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Abstract. Let Pn be the order determined by taking a random graph G on {l,2,...,n},

directing the edges from the lesser vertex to the greater (as integers), and then taking the

transitive closure of this relation. We call such an ordered set a random graph order.

We show that there exist constants c, and a, such that the expected height and set up

number of Pn are sharply concentrated around en and cm respectively. We obtain the

estimates: .565<c<.610, and .034<a<.289. We also discuss the width, dimension, and

first-order properties of Pn.
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Random Graph Orders

1. Introduction

The application of probabilistic methods in graph theory, and the study of random graphs,
introduced almost 30 years ago by Erdos and Renyi, now seem commonplace. Random
orders however have received less attention, in part because the presence of transitivity
prevents the completely independent choice of related pairs which is so effective in random
graphs. On the other hand, this very difficulty means that a number of alternative methods
for generating "random11 partial orders exist, one of which we propose to study here.
In [8] and [9] Peter Winkler studies a method, for generating random orders of bounded
dimension by selecting points uniformly and independently from the k-dimensional unit
cube with the usual coordinatewise order. In his paper a number of results concerning
such orders, for instance the expected number of minimal elements, expected height and
width, and some first order properties are investigated. Here we present a similar study of
a different method for generating random partial orders.

It should be noted that if one simply enumerates the partial orders of size n uniformly that
one obtains the result "Almost every order is of height three". This is one example where
mathematical reality clashes strongly with ones natural feeling for the subject. Asked to
imagine a "random" partial order on a set of say 100 elements that the height should equal
three seems rather less than likely. None the less there has been some very interesting work
done with respect to this measure, including a recent proof of a first order 0-1 law for finite
orders due to Compton [2].

Recall the basic definition of a random graph (with p=l/2) of size n, namely a graph on the
vertices {1,2,.. .,n } where the existence of an edge between i andy for each unordered
pair {/</} is determined independently with probability 1/2. Our method of constructing a
random ordered set of size n is to simply form such a random graph, then view each edge
if with i<j as a directed edge from i toy, and then to take the transitive closure of the
resulting relation as our (strict) order relation. Another way to construct such an order is to
view this process sequentially. At step k we add an element k, choosing independently
which already existing elements k will lie above, and then letting transitivity do the rest. Of
course some of our choices will be redundant, but we do not concern ourselves with that.
Thus the labelled Hasse diagram of such an ordered set can be drawn "from the bottom
up". In the figure below we show a 20 element ordered set constructed by this method.
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Figure 1. Random graph order of size 20.

We refer to the orders constructed this way as random graph orders. We will obtain
estimates on the width, height, set up number, and dimension of random graph orders of
size n.



2. Height

To foreshadow briefly the main result of this section is that random graph orders are tall.
Specifically the average height of a random graph order of size n is roughly .6n.

We wish to find the height of the average random graph order of size n (in the limit as n
tends to infinity). To this end we think of a random graph order being constructed
sequentially as indicated above, and define two sequences of random variables giving the
length of the longest chain and the number of endpoints of longest chains at each stage.
More precisely:

/k = length of the longest chain in Pk,
#k = number of points in Pk which are endpoints of a longest chain.

We will obtain fairly sharp estimates for the expected value of /n by defining other random
variables which bound /k, and #^ from either side.

To obtain a lower bound for /k consider the following pessimistic (in terms of constructing
a longest chain) procedure for adding a (k+l)st element to a random graph order. We know
that the existing longest chain(s) will be extended by one link, and the value of # reduced to
1 with probability:

However, we assume pessimistically that if this does not occur then # will be incremented
by 1 with probability only 1/2 (this amounts to assuming that there is only one penultimate
vertex of all the longest chains). This gives the following recurrence for random variables
X and a which are underestimates for / and # respectively:

CTk+1)-<

(Xk, 1) with probability l-(l/2)°k

(A,k, ak+1) with probability (l/2)°*+

&k> °k) w i t h probability (1/2) k

If we consider only the second coordinate of the above recurrence then we obtain a
recurrent Markov process (see eg. [6]) and so p, = lim Pr (an = j) exists.

n—>«>



Furthermore we obtain the following recurrence:

1 1
2i+i iJ

 2
j " i l T i J

In turn this yields:

Pj+i = I I T l ^ - - p i -
i=l 2 —1

Then, using the fact that the sum of the p's must be 1, we can produce the following table
of values:

j Pj

1 .7540
2 .2154
3 2.872xl0-2

4 1.853xlO-3

5 5.883xl0-5

6 9.264xlO-7

7 7.266x10-9

8 2.844x10-!!

