex (see Remark 2.2 (ii)).

The proof of (1.1) is divided into two parts. In the first part, carried out on Sections 2, 3
and 4, we show that the representation in (1.1) is a lower bound for 5%), i. e. if un €

W) are such that un - • u in Ll(Qi ^ u € BV(Q, IRfy then

Jf(x,un(x),Vun(x)) dx ^ J f(x,u(x),Vu(x)) dx +

1Rank-one matrices in M^ are represented by tensor products of the fonn a®b, with a e [RP, b € [RN, where

(a®b)ij := ai bj

for 1 < i < p, 1 < j < N.



|K(x,u-(x) tu
+(x),v(x))dHN . i(x) + Jf"(x,u(x),dC(u)). (1.2)

Ku) Cfr)
Here we use the blow up argument introduced in [FM], and the characterization of the surface
energy density K(x,a,b,v) is based on the work on relaxation of multiple convex integrals in
BV(ft; DRP) by Fonseca and Rybka [FR]. The latter was derived from a conjecture by Fonseca and

Tartar [FT2] concerning the isotropic singular perturbation problem for solid materials (see also
Ambrosio and Pallara [AP]). The analysis of the Cantor part relies on a rank-one property of C(u)
obtained recently by Alberti [Al] (see Theorerti 2.11).

In the second part of this paper (Section 5) we assert equality in (1.2). We use the same
arguments exploited by Ambrosio, Mortola and Tortorelli [AMT].

Under the convexity assumption on f(x,u,.) the integral representation (1.1) was obtained
first by Dal Maso [DM] in the scalar case p = 1, by Goffman and Serrin [GS] and Reshetnyak [R]
when f depends only on Vu, while Giaquinta, Modica and Soucek [GMS] treated the case where f
= f(x,Vu). In the vectorial case p > 1, the result was proven by Ball and Murat [BM] and by
Reshetnyak [R] provided f = f(A) is convex and u € W 1 1 ^ ; IR*). Fonseca [Fo] and Kinderlehrer

[K] extended the latter to the class of functions f = f(x,Vu), with f(x,.) quasiconvex. When f =
f(x,u,.) is convex, Aviles and Giga [AG] obtained lower semicontinuity results in the BV setting
(see also Ambrosio, Mortola and Tortorelli [AMT], Ambrosio and Pallara [AP] and Fonseca and
Rybka [FR]).

Here we generalize our previous work in [FM], where, under the same assumptions, we
identified the absolutely continuous part of ^ (u) , proving that

u -> f f(x,u(x),Vu(x)) dx

is lower semicontinuous in W1*1 with respect to the L1 topology. As mentioned in [FM], the study
of this problem was motivated by the analysis of variational problems for phase transitions.
Equilibria of materials are often associated to minima of a bulk energy

f(x,u(x),Vu(x)) dx

where the possibility of a phase transformation is related to the nonconvexity of f(x,u,.). Here the
function spaces involved should allow discontinuous vector-valued u, and a linear growth
condition on f(x,u,.) suggests, naturally, the need to relax I(.) in BV. In addition, singular
perturbation problems derived from phase transitions such as the one considered by Modica [Mo]
(see also Baldo [B], Fonseca and Tartar [FT1], [Gul], [Gu2], Kohn and Sternberg [KS], Owen
and Sternberg [OS]) lead us to energy densities of the type



where W vanishes at more than one point, thus preventing the coerciveness of f(x,u,.) and
suggesting the need to consider degenerate bounds for f.

We remark that the convexity techniques employed on previous related works cannot be
used in our context Also, Svcrak [S] and Zhang [Z] provided examples of quasiconvex functions
with linear growth that are not convex. More recently, Miiller [Mu] constructed functions that are
positively homogeneous of degree one and quasiconvex but not convex.

As we were writing this paper we became aware of a result by Ambrosio and Dal Maso
(ADM] providing the relaxation of

'f(Vu(x))dx

in the L1 topology, where f is a quasiconvex function such that
0<f (A)<C( l + IIAII).

The remainder of this article is organized as follows. In Section 2 we introduce the notion
of recession function for quasiconvex integrands and we recall some results on measure theory and
on the theory of functions of bounded variation. We state the relaxation theorem, Theorem 2.16,
and we introduce the surface energy density K. Sections 3 and 4 are dedicated to showing that

^ ( u ) * ff(x,u(x),Vu(x))dx + jK(x,u-(x),u+(x),v(x))dHN.1(x) + Jf~(x,u(x),dC(u)).
ft Ku) rf

The absolutely continuous part of this inequality is treated at the end of Section 2 and we follow the
argument in [FM], while the jump and the Cantor parts are studied in Sections 3 and 4,
respectively. In Section 5, and using the same reasoning as in Ambrosio, Mortola and Tortorelli
[AMT], we show that there is equality in (1.1). Finally, in the Appendix we provide the proofs for
three results on measure theory and functions of bounded variation which we could not find in the
literature although they are well-known to experts in the field

2. Preliminaries
In what follows Q C 1RN is an open, bounded set, p, N £ 1, MpxN is the vector space of all

pxN real matrices and S1^1 := {x € IRNI llxll = 1}. Given v € SN"], Qv is the open unit cube

centered at the origin with two of its faces normal to v, i. e. if {vi, V2, ..., VN-I, V } is an
orthonormal basis of [RN then

Qv := { x € KNI lx.Vik 1/2, Ix.v k 1/2, i = 1 N-l} .

Definition 2,l([Mr]). A function f: MpxN —> IR is said to be quasiconvex if

^ Jf(A+Vcp(x))dx (2.1)



for all A € MpxN, for every domain D cRN and for all cp € WQ'°°(D; IRP).

We define the recession function off by

Remark 2.2. (i) If
IIAII) (2.2)

then, using a density argument, one shows easily that the inequality (2.1) holds for all (p e

Woa(D; IRP). Also, (2.1) can be extended to all Q - periodic functions cp € WU(Q; IRP), where Q

is a cube in [RN (see Theorem 3.1 in [BM], Kohn [Ko]).

(ii) f°° is a quasiconvex function and is positively homogeneous of degree one. This class of

functions was studied by Miiller in [Mu], where he shows that these hypotheses do not imply

convexity of f. To prove that f°° is quasiconvex, let A € MpxN and let cp € WQ'~(D; [RP) for some

domain D C1RN. Choosing tk -»+°° with

f-(A)-l imk_ '-Mi,

by (2.1) we have

Defining

H(x) := C(l + HA

by (2.2) we deduce that

f»(A) ^ lim supk ̂  ^ ^ J f(tk(A +Vq>(x))) dx

- lim infk^. ^ ^ J [H(x) - £ f(tk(A +V(p(x)))] dx

which, by Fatou's Lemma, yields

^ J l i m suPk ^+-

i l D J f~ ( A + V <P ( x ) ) d x-



Definition 23 . A function u € Ll(Q\ IRP) is said to be of bounded variation, u e BV(Q;

IRP), if for all i € {1,..., p}, j € {1,..., N} there exists a Radon measure ^ such that

for every cp € CQ(Q). The distributional derivative Du is the matrix-valued measure with

components mj.

We briefly recall some facts on functions of bounded variation. For more details we refer
the reader to Ambrosio, Mortola and Tortorelli [AMT], Evans and Gariepy [EG], Federer [Fe],
Giusti [Gi], Ziemer [Zi].

The approximate upper and lower limit of each component Ui, for all i € {1,,.. , p}, are

given by

and

u+ (x) := inf {t € IRI l i m ^ ^ ifN[{Ui > t}nB(x,e)] = 0}

uj (x) := sup {t € IRI U m 6 ^ ^ i?N[{ui < t}nB(x,e)] = 0}.

The set Z(u) is called the singular set ofu or jump set and is defined by

2(u)= u { x € niu7(x)<<(x)} .
i=l

It is well known that L(u) is N-l rectifiable, i. e.

Z(u) = G 1^ u E

where HN-I(E) = 0 and Kn is a compact subset of a C1 hypersurface. If x € fl\Z(u) then u(x) is
understood as the common value of (u|(x),...,Up(x)) and (uj(x),...,Up(x)), which may be +«> or

-«> in some components. It can be shown that u(x) e DRP for HN-I a. e. x € fi\L(u) (see [Fe],
4.5.9 (3)).

Theorem 2.4. If u € BV(Q; IRP) then

(i) for if N a. e. x e Q.

^ J



(ii) for HN-I a. e. x e I(u) there exists a unit vector v(x) € SN 1 , normal to Z(u) at x, and there

exist vectors u-(x), u+(x) e IRP such that

J lu(y) - n+WlW*1-1) dy = 0 ,^ J
e {y € B(x,E)l(y-x).v(x)>0}

\ J lu(y) - u-(x)|N/(N-D dy = 0;
6 {y € B(x,e)l(y-x).v(x)<0)

(iii) for HN-I a. e. xo € £2\L(u)

J lu(x) - u(xo)l dx = 0
meas(B(xo,e))

and for HN-I a. e. xo € X(u)

J u(x) dx =
meas(B(xo,e)) i

We remark that in general ( u ^ ^ (u^)^ If u € BV(£2; [RP) then Du may be represented as

Du = Vu dx + (u+ - u-)®v dHN.iLX(u) + C(u) (2.3)

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional

Lebesgue measure ifN and HN-I is the N-l dimensional Hausdorff measure. The three measures in

(2.3) are mutually singular; if HN~I(B) < +«then IC(u)l(B) = 0 and there exists a Borel set E such

that

if N(E) = 0 and IC(u) I(X) = IC(u) l(XnE)

for all Borel sets Xc Q.

Lemma 2.5. Let u € BV(Q; [RP), and let p € CQ([RN) be a nonnegative function such that

J p(x) dx = 1, supp p = 1(0,1) , p(x) = p(-x) for every x e [RN.

Let pn(x) := nNp(nx) and

un(x) := (u*pn)(x) = J u(y) pn(x-y) dy.

