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Abstract

We consider an economy in which a set of agents own productive assets

which provide a commodity dividend stream, and the agents also receive

individual commodity income streams over a finite time horizon. The agents

can buy and sell this commodity at a certain spot price and buy and sell their

shares of the productive assets. The proceeds can be invested in financial

assets whose prices are modelled as semimartingales. Each agent's objective

is to choose a commodity consumption process and to manage his portfolio so as

to maximize the expected utility of his consumption, subject to having

nonnegative wealth at the terminal time. We derive the optimal agent

consumption and investment decision processes when the prices of the

productive assets and commodity spot prices are specified. We prove the

existence and uniqueness of an "equilibrium" commodity spot price process and

productive asset prices. When the agents solve their individual optimization

problems using the equilibrium prices, all of the commodity is exactly

consumed as it is received, all of the productive assets are exactly owned and

the financial markets are in zero net supply.
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1. Introduction.

Over the last two decades, substantial progress has been made on the

development of a mathematical theory for capital asset pricing. There has

been a progressive depth of insight into the optimal actions of single agents

and the way in which the aggregation of these actions leads to prices for

capital assets. A major initial contribution was made by Merton [14,15], who

studied the single agent optimal control problem. He produced closed form

solutions for the consumption and investment policies and the agent's indirect

utility, or value function, when the utility function for consumption was of

the HARA class and satisfied the condition U'(0) = <». In the models for

these solutions, stock prices are treated as geometric Brownian motion with

constant coefficients. To address equilibrium, Merton proposed that the

interest rate, the mean rates of return, and the diffusion coefficients of the

stock price processes should not be constant, but should themselves be I to

processes with constant drift and diffusion coefficients. This generalized

model is far more complex, and no comparable explicit solution was produced.

A generalization of Merton*s approach is to postulate an underlying Markov

state process describing the economy and to allow the stock price coefficients

to be functions of this state process; see Cox, Ingersoll and Ross [2], for

example.

The present work builds on two previous papers concerning the single

agent consumption/investment decision problem. The first paper, by Karatzas,

Lehoczky, Sethi and Shreve [11], determined the optimal single agent

consumption and investment policies and the value (indirect utility) function

for wealth for arbitrary, smooth, concave utility functions of consumption

which were assumed only to satisfy conditions required for the finiteness of

the value function. This paper also removed the restriction U'(0) = »,
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carefully treated the consumption constraint c > 0, and addressed the

possibility of bankruptcy. Stock prices were again modelled by constant

coefficient geometric Brownian motion processes, and explicit optimal

consumption and investment formulas were obtained.

The second paper, by Karatzas, Lehoczky and Shreve [12], developed a

martingale-based characterization of the optimal decisions for a single agent.

This approach is applicable to a much more general class of stock price

processes, including non-Markovian models. An explicit characterization of

single agent optimal consumption policies was provided for general utility

functions and semimartingale stock price processes. As a consequence of these

results, the optimal behavior of a single agent is now well understood. The

present paper is the first to apply this explicit characterization to prove

the existence and uniqueness of equilibrium in a multi-agent problem.

Our model of equilibrium was inspired by Duffie [3], Duffie and Huang

[4,5], and Huang [4]. The multi-agent equilibrium problem arises when J

agents (where J is some positive integer) have individual commodity earnings

streams, and each agent is also endowed with a set of productive assets which

produce commodity dividend streams. In this paper, there is a single,

infinitely-divisible commodity, and each agent wishes to maximize his expected

total utility from consumption of this commodity over time. The agents can

trade the productive assets in order to hedge the risks associated with the

commodity endowments and with the returns from the productive assets. Prices

must be established endogenously for the trading of productive assets (stock

prices) and for buying and selling the commodity (spot price). Because the

market consisting only of productive assets may not be "complete", i.e., may

not allow for hedging of all risk, we introduce financial assets whose prices

are exogenous. We show that the price structure of these financial assets

will influence the equilibrium prices of the productive assets and the
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equilibrium spot price, but it will not affect the equilibrium allocation of

the commodity among agents.

Equilibrium prices (of the productive assets and the commodity) are those

prices which, when accepted by the agents during the determination of their

optimal consumption and portfolio policies, call for all the commodity to be

exactly consumed, all productive assets to be exactly owned, and all pure

hedging instruments (financial assets) to be in zero net supply. The goal of

an equilibrium analysis is to establish the existence and uniqueness of

equilibrium prices, and to characterize these prices as well as the

consumption and investment decisions made by the individual agents.

Equilibrium in dynamic, stochastic, multi-agent problems has been studied

by several authors. The usual approach (followed by, e.g., Duffie [3] and

Duffie and Huang [4,5]) is to reduce the dynamic problem to a static one by

considering agent consumption processes to be points in a suitable abstract

space. Each agent has a preference structure defining a partial order over

consumption plans. Under certain conditions, a deep fixed point theorem

(e.g. , the Kakutani fixed point theorem) can be invoked to prove the existence

of a solution to the static equilibrium problem. A martingale representation

theorem can then be employed to create a solution to the dynamic equilibrium

problem. There are two drawbacks to this approach. First, the basic work by

Mas-Colell [13] required "uniform properness", a strong restriction on the

preference ordering. In particular, this property does not allow utility

functions satisfying Ur(0) = «°, and so such utility functions are not allowed

in [3,4,5]. On the other hand, Duffie and Zame [6] report an equilibrium

analysis in which each agent has a utility function satisfying Ur(0) = <».

The analysis underlying [6] is quite involved, and it still does not include

the case that the utility functions for some agents satisfy U'(0) = <», while
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the utility functions for other agents do not satisfy this condition. The

second difficulty with the usual approach is that it gives little insight into

the nature of equilibrium. The optimal consumption plans and spot price

processes cannot be exhibited, nor can uniqueness of the equilibrium be

established.

This paper is the first to bring the explicit characterization of optimal

single agent behavior for general stock price processes to bear on the

multi-agent equilibrium problem. The result is a major increase in knowledge

about not only the existence, but also about the uniqueness and the structure

of equilibrium. The use of the optimal single agent behavior allows a simple

fixed point argument (specifically, the Tarski-Knaster lattice fixed point

theorem; see Theorem 12.4) to be applied. The questions of existence and

uniqueness are completely resolved under quite weak conditions on the agents'

utility functions. In particular, all HARA functions, whether Ur(0) is

finite or not, are included. The method also may provide tools for study of

how economies which are not in equilibrium might converge to equilibrium,

although that is beyond our present scope.

One important step in the search for equilibrium is to introduce a

"representative agent", that is, to replace the many agents with distinct

utility functions and incomes by a single agent who represents their

individual interests and has their aggregate income. In Cox, Ingersoll and

Ross [2], this step is simply eliminated by the assumption that all agents

have the same utility functions and the same incomes. Under such an

assumption, attention is immediately focussed on a single, generic agent, and

questions of existence and uniqueness of equilibrium are trivialized. Huang

[9], on the other hand, selects a set of positive weights (A-,...,Ay) and
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defines a new utility function by

(1.1) U(c) = max [A1U1(c1)+...+AJUJ(cJ)].

C 1 + - + C J = C

The weights (X- X.) characterize the representative agent. Huang's goal

is to study the nature of equilibrium, and he is content to assume rather than

prove its existence. In contrast, we wish to construct equilibrium, and we

reduce that construction to the problem of finding an appropriate

representative agent, i.e., a vector (Xlt...,XT). This allows for the

equilibrium to be constructed in li , and not in some infinite-dimensional

function space. In our setting, the optimal consumption strategies of the

individual agents can be found explicitly in terms of the equilibrium values

of X- X,.

This paper can be read independently of all previous work on capital

asset pricing and equilibrium theory. It is organized as follows. Section 2

sets out the basic idea of equilibrium in a simple, two-stage model. The

model of interest in this paper is considerably more complex than that of

Section 2, but many of the essential features of the complex model are already

present in the simpler setting. Consequently, the simpler model is a useful

aid to understanding the more complicated one, which is presented in Section

3-7, culminating with the definitions of existence and uniqueness of

equilibrium in Section 7. In Section 8 we show how the absence of arbitrage

opportunities, a necessary ingredient in equilibrium, determines the prices of

the productive assets. This allows us to effectively eliminate these assets

and their price processes from the model, leaving the spot price process of

the commodity as the only endogenous process. If a spot price process for the
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commodity is given, each individual agent then faces the problem of the

maximization of his expected utility from consumption; in Section 9 we solve

this stochastic control problem. It remains to determine the (equilibrium)

spot price process which causes the markets to clear. We embark on that task

in Section 10 with the introduction of the utility function for a

"representative agent" and the explanation of how the representative agent

relates to equilibrium (Theorems 10.2, 10.3). In Theorem 11.1 we state the

existence and uniqueness of a fixed point for a certain operator from (0,°°)

into itself, and in the remainder of Section 11 we show how all the properties

we desire for equilibrium flow from this theorem. Section 12 proves the

existence assertion of Theorem 11.1, Section 13 establishes uniqueness in the

simplest case, and Section 15, the appendix, treats uniqueness in the more

difficult case. These proofs are entirely self-contained. Section 14 gives

three examples in which the equilibrium can be computed explicitly, and one

example that shows how uniqueness can fail when our assumptions are violated.
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2. The Idea of Equilibrium

In this section, we present an extremely simple model whose purpose is to

illustrate the idea of equilibrium and to foreshadow the results that we shall

obtain for the more elaborate model whose development begins in the next

section.

Suppose there are J agents and each agent j will receive a positive
.A.

income c.(l) of units of a certain commodity in period one and a second
«i

positive income c.(2) of units of the same commodity in period two. The
j

agent wishes to maximize his utility from consumption of the commodity over

these two periods. If he sets his period t consumption to be c.(t),
j

t = 1,2. then the utility is defined to be

log c (1) + log c (2).
«J «J

We shall always require that c.(t) > 0, t = 1,2, and we define log 0 = -».
j

If the only commodity available to the agent is his income c.(l), c.(2),
J J

and we assume that the commodity is perishable (so that commodity not consumed

in period one is not available in period two), then the agent must choose

cj(l) € [0, CjO)]. cj(2) € [°» c.(2)]. and his optimal choices are

(2.1) CjCl) = c.(l), c.(2) = C j(2).