9 5.560xl0-14

10 5.432xlO-17

15 <10"35

Table 1: Values of pj for small j



Now the expected (long run) increment in the path length is simply:

- — bi = .5654.

Since everything began as an underestimate we may safely say that for sufficiently large n,
the expected length of the longest chain in P n is at least .5654n.

Now we wish to adopt an optimistic viewpoint. The initial part of the analysis is as before
only now we assume that if we fail to increment the chain length by one, then we always
increment the number of endpoints of the longest chains by one. This gives the modified
recurrence:

(Xk
r fl

(A,k+1, 1) with probability 1 - I — I

(1(A,k, Gk+1) with probability ( y

Of course this simplifies the recurrence for the long run probabilities somewhat and we
get:

Pj+i = "TPj Q^1^ * a t i s

2J

Pj+i = 2 2 Pi-

An evaluation of the (overestimate) of the expected length of the longest chain in this case
gives .610n. It is very easy to modify these recurrences to allow an edge probability other
than 1/2 (but still constant). Doing so yields the following table of upper and lower bounds
for the expected length of the longest path in P n over n:



Edge Probability

.01

.1

.2

.3

.4

.5

.6

.7

.8

.9

.99

Lower bound

.0138

.133

.255

.366

.469

.565

.654

.739

.822

.907

.990097

Upper bound

.0799

.256

.367

.456

.535

.610

.682

.753

.828

.909

.990098

The above analysis shows that if Hn is the height of a random random graph order (p=l/2)
then:

lim Pr(.5654n<Hn<.610n) = l.
n—**>

We continue by showing that there is some constant c, such that Hn is sharply concentrated

with E(Hn) = en. The main tool in the proof is the use of a martingale inequality due to

Azuma (see eg. [7]). We express it in the following form.

Lemma 1: Let Xlt X 2 , . . . , X,, be random variables, and let M = M(X1? X 2 , . . . , Xn).

Let X(i) = (X^ X2,..., Xj), and let M{ = Mj(X(i)) = E(M | X(i)) so that MQ = E(M), and

i = sup ( | Mi(X(i)) - M i=l,2, ..., n.

Then

Pr( |M-E(M)| > t )<2exp
hi

V i = l J

Using this lemma we shall prove:



Theorem 2: There exists a constant c, .5654 < c < .610 such that:

a) if £>0 is fixed then

Pr ( | Hn - en | > en ) = O (exp(-e2n/72(logn)2),

( Hn \
b)Pr lim —- = c = 1.

Vn-^oo n /

Proof: (b) follows from (a) and the Borel-Cantelli Lemma (see [4]) since:

(1) J L ^ l H n - 0 1 1 ' ^en)<oo,
n=l

and so we concentrate on proving (a).

It is temporarily convenient to introduce the random variable Ln equal to the longest path
from 1 to n (referred to as a 1-n chain). Let now H'n_2 be the length of the longest chain
contained in {2, 3 , . . . , n-1} and observe that:

(2) H/
n__2 is distributed as Hn_2.

We can easily prove that:

(3a )L n <H' n _ 2 + 2,

v S - l

(3a) is trivial, and to prove (3b) assume that the longest chain in {2,3,...,n-l} is

i1<i2<.. .<ik where k>2s. If H'n_2 - Ln > 2s then 1 is incomparable with ii,i2*--

or n is incomparable with ik, ik_ly..., ik_s+1. Since the existence of these edges is

unconditioned by the value of H ' ^ * (3b) follows.

Let now cn = Ed^) . We observe that

(4) c m + n > c m + cn.



This is because we obtain a l-(m+n) chain by concatenation of a longest 1-m chain with a
longest m-(m+n) chain. It is well known that (4) implies the existence of a real constant c
such that:

(5) lim [ —J = c.

Now (2) and (3) imply that:

-8 = -2^(3) s < ECU) - E(Hn_2) < 2

and so, by (5),

(6) lim = c.
n_>oo V n Jn—><»

Our previous analysis yields

.5654 < c < .610.

We now apply Lemma 2 to Hn. We let X{ = {j<i: jie E(G)}, i=l,2,...,n. We show below that:

(7) 8i<31og2n.

It follows that

Pr ( I Hn - en I > en) = O (exp(-e2n/72(logn)2).

(for n sufficiently large, | ECHQ) - en | < (l/2)en and we can then apply the lemma)

Let i and X be given. Since

E(Hn IX0"") = ] £ E(Hn I X ( M ) , Xi=Y)Pr(Xi=Y),
Y

we can deduce (7) from

(8) I E(Hn I X ( M ) , X P Y) - E(Hn | X0"0 , XPZ) | < 31og2n

forallY,Z.