Then

(i) J h(x)IVun(x)ldx < J (h*pn)(x) IDu(x)l
B(xo,e) B(xo,E+l/n)

whenever dist(xo,df2) > e+l/n and h is a nonnegative Borel function ;



(ii) limn_H« Je(Vun(x))dx= Je(Du(x))

for every function 6 positively homogeneous of degree one and for every e € (0, dist(xo,3ft))

such that IDul(3B(xo,e)) = 0;
(iii) if, in addition, u € L~(Q; IRP) then for every xo € D \ L(u)

un(xo) -* u(xo) and (lun - u UpJ (xo) -* 0
as n —» +oo.

The proof of this lemma can be found in [AMT], Lemma 4.5. The next result will be used in
Section 3.

Lemma 2.6. For HN-I a. e. xo € X(u)

^ J lu+(x) - u-(x)l dHN.!(x) = lu+(x0) - u-(xo)l.

In order to prove this lemma we need to recall some auxilliary theorems on measure theory that can

be found in [EG]. The following version of Besicovitch Differentiation Theorem was proven by

Ambrosio and Dal Maso, [ADM] Proposition 2.2.

Theorem 2.7. If X and (i are Radon measures in ft, |i £ 0, then there exists a Borel set E

C Q, such that (i(E) = 0 and for every x € supp \i \ E
k(x+eC)

o— —

exists and is finite whenever C is a bounded, convex, open set containing the origin.

We remark that in the above result the exceptional set E does not depend on C. An

immediate corollary is the generalization of Lebesgue - Besicovitch Differentiation Theorem given

below.

Theorem 2.8. If (i is a nonnegative Radon measure and if f € L ^ (lRN,|i) then

* J lf(y) - f(x)l dn(y) = 0

for ji a. e. x € (RN and for every bounded, convex, open set C containing the origin.



Proposition 2.9. If n is a Borel regular measure in IRN and if A C IRN is ^-measurable

with n(A) < •+«then

for Hm a. e. x e A.

H(AnB(,ce)) . „

2.10. Change of Variables Formula. If f: IRn -»IRm is Lipschitz, n < m, and if

u:En -• IRn is £n summable then

Ju(x)Jf(x)dx = f [ I X € f',y} u(x)] dHn(y).
n pTnIRn

Proof of Lemma 2.6. Since X(u) is rectifiable we can write

Z(u) = u K,, u E

where HN~I(E) = 0 and Kn = ^>n(An), ^n is C1 and An C [RN-1 is compact. Let An be the set of

points of density 1 in An, i. e.

k := \ x € An I hme-^o = 1 j • (2.4)
H ( B ( ' e ) )HN.i(B(x',e))

It is well known that
HN-i(An\A ) = 0. (2.5)

Hence

Z(u) = u On(An) u E'
n=l

where

E' := nu <I>n(An\An) u E, H N . ^ E O = 0.

Indeed, by (2.5) and by the change of variables formula 2.10 we have

HN-i (<Dn(An\An)) < f [X x - € o^y , XAf
IRN

= J XAn\AV)J<I>n(xt)dHN.i(x1)= 0.
N 1

Setting



and as HN-ILK is a Radon measure, by Theorem 2.8 there exists a set

E n C K with HN.1(En) = 0

such that if x € K \En then

lim£_»o r flu+(y)-u-(y)-[u+(x)-u-(x)]ldHN . i (y) = 0 . (2.6)

On the other hand, as

H := lu+ - u-l HN.iU(u)

has finite total variation, by Proposition 2.9 there exists

F n C Kwith HN.,(Fn)

such that

0 (2.7)
3N-1

t

for every x € K \Fn . Defining

E* := u (En u Fn) u E1

n=l

then HN.i(E*) = 0 and if xo € I(u)\E*, with xO€ KJ NE*, for e > 0 is small enough and after a

rotation of the coordinate axes, we may write

K V>(x0 + eQv(xo)) = U € KN I x = (x\g(x')), x1 € A^n(x^ + eQ')}

where Q' is the unit cube in [RN-1 centered at the origin and g is a C1 function, Vg(^) = 0. By

(2.7) we have

H((xo
J lu+(x) - u*(x)l dHN-i(x) = lim£->o77 f lu(x) u(x)l dHN.i(x) lim£_»0

N-1 • pIN-l

K ^ Q ) e

^ J lu+(x1,g(x')) - u-(xt,g(xt))l V 1 + IVg(x')l2 dx1

= lu+(xo) - u-(xo)l

due to (2.4) and (2.6).

10



Recently, Alberti [Al] showed that the density of the Cantor part C(u) is a rank-one matrix.

Taking into consideration Theorem 2.7 we have the following property.

Theorem 2.11. If u € BV(Q; 1RP) then for IC(u)l a. e. x € Q

D(u)(x+eX) C(U)(X+EX)

exists and is a rank-one matrix of norm one, for every convex, open set X containing the origin.

The following lemma provides an estimate on the HN-I measure of the level sets of

Lipschitz functions. A minor variation was obtained in [FM], Lemma 2.7, and for the convenience

of the reader its proof is presented in the Appendix.

Lemma 2.12. Let K C IRN be a compact set, let v be a Lipschitz function on K and let

ACK be a measurable set. If 0 < a < b then

essinft€[a,b)tHN-i({x€ Alv(x) = t})<jjj7nr J IVv(x)l dx.

In Section 4 we will treat the density of 3F (.) with respect to the Cantor part of the

derivative Du, and for this purpose we will need an uniform estimate on the measure |Du|(B(xo,t£))

with respect to IDul(B(xo,£)).

Lemma 2.13. Let |i be a nonnegative Radon measure on [RN. For \x a. e. xo € [RN and for

every 0<t<l one has

tas^MffiSoM * tN.
li(B(xo,e))

The proof of this lemma can be found in the Appendix.

In the sequel
f

satisfies the hypotheses:
(HI) f is continuous ;
(H2) f(x,u,.) is quasiconvex ;

n



(H3) there exists a nonnegative, bounded, continuous function g : CbdRp -» [0, +«>), c, C > 0

such that

cg(x, u)IIAII £ f(x, u, A) £ Cg(x, u) (1 + HAH)

for all (x,u,A) € QxIRpxMpxN;

(H4) for every compact K CC CbdPP there exists a continuous function co with co(0) = 0 such that

lf(x,u,A) • f(x\u',A)l £ (D(lx - xfl + lu - ufl) (1 + HAH)

for all (x,u,A), (x\u\A) e KxMP^. In addition, for every XQ € il and for all 8 > 0 there exists e

> 0 such that if Ix - xol < e then

f(x, u, A) - f(xo, u, A) ;> -6 g(x, u) (1 + HA II)
for every (u,A) e IRpxMpxN.

(H5) there exist C, L > 0,0 £ m < 1, such that

for every (x,u,A) € OxDRPxM1^ and for all t > 0 such that t HAH > L.

The latter hypothesis will be used only to obtain a lower bound for the density of the jump

term on Section 3. (H5) is equivalent to the condition

lf-(x, u, A) - f(x, u, A I < C g(x, u) (1 + IIAII1-")

for every (x,u,A) e QxIRpxMpxN.

The following properties are an easy consequence of the definition of recession function.

Proposition 2.14. If (H3) holds then

cg(x, u)IIAII <: f~(x, u, A) < Cg(x, u) IIAII (H31)
for all (x, u, A) € Qx(RpxMpxN. If (H3) and (H4) hold then for every compact K CC ftx[Rp there

exists a continuous function co with co(0) = 0 such that

lf~(x,u,A) - f~(x\u\A)l £ co(lx - x'l + lu - u'l) HA II (H^)

for all (x,u,A), (x\u\A) e KxMpxN. Also, for every x0 e n and for all 6 > 0 there exists e > 0

such that if Ix - xol £ e then

f~(x, u, A) - f(xo, u, A) ;> -8 g(x, u) IIAII (H^)

for every (u,A) e IRpxMpxN.

The goal in this paper is to obtain an integral representation for the relaxation & (.) in

BV(Q;1RP) of

12



(x,u(x),Vu(x)) dx

with respect to the L1 topology, namely

ST(u) := inf{Un} {lim infn ^ ^ f f (x,un(x), Vun(x)) dx I un€ WU and un -> u in V } .

We introduce the surface energy density K(x,a,b,v) whose characterization is based on the work of

Fonseca and Rybka [FR] on the relaxation of multiple convex integrals in BV(Q; IRP) (see also

Ambrosio and Pallara [AP]) which, in turn, was inspired by a conjecture of Fonseca and Tartar
[FT2] for the integral representation of the P-limit of a sequence of rescaled singular perturbations

for the bulk energy of an elastic material that changes phase.

If (a, b, v ) e IRPxIRPxSN-1, let {vb ...,vN.i,v} form an orthonormal basis of [RNand

define

a, b, v) := {£ € WU(Qv;!Rp) | £(y) = a if y.v = -1/2, £(y) = b if y.v = 1/2, and £ is periodic

with period one in the Vi, V2,..., VN-I directions}.

As usual, £, is periodic with period one in the Vi direction if

for all k € Z, y € Qv. The surface energy density K : Q. x W x 1RP x SN-! -» [0, +°°) is defined by

K(x, a, b, v) := inf { J f~(x£(y),V£(y)) dy I $ € sA (a, b, v ) } .

For a detailed study of this function we refer the reader to [FR].

Lemma 2.15. If (H1)-(H4) hold then

(a) IK(x,a,b,v) - K(x,a\b\v)l < C(la -afl + Ib -bfl) for every (x,a,b,v), (x,a',b',v) €

SN-l;

(b) (x,v) -» K(x,a,b,v) is upper semicontinuous for every (a,b) € tRpx[Rp;

(c) K is upper semicontinuous in ftxtRpx0Rpx SN-1;

(d) K(x,a,b,v) < C la - bl for every (x,v) € QxS^K a, b € 1RP

13



Proof. First note that (c) is an immediate consequence of (a) and (b).