However, if agent j is allowed to trade with the other agents, his lot in

life will be no worse and can probably be improved. To facilitate this

trading, we postulate a spot price yp(t) > 0 for the commodity in period t,

t = 1,2. Thus, agent j can turn his endowment into
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(2.2) f. i *(l)c.(l)

dollars, and he can finance any consumption plan c.(l), c.(2) as long as

(2.3) ^(1)^.(1) + ^(2)cj(2) < f y

Note that we are allowing agent j to "borrow" against period two income in

order to finance period one consumption. We thus have the following

optimization problem for agent j*

To maximize log c.(l) + log c.(2)
J J

l)Cj(l) + *(2)c..(2)

Cj(l) > 0, c. (2) I 0

subject to *(l)Cj(l) + *(2)Cj(2) i Sy

The unique solution to this problem is easily determined to be

(2-4) c * ( 1 ) A _ £ i _ , c*{2) * _ £ * _ ,

2 2
 H

and a bit of algebra gives: 2 log c.(t) < 2 log c.(t), with equality
t=l J t=l J

holding if and only if ^(l)c.(l) = >//(2)c.(2). In other words, trading will
J J

strictly improve the lot of the j agent, unless the value f . of his
j

endowment is equally divided over the two periods.

The optimization problem for agent j can be stated and solved

irrespectively of the choice of ^(1) > 0, >//(2) > 0. However, the commodity

in question is perishable, and its only source in each period is the aggregate



2.3

income of the agents in that period. Define the supply in period t to be

c(t) = 2 c,(t); t = 1.2.

1 J 1
According to (2.4), the demand in period t is Q ( . 2 f. = oir x

+ >//(2)c(2)]. An equilibrium spot price pair (^(1), ^(2)) is one which causes

supply to equal demand in each period, i.e.

It is easily verified that these equilibrium conditions reduce to

(2.5) *(l)c(l) =>K2)c(2).

Thus, the equilibrium prices are determined only up to a multiplicative

constant, and are inversely proportional to supply. Substitution of (2.5)

into (2.2), (2.4) results in

(2.6) Cj(l) = AjcO), Cj(2) = Xjc(2),

where

c (1) c (2)

(2.7) A £A.[-J + _J 2-
J 2 c(2)

Even though the equilibrium prices are not completely determined, the
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equilibrium optimal consumption plan of each agent is unique. Moreover, the

consumption of agent j in each period is a fixed fraction X. of supply, and

X. is directly related to agent j's relative importance in the economy.
J

We have given a complete analysis of this simple, two-stage,

deterministic equilibrium model. We list here four ingredients of a more

realistic model.

(1) Agents should not perfectly know their future incomes, nor the future

spot prices. In this paper, these will be modelled by stochastic

processes.

(2) Money which is borrowed or held between periods should incur an interest

charge or could be invested, respectively. In this paper, we shall

create stochastically priced financial instruments to model borrowing and

investing.

(3) Not all agents should have the same utility from consumption. In this

paper, each agent will have his own utility function, in constrast to the

above model in which each agent had the logarithmic utility function.

(4) Trading opportunities and consumption decisions should be allowed to

occur more than twice. The model of this paper is in continuous time

with a finite planning horizon.

The principal results we obtain for the model of this paper are

essentially those obtained for the simplified model of this section. They can

be formulated as follows:

(I) An equilibrium spot price process exists, and is unique up to a

multiplicative constant.

(II) The equilibrium optimal consumption processes of the individual agents

are unique.
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3. The Model Primitives

We begin with an exogenous N-dimensional Brownian motion W = {W(t) =

(W1(t),...,WN(t))
tr, J(t); 0 < t < T} on a probability space (fi.y.P). Here

and elsewhere, the superscript tr denotes transposition. The filtration

(?(t)} is the augmentation under P of the filtration generated by W; it

represents the information available to the agents at time t, and all

processes which follow are assumed to be {y(t)}-adapted.

Our model has M productive assets, and associated with each one of them

is an {SF(t)}-adapted, bounded, measurable, nonnegative, exogenous dividend

process {6 (t); 0 < t < T}. Ownership of one share of asset m entitles one
m

to receive the dividend process 6 , which is denominated in units of the
m

single commodity in our economy, not in cash. We denote by 5(t) the

M-dimensional column vector whose m-th component is 6 (t).

There are J agents in the economy, and each agent j has an initial

endowment of e. shares of productive asset m. We assume that
j ,m

e. > 0; V 1 < j < J, 1 < m < M, and

J
(3.1) 2 e, =1, m = 1 M;

in other words, exactly one share of each asset is owned. We denote by e.
J

the M-dimensional row vector (e. - e. M ) of agent j's endowments. In

addition to his endowment, each agent j is entitled to a bounded, measurable,

{y(t)}-adapted, nonnegative, exogenous earnings process (e.(t); 0 < t < T},
J

measured in units of commodity. Thus, if he takes no action, agent j will

receive the income process, measured in units of commodity,



3.2

(3.2) c\(t) =e..(t) + e.6(t); 0 < t < T.

We assume that the nonnegative process c.(t,w) is positive on a set of
J

positive product (i.e., Lebesgue x P) - measure; otherwise, agent j would have

no role to play in the equilibrium model. The aggregate income process is

(3.3) c(t) = 2 c.(t) = 2 e.(t) + 2 6 (t); 0 < t < T,
1=1 J 1=1 J m=l m

which we assume to satisfy

(3.4) 0 < k < c(t) < K; V (t,o>) € [0,T] x Q

for some constants k and K.

Each agent j has a measurable utility function

U.(t,c): [0,T] x (0,«>) -» R, which quantifies the "utility" that he derives by

consuming his wealth at the rate c > 0 at time t. For every t € [0,T],

the function U.(t,#)- (0,°>) -> R is twice continuously dif ferentiable,
j

strictly increasing, strictly concave, and satisfies

(3.5) U^t.c) £ kj + kgC*1; V c > 0,

(3.6) lim U'(t.c) = 0,

(3.7) ^ (c U^(t.c)) I 0; V c > 0,

where kj.li^ € (0,«°) and p € (0,1) are independent of t. Here and
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throughout the paper, prime denotes differentiation with respect to the second

(consumption) argument. An immediate consequence of (3.7) is

U'.(t.c) > — U'.(t.l); V c > 1, and integrating this inequality we see that
j c j

(3.8) lim U.(t.c) = «.

We set U.(t.O) = lim U.(t.c), U'.(t.O) = lim U'.(t.c). Note that
J ciO J J c-K) J

-» < U.(t,O) < » and 0 < U'.(t.O) < «>.
J J

If U'(t.O) < « for some t € [O.T] and j € {1 J}, then the

assumptions made thus far are not sufficient to guarantee the uniqueness of

equilibrium (Example 14.4). Consequently, we also assume that

(3.9) Û .(t.O) = oo, y t € [O.T], V j € (1 J}

or c (t) > 0 a.s., V t e [0,T], V j € {1.....J}
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4. The Financial Assets

The J agents in Section 2 will be buying and selling among themselves the

commodity and ownerships of the productive assets, but these instruments alone

may not be sufficient to allow agents to hedge against all the risk inherent

in the information pattern represented by {9(t)}. This hedging occurs when

agents finance their consumption strategies, and it finds its mathematical

expression in the representation of {y(t)}-martingales as stochastic

integrals with respect to the underlying Brownian motion. To aid in this

hedging, we introduce N + 1 financial assets with prices per share {f (t);

0 < t < T} governed by the differential equations

(4.1) dfQ(t) = r(t)fQ(t)dt; 0 < t < T,

(4.2) dfjt) = fn(t)[bn(t)dt + an(t)dW(t)]; 0 < t < T, n = 1.....N.

We take these equations to have the initial condition

(4.3) fn(0) = 1; n = 1.....N.

Equations (4.1), (4.2) with initial conditions (4.3) have the unique solutions

t

(4.4) fo(t) = exp {Jr(s)ds},
0

t t

( 4 . 5 ) f j t ) = exp ( J [ b n ( s ) - | l la n ( s ) l l 2 ]ds + J a n ( s ) d W ( s ) } ; n = 1 . . . . . N .
0 0
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Note that these solutions are always strictly positive.

We denote by F(t) the (N + l)-dimensional column vector of financial

asset prices F(t) = (fo(t), . . . ,fN(t))
tr and by f(t) the N-dimensional

vector (f1(t),...,fN(t))
tr. The interest rate process (r(t); 0 < t < T} as

tr
well as the vector of mean rates of return {b(t) = (bj(t),...,b (t)) ;

0 < t < T} and the N x N dispersion matrix a(t), whose n-th row is

a (t) = (a 1(t),...,a N(t))f are assumed to be measurable, {y(t)}-adapted,
n n , JL n , 11

and bounded uniformly in (t,o)) € [0,T] x 0. These processes are exogenous.

The financial assets represent contracts between agents and in

equilibrium will be in zero net supply. Although they are rather arbitrarily

chosen, we shall see that the particular choices of r( #), b(#) and a(#)

have minimal effect on the equilibrium.

A market in which all risk can be hedged against is referred to as

complete. It may be possible to obtain a complete market in our model by

introducing fewer than N + 1 financial assets, but the feasibility of this

depends on the nature of the equilibrium itself. We have, therefore, taken

the convenient approach of making available enough financial assets to

complete the market, regardless of the nature of the equilibrium we finally

obtain.

We impose the nondegeneracv assumption that for some e > 0,

( 4 . 6 ) f t r a ( t ) a t r ( t ) f > ellfll2; V f e n " , ( t ,w) € [0 ,T] x fi.

Under this assumption, the matrices a(t) and atr(t) are invertible, and we

have, according to Lemma 2.1 of KLS:

(4.7) llatr(t,<j) 1£\l < ^Hlfll. lla(t,w) Xfll £ i - llfll; V f € ^ . ( t .w) € [0.T] x fi.
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The financial asset prices f~ and f-,..., fN have mean rates of return

r and b1 , . . . ,bN, respectively, and our first task is to change the

probability measure so as to make them all have the same mean rate of return.

Toward this end, let us introduce the "relative risk" process

(4.8) 9(t) =

Condition (4.7) ensures that II0II is bounded by some constant. Define also

the "likelihood ratio" process

t t

(4.9) Z(t) = exp{J 9tr(s)dW(s) - 1/2 T H8(s)ll2ds}, 0 < t < T.