Let H'n denote the longest chain in G that does not contain i. Then

H'n(X , Y, Xi+1,..., Xn) = H'n(X , Z, Xi+1,..., Xn)

for all Y, Z, Xi+1,..., Xn. Hence (8) follows from

E( Hn - H'n | X ( i )) < 31og2n, i=l, 2,..., n.

This in turn follows from

(9) Pr(Hn-H^>21og2n|x(0)<[—J .

For suppose that Hn - H'n > 21og2n. Let C be a chain of length Hn and Cx = Cn{ l , 2,..., i-1},

and C2 = Cn{i+1, i+2,..., n}. Now K^ - H'n < min{ | Cx | , | C21 }+l, and so

\Ci\y | C21 > 21og2n - 1. Next let C'x consist of the [log2n] largest elements in C1?

and C 2 consist of the [log2n] smallest elements in C2. There can be no C^-C^ edge

in G. Hence, where k=[log2n],

k2

"UkkJ
and (9) follows.

3. Set up number

The set up number of a linear extension L of a partial order P is the number of pairs of
successive elements in L which are incomparable in P. The set up number of P itself is the
minimum over all linear extensions of P of their set up numbers. If P represents a set of
precedence constraints for a series of tasks, then the set up number is the smallest number
of times a single machine processing these tasks must perform a pair of incomparable tasks
in succession. In some models this incurs a Mset-up cost11 hence the terminology.

In [5] it is shown that the rank of the incidence matrix of P over Z2 can be used to provide
a lower bound on the set up number. In fact it requires only a minor modification of their
proof to see that this bound applies when the matrix used is the incidence matrix of any



relation whose transitive closure is the order relation on P. In our model, the relevant
matrix is a random strictly upper triangular 0-1 matrix (where by random we mean that the
potential non-zero entries are independently and with p=l/2 set to either 0 or 1).

Unfortunately, the expected rank of such a matrix is roughly n-41og2n, and this gives us a
trivial lower bound for the setup number. However the following analysis, similar in spirit
to that for height does give a pair of bounds for the expectation sn of the set up number Sn,
of the form Cjn <sn< c2n, but this time c2-Cx is fairly large.
To do this we first require estimates of:

pk = Pr (there exist exactly k maximals ).

We can find an exact formula for p^ by noting that by symmetry we can replace the word
maximal by minimal. First observe that for l<j<n,

Pr (j is minimal) = (1/2)M,

and that these events are independent. Therefore, if we let
n-l

we obtain:

These values converge very quickly as n grows, and we get the following estimates:

Pl =
P2 =

P3 =
P4 =
P5 =
P6 =

.2888,

.4640,

.2085,

.0359,

.0027,

.0003.

We can now produce an upper bound for the expected set up number by noting that when
we add a new vertex, if it lies above any of the existing maximals then the set up number
does not increase. If we assume that in all other cases the set up number does increase, then
the average increment in the set up number will be the probability that a new vertex is
incomparable with all the existing maximals. In the case where p=l/2, this is obviously the

10



same as the probability of having exactly one maximal (since that requires that the new
vertex be comparable to all the existing maximals), so if we denote the expected set up
number by ^ then for sufficiently large n,

— < .289.
n

Note that this upper bound is effective in the sense that we can iteratively construct a linear
extension with no more than (.289)n expected set ups by adjoining each new element
according to the criteria above.

We obtain a lower bound by considering the addition of m new elements. If exactly j of
these lie above all the previous existing maximals, and are mutually incomparable with one
another then we must add at least (j-1) new set ups. This means that we must expect to add
at least:

M O ) VTH i

new set ups. Since there are m possible additional setups, we need to look at the ratios
a(m)/m. This is maximized when m=3, and a(3)/3 = .034.

So we may conclude that, for sufficiently large n,
(.034)n < sn < (.289)n.

We will now prove a sharp concentration result for the set up number Sn.

Theorem 3: There exists a constant a, with .034 < a < .289 such that

(a) if e>0 is fixed and small, then Pr( | Sn - an | > en) = d expl - ^ T F

(b)Pr( lim — = a ] = 1.
V n-*« n J

Proof: Clearly we need only prove (a). First note that

(1/3)'

sm+n ^ S m

We can see this by considering the concatenation of the optimal set up ordering for

{l,2,...,m} and that of {m+1, m+2,..., m+n}. This suffices to show that there exists a
such that

lim — = a.
n

11



The bounds for a follow from our previous analysis. We now wish to apply Lemma 1.
Proceeding as in Theorem 2 we would like to show (see (8)) that for a given i, X({~1),

I E(Sn | X ( M ) , XpY) - E(Sn | X ( M ) , XpZ) I < something small,

for all i, X(">, Y, Z.