(a) Let £ € £tf (a,b,v), let 0 be a smooth cut-off function with 0 £ G < 1,6(t) = 0 if t k 1/2 and 6(t)

l i f t £1/4, and define
f S(2y) if ly-vl < 1/4

6(y.v)b + (1 - 6(y.v))b' if 1/4 < y.v < 1/2
6(-y.v)a + (1 - 6(-y.v))a' if -1/2 < y.v < -1/4

T h e n c e «Z(a\b\v) and

K(x,a\b\v) £ j f~(x,$*(y),V$*(y)) dy

•f J«
J ly.vkl/4

Jf-(x,e(y.v)b+[l-e(y.v)]b', (b-b')®e'(y.v)v) dy
l/4<y.v<l/2

Jf-(x,e(-y.v)a+[l-6(-y.v)]a', (a'-a)®e'(-y.v)v) dy

hence, by (H31) (Proposition 2.14) and by the periodicity of 4

K(x,a\b\v) < T ^ I f J f-(x4(y),V^(y)) dy + C(la - a'l + Ib - b'l)
J

•I
J

J ly.vkl/2
2Q'

dy +C(la - a'l + Ib - b'l).

Taking the infimum in all £ € £0(a,b,v) we conclude that

K(x,a\b\v) < K(x,a,b,v)+ C(la - afl + Ib - bfl).

(b) It is clear that

K(x,a,b,v) = inf { f f~(x£(Ry),V£(Ry)RT) dy IR is a rotation, ReN = v and

where Q = (-1/2,1/2)N. Also, due to (H3f) it suffices to consider smooth functions £. Let (xn,vn)

-» (x,v) and given e > 0 choose a rotation R such that ReN - v, and let % € Sd (a,b,eN> be a

smooth function such that

IK(x,a,b,v) - Jf~(x,£(Ry),V$(Ry)RT) dyl < £.
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Let X be a compact subset of £2x!Rp containing a neighborhood of {(x, £(Ry) I y € Q}. By (H4j)

there exists a function co with co(0) = 0 such that

lf~(y,u,A) - f(y\u\A)l £ <o(ly - y'l + lu - u'l) UAH (2.8)

for all (y,u,A), (y\u\A) € KxMpxN. As f~(x,uv) is quasiconvex (see Remark 2.2) by (H31) we

obtain a Lipschitz condition for f*°(x,u,.), precisely

lf-(x,u,A) - f~(x,u,B) I £ CIIA - Bll. (2.9)

Choosing rotations Rn such that RneN = vn, by (2.8) and (2.9) and for n large enough we have

I ] f~(x£(Ry),VS(Ry)RT) dy - f f-(xn£(Rny),V£(Rny)Rl) dy l< e.

Hence

K(xn,a,b,vn) <: f f~(xn,£(Rny),V$(Rny)R J dyn,a,b,vn)<: Jf~(xn,

< K(x,a,b,v) + 2e

and letting e —> 0 we conclude that

limsupn_»+<>. K(xn,a,b,vn) < K(x,a,b,v).

(d) Setting

:= (b - a)(y.v) ^

by (H31) we have

K(x,a,b,v) £ J f~(x,£o(y).VEo(y)) dy

= Jf~(x£o(y) , (b-a)0v)dy£Cla-bl . •

In what follows, if g is a positively homogeneous function of degree one and if |i is a IRm -

valued measure we use the notation

to designate

Jg(a(x)jdln(x)l,
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where \\i\ is the nonnegative total variation measure and a : Q -» Sm'1 is the Radon-Nikodym
derivative of |i with respect to l|il (see Goffman and Senin [GS], Fonseca [Fo], Reshetnyak [R]).

Theorem 2.16. If (H1)-(H6) hold and if u € BV(Q, IRP) then

= ff(x,u(x),Vu(x))dx + jK(x,u-(x),u+(x),v(x))dHN.i(x) + Jf-(x,u(x),dC(u)).
n Ku) «

Remark 2.17. In the case where
f=f(x,Vu),

the surface energy density becomes
K(x,a,b,v) = f*(x,(b-a)®v)

and the jump term in ̂ (u) reduces to

J f~(x, (u+(x) - u-(x))®v(x)) dHN-i(x).

Indeed, setting

:= (b - a)(x.v)

and

<P := {9 € Wu(Qv;IRp) I 9(y) = 0 if y.v = ±1/2, (p is periodic with period one in the Vi, V2,...,

VN-I directions},

we have

K(x, a, b, v) = inf { J f~(x,V(£0(y) +q>(y))) dy I 9 € V }

= inf { J f°°(x, (b - a)®v +Vcp(y)) dy I cp € V } .

Thus, by (H3T) and Remark 2.2 (i) and (ii) we conclude that

We divide the proof of Theorem 2.16 into two parts. In the first one we show that

Jf(x,u(x),Vu(x))dx+ /K(xfu-(x)fu+(x),v(x))dHN-iCx) + Jf«(x,u(x),dC(u))
h Ku) rf

and the second part asserts the reverse inequality. It is clear that the above inequality is equivalent

to proving

Theorem 2.18. Let (H1)-(H5) hold, let u € BV(Q, [Rp), un€ WU(G; [RP) and suppose

that un -> u in L 1 ^ ; IR*). Then

16



lim infn_H- f f(x,un(x),Vun(x)) dx ;> J f(x,u(x),Vu(x)) dx

+ J K(x,u-(x),u+(x),v(x)) dHN.i(x) + J f-(x,u(x), dC(u)).

Proof of Theorem 2.18. Due to (H3) we may assume without loss of generality that
11111 ̂  -H~ I f(x,un(x),Vun(x)) dx = Umn _ +̂oe J f(x,un(x),Vun(x)) dx < +~

and un e CQ(IRN; IRP) (see Proposition 2.6 in [FM] and also Acerbi and Fusco [AF]). Using the

blow-up argument as introduced in [FM], we reduce the problem to verifying the pointwise

inequalities (2.10), (2.11) and (2.12) below. As f is nonnegative there exists a subsequence,

which for convenience of notation is still labelled {un}, and a nonnegative finite Radon measure (i

such that

f(MUn(.),Vun(.)) -> |i weakly * in the sense of measures,

i. e. for all (p € Q)(Q)

J<p(x)f(x,un(x),Vun(x))dx -> f<p(x)d^(x).

Using the Radon-Nikodym Theorem, we can write \i as a sum of four mutually singular

nonnegative measures
\i = ̂  £N + C lu+ - u- IHN.!LKu) + Tl IC(u) I + Ms-

We claim that

Ha(xo) ^ f(x<>,u(xo),Vu(xo)) for if N a. e. xo e to, (2.10)

(2.H)

and, using the same notation as in Theorem 2.11,

Tl(xo) £ f~(xo,u(xo),A(xo)) for IC(u)l a. e. xo € Cl. (2.12)

Then, considering an increasing sequence of smooth cut-off functions cp̂ , with 0 £ <pk < 1 and

<Pk(x) =1 in Q, we conclude that

J f(x,un(x),Vun(x)) dx 7> lim infn _ +̂oo J <pk(x) f(x,un(x),Vun(x)) dx

17



= J<pk(x)dn(x)

* J<pk(x)H.(x)dx+ /q>k(x)C(x) lu+(x) -u-(x)ldHN.!(x) +
" Ku)

+ J<Pk(x)Tl(x)dlC(u)l(x)

£ f 9k(x) f(x,u(x),Vu(x)) dx +

+ J <pk(x) K(x,u-(x),u+(x),v(x)) dHN.i(x) + f <pk(x)f-(x,u(x),dC(u)).
I(u) *5

Letting k -» +<», the result follows from the Monotone Convergence Theorem. •

The next two sections are dedicated to proving claims (2.11) and (2.12). The inequality
(2.10) concerning the absolutely continuous part is easily obtained. Indeed, by the Besicovitch
Differentiation Theorem (Theorem 2.7) for ifN a. e. xo e Cl the limit

meas(B(xo,e))
exists and is finite and Theorem 2.4 (i) holds. Here, and in what follows, we denote the i?N

measure of a Borel set B by meas(B). Choosing one such xo, (2.10) now follows from Steps 1, 2

and 3 in the proof of Theorem 2.3 in [FM].

3. The density of the jump term.
Here we prove inequality (2.11). By Lemma 2.6, Theorem 2.4 (ii) and by Theorem 2.7,

for HN-I a. e. xo € L(u) we have

(i) linw)* - j ^ J lu+(x) - u-(x)l dHN.!(x) = lu+(x0) - ir(xo)l,
e " KuWxo+eQc))

(ii) l i m £ ^ ^ J lu(y) - u+(x)|N/(N-i) dy = 0,
e {y € B(x,e)l(y-x).v(x)>0)

and

J lu(y) - u-(x)lN/(N-D dy = 0
{y € B(x,e)l(y-x).v(x)<0}

(iii) + - u-l HN.iLX(u)(x0+eQv(x0))

18



exists and is finite.