0 0

Then {Z(t), »(t); 0 < t < T} is a martingale, and the new probability

measure given by

(4.10) P(A) = E[Z(T) • 1A]; V A € »(T),

is such that P and P are mutually absolutely continuous on *(T). When

making statements which hold almost surely, we are thus not obliged to

distinguish between these two probability measures. Furthermore,

t

(4.11) W(t) = W(t) + J 6(s)ds; 0 < t < T,

0

is a standard N-dimensional Brownian motion under P (Girsanov [8] or Karatzas

& Shreve [10], §3.5).
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The financial assets in the model will dynamically affect the value of

money. We shall see that the process

t

(4.12) f(t) = Z(t)e ° ; 0 < t < T,

can serve as a "deflator", in the sense that multiplication by f(t) converts

wealth held at time t to the equivalent amount of wealth at time zero.
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5. The Endogenous Price Processes

As we mentioned earlier, there is a single commodity traded in the

economy; agents may buy or sell it at each time t at a spot price of

dollars per unit. This process will be determined endogenously, by the

equilibrium considerations to be specified later, in such a way as to satisfy

(5.1) 0 < k(*) i C(tWt) < K(*); V (t.u) € [0,T] x Q.

Here, k(\//) and Kty) are constants which may depend on \fr but not on (t,o)).

Agents may also buy or sell part or all of the productive assets at their

nonnegative prices per share P«(t),...,PM(t), which will likewise be

endogenous. We denote by P(t) the M-dimensional column vector of productive

tr
asset prices P(t) = (P*(t),...,PM(t)) . We require that for each m,

(5.2) fP is bounded (uniformly in t and <J) ,

and P is a nonnegative {y(t)}-semimartingale of the form
m

( 5 . 3 ) d P J t ) = P m ( t ) d t + a m ( t ) d W ( t ) ; 0 $ t i T , m = l M ,

where {P(t) = (^(t) PJ*))** > 0 < t < T> and {a(t) = (am n(t));

m = 1.....M; n = 1.....N; 0 < t £ T} are processes to be determined

endogenously so that

M
(5.4) f [H/3(t)ll + 2 Ha (t)H2]dt

o •ssl m

M .
a.s.

m=l



5.2

At the terminal time T, the productive asset m has paid out all its dividends

and has no further value. We thus require that

(5.5) P(T) = 0; a.s., m = 1.....M.
in



6.1

6. The Optimization Problem for an Individual Agent

Each agent j will choose for himself a consumption process {c.(t);
j

0 < t < T}, a productive asset portfolio process {ir.(t) =
j

(TT . 1(t),...,TT. (t)); 0 < t < T}, and a financial asset portfolio process

: ° - t " T}> SUch that

(6.1) inf c.(t) > 0, sup c.(t) < », a.s
O£t<T J 0<t£T J

(6.2) sup [lhr.(t)ll + ll$.(t)ll] < «>, a.s.
O£t£T J J

We denote by $.(t) the N-dimensional process ($. 1(t),...,^. N(t)). The

nonnegative consumption process represents the rate at which the agent

consumes the commodity, and is thus denominated in units of the commodity.

The components of the portfolio processes may be either positive or negative,

and represent the j agent's positions, measured in numbers of shares, in the

respective assets. Initially, we have ir. (0) = e. ; m = 1.....M, and
J .ro j ,m

<l>. (0) = 0; n = 0, . . . ,N, and we require that

(6.3) irj(t)P(t)+$j(t)F(t) = ejP(O) - J ̂ (s)Cj(s)ds + J

t t t

*(s)ir.(s)6(s)ds + ir.(s)dP(s) + $.(s)dF(s);
J J J J J J

0 0

0 < t < T, a.s.

The integrals on the right-hand side of (5.3) account, respectively, for:



6.2

(i) the decrease in wealth due to consumption, (ii) the increase in wealth due

to earnings, (iii) the increase in wealth due to dividends paid by productive

assets held, (iv) capital gains or losses from productive assets held, and

(v) capital gains or losses from financial assets held. We call relation

(6.3) the budget equation and refer to

(6.4) Xj(t) £ r,(t)P(t) + $.(t)F(t)

as the wealth of agent j at time t. Triples (c, ir., $.) which satisfy the
J J J

budget equation are self-financing, in the sense that all changes in wealth

are accounted for within the model.

We note that the definition of X. leads to the formula
J

TJTT j " V t ) p ( t ) "

Substitution of (6.4) and (6.5) into (6.3) gives the budget equation in

revised form

t t

(6.6) X.(t) = ejP(0) + J *(s)|>.(s) - CjCs^ds + J r(s)Xj(s)ds
0 0

J *j(s)diag(f(s))[b(s) - rCs^ds
0

J ir.(s)|>(s)6(s) + P(s) - r(s)P(s)]ds
0

J l>.j(s)a(s) + •J(s)diag(f(s))a(s)]dW(s),
0
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where diag(f(s)) is the N x N diagonal matrix whose diagonal entries are

the components of f(s), and l^ is the N-dimensional column vector whose

every component is 1. In terms of the process W of (4.11) and the

coefficient processes in (4.1), (4.2), and (5.3), the budget equation (6.6)

becomes

(6.7) X (t) = e P(0) + f *(s)[e (s) - c (s)]ds + f r(s)X (s)d
J J J J J J A J

0 U

J Tj(s)[+(s)6(8) + P(s) - r(s)P(s) - a(s)9(s)]ds
0

J [Tj(s)o(s) + •j(s)diag(f(s))a(s)]dW(s).
0

While agents may have short-term deficits, we require that they choose

consumption and portfolio processes so that for some positive constant

K(c,ir,^) depending on the indicated processes but not on (t,<o),

(6.8) C(t)Xj(t) > - K(C,TT,*); V t € [0,T], a.s.,

(6.9) X (T) > 0, a.s.
j

6.1 Definition. Let a spot price process yp satisfying (5.1) and a vector of

productive asset prices (P-,...,P--) of the form (5.3), (5.5) be given, where

(5.2), (5.4) are also satisfied. Relative to these, a triple (c., ir., ^.) of

consumption, productive asset portfolio, and financial asset portfolio
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processes is feasible for agent j if (6.1), (6.2) and (6.3) are satisfied, and

X.(0 defined by (6.4), or equivalently by (6.7), satisfies (6.8), (6.9). A
j

^ & ^
triple (C.,TT.,$.) is optimal for agent j if it is feasible and maximizes the

expected total utility from consumption

T
(6.10) E J lyt.

0

over all feasible triples ( c , ir., $.) for which
J J J

(6.11)

0
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7. The Definition of Equilibrium

When agent j is attempting to solve his optimization problem, he acts as

a price-taker. In particular, he has no influence over ^ and (P......P,,).

In aggregate, however, the actions of the agents should determine the prices

>// and (Pj,...,PM) through the law of supply and demand. This law dictates

that all the commodity be consumed as it enters the economy, that the

aggregate demand for each productive asset be one share (which is the initial

supply, cf. (3.1)), and that the aggregate demand for each financial asset be

zero.

7.1 Definition. An equilibrium consists of a spot price process $

satisfying (5.1), a vector of productive asset prices (P1 P ) of the form

(5.3), (5.5) for which (5.2) and (5.4) are also satisfied, and a collection of

consumption, productive asset portfolio, and financial asset portfolio triples

x ^ x a ^ ^
(c.,ir.,$.), j = 1.....J. Each (C.,TT.,$.) must be optimal for agent j relative

j J J J J J

to <p and (P..,... ,P|-), and for Lebesgue-almost every t € [0,T] and P-a.e.

w € ft, the market clearing conditions must hold:

(7.1) 2 c*(t) = c(t),
J

(7.2) 2 ir*(t) =

(7.3)

Here, JL. is the M-dimensional column vector with all components equal to 1,

and 0 N is the (N+l)-dimensional column vector with all components equal to

0. D
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7.2 Remark. If [>, (P1,...,PM), {(C*TT* $*); j = 1.....J}] is an

equilibrium, then for every j, we have c.(t) < c(t). From condition (3.4),
J

it follows then that

*((7.4) E J U (t.c*(t))dt
0

It would not be correct to think of the collective actions of agents as

determining the prices, unless equilibrium is essentially unique. Of course,

prices cannot be entirely unique, since the currency can always be revalued,

which would have the effect of scaling yp and (P-, .. . ,P|r). We are thus led

to the following concept.

7.3 Definition. Suppose that for any two equilibria [>,

* * * and > (P{ ( C . T T , $ ) ; j = 1....

there exists a positive constant T for which

(7.5) *(t) = itf(t). Pj(t) = TP1(t),...,PM(t) =

for Lebesgue-almost every t € [0,T] and P-a.e. <J € Q. Then we say that

equilibrium is unique. •

If (7.5) holds, then agent j faces the same optimization problem relative

to ? and (Plf...,PM) as he does relative to + and (Pj , . . ^ ) . The

optimal productive asset and financial asset portfolios for this problem may

not be unique, but we shall see that the optimal consumption process is

(Theorem 9.4). Thus, for the two equilibria in Definition 7.3, relations

(7.5) will imply that for Lebesgue-almost every t € [0,T] and P-a.e. w € Q,
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(7.6) c*(t)=?j(t).

It will also follow from our analysis that if [x//, (P1,...,P«),

{(c . ,ir .,$.); j = 1.... , J}] is an equilibrium and [>//, (P- , . . . »PM) •
J J J l M

{(c . ,ir .,$.); j = 1.... , J}] is an equilibrium for another model which differs
J J J

from the first only in the choice of r(*), b(Q and a(*), then (7.6) holds

(Corollary 11.3), although (7.5) may not. The conclusion we draw is that the

exogenously selected financial assets can affect the value of money by more

than a multiplicative factor, but they cannot affect the way in which real

wealth, measured in units of commodity, is ultimately distributed among the

agents.
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8. The Equilibrium Prices of Productive Assets

In this section we shall assume the existence of equilibrium and draw

conclusions about the prices of the productive assets. Our principal result

is that their associated gains processes must be martingales under the

probability measure P, a fact which imposes the particular form (8.6) on the

productive asset prices.