We cannot quite manage this. But now let In denote the number of elements y>i such that
for some x<i all x-y chains include i. Then:

(10) | Sn(X(i-l\ Y, Xi+1,...,Xn) - SeCX0"0, Z, Xi+1,...,Xn) | <

max { In(X (M) , Y, Xi+1,...,Xn), I ^ X 0 ^ , Z, Xi+1,...,Xn)} +2.

This follows by considering the optimal ordering for Gp^1"1), Y, Xi+1,...,Xn) (where
G(...) denotes the entire random graph order), and using it on G(X̂ 1"1 ,̂ Z, Xi+1,...,Xn).
The number of setups increases by at most I^X^"1), Z, X|+1,...,X11). Unfortunately, In

could be quite large, for example if X® consisted only of edges ji9j<i9 and no others.
For large i this is unlikely but cannot be dismissed. Instead we proceed as follows. Let G1

be obtained from G by including, where necessary, all edges of the form kl where l-k >

n(i/3) Le t <j^ ĵ t refer t o Q» an(j j e t ^ denote the event {G! induces a different partial
order to G}. Then

(11) Pr( | s n - o n | >en)<Pr(Z) + Pr( | s n
f - an | >enX

Now if Z occurs then for some k < I - n<1/3> there is no 3 element chain in G of the form
k,p,l where k<p<l. Hence

(12) P r ( Z ) < n 2 ( | ) .

We can deduce immediately that

E(Sn')
(13) lim — = a.

n—»oo n

Now In' < n<1/3>, and so (see (10))

12



I S^CX0"", Y, Xi+1,...,Xn) - S^CX0"0, Z, Xi+1,...,Xn) | < 2(n1/3+l)

for all X(i), Y, Z, X i+1,..., Xn. Hence

(14) | E(Sn ' | X 0 " 0 , Xi = Y) - E(Sn' IX0"1*, Xj = Z) | < 2(n1/3+l)

and so

(15) Pr( | S ' - E(S') I > en) < 2expf - e n

8(n 1 / 3 +l) 2 /

Our theorem now follows from (11), (13), and (15).

4. Dimension and width

In [1] Barak and Erdos prove that the width of Pn is concentrated precisely at the value

The proof rests on some very clever refinements of the observation that if Qn is an ordered

set of size (l-eX/21og2n then with probability tending to 1 as n tends to infinity, Pn will

contain a subset order isomorphic to Qn. Obviously this observation can also be applied to

the dimension of Pn to get:

(since there is an ordered set with 2d elements of dimension d), and as the dimension is
always less than or equal to the width, the Barak and Erdos result also gives us an upper
bound differing from this by a factor of two.

We have been unable to substantially improve these estimates but pose:

13



Conjecture: The dimension Dn of Pn is sharply concentrated, with expected value

. / 21ogn
a p p r o x i m a t e l y ^ / - ^ - .

5. First order properties

From a logical point of view, one of the most interesting properties of random graphs is
the 0-1 law. Very simply put, this states that for any first order sentence o in the
language of graphs,

lim Pr (Gn satisfies a) e {0,1}

This result was proven by Fagin in [3]. In fact, the collection of sentences true of "almost
all11 random graphs is the theory of the model completion of the class of finite graphs. In
[8] Winkler proves a similar result for random orders in his sense. Moreover, Compton
([2]) has shown that this result also holds for the class of all finite orders if the successive
probability distributions are taken to be uniform on the orders of size n.

For our random orders however, no such result holds. For example the probability that
there exists a unique minimal element in a random graph order of size n tends to a non-zero
limit (approximately .2888) as n tends to infinity. The following facts (all of which can be
expressed as first order sentences) do have probability one in the limit:

1) for any fixed finite ordered set P there exists a set of elements order
isomorphic to P;

2) for any collection of elements of fixed finite size, there exists an element
comparable with all of them;

3) there exists an element comparable to every element
4) for any fixed k, there exist k elements satisfying exactly the same strict

order relations.

Note that (4) is a particularly strong validation of the 1/3-2/3 rule for random graph orders.
In fact, it is a consequence of (4) that with probability tending to 1, there will be k elements
in a random graph order, each of whose k! possible arrangements occur equally often in
linear extensions of the random graph order. Related to the first order properties of random
graph orders is the following question:

Question For each first order sentence a does lim Pr (P n satisfies a) exist?

n—**>
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