Q*^—^—Q,withO<8< I , l e t 9 € CJ(Q) be such that 0 £ <p <

1, <p = 1 on Q*. By (i) and (iii)

lu+ - u-l

1

lim SUP £ - 0+ Um— e t Jj£f*> ^^.VunW) dx

|U-.(XQ) 1 u- (xo)[ U m SUP e -»o+ limn -> - i e <p(y) f(xo+ey,un(xo+ey),Vun(xo+Ey)) dy

lim sup e _^o+ lim supn -^ » J ef(xo+ey,un(xo+ey),Vun(xo+ey)) dy.(3.1)
lu+(x0) - u-(xo)l

Let
un,c(y) := un(xo+ey),

1 u-(xo) i f y . v ( x o ) < O

As un -4 u in L1, by (ii) we obtain

limc _» o+ limn -• « J lune(y) - uo(y)l dy = limc _> 0
+ f lu(xo+ey) - u+(xo)l dy

+ lime -»o+ J lu(xo+ey) - u-(xo)ldy = 0. (3.2)

On the other hand

C(xo) £ |u+(Xo) 1 U.(XO)| l i m SUP £ -*>+ b m SUP"'-»-1 / f^(xO+£y.Un,e(y),Vun,e(y)) dy

. + | ( e f(xo+ey,un,e(y),- Vun,e(y)) - f-(xo+ey,un,e(y),Vun,e(y)) ) dy ] (3.3)
Q* £

where, by (H3), (H31) and (H5)

J | E f(xo+£y,un,e(y),-Vun4(y)) - f(xo+£y,un,e(y),Vun,e(y))l dy <
Q* E

meas(Q*n{ ||Vun̂ H ^ £L}) £ C(l + 2L)
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)C g(xo+£y,un,£(y)) IIVun£(y)ll1-'n em dy

and so, as g is a bounded function, by Holder's inequality, (H3) and (3.1) we conclude that

J | e f(xo+ey,un,e(y),-Vun,e(y)) - fbo(x0+ey,un,e(y),Vun,e(y)) I dy
Q* e

O(e) + C e" [ | g(xo+ey,Un,e(y)) IIVune(y)ll dy

O(e) + C e«» [ f e g(xo+ey,un(xo+ey)) IIVun(x0+ey)ll dy ] 1-
Q*

O(e) + C em [ f e f(x0+ey,un(xo+ey),Vun(x0+ey)) dy ] J-m

Q

< O(em).

Thus (3.3) reduces to

C(xo) ̂  | u + ( X o ) . u-(Xo)| U m SUP e -»o+ lim supn -> - { J f00(xo,un,e(y),Vun,e(y)) dy

+ J [ f~(xo+ey,un,£(y),Vun,£(y)) - f-(xo,un,e(y),Vun,£(y)) ] dy } (3.4)
Q*

and (H4p, (H3) imply that

J [f~(xo+ey,un,£(y),Vun,e(y)) - f-(xo,un,£(y),Vun,£(y))] dy
Q*

£ - 8 J e g(xo+ey,un(xo+ey)) IIVun(x0+ey)ll dy
Q*

^ - 8 C f e f(xo+ey,un(xo+ey),Vun(xo+ey)) dy
Q*

where, by (3.1), the set
{ J ef(xo+ey,Un(xo+ey),Vun(xo+ey)) dy l e > 0 , n positive integer}

Q*

is bounded. Thus

J [f-(xo+ey,un,E(y),Vun,£(y)) - f-(xo,un,c(y),Vun,e(y))] dy ^ 0(8). (3.5)

Using a standard diagonalization procedure, by (3.2), (3.4) and (3.5) we construct a sequence

{vk} such that
vk -» uo in

and

Making the change of variables
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setting

wk(x):=vk(—*
l + o

and using the invariance of uo under the above change of variables we have
wk-*uoinLHQ) (3.6)

with

C ( x o ) * hi+(x0) - u'(xo)l U m k ^ - d ^ ^ ^ ^ d y + O ( 5 ) ' ( 3 / 7 )

In order to conclude (2.11) and taking into account the definition of K, we must modify wk on the
boundary of Q in such a way that the new sequence is in £tf(u"(xo), u+(xo), v(xo)) and the total

energy does not increase. This is accomplished with the help of the following lemma, well known

to experts in Gamma convergence. This result uses the idea of multiple cut-off functions which

appears frequently in connection with certain convexity hypotheses (see [DG], [DD]) . We are

grateful to G. Dal Maso for pointing out to us that these are not needed in the case of linear growth

conditions. We include a proof for the convenience of the reader.

Lemma 3.1. Let Q = [0, 1]N, and let f : Qx[RpxMpxN -» [0, +~) be a Caratheodory

function such that

0 < f(x,u,A) < C (1 + HAH)

for some C > 0 and for all (x,u,A) € Qx[RpxMpXN. Let

f b if XN > 0
: = I a if xN < 0

and suppose that wn -» uo in LKQ; IRP), where wn € WW(Q; IRP). If p is a mollifier, pn(x) :=

nNp(nx), then there exists a sequence of functions £n € WU (Q; DR^n P^(a,b,eN) such that

£n « Pn* uo on 9Q, ^n ̂  uo in LJ(Q; IRP)

and

lim infn ^ f f(x,wn(x),Vwn(x)) dx ^ lim supn ̂ +oo J f(x£n(x),VUx)) dx.

Proof. Without loss of generality, assume that
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liminfn_H^Jf(x,wn(x),Vwn(x)) dx = limn _ ^ f f(x,wn(x),Vwn(x)) dx

Define

vn(x) := (pn* uo)(x) = (pn(x-y) uo(y) dy.
_ B(x,l/n)

As p £ 0, supp p = B(0,1) and

Jp(x)dx=l,

we have for i = 1,.... N-l

vn(x + eO = J pn(x+ei -y) uo(y) dy =
[RN

= J pn(x -z) uo(z+ei) dz

= (Pn* Uo)(x)

and so

vn(y):={ a
b iffxX

N
N< -V/n . "Vvn IL = O(n), vne ^(a,b, eN). (3.8)

Let

an := V l l wn-vn l lL i ( Q ) , kn := n [1 + llwnll1(1 + llvnlllfl], sn : = - ^

where [k] denotes the largest integer less than or equal to k. As an -> 0+ we may assume that 0 <

an < 1 and we set

Qo := (1 - On) Q, Qi := (1 - an + i sn) Q, i = 1,..., kn.

Consider a family of cut-off functions

(pi € C^ (Qi), 0 < (pi < 1, q>i = 1 in Qi.i, IIV(pi IL = O(^)

for i = 1,..., kn, and define
w(

n
j) (x): = (1 - <Pi00)vn(x) + q>i(x)wn(x).

As w^l) = vn on 8Q, by (3.8) we conclude that

w (
n

i ) €#(a,b,e N ) . (3.9)

Qearly
^ = Vwn in

andinQi\Qi-i
J, = Vvn + (Pi(Vwn - Vvn) + (wn - v n ) 0Vq>i.

Due to the growth condition on f we deduce that
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dx < f f(x,wn(x),Vwn(x)) dx +

C f (1 + lwn(x) - vn(x)l7- + IIVwn(x)ll + HVvn(x)ll) dx + C f (1+ HVvn(x)ll) dx
J n̂ Of)

and averaging this inequality among all the layers Oj\Qi-i we obtain

t ) - V f f(x, w®(x), Vw®(x)) dx £ f f(x, wn(x), Vwn(x)) dx
n i t i JQ JQ

dx + £ f

+

£ f(l+IIVwn(x)ll + IIVvn(x)l!)dx + £ flwn(x)-vn(x)lf dx + C J(l + IIVvn(x)ll) dx

i. e.

1 ^ f (i) o f
T— /J f(x> wn M* ^ w n (x) ) dx < f(x, Wn(x), Vwn(x)) dx

-h O(l/n) n

By (3.7), as meas(Q\Q0) =

we estimate

f(l + IIVvn(x)ll)

Thus, setting

it is clear that

- C -^llwn - v n HLi/Q) H

O(otn) and

Vvn(x) = 0 if b

dx <O(an) + HN.i(Q\(

: = O(l/n) + C >/llwn -

hC 1(1 + IIVvn(x)ll) dx.

1/n
30n{xN = 0}) JO(n)dxN = O(an).

-1/n

vn llLi(Q) + O(an),

with

1- Y f f(x, wi°(x), Vw(
n°(x)) dx <; f f(x, wn(x), Vwn(x)) dx + en,

and so there must exist an index i(n) € {1,..:, kn} for which

' f C x ^ ^ t o V w ^ x ) ) dx ̂  f f(x,wn(x),Vwn(x)) dx + en.

; •
By (3.9) it suffices to define

:=««»».
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End of the proof of (2.11). By (H31), (3.6) and Lemma 3.1 there exists a sequence
in £tf(u-(xo), u+(xo), v(xo)) such that

limk _>. f f~(xo,wk(y),Vwk(y)) dy £ lim sUPk _»« f f~(xo£k(y),V£k(y)) dy

which, together with (3.7), yields

C(xo) * i ^ J ) 5)
u

1-(xo)|
 K<*>> *&)). «+(xo), v(xo)) + 0(8).

Letting 8 - » 0 + we conclude (2.11).

4. The density of the Cantor part.
Here we want to show (2.12), i. e. for IC(u)l a. e. xoe ft

TI(XO) £ f"(xo, u(xo), A(xo)).

Let Q = (-1/2,1/2)N and Q(xce) := xo + eQ. For IC(u)l a. e. xo s ft we have
IDu|(Q(xo,e))

= 1
IC(u)l(Q(xo,e))

and so, by Theorem 2.4 (iii), Theorem 2.7 and Theorem 2.11, for IC(u)l a. e. xo € Q the

following hold:

= l i m £ ^ f ^ - , (4.1)
IDul(Q(xo,e))

meas(Q(xo,e))
i lu(x) - u(xo)l dx = 0, (4.2)

A(xo) = l i m ^ Du<Q(xfrE» ||A(xo)ll = 1, A(xo) = a®v, (4.3)
ID(u)l(Q(xo,e))

^ |DUKQ(XQ,E))
^ = 0 and lime-^o5 = + « . (4.4)

N

Also, by Lemma 2.13 we may assume that

IDu l ( Q ( e ) )

If g(xo,u(xo)) = 0 then f(xo,u(xo),A(xo)) = 0 and (2.12) holds trivially. Without loss of

generality we may assume that

U(XQ) = 0, g(xo,u(xo)) > 0, Ao := A(XQ) = a®eN where lal = 1.
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Step 1 [Diagonalization]. There exists a continuous function co such that co(t) -> 0+ when t -»0+

and for each 0 < t < 1 and each ye (t, 1) there exists a sequence fa) such that, with Qk '• =

TO J l u k ( x )-ms ( 4 7 )

[(Qk) J f(x,uk(x),Vuk(x))dx ^il(xo), (4.8)

limcnn IDul(Qk\Q(XQ,rkt)) n . . . . ft.
limsupk-»+« ipyj^Q^ s (0(1 -1). (4. l U)

and

Indeed, by (4.2)