8.1 Lemma. Let |>, (P1....iP,|). {(C*,TT* ,$*); j = 1,. .. , J}] be an

equilibrium. Then

(8.1) >p(t)6(t) + j3(t) - r(t)P(t) - a(t)9(t) = 0

can fail only on a subset of [0,T] x fi with zero Lebesgue x P - measure.

Proof: Let j be a given integer between 1 and J, and let

t t

(8.2) X*(t) = e ^ O ) + J •(s)[eJ(s) - c*(s)]ds + J r(s)X*(s)ds
0 0

t

+ J ^j(s)[>A(s)6(s) + P(s) - r(s)P(s) - a(s)0(s)]ds

+

o
J [irj(s)a(s) + ^(s)diag(f(s))a(s)]dW(s)

be the wealth process corresponding to (C.,TT.,$.). The feasibility of
J J J

54 & 54 w vv
(c ,TT ,$ ) implies that fX is bounded below and X.(T) > 0, a.s. Define
J J J J j
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.tr
£ sgn [^(t)6(t) + P(t) - r(t)P(t) - a(t)9(t)]

where the signum function is applied separately to each component of the above

vector. Because a(«) is invertible, there exists a unique, N-dimensional

process * (t) = i+j^i*) •j.N^t^ such that

irj(t)a(t) + * (t)diag(f(t))a(t) = 0; 0 < t < T, a.s.

Set $.(t) = (0,$. 1(t),....*. N(t)), 0 < t < T. We define also
J J » A J i "

•" P(t) + r(t)P(t) - a(t)0(t)].

Ĵ Ĵ %j Ĵ Ĵ Ĵ Ĵ qj ^j

Note that X. given by (8.2) is also the wealth process corresponding to
j

(C.,TT.,$.); it follows from the feasibility of (C*?,TT\,$*?) that (c ..ir. ,$.)
J J J j J J J J J

is feasible. By construction, c.(t) > c.(t), and if (8.1) failed on a subset
J J

of [0,T] x Q with positive Lebesgue x P - measure, then this inequality would

be strict on this set. According to Remark 7.2 and the strict monotonicity of

U . (t, •) , we would then have
j

E J Uj(t,Cj(t))dt < E J Uj(t,cj.(t))dt,
0 0

^ x a
which would be a violation of the optimality of (C.,TT.,$.).

J J J

We may solve (8.1) for the drift in the productive assets £(•) and
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substitute this into (5.3), to obtain

dP(t) = [r(t)P(t) - *(t)6(t)]dt + a(t)dW(t).

This linear stochastic differential equation has a unique solution, which

leads to the expression

r -Jo r( u) d u

(8.3) G(t) = P(0) + e U a(
0

( u) d u

s)dW(s)

for the gains process

t s
-/or(s)ds f Sor(u)du

(8.4) G(t) = e P(t) + e U >//(s)6(s)ds.

0

We see from (8.3) that under the P-measure, with respect to which W is a

Brownian motion, the gains process G(*) is a vector of local martingales.

In particular, for each positive integer n, we may define

t

inf{t € [0,T]: J lla(s)ll2ds = n},
0

and then we will have for 0 < t £ T,
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G(t AaJ =E[G(an)|y(t)]

Here we have used Lemma 3.5.3 of Karatzas & Shreve [10] to change from the

conditional expectation under P to the conditional expectation under P.

Letting n -» °° and recalling (5.4), we obtain

(8.5) G(t) = lim 1, y + x ^7TTE[Z(a^)G(a^)|>(t)], a.s.

But on the event {a >t},
n J

i . f1 " J * o r ^ u ^
^ • E [ Z ( a n ) | ? ( t ) ] - J e

0

ZftJ
t

J
o_ s

e

n -Jor(u)du

0

an

+ !
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We have assumed that fP and £$ are bounded (see (5.1), (5.2)), and so the

bounded convergence theorem asserts that the limit in (8.5) is

* V
0

<

We conclude that G is a martingale under P. The process G(*) at time t

records the current values of the productive assets plus the values of the

dividends paid out during [0,t], converted to dollars. All these values are

discounted back to the initial time via the interest rate process r( #). The

essence of the proof of Lemma 8.1 is that, if G is not a martingale under

P, then arbitrage opportunities exist in the trading of productive assets

against financial assets. This observation allows us to express the

productive asset prices in terms of the other data of the model, a fact which

we now state as a theorem.

8.2 Theorem. Let [>, (Pj. P M), {(c*,ir*,$*); j = l,...,J}] bean

equilibrium. Then
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T S

— r (
(8.6) P(t) = E[J e t

T

C(s)x//(s)6(s)ds|y(t)], 0 < t < T, a.s.

t

T S

Proof: From (5.5) and (8.4), we have G(T) = e x//(s)6(s)ds, from

which follows for 0 < t £ T,

t
X r(s)ds r* -X r(u)du

P(t) = e u G(t) ~ e >Ks)6(s)ds

0

t s
XQr(s)ds p -X r(u)du
B U E[G(T)|5(t)] - J e l

0

T S
T

^ P -«Ttr(u)du
= E[ e ^(s)6(s)ds|?(t)], a.s.

t

The second equality in (8.6) is the result of changing from the P-measure to

the P-measure. D

Theorem 8.2 assumes the existence of an equilibrium, which includes the

assumption of the existence of a vector of productive asset prices. However,

that theorem provides the formula (8.6) for this vector (in terms of the

dividend and spot price processes), a fact which suggests that the existence
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of productive asset prices could be a conclusion rather than a hypothesis of

the model. In our eventual construction of equilibrium, we will in fact

obtain these prices via formula (8.6), so we must show that the prices so

obtained satisfy the conditions imposed on them in Definition 7.1. For this

and later purposes, it will be necessary to represent martingales (under P) as

stochastic integrals with respect to W. We first state this representation

result, and then verify that formula (8.6) can be used to construct productive

asset prices.

8.3 Lemma. Let {Y(t), >(t); 0 < t < T} be a martingale under P. Then there

exists an N-dimensional process {H(t) = (Hjft), . . . .H^t)), *(t); 0 < t < T}

such that

T

(8.7) f IIH(t)ll2dt < oo, a.s.,

0

Y(t) = Y(0) + J H(s)dW(s), 0 < t < T, a.j.s.

0

Proof: We note first of all that for 0 < s < t < T,

E[Z(t)Y(t)|*(s)] = Z(s)E[Y(t)|*(s)] = Z(s)Y(s), a.s.,

so ZY is a martingale under P. Because {9(t)} is the augmentation of the

filtration generated by the Brownian motion W (under P), there exists a

process L = (L-,...,!^) such that
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T
E f IIL(t)ll2dt <

Z(t)Y(t) = Y(0) + I L(s)dW(s). 0 < t < T, a.!

(Karatzas & Shreve [10], Theorem 3.4.15, Problem 3.4.16). Defining

u(v,z) = — and applying Ito's rule, we obtain

Y(t) =u(Z(t)Y(t).Z(t))

= Y(o) + J c "zTF) L(s) " Y(s)etr(s)]e(s)d£
0

t
I

+

0

J C ZTiT L ( s ) " Y(s)6tr(s)]dW(s)

= Y(0) + J H(s)dW(s), 0 < t < T, a.s.,

0

where

H(t) = 777TL(t) - Y(t)9tr(t), 0 < t < T, a.s. D

8.4 Theorem. Let a spot price \f satisfying (5.1) be given, and define

P(t) = (P1(t),...,Plf(t))tr by (8.6). Then, for each m = 1,...,M, P is ax w in

nonnegative Ito process satisfying the conditions (5.2) and (5.5), as well as
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a differential equation of the form (5.3), where the coefficient processes j3

and a satisfy (5.4) and (8.1).

Proof' From (8.4) and (8.6) written componentwise, we obtain

T -rs

G m ( t ) = E [ J e ° ^ ( s ) 6 m ( s ) d s | y ( t ) ] ; m = l M ,
0

which is a martingale under P. According to Lemma 8.3, there exists an

N-dimensional process H = (H1 H^) satisfying (8.7) and for which

Gm(t) = Gm(0) + J
0

t t

= Gm(0) + J H(s)9(s)ds + fH(s)dW(s)

0 0

Equation (8.4) now leads to the formula

t
Jor(s)ds

e
Jor(s)ds p r

Pm(t) = e tGm(0) + J H( s) 0( s) d s + J H(s)dW(s)
0 °

^
- j e *(s)6(s)ds].

0

It follows from Ito's rule that P has the form indicated by (5.3) with
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t
Xor(s)ds

= r(t)P(t) - vKt)6(t) + e U H(t)6(t)

t
J"or(s)ds

a m ( t ) = e ° H(t). D
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9. The Solution of the Optimization Problem for an Individual Agent

Throughout this section, we have a fixed spot price process ^

satisfying (5.1), in terms of which the productive asset price process vector

P(t) = (P1(t) P J J ^ ) ) i s g i v e n by (8.6). We also fix an element

j € {1.....J}. Agent j is unaware of any equilibrium considerations used to

obtain \p and P; he simply takes these as given and is not bound by any

market clearing conditions. He also takes as given the model primitives of

Section 3 and the exogenous processes of Section 4. We show in this section

how agent j maximizes his expected utility of consumption.

9.1 Lemma. Let ( c , ir., >/>.) be a feasible triple as described in Definition
J J J

6.1. Then

T T

(91) E Jf(s)^(s)cj(s)ds < E Jf(s)^(s)cj(s)ds.
0 0

Proof: Under our assumptions, Theorem 8.4 implies the validity of (8.1), and

so the budget equation (6.7) for the wealth of the j#t agent becomes

Xj(t) = ejP(O) + J ^ s H e ^ s ) - c.(s)]ds + J r(s)Xj(s)d

0 0

0

for which the unique solution is

J l>.j(s)a(s) + •j(s)diag(f(s))a(s)]dW(s),
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t t s

J * o
r ( u ) d u J(9.2) Xj(t) = e v {£^(0) + J e *(s)[e..(s) - Cj(s)]ds

0

J
e U [^(8)0(8) + *j(s)diag(f(s))a(s)]dW(s)}.

0

For each positive integer n, let

rn = T A inf{t > 0: J llTr.(s)a(s) + ̂  .(s)diag(f (s))a(s)ll2ds = n}.