^ lu»(x)ldx = 0,

e IDul(Qe)

by (4.1)

f lun(x)- u(x) - _,-c fn ^ J [un(y) - u(y)]dyl dx = 0,ul(Qe) J meas^ge,)^

| , Q . J f(x,un(x),Vun(x)) dx

and by (4.5)

J-^- <£co(l-t).
IDul(Q(xo,e))

Hence, a standard diagonalization procedure yields (4.6), (4.7), (4.8) and (4.10) while (4.9)

follows from (4.3). •

Step 2 [Truncation]. For every 0 < e < £o there exist sequences v* € W1»1(^;[RP ) and a* -» 0

such that
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_ WOZ J f(xo,O,Vvk(x)) dx <, (1 + co(e)) ti(xo) (4.11)

and

l v k ( x )"a k ' [ u ( x ) * S ^ Q ^ 0 ^ d ^ l d x "• °- ( 4 1 2 )

where co(e) -» 0 as e-> 0+. The proof of (4.11) is very similar to the argument used in proving

Step 3 of Theorem 2.2 in [FM]. Firstly, by (4.2) and (4.6) we may assume that

j ^ x < e*. (4.13)

Set

*:m 555(53 < [ U k ( x ) d x

and define

Vk := ak + (f>k( luk - ak I) (uk - a^

where <pk is a smooth cut-off function, 0 < (pk ̂  1. 2e2 < Sk ̂  tk ̂  j '

(pk(t) = 1 if t < sk, cj)k(t) = 0 if t > tk, Hcpk
fIL < ^ - 7 ^ .

Clearly, llvk - aklL <\^<e/2 which implies that

HvklL<£,

Vvk = (pkVuk + (uk - ak)®cpk( luk - ak I) V luk - ak I

and

|Vvk l<|Vuk l + — ^ l u k - a k l IVIuk-akll .
tk - Sk

Thus, by (H4)

( Q ^ Jf(xo,O,Vvk(x))dx= D J ( Q k ) J [f(xo,O,Vvk(x)) - f(x,vk,Vvk(x))] dx

J
1 + IIVvk(x)ll) dx +

and so, by (H3) and as for k sufficiently large and e small
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we have

WOT) 1 *(xo.O,Vvk(x)) dx £ ^ 4
p<k

+ [ 0 0 ( 0 0 9 + e) + 1] ^ Q J J f(x,vk,Vvk(x)) dx. (4.14)

On the other hand, by (4.13) we have

meas(7Qkn{ luk-ak \>h)) < meas({x e Qjc I luk(x) I £ e2})

SCr?

which, together with (4.8) and (H3) yields

R^) Jf(x,vk,Vvk(x))dx£ j p ^ j J f(x,uk(x),Vuk(x)) dx

IV luk - akl I dx + i n ^ v r J IVuk(x) Idx +

CrN

c£ 4c

r^-r- f pHN-i(luk - akl =p n yQk)dp

JlVuk(x)dx. (4.15)

For fixed k and a. e. tk one has

]im^-»tl : f pHN-i( luk - akl=p n 7Qk) dp = tk HN-i( hik - ak I = tkn
tk - s J

and

IVuk(x)ldx = 0. (4.16)2

In view of Lemma 2.12 and by (4.4) and (4.8) we can choose tk € (2e2,e/2) and sk e (2e2, tk)

such that
tk

^ 1 P H 0 » »k' =P n YQ) dp+ B j ^ | lVuk(x)ldx
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J IVuk(x)l dx
luk-akl<£/2}

J f(x.uk(x),Vuk(x)) dx + Cco(e)

(4.17)

where we used (H3) and the fact that g(xo,0) > 0. By (4.4), (4.14), (4.15), (4.16) and (4.17) we

conclude (4.11). To prove (4.12) we consider in Q = (-1/2,1/2)N the rescaled functions
rk"! 1

:= 153055[u(x° + rkZ)" n^ i iW I u ( x )

N-l
r

W k ( z ) : =

rk

w k ( z ) := D u W [Vk(x° + rkZ)' ak]-
• rk

Then (4.12) becomes

llluk - wk llLi(Q) -^ 0 as k -»+oo (4.18)

and

J uk(z) dz = 0 = f wk(z) dz, IDukl (Q) = 1.

As BV is compactly imbedded in L1 we deduce that

{uk} is equi-integrable (4.19)

and by (4.7) we have

lluk - wk IIL^Q) - » 0 as k -* +«. (4.20)

Moreover, by (4.4)

^k -~IDul(Qk)
* / N /'wk(z)K . ,

wk(z) = <|)k \-~-) wk(z).
^k

and
«w*- WklL^Q) ^ |lwk(x)ldx. (4.21)

Since {wk} is equi-integrable by (4.19) and (4.20) and as
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meas({x e QI lwk(x) I £ Xk e2}) = meas({x e QI luk(xo + rkz) - ak I £ 2e2})

£ meas({x € QI luk(xo + rkz) I £ e2})

(4.18) follows from (4.21).

Step 3 [Main Estimate]. Let {vk} be as defined in Step 2. We claim that for all 8 > 0
Uminfk-*+~ OuKCk) If(xo.O,Vvk(x)) dx 2> f~(xo,0,Ao) - C co(l -1). (4.22)

TQk

After extracting a subsequence we may replace liminf by lim. Also, without loss of generality we

assume that xo = 0 and we use the notation

tQk := Q(*o> ttk)-

Defining

f*(A):=f(xo,0,A)

then

^qy J f(xo,O,Vvk(x)) dx =

— ff*aikVw*(x))dx (4.23)
Uk J

where by (4.4)
IDuKQk)

rk

By (4.3)

T A = a®eN as k

and by Proposition A.I (see the Appendix)

IDuk - (Duk.Ao)Ao 1(0) -> 0 as k -» -H* (4.24)

from which we conclude that

IDuk.eil(Q)-»0 foralli = l , . . . ,N-l.

Thus, it is possible (e. g. by averaging in XI,..MXN-I and smoothing in XN) to find a sequence of

smooth functions £k00 = £k(*N) s u c h
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Q ^ , (4.25)i

and for a. e. x € (0,1)

- Diik(xQ) -» 0. (4.25)2

Fix x e (t, y) for which (4.25)2 holds. Then we may choose 6 > 0 such that (1 - 8)x > t and we

may assume that

ID£k KtQK T(l-S)Q) < Diik I(QMQ)

IDul(QicNtQk)
~ IDul(Qk) *

We remark that, as ̂  depends only on XN, its trace on 3(xQ) agrees with the trace of

Akx + p(x), Ak : ^

where p is xQ periodic. Hence, taking into account (4.23), by (4.20) and using the construction
*

introduced in Lemma 3.1 we will modify wk on the layer xQ\x(l-6)Q so that it coincides with £k

on the boundary of xQ, and then we will apply the quasiconvexity property of f* (see Remark

2.2). Let

ak := - J l l ^ k - w * l l L i ( Q ) , Ak := k [ ID^ l(yQ)+ ID W*I(TQ) + 1], sk : = ^ .

By (4.18), (4.25), ak - » 0 + . We assume that 0 < ak < 1 and we set
Qi := x(l - 8)(1 - o k + i Sk) Q, i - 1,..., Ak.

Qearly

tQ C Q C Qi+i C xQ.

Consider a family of cut-off functions

). 0 <£ 9i ̂  1, <Pi = 1 in Qi.j, HVqn IL = O(^)

for i = 1,..., Ak, and define
wj^x): = (1 - 9i(x))4k(x) + 9i(x)w*(x).

We have

k tQ tQ

— ff^OikVw^CxWdxi — ff*(^Vw*(x))dx
Uk J k Hk J k
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* (x)l I +f [ Ifck(x) - w* (x)l I + — ] dx + C [ ID^ l(QiNQi-i)+ IDw*l(Qi\Qi-i)]
I k Hk

+ C f
J

— ] dx

and averaging this inequality among all the layers QAQi-i, by (4.26) we obtain

^(x))dx< ^- Jf*(HkVw*(x))dx

Hence there must exist an index i = i(k) e [ 1,.... Ak} for which

^ Jf(HtVw<'»(x))dx£J-
TQ TQ

and by (4.10), (4.23), (4.25)2, by the quasiconvexity of f* and since f* is a Lipschitz function we

conclude that

^ Q ^ J f(xo,O,Vvk(x)) dx £

- C co(l -1).
^k

In view of (4.9), (4.10) and (4.25)2

—
limsupk-^«, IAo - V£k(xQ)l = limsupk-»+« IAo - Duk(xQ)l = limsupk^^ I Ao -

therefore, due to the lipschitz continuity of f*

limsupk-,^ I — f*0ikAo) - — f*atkV^k(xQ)) I < C co(l -1).
l^k Hk

Finally,

is convex because rank Ao = 1 and so
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limsups_H~ j f*(sAo) = l i m * ^ j f*(sAo) = f-(xo,0,Ao)

and we deduce that

— f*(RkVSk(TQ)) £ f(xo,0,Ao) - C co(l -1),

and hence (4.22).

Step 4 [Conclusion]. By (4.11) and (4.22) we conclude that
(1 + co(e)) TI(XO) £ f~(x0,OAo) - C co(l -1)

and so, letting e -» 0+, t -> 1- we obtain

Remark 4.1. If f(x,u,.) is convex then Alberti's result (Theorem 2.11) concerning the

rank-one propeny of the Cantor set is not needed. Indeed, by (4.20)

lluk - wk HL^TQ)) -* 0 as k -> +°© for Li a. e. x € (0,1).

Choosing x € (t, y) and using Jensen's inequality and the Gauss-Green formula, from (4.23) we

have

^ J f(xo,O,Vvk(x)) dx = linwoo — Jf*(^ikVw*(x)) dx

— f*( fnkVw*(x) dx))
Mk J

TQ

— f*( f nkw *(x)®v(x) dHN.!(x) )

d(tQ)

— f* k̂ f uk(x)®v(x) dHN-i(x))
^ A

IDul(xQk)

^f-(xo,0,A0)-Cco(l-t).
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In the last step we used (4.9), (4.10) and the convexity of f. Taking (4.11) into account and letting

e -» 0+, t -» 1- we conclude that

To make the above calculation rigorous one should mollify Uk, but this process poses no additional

difficulty. One thus obtains a proof of the lower bound needed in Ambrosio and Pallara [AP]

without recourse to the sophisticated geometric measure theory tools used in [AG].

5. Relaxation.

Due to Theorem 2.18, the proof of Theorem 2.16 is complete once we show that

u)<J f(x,u(x),Vu(x)) dx+ J K(x,u-(x),u+(x),v(x)) dHN.i(x)+J f~(x,u(x),dC(u)). (5.1)

The proof of (5.1) follows closely that of the analogous estimate in Ambrosio, Mortola and

Tortorelli [AMTJ. It is divided into four steps and we begin by considering

u;A) := inf{Un) {Urn inf _ ^ J f(x,un(x),Vun(x)) dx I un € W^(A; \RP) and un -> u in V }
A
J
A

whenever A C 12 is an open set.

Step 1. We claim that

^(u;A) is a variational functional with respect to the L1 topology and

^(u;A) < C (meas(A) +IDul(A)). (5.2)

We recall that ̂ (u; A) is said to be a variational functional with respect to the L1 topology if

is local, i. e.

for every u, v € BV(A; W) verifying u = v a. e. in A;

(ii) 5^(.;A) is sequentially lower semicontinuous, i. e. if un, u € BV(A; [Rp) and un -» u in LX(A;

IR^then

^(u;A) <> lim infn-^o ^(u^A).

(iii) ^(.jA) is the trace on {A C Q I A is open} of a Borel measure on the set 96(£1) of all Borel

subsets of £1

De Giorgi and Letta [DGL] introduced the following criterion to assert (iii):
A set function a : {A C Cl IA is open} —»[0, -K*>] is the trace of a Borel measure if

(a) a(B) < a(A) for all A, B € X := {U C Q IU is open} with B C A;

(b) a(A OB) Z a(A) -h a(B) for all A, B € X such that A nB = 0 ;
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(c) a(A uB) £ a(A) + a(B) for all A, B € X;

(d) a(A) = sup (a(B) IB CC A} for all A € X.

The argument used to show that ̂ (ujA) is a variational functional with respect to the L1

topology is exactly the same as in Theorem 4.3 of [AMT], where the only assumptions on f are
continuity and the bounds

Also, due to (H3), given u e BV(A; W) and considering a sequence of smooth functions un such

that

un -+ u in U(A; DP) and f IVun(x)l dx -> IDul(A),
A

we conclude that

^(ujA) £ lim infn _ ^ J f(x,un(x),Vun(x)) dx
A

< C (meas(A) + lim infn _>+oe J IVun(x)l dx ) = C (meas(A) + IDu I(A)).

Step 2. We claim that if u € BV(Q; [Rp) n L~(Q; IRP) then

; ONZ(u)) <, J f(x,u(x),Vu(x)) dx + J f~(x,u(x),dC(u)). (5.3)

By Step 1 ̂ (u; . ) is a Radon measure, absolutely continuous with respect to J^N +IDul. Thus (5.3)

holds if and only if for £N a. e. xo e Q.

j „ -(xo) < f(xo,u(xo),Vu(xo)) (5.4)
d-£N

and for IC(u)l a. e. xo € Cl
d ^ u ; . )
dlC(u)l (xo) £ f*(xo,u(xo),A(xo)). (5.5)

We start by showing (5.4). Let {un} be the regularized sequence defined in Lemma 2.5. Writing
Du = Vu dx + Dsu,

by Theorem 2.4, Theorem 2.7 and Theorem 2.8 for if N a- e. xo € Cl we have

lim£-*o+ f »u(x) - u(xo)l (1+ IVu(x)l) dx = 0, (5.6)
meas(B(xo,e)) B(*o,e)
IDsul(B(xo,e)) A .. Dul(B(xp,e)) . . .

lime_̂ n-»- — =0, lin̂ n̂-*- exists and is finite, (5.7)
e-*° i?N(B(xo,e)) ^"^ ^ - « ^ - ^

meas(B(xo,e))

and

f f(xo,u(xo),Vu(x)) dx -» f(xo,u(xo),Vu(xo)) (5.8)
B(xo,e)) ri
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.),
(xo) exists and is finite.

Choose a sequence of numbers e € (0, dist(xo,9Q)). Then
) , v y (u; B(XQ,E))
(Xn) = li

£ liminfe _>o+ liminfn_H~ f f(x,un(x),Vun(x)) dx. (5.9)
meas(B(xo,e))

Following [AMT], Proposition 4.6, we introduce the Yosida transforms of f, given by

fx(x,u) := sup{f(x',u\A) - X[ Ix - x'l+ lu - u'l] (1 + HAH): (x\u') € QxIRp}

for every X > 0. Then

(i)f^(x,u,A) ^ f(x,u,A) and f̂ Cx.u.A) decreases to f(x,u,A) as X -» +«>;

(U) fx(x,u,A) ^ ^ ( x ^ ^ ) if X < T|, for every (x,u,A) € ftxtRpxMP^ ;

(iii) lfx(x,u,A) - fx(x',u',A)l < X(lx - x'l + lu - u'l) (1 + HAH)

for every (x,u,A), (x',u',A) 6 QxlRpxMP*N;

(iv) the approximation is uniform on compact sets. Precisely, let K be a compact subset of Qx[Rp

and let 8 > 0. There exists X > 0 such that

f(x,u,A) £ fx(x,u,A) £ f(x,u,A) + 8(1 + HAH)

for every (x,u,A) € KxMP*N.

Fix 8 > 0 and let

By (i), (ii) and (iv)
f(x,un(x),Vun(x)) £ fx(x,un(x),Vun(x))

^ fx(xo,u(xo),Vun(x)) + X( Ix - xol + lun(x) - u(xo)l) (1 + HVun(x)H)

^ f(xo,u(xo),Vun(x)) + 8(1 + IIVun(x)H) + X( Ix - xol + lun(x) - u(xo)l) (1 + HVun(x)ll). (5.10)

Taking into account that Vun = pn*Vu + pn»Dsu and that f(xo,u(xo),.) is a Lipschitz function, by

(H3), Lemma 2.5 and (5.9) we have
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i r ,
(xo) £ liminfe _*o+ liminfn_>+_ — [ J f(xo,u(xo),(pn»Vu)(x)) dx

meas(B(xoe))
( o ) £ liminfe _*o liminfn_>+_

difN meas(B(xo,e))

+ C IDsu l(B(xo,e+l/n)) + (te + 6) meas (B(xo,e)) + Qx + 8) IDul(B(xo,e + 1/n))

+ X J lun(x) - u(xo)l (1 + IVun(x)l) dx ] .

Since

J f(xo,u(xo),(pn*Vu)(x)) dx = J f(xo,u(xo),Vu(x)) dx,

IDu I (B(xo,e + 1/n)) -> IDu I (B(xo,e)) = IDu I (B(xo,e))

for a. e. e, invoking (5.7) and (5.8) one deduces

-<x0) < f(xo,u(xo),Vu(xo)) + C5

+ Xliminfess£-»o+ liminfn^+oo J lun(x) - u(xo)l (1 + IVun(x)l) dx. (5.11)
meas(B(xo,e)) B ( ^ )

To prove (5.4) it remains to show that the last term converges to zero. By (5.6)

lim e-»o+ limn-H^ J lun(x) - u(xo)l dx =
meas(B(xo,£)) B(xox)

= lim e_^o+ J lu(x) - u(xo)l = 0
meas(B(xo,e)) B(xo,e)

and by Lemma 2.5 and the dominated convergence theorem (with respect to the measure IDul)

limsupn_H« J lun(x) - u(xo)l IVun(x)l dx <

[ J lun(x) - u(x)l IVun(x)l dx + J lu(x) - u(xo)l IVun(x)l dx ]
B(XO.E) B(xo,e)

[ J (lun - ul*pn)(x) IDul(x)+ J (lu - u (xo)l*pn)(x) IDul(x) ]
B(xo,e+l/n)

J (lun - ul*pn)(x) IDul(x)+ J (lu - u(xo)l *pn)(x) IDul(x)
B(xo,e+l/n)M(u) BM

+ 4llu IL IDul(B(xo,e+l/n) nl(u))

_ j lu(x) - u(xo)l IDul(x)+ 4 HulLIDul (B(xo,e)nZ(u))
B(xo,e)M(u)
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_ J lu(x) - u(xo)l IDul(x)+ 4 llulL IDsul(B(x0,e)). (5.12)
B(xo,e)\5Xu)

Taking into account that IDul(9B(xo,e)) = 0 for a. e. e and that

J lu(x) - u(xo)l IDul(x) £ | lu(x) - u(xo)l IVu(x)l dx + 2 llulL IDsul(B(x0,e)),
B(xo,e)

we obtain from (5.6) and (5.7) that

limsup esse-»o+ limsup,,-^ J lun(x) - u(xo)l IVun(x)l dx = 0
meas(B(xo,e))

and (5.4) follows from (5.11).

Next we prove (5.5), where using Radon-Nikodym Theorem we write
IDul= IC(u)l + |i., where \x and IC(u) I are mutually singular Radon measures.