0

Because of (5.4), (6.2), and the boundedness of the coefficient processes

r(»), b(*), and a(*) appearing in (4.4), (4.5), we have lim r = T, a.s.
n-*» n

From (9.2) we obtain

n

E CC(Tn)Xj(Tn)] + E J
0

„ -Jnr(u)du „ p
n -Jor(u)du

E [e V T n ) ] + E J e ^
0

T S

n
= &jp<°> + g J e °

0

n

= £jP(0) + E J C(sH(s)ej(s)ds
0
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Letting n -» « and using (6.8), (6.9), Fatou's lemma, and the monotone

convergence theorem, we obtain

T T

E J f(sWs)c.(s)ds ̂  e.P(O) + E J f(s)*(s)ej(s)ds.
0 0

Relation (9.1) now follows from

T

(9.3) P(0) = E Jc(s)*(s)6(s)ds,
0

a consequence of (8.6). D

9.2 Theorem. Consider a consumption process c. (i.e., a nonnegative,
«J

measurable, {y(t)}-adapted process satisfying (6.1)), for which (9.1) is

valid. Then there exist a productive asset portfolio ir. and a financial
j

asset portfolio $. such that (c.t ir., $.) is feasible. Furthermore, we

can take w. = e., i.e., agent j need not change his initial position in the

productive assets.

Proof: From (5.1), (9.1), (9.3) and the boundedness of e., the random
j

variable

T s

-/ftr(u)du
Q " ' u
!j = J e ^(s)[ej(s) - Cj(s)]ds

0

is P-integrable, with e .P(0) + EQ. > 0. According to Lemma 8.3, the
J J



9.4

P-martingale E[Q.|?(t)] admits the stochastic representation
J

I,

= EQ. + I H(s)W(s), 0 < t i T, a.s.,

where the N-dimensional, measurable process H is {y(t)}-adapted and

satisfies (8.7). We define TT. = e. and

s

= -[e ° H(s) + eja(s)](a(s))"
1(diag(f(s)r1, 0 < s < T.

The corresponding wealth process (cf. (9.2)) is

t
Jnr(u)du p -Jnr(u)du

0

(9.4) Xj(t) = e ° { £ jP(0) + j e *(s)[ e j(s) - C j(s)]ds

- J H(s)dW(s)}
0

t T s
JQr(u)du p -J* r(u)du
e U {^(0) + EQj + E[ J e U ^(s)[Cj(s) - ej(s)]ds \9(t)]}

J r(u)du
e {fcP(O) +

J
. + ̂ y E[ J C(s)+(s)[cJ(s) - ej(s)]ds|?(t)]},

which satisfies (6.8) and (6.9). Moreover, with $. Q defined by (6.5), ir

and the (N+l)-dimension process $ = (*. o.*.) satisfy (6.2) (recall (4.7),
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the strict positivity of f in (4.4), and (8.7)). D

Using Lemma 9.1 and Theorem 9.2, we see that the optimization problem for

agent j reduces to maximizing

i

(6.10) E fu,(t.c,(t))dt,
JQ J J

subject to the constraints

(6.1) inf c(t) > 0, sup c.(t) < «>, a.s.
0<t<T J 0<t<T J

(6.11) E J max{0.-Uj(t,cj.(t))}dt < «°,

1 1

(91) E Jas)*(s)c.(s)ds < E Jf(sWs)cj(s)ds,
0 0

where f is determined by (4.12). This is a problem involving the

consumption process, but not the portfolio process. The productive asset

prices do not enter this formulation of the problem; the financial asset

prices enter only through f.

We now present the solution of this problem. Recall our assumption that,

for each t € [0,T], the function U'.(t,») is strictly decreasing and

satisfies (3.6); we may define I.(t,») to be the inverse of U'.(t,»), i.e.,

J J
a strictly decreasing, continuous mapping from (0, U'.(t.O)) onto (0,«>). In

J
other words,
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(9.5) V 1 ^ ) > °- "}(*• JjCt.y)) = y: v y e (o, ir.(t.o)).

We extend the domain of I.(t,#) by setting
J

(9.6) I.Ct.y) = 0; V y € [U'.(t,O), «»).
J J

For y € (0,°°), define

T

(9.7) ^.(y) i E J C(s)*(s)IJ(s,yC(s)+(s))ds.
0

9.3 Lemma. The function 3C. maps (0,«>) into [0,00), is continuous,

nondecreas ing, and satisfies

(9.8) lim « (y) = co, lim 3C (y) = 0.
yiO J yty. J

where

(9.9) y. i sup {y > 0; ̂ (y) > 0}.

On (0,y.), 3C. is strictly decreasing.
J J

Proof: It is apparent that 9C.(y) > 0; V y € (0,<»). We show that
J

3C.(y) < ». If 0 < y < U£(t,2), then c= I. (t,y) > 2, and from (3.5), (9.5),

and the concavity of U.(t,»), we have
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U.(t.c) - U (t.l)

y = u'(t.c) < -J -̂rV

+ 1^ cp -

cP~l

for some positive constants k~, k4 and k^, which do not depend on c.

Therefore,

(910) Ij(t.y) i {f-Y p; V y € (0,

We also have

; V y € [lK(t,2), »),

and so the finiteness of $.. for all y € (0,«) will follow from the
«J

finiteness of

«J'
T

1{yC(sH(s)<u;(t,2)}
0

According to (9.10), this expression is bounded above by

4 - rT
1 P E [ ds.

which is finite because of (5.1).
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Because I.(tf
#) is nondecreasing, £.(•) is also. The right-continuity

of a. and the first part of (9.8) are consequences of the monotone

convergence theorem; the left-continuity of 3C. follows from its finiteness

and the dominated convergence theorem. If y. < «>, the second part of (9-8)
J

follows from the continuity of a.; if y. = «>, we use the dominated
J J

convergence theorem to obtain this result.

For y € (0, y.) f we have 3C.(y) > 0, which implies that on a set of

positive Lebesgue x P-measure,

Y C(t)+(t) < IT.(t.O).

But I.(t,*) is strictly decreasing on (0, U'.(t.O)), and so
J J

< aj(y). v Tj > o. •

When restricted to (0, y.), the function 3t. has a continuous, strictly
J J
onto

decreasing inverse V.: (0,°°) >(0,y.). Let
J J

(9.11) f j = E J r(sWs)c.(s)ds, rr. ̂ *(f.).

(Note that f. > 0 because of the assumption that c. is not Lebesgue x
J J

P-almost everywhere zero.) We shall show that the optimal consumption process

for the j agent is

(9.12) c*(t) £ I. (t,

9.4 Theorem. The unique (up to Lebesgue x P-almost everywhere equivalence)

optimal consumption policy for the j agent is given by (9.12).



9.9

Proof: According to our definitions,

1 i

E J C(s)*(s)c*J(s)ds = 9 ^ ) = fj = E J f(sH(s)Sj(s)ds,
0 0

so c. satisfies (9.1) with equality. Let c. be any process satisfying
J J

(6.1), (6.11) and (9.1), so

T

E J C(s)*(s) [c*(s) - Cj(s)] 2 0.
0

From elementary calculus, one can show that

(9.13) U (t, I.(t,y)) - y I.(t,y) = max{U (t.c)-yc}; V y € (0,oo), t € [0,T],
J J J c> 0 J

and thus

i

(9.14) E J U^s, cj.(s))ds
0

< E J Uj(s,cj(s))ds + y. E J C(sH(s)[Cj(s) - Cj(s)]d£
0 0

1

£ E J U.(s,Cj(s))ds.

Thus, if it is feasible, then c*! is optimal.
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There is at least one feasible consumption process; namely

\j S fJ C E J
0

This constant process satisfies (9.1) with equality, and (6.1), (6.11) are

also clearly satisfied. With this choice of c. in (9.14), we see that c.
J «J

satisfies (6.11).

Because the maximum in (9.13) is uniquely attained at I.(t,y), c. is
J J

the unique optimal consumption policy for agent j. •
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10. The Representative Agent

In order to facilitate the proof of the existence of equilibrium in the

next section, we introduce here the notion of a representative agent. Given a

vector A = (X-.....X,) € (0,°°) , we define the function

A J

(10.1) U(t,c; A) = max 2 X.U.(t,c); V (t.c) € [0,T] x (0,«>).
c1>0,...,cJ>0 j=l J J J

C.. + . . .+C T=C

As we show in Lemma 10.1, the function U inherits many of the properties of

IL , . . . ,U.. It can thus be thought of as the utility function of a

"representative" agent, who assigns the weights X-.....X, to the utilities

of the individual agents in the economy.

10.1 Lemma. For fixed A € (0,») and t € [0,T], the function

U(t,*;A): (0,«>) -* R is strictly increasing and continuously differentiable,

U'(t,»; A) is strictly decreasing, and

lim U'(t,c; A) = 0.

Furthermore, with p as in (3.5) and for some constants k1 > 0, k~ > 0,

(10.2) U(t,c; A) < kj + k 2 c
P V c > 0.

Proof: Define
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(10.3) I(t,y; A) = 2 I.(t, £-), V y € (0.«).
i-1 J A i

The function I(t,*; A) is continuous and nonincreasing, is strictly

decreasing on (0, max X.U'.(t.O)), and maps this interval onto (0,00). Thus,
J J

for every c € (O,00), there is a unique positive number H(t,c) = H(t,c; A)

with I(t,H(t,c); A) = c, and the mapping

onto
H(t,*): (0,«) > (0, max X.U'.(t.O))

1<J<J J J

is continuous and strictly decreasing.

Let c € (0,«°) be given, and define

(10.4) Cj S

J
Then 2 c. = I(t, H(t,c); A) = c, and for each j,

j=l J

if H(t.c) <

0 if H(t,c)

In either case,

< H(t,c); j = 1 J.

Let c,,...,cT be any other nonnegative numbers with 2 c. = c. The
i J j = 1 J
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concavity of each U.(t,«) allows us to write
J

i

< 2 X U (t.c ) + H(t.c) 2 (c - c )
j=1 J J J J=1 J J

It follows that the vector (C-.....C.) attains the maximum in (10.1), i.e.,

(10.5) U(t,c; A) = 2 X.U.(t, I (t. H ^ ' C ^ ) ) ; V c € (0,«).
j=1 J J J Aj

Now each I.(t,») is differentiable except possibly at U'.(t.O), so

I(t,*; A) is differentiable off the set {A.U'.(t,O); j = 1.....J} and
J J

H(t,«) is differentiable off the set A = {I(t, X.U'.(t.O); A); j = 1 ,J}.
J U

Moreover, for 1 < j < J and c € (I(t, X.U'.(t.O); A), »)\A, we have
J J

0 < i-H(t.c) < U'.(t.O), and (9.5) gives
j J

(10.6) ^ A j U ^ t . ij(t, HItt£l)) = UJ(t. IjCt. MIti£l))I^(t, HI^cl ) H, ( t c)

For 1 i j < J and c € (0. I(t,X .U'.(t,O)))\A, we have £- H(t,c) > U'.(t.O)
J J Aj j

and I.(t. H(j^'c)) = I'.(t,
 H(^'c)) = o. so again (10.6) holds, this time with

J Aj J Aj
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both sides equal to zero. The derivative of U(t,c; A) in (10.5) is thus seen

to be

(10.7) U'(t,c; A) = H(t,c)H'(t,c) 2 J- I'(t. H(*'c>)
j=l J J J

= H(t,c)H'(t,c) I'(t, H(t,c)) = H(t,c)

for all c € (0,«>)\A. The expression (10.7) also gives the correct one-sided

derivatives of U(t,*; A) at points in A, and since H(tf
#) is continuous,

U(t,#; A) must in fact be continuously differentiable and (10.7) must be valid

on all of (0,°°). The properties for U'(t,»; A) claimed in the lemma are

consequences of the known properties of H(t,#).

As for the bound (10.2), it follows from (3.5) once we observe that

U(t,c; A) < 2 A.U.(t.c). D
j=l J J

The properties established for U(t,*; A) in Lemma 10.1 are exactly those

properties, shared by each U.(t,#), which were used in Section 9 in the

derivation of the optimal consumption process for agent j.

Because of (10.7), the function I(t,»; A) of (10.3) satisfies

(10.8) I(t,y; A) > 0, U'(t, I(t,y; A); A) = y; V y € (0, U'(t,O; A))

I(t,y; A) = 0; V y € [U£(t,O; A), «>).

If a spot price \p satisfying (5.1) is given, then by analogy with (9.7) we
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can define

«(y;A) i E J f(sH(s)I(s.y C(s)^(s); A)ds,
0

y(A) = sup{y > 0: £(y;A) > 0}.

The assertions of Lemma 9.3 are valid for 3C(•;A), and the inverse

onto _
^(•;A): (0,«>) > (0, y(A)) is continuous and strictly decreasing.

We imagine that the representative agent receives the aggregate income

process c(#) defined in (3.3), and attempts to maximize his total expected

T T

utility E U(t,c(t))dt from consumption, subject to E f(s)\//(s)c(s)ds < f

0 0

where

(10.9) £ = E J f(sWs)c(s)d£
0

Now with

(10.10) TJ(A) =

the optimal consumption process for the representative agent is given by the

analogue of (9.12):

(10.11) c*(t;A) = I(t, T7(A)f(t)^(t); A), 0 i t < T.
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We elaborate on the fiction of the representative agent by further

imagining that after he computes c (t;A), rather than consuming the commodity

himself, the representative agent parcels out this consumption to the J

individual agents, according to the formula (10.4):

(10.12) c.(t;A) i I.(t, J~U'(t, c*(t; A); A)), 0 < t < T.

Each agent j will be happy with this arrangement if c.(t;A) agrees with
j

his optimal consumption process c.(t) defined by (9.12). This agreement

will in fact occur, provided that

(10.13) rr.C(t)>Kt) = £-U'(t,c*(t;A); A); 0 < t < T,

and under this condition we shall have

2 c*(t) = 2 c (t;A) = I(t, U'(t,c*(t;A); A) = c*(t;A); 0 £ t < T.
j=l J j=l J

It follows from (7.1) that a necessary condition for the existence of

equilibrium is

(10.14) c(t) = c*(t;A) ; 0 £ t i T

almost surely, in terms of which (10.13) becomes

(10.15) C(t)^(t) = ri—U'(t,c(t); A); 0 < t < T.
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This last equation does not provide a direct formula for the deflated

spot price process £>, because the number 17. on the right-hand side depends

on £\p (recall (9.11)) and because the vector A has not yet been determined.

Nevertheless, the equation (10.13) provides a valuable framework for further

discussion of equilibrium.

10.2 Theorem. Let A = (A.,...,A,) € (0,«>) be given, and define a spot

price process >/>(#;A) by

(10.16) *(t;A) = r77T U'( t- c(t); A) , 0 < t < T.

Using this spot price process, for each j define 17.(A) and c.(#;A) by
J J

(9.11) and (9.12), respectively. .If the vector A satisfies

(10.17) A n j ( A ) = l ; V

then the spot price process >f>(#;A), the corresponding vector of productive

assets given by (8.6), the consumption processes given by

(10.18) c*(t;A) = I (t; 17 (A)U'(t, c(t); A)), 0 < t < T, j = 1 J,
J J J

the productive asset portfolio processes IT. = e., j = 1,...,J, and the
J J

corresponding financial asset portfolio processes $., j = 1.....J, given as
j

in Theorem 9.2, constitute an equilibrium.

Proof: By assumption, TJ.(A) is the unique positive number 17 for which
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1

(10.19) E J U'(t, c(t); A) Lftir] U'(t,c(t); A))dt

0

1

= E Ju'(t, c(t); A) Cj(t)dt

holds. Because of (3.4) and Lemma 10.1, £(•)*(*:*) satisfies (5.1). For

each j, the optimality of the (c.,ir.,$.) follows from Theorems 9.2 and 9.4.
J J j

It remains to verify the market clearing conditions (7.1) - (7.3). From

(3.1) we have (7.2). As for (7.1), we note from (10.17), (10.18) that

J * J

(10.20) 2 c.(t;A) = 2 I.(t. Tj.(A)C(t) *(t;A))

= 2 I (t, ̂ U'(t, c(t); A))

= I(t, U'(t, c(t); A); A) = c(t), 0 $ t < T, a.s.

We turn now to (7.3). Because for each j, ir. = e. and $. is also
j j J

given as in Theorem 9.2, the corresponding wealth process is given by (9.4),

that is,

t

(10.21) X.(t) = e U {€

; A) - ej(s)]ds
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where

V - c.(s; A)]ds.

0

Using (3.3), (10.20) and (9.3), we see that

T
2 EQ* = E f f(s)>Ks;A)[ 2 e (s) -
=l J J

o j=l J
c(s)]ds

M
= - E f f(s)*(s;A) 2 6m(s)d

o - 1

2 e P(0),
=l J

and so a suiranation over j in (10.21) yields

(10.22) f(t) 2 X*!(t) = E f
j=l J lJ

N
;A) 2 6(s)ds|?(t)

m=l m

From (6.4) and (8.6) we have also

(10.23) C(t) 2 X*!(t)
j=l J

f(t) 2 P (t) + C(t) 2
m=l j=l

= E
M I J
2 6 (s)ds|?(t) + f(t) 2

m=l m
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J *

Comparison of (10.22), (10.23) shows that 2 $..(t)F(t) = 0, 0 < t < T, a.s.

Because ir. = e., (6.3) reduces to

F(t) = J^(s;A)[cj(s) - c*(s;A)]ds + J $*(s)dF(s),*j(t) F(t) =

0 0

which yields, in conjunction with (10.20):

t j

0 = f 2 $*((10.24) 0 = 1 2 $*(s)dF(s)

0

t T

= J 2 [•* 0(s)f0(s)r(s) + ^(s) diag(f(s))b(s)]ds

0 j = 1

-5 — 1 J
(s) diag(f(s))a(s) dW(s); 0 $ t £ T, a.s.

The local martingale part of the right-hand side of (10.24) and hence also its

quadratic variation

f ll( 2 **(s)) diag (f(s)) a(s)ll2ds; 0 i t < T,

0

must be identically equal to zero. It follows from the nonsingularity of

diag(f(s))a(s) that
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2 **(t) = 0*r, for a.e. t € [0,T],

J *
almost surely. From (10.24) we see now that also 2 <f>. n(t) = 0, for a.e.

j=l JfU

t € [0,T], a.s. D

10.3 Theorem: Let [>, P = (P1f...,PM), {(c. ,ir.,$.); j = 1.....J}] be an
1 n J J J

equilibrium as set forth in Definition 7.1. For each j, let TJ. be defined
J

by (9.11), and set A = (— — ) . Then

- t - T-

Proof: From the equilibrium conditions, Theorem 9.4, and (10.3) we have

c(t) = 2 c*(t) = 2 IjCt. T7jC(t)>p(t)) = I(t, f(t)*(t): A),

and thus from (10.8) (recalling from (3.4) that c(t) > 0), we conclude that

U'(t. c(t); A) = f(t)*(t); 0 $ t < T, a.s. 0
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11. Existence and Uniqueness of Equilibrium

11.1 Theorem. There exists A € (0,«)J such that 17.(A), j = 1,...,J,

defined as in Theorem 10.2, satisfy (10.17). If A is another element of

(0,<») with this property, then A = T A for some T > 0.

We defer the proof of Theorem 11.1 to Sections 12, 13 and 15, and devote

this section to a discussion of its consequences.

11.2 Corollary. There exists a unique equilibrium.

Proof' Existence follows from Theorems 10.2 and 11.1. For uniqueness,

suppose |>, (PJ.....P,,). {(C*,TT*,$*); j = 1.....J}] and |>, (Pj Pj,),

{c.,7r.,$.); j = 1,...,J}] are both equilibria. According to Theorem 10.3,

there exist A, A € (0,«>)J such that 17 (A) and TJ.(A), j = 1 J, satisfy

J J
their respective versions of (10.17) and

u'(t> *(t): A)> *{t) = Utju'(t> *{t); X)f ° - t -Tf

Theorem 11.1 implies A = T A for some 7 > 0, so >// = nryp. Theorem 8.2

implies that P = T P , m = 1,.. . ,M. •
m m

11.3 Corollary. Suppose [>, (P, , . . . ,P M), {c*,ir*,$*; j = 1.....J}] is an
*• ™ J J J

equilibrium and [>, (Pt , . . . .R.). {c*f,Tr\,$*f; j = l,...,J}] is an equilibrium
1 « J J J

for another model which differs from the first only in the choice of the

coefficients of the financial assets r(»), b(*) and a(»). Let £ be the

deflator defined by (4.12) for the first model, and let f be the analogously

defined deflator for the second model. Then for Lebesgue x P almost every
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(t.oj), we have

c*(t) = £ *

for some nr > 0.