By Lemma 2.5 (iii)
pn*u (x) -* u(x) for IC(u)l a. e. x e £1

hence u is IC(u)l measurable and by Theorem 2.7, Theorem 2.8 and Theorem 2.11, for IC(u)l a. e.
xo€ Q we have

H(B(xo,e)) A .. IDUI(B(XQ,E)) . .
lime_,n+ =0, lim. .„•*• exists and is finite, (5.13)

e"*° IC(u)l(B(xo,e)) e^° IC(u)l(B(xo,e))
= 0, (5.14)

IC(u)l(B(xo,e))
1

IC(u)l(B(xo,e))
J lu(x) - u(xo)l IC(u)l(x)-» 0, (5.15)

Ĉ û fBTx E^
A(x) := lime_^+ ! exists and is a rank-one matrix of norm one, (5.16)

•"* IC(u)l(B(x,e))
liminfe -*>+ J f(xo,u(xo),A(x)) dlC(u)l = f-(xo,u(xo),A(x0)), (5.17)

IC(u)l(B(xo,E)) B ^
and

d^(u; . )
ex*s ts ^ ^ ^s finite.d

As before, using (5.10) and (5.12) one sees that

(u; B(XO,E))

dlC(u)lvyvu' £ ^ ic(u)l(B(xo,e))
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Jf(x,un(x),Vun(x)) dx
IC(u)l(B(xo,e))

< liminfe _*o+ l iminW [ f f(xo,u(xo),Vun(x)) dx +
IC(u)l(B(xo,e)) i

+ (8 + Xe)) J IVun(x)l dx + (8 + XE) meas(B(xo,e)) + X J lun(x) - u(xo)l (1 +IVun(x)l)dx]
B) B(xo,e)

IC(u)l(B(xo,e))
J f(xo,u(xo),Vun(x)) dx +

IC(u)l(B(xo,e))
(8 + Xe) [ IDul(B(xo,e)) + meas (B(xo,e))]

X limsupe _»o+ ^ [ J lu(x) - u(xo)l IDul(x)+
IC(u)l(B(xo,e)) B(

+ / lu(x) - u(xo)l dx + 4 llulUDul (B(xo,e)nl(u)).].
B(Xo.E)

By (5.13) - (5.15) and, due to the rectifiability of the jump set, as C(B(xo,e)nI(u)) = 0 we

conclude that

t u ; . ) 1
fr) U i f + l i f

1 r f
- U m i n f e - * + limmfn-»+« L J f(xo,u(xo),Vun(x)) dx +

IC(u)l(B(xo,e)) J
+ X J lu(x) - u(xo)l IC(u)l(x) + 2X HulL

B(xo,e)

+ 4X HulL IDul(B(xo,e) nl(u)) ] + C8

£liminf£_*o+ liminfn-,^ J^ J f(xo,u(xo),Vun(x)) dx + C8. (5.18)
IC(u)l(B(xo,e)) ^

Now we use Ambrosio and DalMaso's argument in [ADM], Proposition 4.2. Define

, A . . f(xo,u(xo),tA) - f(x0,u(xo),0)
g(A) := supt>o j '—'-'

Then g is Lipschitz continuous, positively homogeneous of degree one and the rank-one convexity

of f(xo,u(xo),.) implies that
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g(A) = f°(xo,u(xo),A) whenever rank A ^ 1.

Thus, by (5.18), (5.14) and Lemma 2.5 we have

J ! ' ( x o ) £ liminf£_>o+ liminfn_^ f [f(xo,u(xo),0)+g(Vun(x))]dx + C5
IC(u)l(B(xo,e)) B(x;e)

= liminfe_»o+ J g(Du) + C6
IC(u)l(B(xo,e)) U

= liminfe _>o+ — — - J [g(A(x» dlC(u)l + g(dn)] + C8
IC(u)l(B(xo,e)) B(xo.e)

and so, by (5.13), (5.16), (5.17) and Alberti'sTheorem 2.11 we conclude that

(xo) <, liminfe _>o+ [ f f~(xo,u(xo),A(x)) dlC(u)l +C|i(B(xo,e))]+
IC(u) l(B(xo,e)) B (^£ )

C8

= f(xo,u(x0),A(xo)) + C8.

It suffices to let 8 -> 0+.

Step 3. We show that

^ ( U J K U ) ) ^ J K(x,u-(x),u+(x),v(x)) dHN.!(x) (5.19)
Ku)

for every u € BV(Q; IRP) n L~(Q; IR1*). The proof is divided into three parts :

1. u(x) = a*)(E(x) + b(l - XE(X)) with Pern(E) < +~;
2. u(x) = S aj^E^x) where {Ej}*!^ forms a partition of Q into sets of finite perimeter;

3. General case, u € BV(Q; 1RP) n L~(Q; IRP).

1. Let u(x) = &XE(X) + b(l - "XE(X)), Pera(E) < +«>. We start by proving that for every open set

A C f t

f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.i(x). (5.20)

a) Suppose first that
( b if x.v > 0

" [ a if x.v < 0

In Fonseca and Rybka [FR] (Proposition 4.1 and Lemma 4.2) it was shown that if A = a + XQV

is an open cube with two faces orthogonal to v then there exists a sequence u,, € W^CA; (Rp) such

that

J f(x,un(x),Vun(x)) dx -» | f(x,u(x),0) dx + J K(x,a,b,v(x))
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and so (5.20) holds.

b) Consider u as in a) and let A C Cl be an arbitrary open set in IRN. Let n be the plane

* : = { x € IRNlx.v = 0}.

It is clear that

where An is an increasing finite collection of non-overlapping (i. e. with disjoint interiors) cubes Q

of the form a* + eQv with edge length bigger than or equal to 1 fa and such that

H N - I @ Q ™ 0 = 0. (5.21)

Thus, by Step 1 (iii) and applying a) to a decreasing sequence of open cubes whose intersection is
the closed cube Q one has

^(u; Q) < J f(x,u(x),0) dx + JlC(x,a,b,v(x)) dHN-i(x)
Q Ku)nQ

and so
(u; A) < limn -H~ & (u;

<liminfn -,+ocX [ J f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN-i(x) ] .
Q Ku)nQ

By (5.21) and Lebesgue's Monotone Convergence Theorem we conclude that

[ J f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN-i(x) ]

= f f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.i(x).
A I(u)nA

c) Now suppose that u has polygonal interface i.e. u = XE^ + (l-XE)b where E is a polyhedral set

i.e. E is a bounded, strongly Lipschitz domain and dE = Hi u •.. u HM »Hi are closed subsets of

hyperplanes of the type {x € [RN : x.Vj = Oj}. Let A be an open set contained in Q and let I = {i €

{1,...,M} I HN.i(HinA) > 0}. If A n X(u) = 0 , i. c. if card I = 0 then u € W^CA; IRP) and it

suffices to consider un = u € W^KA; IR1 ,̂ with (5.20) reducing to

^(u;A)<; J f(x,u(x),0) dx.
A

The case card 1=1 was studied in part b) where E is a large cube so that £(u)n£2 reduces to the

flat interface {x € Cl I x.v = 0}. Using an induction procedure, assume that (5.20) is true if card I
= k, k < M -1 and we prove it is still true if card I = k. Assume that

3E n A = (Hi n tt) u . . . u (Hk n Q).
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and consider S := {x € IRN: dist (x, H{) = dist (x, H2 u ... u HM)}. Note that HN-I(S n Z(u)) =

0 because HN-I(HJ r> Hj) = 0 for i * j . Fix 8 > 0 and let
U s = {xe RN:dist(x,S)<8},

Uj = {x e IRN : dist(x,S) < 6, dist (x,Hi) < dist (x,H2 u . . . u H*)},

Ug = {x e [RN : dist(x,S) < 8, dist (x,Hi) > dist (x,H2 u . . . u Hk)}.

Let

Ai = {x e A : dist (x,H0 < dist (x,H2 u ... u HM)}-
Clearly Ai is open and Ai n (H2 u . . . u H*) = 0 . We apply the induction hypothesis to Ai and to
A \ Ai := A2 to obtain sequences un € W^KAi; IR*), vn € W 1 - 1 ^; IRP) such that

un-^ uinLHAiiIRP), v n -* u in LKA2; (R
p)

and
J f(x,un(x),Vun(x)) dx < J f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.i(x) + 8/2,

Ai Aj I(u)r^Al

J f(x,vn(x),Vvn(x)) dx < J f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.!(x) + 8/2.
Aj A2 Ku)oA2

As in Lemma 3.1 we will use the slicing method to connect un to vn. Let p be a mollifier, pn(x) :=

nNp(nx) and define

wn(x) := (pn» u)(x) = fpn(x-y) u(y) dy.
B(U/n)

As p £ 0, supp p = B(0, 1) and

Jp(x)dx = 1,
B(Cf,l)

we have
IIVwn IL <, Cn, supp Vwn C {x 6 1RN I dist(x,I(u)) < 1/n}. (5.23)

Let

c^ := -^llwn-vnllLi (A i ) , kn := n [1 + llwnllu + llvnllia], sn := - ^

where [k] denotes the largest integer less than or equal to k, set
Uj := Uj., where 8j = (1 - a,, + i s j Uj, i = 1 kn,

and consider a family of cut-off functions

q>i € W^CU:), 0 < q>i £ 1, <pi = 1 in u:.,, UVcpi IL = O(^)

for i = 1,..., kn. Define

u<° (x): = (1 - q>i(x))wn(x) + cpi(x)un(x), x € AL

Then
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u^ = wn on 3AinS,

Vu(
n

j) - Vun in U^, Vu(
n

i} = Vwn iin

andinUj

Un = " W » + <Pi(̂ un • ̂ wn) + fan - Wn

Due to the growth condition (H3) on f we deduce that

f f(x,u(l)(x),Vu(l)(x)) dx £ J f(x,un(x),Vun(x)) dx +
J Aj

C f( l+ lwn(x) - un(x)l7- + HVwn(x)ll + llVun(x)ll) dx + C f (1+ IIVwn(x)ll) dx

and averaging this inequality among all the layers Uj \U-.j and by (5.23) we obtain

1 X1 f (i) (i) f

•r- 2^, I ft*' "n ̂ x >̂ ̂ un (x)) dx ̂  I f(x, un(x), Vun(x)) dx,

+ £ J(l+IIVwn(x)ll + IIVvB(x)ll)dx+ £• flwn(x)-vn(x)(f dx
+ C (1 + n) meas {x e UjnA^ dist(x,L(u)) < 1/n}.