Proof: For A € (0,»)J and j € {1 J}, let i?.(A) be the unique
j

positive number satisfying (10.19). The mapping TJ.: (0,<») -* (0,«>) depends
J

on the model primitives of Section 3, but not on the financial assets.

~ T
According to Theorem 10.3, there exist A, A € (0,«>)u such that

(11.1) C(t)*(t) = U'(t, c(t); A), f(t)$(t) = U'(t, c(t); A); 0 < t < T.

Indeed, by comparing (11.1) and (10.15), we conclude that these particular

vectors A = (A-,...,Ay) and A = (A-,...,Ay) satisfy

and so Theorem 11.1 asserts the existence of T > 0 such that A = nrA. It

follows from (11.1) that £\J/ = nrf>j/. Furthermore, the (unique by Theorem 9.4)

optimal consumption processes are given by (10.18), and therefore satisfy

; Hj(X)C(t)+(t)) = ??(t), 0 < t < T. D
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12. Proof of Existence

In this section we show that there exists A = (0,<») such

that the numbers T^ (A),...,TJT(A) determined by (10.19) satisfy (10.17)

This is the existence part of Theorem 11.1. For j = 1.....J, and

A € (0,«>) , define the function

i

(12.1) S (»;A) ̂ E f jjU'Ct. c(t); A)[I (t, ^ U
0

'(t, c(t); A)) - c (t)]dt; U € (0,»).
J

Lemma 12.1. For each A € (0,«>)J and each j € {1 J}, the function

S.(*;A) is strictly increasing and satisfies
J

lim S (jx;A) = - «>, lim JLIS.(^I;A) = «>.
JLtiO J JLIHOO J

Proof: Because lim I.(t.y) = «; V t € [0,T], we have lim JJS.(JLI;A) = «>.
yiO J J

Suppose 0 < Yl < y2 < U'(t.O) and define c± = I-Ct.

0 < c2 < Cj < «>, and according to (3.7),

, i = 1,2. Then

T.ft.Cj) > c2U^.(t,c2) = y2lj(t,y2).

If y2 > m(t,0), then for yx € (0,y2),

> 0 = y2lj(t.y2)

We conclude that for each t € [0,T], the mapping
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(12.2) ^(t.y) = y l.(t,y); y € (0,~)

is nonincreasing in y. Since

(12.3)

1

jGi;A) = E J ^(t, jjU'(t, c(t); A))dt

T

- jjE J U'(t, c(t);
0

and c.(#) is not identically zero, S.(»;A) is strictly increasing and
J J

lim S.(JI;A) = - «>. D

JLliO J

Lemma 12.1 implies that for each A € (0,«>)^ and each j C {1 J},

there is a unique positive number L.(A) such that
J

(12.4)

Comparison with (10.19) shows, in fact, that

(12.5) Lj(A) .

We define L = (Lj.-.-.L,): (0,»)J -» (0,«>)J and note that 77.fA) satisfies

(10.17) if and only if A is a fixed point of L.

Since U'(t,c; A) is positively homogeneous in A, we have S.(TJLI; T A ) =

S.(fi.A) for every -Y € ((),«>), ji € (0,<») and A € (0,«>) . Therefore
j
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S.(T L.(A); TA) = S.(L.(A); A) = 0, and thus
J J J J

Because of this positive homogeneity, any fixed point A for L will lead

to a one-parameter family of fixed points {-YA*|-Y € (0,°°)}. If J > 2, we can

therefore reduce by one the dimension of the fixed point problem and be

confident that we have not significantly changed it. In this spirit, let us

define the mapping R = (^.....Rj): (O,*)^ 1 -> (O,")^ 1 by

(12.6) Rj(A2,...,XJ) = L.(l, ^.....Xj); j = 2 J.

12.2 Lemma: Assume J > 2. If (X9,...,XT) is a fixed point for R, then

(1, X2,...,Xj) is a fixed point for L. If (X-.Xo,. . . ,Xj) is a fixed point

x2 x
for L, then (r—,... ,r-) is a fixed point for R.

Xl Xl

Proof: The second assertion follows immediately from the positive homogeneity

of L. As for the first, let (Xg ,..., X,) € (O.w)^1 be a fixed point for

R, and set Xj = 1, A = (̂ j.Xg *j)- T h e n

(12.7) ^jjj = L.(A) = R ^ .... ,Xj) = Xj; j = 2,. .. , J.
j

It remains to show that Ln (A) = —frr = 1. i.e.. S^ljA) = 0. But (12.4),

(12.7), (10.3) and (10.8) imply

Mi
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J
(12.8) S (1;A) = 2 X S (X ;A)

j=1 J J J

T j

= E fu'(t, c(t); A) 2 [I (t. ̂ -U'(t,c(t); A)) - c.(t)]dt
n J-1 J

= E J U'(t, c(t); A) [I(t,U'(t,c(t); A)) - c(t)]dt

0

= 0.

12.3 Remark. If J = 1, equation (12.8) is still valid, with A = 1. In

particular, 1 is then a fixed point of L: (0,«>) -» (0,<»), and because of

positive homogeneity, L is the identity mapping on (0,<»). This validates

Theorem 11.1 in this case. D

If J > 2, Lemma 12.2 shows that Theorem 11.1 is equivalent to the

assertion that R has a unique fixed point. We shall obtain the existence of

this fixed point as a consequence of the following version of the

Knaster-Tarski Fixed Point Theorem (see, e.g., Dugundji & Granas [7], p. 14 or

Birkhoff [1], p. 54).

12.4 Theorem. Let < denote the partial ordering on (0,«>) given by

(X9,...,XT) < (]LI9,...,JZT) <=> X. < v V j € {2.....J}.

Let #: (0,«>) -* (0,«>) be an isotone mapping and assume that there exist
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A r Au € (0>00)J 1 such that

(12.9)

Then A has a fixed point A satisfying A. < A < Au>

Proof: Let Q = {A € (0,«)J * | A£ < A i A^, A £ 9fc(A)}. Then A^ e Q and Q

is bounded, so we may define A = sup Q, where the supremum is taken

componentwise. For every A € Q we have A < A , which implies

A < #(A) < 9̂ (Â ) and thus #(A*) > sup Q = A*. Furthermore, A^ < A < A^, so

A^ € Q. But we also have A. < ̂ (A.) i *(A^) < 9t(A ) < A and
•cT ĉJ U U

), whence 9fc(A ) € Q. Thus, #(A ) < sup Q = A . It follows

that A is a fixed point for 9L •

12.5 Lemma. The mapping R = ^.....R,) defined by (12.6) is isotone.

Proof' It suffices to prove the isotonicity of L. Let A, M € (O.«>) be

given with A < M. Then (10.3) shows that I(t,»;A) < I(t, •;!!), so Ur(*;A) <

U'(*;M). The representation (12.3) of S., where •i(t,
#) is nonincreas ing,

yields S.(L.(A); M) < S.(L.(A); A) = 0, j = 1 ,J. Recause S.(«;M) is

J J J J J
increasing and S.(L.(M); M) = 0, we must have L.(M) > L.(A), j = 1.....J.

J J J J

12.6 Theorem. The mapping L = ^....Lj) defined by (12.1), (12.4) has a

fixed point.

Proof: We proceed by induction on the number of agents J. The case J = 1
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was dealt with in Remark 12.3. Assume the existence of a fixed point for the

counterpart of L constructed for agents 2 J. In other words, assume

the existence of (̂ .....X.) € (0,»)J~ such that

T J . J
(12.10) Ej|-U'(t. 2 ci(t);(0,X2 XJ))[Ij(t,|-U'(t, 2 c.Ct);

Q J i=2 j i=2i=2

- Cj(t)] dt = 0; j = 2 J.

Here,

(12.11) U(t,c;(0,X2,...,X ))= max 2 X.U.(t.c)
c >0,...,c.>0 j=2 ̂  ^ *̂

c2+...+Cj=c

lim ....Xj)).

(Note: The induction hypothesis implies the existence of such a vector

J ^
(Xo XT) if the counterpart of (3.4) is satisfied, i.e., 2 c.(t) is

2 J j=2 J

bounded away from zero. Since c(t) = 2 c.(t) is bounded away from zero, it

is also the case that for some choice of i, c(t) - c.(t) is bounded away from

zero. The construction of this section is predicated on the assumption that

we may choose i = 1. This assumption can be made without loss of

generality.)

We may rewrite (12.10) in terms of the nonincreasing function ^.(t,#)
J

defined in (12.2) as
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T j

(12.12) E f «.(t. |-U'(t, 2 c (t); (0,^,,. .. ,X ))dt
J
o
 J j i=2 J

- £- E I Uf(t, 2 c.(t);(0,Xo,...,XT))c.(t)dt = O,

for every j = 2,...,n. Because for every t € [0,T],

U'(t, c(t); (0,^ Xj)) <U'(t,

a.s., and this inequality is strict on a subset of [0,T] x Q having positive

Lebesgue x P measure, (12.12) implies that for every j = 2.....J;

T

E

0

T

J ^(t. ̂-U'(t, c(t); (0,X2,...,XJ))dt

i-E Ju'(t,c(t);(0,X2 XJ))cj(t)dt > 0.
J 0

We may choose a sufficiently small positive X- such that

> 0; j = 2.....J,

and (12.4) and Lemma 12.1 now show that

Xj: j = 2 J.
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Set A = (^ , A € (O.w)*1"1. We have
u Ax Aj

so R(A ) < A .
v u' ~ u

With Au as above and for a € (0,1), define A(a) = (1,

For t € [0,T], we have from (10.3) that lim I(t,*; A(a)) = I..(t,»)» so
aiO

lim U'(t.«; A(a))
alO

and

OA . OCA . p /v ^

j-J-S ( 5-1; A(a)) = - E U'(t.c(t))c (t)dt < 0, j = 2.....J.
Al J Al J

rt
 l J

aX

aA_. aA
lim i-
aiO A

Therefore, for sufficiently small positive a, we have L.(A(a)) > -r-*- ; j =

J Aj

2.....J, so we may choose a € (0,1) such that R(A(a)) > A(a). Furthermore,

A(a) ̂  Au.