Thus, there must exist an index i(n) € {1,.... kn) for which
U n ^ u ^ - ^ u i n L K A ^ l R P ) ,

and taking into account that X(u) is a union of finitely many closed subsets of hyperplanes

limsupn-*- J f(x,Un(x),Vu"n(x)) dx <
AT

/ f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.i(x) + 8/2 + CHN-i (U'8nAinL(u)).

Similarly, we may construct a sequence vn such that
vn = wn on 9A2nS, v"n - » u in LKA2; 1RP),

limsupn-^. J f(x,v"n(x),V7n(x)) dx <,

j f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN-i(x) + 6/2 + CHN.! (U'6nA2nZ(u)).
A

We set
Vn(x).
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Clearly £„ € WU(A; |RP), £n -» u in LKA; IRP) and so

^"(u;A) £ liminfn _H~ f f(x£n(x),V£n(x)) dx

£ Umsupn _>« j f(x,Un(x),Vu"n(x)) dx + limsupn -H. J f(x,Vn(x),V7n(x)) dx
AT 4

<, J f(x,u(x),0) dx + J K(x,a,b,v(x)) dHN.i(x) + 5 + HN.i (U8nAn2:(u)).
A Ku)r\A

As HN.i(Sr£(u)) = 0, letting 8 -> 0 we obtain (5.20)

f) Finally, if E is an arbitrary set of finite perimeter in il, by De Giorgi's approximating lemma

there exists a sequence of polyhedral sets En such that
meas(EnAE) -»0 , Pern(En) -> Pern(E).

On the other hand, by Lemma 2.15 a), b), there exists a sequence of continuous functions
gm : Ox[RN -»[0,+~) such that

K(x,a,b,y) < gm(x,y) ^ Clyl for all (x,y) 6 QxIRN

and

K(x,a,b,y) = infm gm(x,y),

where we extended K(x,a,b,.) as a homogeneous of degree one function. Setting

un(x) := aXEn(x) + b(l - XEM),

by Step 1, (i), (iii)
^(u\A) < lim infn^^ r^; A)

J f(x,un(x),0) dx+ J K(x,a,b,v(x))
AJ
A

= J f(x,u(x),0) dx + limn_»+. J gm(x,v(x)) dHN-i(x)
A Kun)nA

= Jf(x,u(x),0)dx+ J gm(x,v(x)) dHN.i(x).
AJ
A

Letting m -> +«> and using Lebesgue's Monotone Convergence Theorem we obtain (5.20).

This inequality together with Step 1, (iii) yields
^ ( u ^ u ) ) £ inf {^(u;A) IA C ft, A is open, S(u)C A}

< inf { f f(x,u(x),0) dx+ J K(x,a,b,v(x)) dHN.i(x) I A C 12, A is open L(u)C A}
A KU)AA

= jK(x,u-(x),u+(x),v(x))dHN.i(x)

Ku)

and we conclude (5.19). The cases 2 and 3 are now obtained as in [AMT] Proposition 4.8, Steps 1

and 2, respectively, where the upper semicontinuity of K is needed (see Lemma 2.15).
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Step 4. By Step 2 and Theorem 2.18 and as ̂ (u;.) is a variational functional we have

r(u; O) = f f(x,u(x),Vu(x)) dx + / K(x,ir(x),u+(x),v(x)) dHN-i(x) +

+ ff~(x,u(x),dC(u))

for every u e BV(Q; [RP) n L-(Q; IRP). In order to extend this result to BV(Q; 0RP), we use the

same argument exploited in [AMT], Theorem 4.9. Let <|>n € Ĉ ClRPjlRP) be such that

<t>n(y) = y ifyeB(O,n),IIV<|>nIL^l,

and fix u e BV(Q; IRP). Because it is important to have IIV<)>nIL bounded above by one and not just

by an arbitrary constant C, we specify the norm we are using for matrices, namely

IIAII = sup{IAxl:lxl<l}.

Then

<|>n(u)eBV(Q;[RP)nL-(Q;[RP),

L(<t>n(u)) C Z(u) ,

(<l>n(u)-, <|>n(u)+, V^n(u)) = (<))n(u-), <))n(u+), V (u )) if X € Z(<t>n(u))

and

f ID<j)n(u)l < J ID(u)l for every Borel set B C Q. (5 .24)
B B

As ^(.j Q) is a variational functional we conclude that

^(u; Q) £ lirninfiw..#r(<|>n(u); Q)

= liminfn_>„ [ J f(x,<|>n(u),V((t>n(u))(x)) dx + J K(x,0n(u)-,<(»n(u)+,v(fn(U)) dHN.!(x) +

+ Jf-(x,«|)n(u),dC(«t>n(u))).
a

By Lemma 2.15 (c), (d) K is upper-semicontinuous and

), v(x)) £ C lu-(x) - u

and so, by Fatou's Lemma we obtain

,« J K(x,<t>n(u)-,<t»n(u)+,V4,n(U)) dHN.i(x) ^ . J K(x,u-(x),u+(x),v(x)) dHN-i(x).
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On the other hand, setting

we have

limsupn_»» Jf(x,<|)n(u),V(<t)n(u))(x))dx =

limsupn _>« [ J f (x,$n(u), V(4>»(u))(x)) dx + J f (x,4>n(u),V(4>n(u))(x)) dx ]

<: J f(x,u(x),Vu(x)) dx + C limsupn _»« [meas(fi\Qn) + ID(<t>n(u))l((n\nn)\S(u)) ].

By (5.24) we deduce that

limsupn _>» ID(<))n(u))l((Q\an)\L(u)) < limsupn _̂  « D(u)l(QXQnu2Xu))) = 0

and so

limsupn-*,, Jf(x,<t>n(u),V(())n(u))(x)) dx < Jf(x,u(x),Vu(x)) dx.

In a similar way

limsupn _»- f f-(x,<|>n(u),dC(<))n(u)))

= limsupn^- [ Jf-(x,()>n(u),dC(<})n(u)))

< f f(x,u(x),dC(u)) + C limsupn _

= f f(x,u(x),dC(u)). •

Appendix.

In this appendix we prove Lemmas 2.12,2.13 as well the following proposition justifying

(4.24).

Proposition A.I. Let {^} be a sequence of [Revalued Radon measures on Q. such that

» 1, and |ik(Q) -* a where lal = 1.
Then

k-a) al(Q) -> 0.

Proof. By the Radon-Nikodym Theorem we may write
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where X*: Q. -»IRP is Ip-kl-measurable and lAfc(x)l = 1 for l|ikl a. e. x e CL Define

aK := Xk - (Xk .a) a.

Then

lcxkl
2 = 1 - (kk .a)2

£2(1-A* .a). (A.1)

On the other hand

J
and so

f[ l - (X k . a ) ]d l i i k l -» 0. (A.2)

By (A.I) we have

a) al(Q) = J lak(x)l

( f lak(x)|2dl|ikl)1/2

and the result now follows from (A.2). •

We recall that if w e Wi--(tRN; IR) and g e U([RN; (R) then the change of variables formula

(or coarea formula) holds, namely

J g(x) IVw(x)l dx = f ( f g(x) dHN.i(x) ) dt. (A.3)

-oo

For details see Evans and Gariepy [EG] and Ziemer [Zi].

Lemma 2.12, Let K C IRN be a compact set, let v e WJ>~(K) and let A C K be a

measurable set. Then

ess inft€ [a,b] t HN-i ({x € A I v(x) = t}) T̂rTuTTT J IVv(x)l dx.
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Proof• Let v be a Lipschitz extension of v to !RN with compact support. Applying the co-

area formula (A.3) to
w(x) := v(x) and g(x) := XA(x) X[a, b](y(x))

we have
•t-oo

J IVv(x)l dx = f ( f g(x) dHN-i(x) ) dt

( { x e A l v ( x ) = t } )dt .

As v and v agree on A, we can replace v by v and defining

a : = ess inft€(a, b) t HN-i({x € A I v(x) = t})
we conclude that

b

J IVv(x)ldx = f *- t H N . i ( { x € A I v (x ) = t } ) dt
a

b

£ct I -dt = a ln(b/a). •
a

Lemma 2.13. Let |i be a nonnegative Radon measure on [RN. For |i a. e. xo € IRN and

for every 0 < t < 1 one has

Proof. Let

N: = {x € [RN I lime-̂ o H ( B ( x < £ ) ) does not exist}.
*^ i?N(B(x,e))

By the Besicovitch Differentiation Theorem (Theorem 2.7)

and setting

E : = { x € [RNlliminfe-fl ^ ^ ' ^ = 0 } u { x € IRN I ̂ (B(x,e)) = 0 forsomee>0}
.3?N(B(x,e))

we have

Thus, if xo € [RN \ (E uN) we deduce that
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ifN(B(xo,e))

with
H(B(xo,te)) ,. n(B(xo,te)) i?N(B(xo,t£)) J?N(B(xo,e))

= uni£_»o

H(B(xo,e)) i?N(B(xo,te)) ifN(B(xo,e)) H(B(xo,e))

= tN . (A.5)

Now consider the set of points at which (A.4) fails, i. e.

H(B(xo,e))

By (A.5) we have that
A C ( E u N )

and so, it suffices to show that fi|_A is absolutely continuous with respect to £N. Suppose that we

prove that for every x e A

l i m i n g W^e)) < 4~. (A.6)
~ ° i?N(B(x,e))

Then
A C u^Tj Ak

where

Ak := {x € A I liminf£->o ^ k}»
i?N(B(x,e))

and since jiLAk is absolutely continuous with respect to if N> with |iLAk ̂  kif N, by the monotone

convergence theorem we conclude that
= 0 whenever £N(B) = 0.

It remains to prove (A.6). If x € A then by the definition of the set A there exists 5(x) > 0 such that

for every e e (0,6(x)). Fixing ro € (t5(x), 5(x)) and setting r, := t» r0 we conclude that

n(B(x,e)) ^,.
s ii

i?N(B(x,e))
r H(B(x,rj))
L

i—t»Ji?N(B(x,ro))
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