We set Kp = A- and cite Theorem 12.4 for the existence of a fixed point

for R. The existence of a fixed point for L then follows from Lemma 12.2.
D
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13. Proof of Uniqueness when U'.(t.O) = » for all t and j
J

The study of uniqueness of equilibrium requires an analysis of the

sensitivity of the representative agent utility function (10.1) with respect

to the parameter A. Throughout this section, we assume that

(13.1) U'.(t.O) = co; V t € [0,T], j € {1.....J}.

The proof of uniqueness in the absence of (13.1) is relegated to the appendix;

it is conceptually similar but technically more difficult than the proof of

this section. We also assume throughout this section that J > 2; if J = 1,

Remark 12.3 applies and Theorem 11.1 and its corollaries hold.

In the presence of (13.1), the function I(t,y; A) defined by (10.3) is

differentiable in y and A for all t € [0,T], so the Implicit Function

Theorem applied to the identity

I(t, U'(t,c; A); A) = c; V t € [0,T], c > 0,

guarantees the differentiability in c and A of U'(t,c; A) for all

t € [0,T].

For t € [0.T], c € (0,*°) and A € (0,«>)J, let the vector

(c-(t,c; A) , . . . ,Cj(t,c; A)) denote the maximizing argument in (10.1). From

(10.5), (10.7), we obtain the formula

(13.2) c.(t,c; A) :, f-U'(t,c; A)); j = 1,

or equivalently
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(13.3) U'(t,c; A) = XjUj(t.c (c.t; A)), j = 1.....J.

We also have

(13.4) Cj(t,c; A) + ... + Cj(t,c; A) = c.

Differentiation of (13.3), followed by division by (13.3), results in

« 4 ( ' ' } ! «! (t.^) 9Cl U 2 (t,c2)
+ *u'(t,c; A) ~ Xj + u|(t,Cl) * a\x ~ u2(t,c2)

t t

V

lttCt J ut (t,Cl) « c L 1 u 2 (t,c2)
U'(t,c; A) - U^t.Cj) ' Wq- X^+ U2(t,c2)

"•• 'UUt.c )

U'(t,c;

t,c; A

A) U{(t,

do

ax

1 9

, U J

1

J

( t .

1 t
U 2 ^
u2(t.

.c2)

<=2»

* J

O O T

Denote v = (gr—. • • • «^T") a n d let v = ( V I « - - » V T ) € Ir be given; if we

multiply equation j above by v. and sum the resulting expressions
j
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componentwise, we obtain

(13'5> U'(tlc; A) ( w U - ( t , c ; A ) ) = ^ (v • vct)

(V

On the other hand, differentiation of (13.4) yields

(13.6) v • vc. + ... + v

Equations (13.5), (13.6) provide a system of J equations for the J

quantities v • vc1
U'.'(t,c

v • vcT. With x. •= v • v c , k. := TT;r £

r. = r-*-; j = 1 J, we may write this system in matrix form as

(13.7)
k 4

kJ-l'~kJ
1 1

X l

i
XJ-I

=

r 2 " r l
r 3 " r2
r 4 " r3

It is easily verified that

(13.8)
_i
]

J i=l Ki 1=1 KiKj

is a solution; in particular,



 



13.4

.!. XJ =
1 -1

]

J
2

r.-r
Lk k
i j

r .-r.
k.k.

It remains to show that (13.8) is the only solution to (13.7), and for

that we show by induction on J that the determinant of the coefficient

matrix in (13.7) is 2 D k , which is nonzero because < 0; 1 < i < J.

For J = 2, the coefficient matrix is I "I, whose determinant is k n+k o.
[ I I 1 l Z

For J > 3, we assume the result for J - l , and expand the determinant of the

J x J coefficient matrix down the f i r s t column to obtain

det

1 ... 1 1

Xdet

J-l

= k.
J J J
2 IT k . + IT k .

J
2 IT k.

j=2 i=2 j=2

We summarize with a lemma.

13.1 Lemma. Under the condition (13.1), we have for all j € {1

t € [0,T], c € (0,«>), A € (0,«>)J and v = (Vj ,Vj) € R
J:

..J}
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J 3c
(13.9) 2 v. g ^ (t,c; A)

J U!(t,c,(t,c; A)) -1
v. U^(t,Ci(t,c; A))lF.(t,Cj.(t,c; A))

2 f_L. ±\ 1 1 J J
1=1 \ ,c; A))Uy(t,Cj(t,c: A))

13.2 Theorem. Assume condition (13.1) and also that J > 2. If A, A are

both fixed points of the operator L defined by (12.1), (12.4), then we have

A = TA for some t > 0.

Proof: Let A = (^.....Xj) and A =

define for a € [0,1]; j = 1, J:

be fixed points of L, and

(13.10) A(a) = (Xj(a) Xj(a)) i (l-a)A + a A.

1

(13.11) F^a) = E J U'(t,c(t); U'(t,c(t);A(a))) - Cj(t)]dt.

0

Because A and A are fixed points of L, we have

(13.12) =0, j = 1.....J.

From (13.2), (13.3), we may write

i

(13.13) Fj(a) = E J XJ(a)U^(t,
0

A(a)))[Cj(t.c(t); A(a)) - Cj(t)]dt.
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Choose j n € {1.....J} such that

X1
X(13.14) ^ = min{^- | i = 1 J}.

X. Xi
J0

According to Lemma 13.1 applied with v = A - A, for every t € [0,T],

c € (0,°>) we have

(13.15) iJ-c. (t,c; A(a)) = 2 (X - X ) ̂ -^- (t.c; A(a)) I 0,aa JQ 1=1 I I OA.

because V > 0, \J'±' < 0 and

i J0 J0 J0 J0 i
~ X (a) " Xja)X-{a) (~~ ~ f

J i J X X

for all i € {1 J}. Indeed, the inequality in (13.15) is strict, unless

X. Xj
(13.17) ^ " = ^ : V i € {1 J}.

X X

If (13.17) fails, then the strict version of (13.14) gives

c. (t,c; A) < c. (t.c; A) for all t € [0.T], c € (0,«), and therefore
J0 J0

E f U; (t.c (t,c(t); A); A))c (t)dt > E f U: (t.c (t,c(t); A))c (t)dt.
J
o
 Jo Jo Jo J

n
 Jo Jo Jo
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Condition (3.7) guarantees that

T
E f U'. (t,c (t,S(t); A)) c (t,S(t); A)dt

J
o
 Jo Jo Jo

T

E I U; (t,c (t,c (t,c(t); A))c. (t,c(t); A) dt.
J
o
 J0 J0 J0 J0

Together with (13.13), these inequalites imply that

r-F- (0) <^rJo xj o
 Jo x Jo

A 0
which contradicts (13.12). We deduce that (13.17) holds, and setting t =

X.
J0

we obtain A = TA. D
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14. Examples.

We conclude with three examples in which equilibrium can be computed

explicitly. The first is the extension of the example developed in Section 2.

14.1 Example (Logarithmic utility functions). Let the number of agents J

be arbitrary, and assume that each agent has the same time-independent utility

function U.(t,c) = log c. Then I.(t,y) = —, and the optimal consumption
J 3 J

process given by (9.12) is

cJ ( t ) =

where TJ. is chosen so that (see (9.7))
j

In other words,

(14.1) c * ( t ) = _ J _ : 0

and this expression should be compared with (2.4). Equilibrium requires

J J
2 £ = 2 c*(t) = c(t); 0 i t i T.

from which we conclude that there is a constant T > 0 such that
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(14.2) f(tWt)c{t) = T ; 0 < t < T.

(compare with (2.5)). Substitution of (14.2) into (14.1) yields

(14.3) c*(t) = XjCCt), 0 i t < T,

where

i r
(14.4) X = ± E

J

T

^ dt

(compare with (2.6), (2.7)). The vector A = (X- X.) is a fixed point of

L defined by (12.1), (12.4). Indeed U'(c;A) = - ; c > 0, and thus
c

T
S (X ; A) = E f -4 [X c(t) - c (t)]dtJ J V ( t )

1 r c<(t)
= T - i - E ^

J 0°^)

dt = 0; j = 1 ,J. D

14.2 Example (Power utility functions.) Let 6 € (0,1) be given, and let each

1

6 f I6"1

agent have the utility function U.(t,c) = c . Then I.(t.y) = NU and
the optimal consumption process given by (9.12) is

H, ^^
cj(t) = [ ̂ C(t>Kt)r : 0 i t i T.
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where 17. is chosen so that (see (9.7))
J

6-1 l °
E [C(t)*(<0] dt =

0 0
- J

In other words,

(14.5) c*(t) = [E J [f(tWt)]6 X dt]
6 - 1 1_

-1f ( W ) ] ] y l W ) ] ; 0 < t < T.
0

Equilibrium requires

T _6_ -1

JcC(tMt)]6"1 dt] (2 g.)
n J~l

6 -1 1_
1 = c(t); 0 £ t < T,

0

from which we conclude that there is a constant t > 0 such that

1

(14.6) CC(t)Kt)]1"6 c(t) = T; 0 < t < T.

Substitution of (14.6) into (14.5) yields

1

(14.7) c*!(t) = \\~5 c(t); 0 < t i T,

where
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(14.8) X J -

1

[ c

J
0

c (t)dt
J

1-6

Note that formulas (14.2) - (14.3) are obtained If we set 6 = 0 in

(14.6) - (14.8). The vector A = (Aj A.) is a fixed point of L defined

by (12.1), (12.4). Indeed U'(c;A) = 8 c6'1 2 X1.'6 = 6 c6"1 ; c > 0, and

j=l J

thus

1

SJ(XJ;A) -E I t
0

c(t) - = 0; j = .J.

D

If agents have different utility functions, one cannot in general compute

closed form solutions to the equilibrium problem. One special case in which

this computation can be done is the model with J = 2, U..(c) = log c,

IL(c) = Ĥc. Another special case is the following.

14.3 Example (Constant aggregate income.) Let the number of agents J be

arbitrary, and let each agent j have his individual, time-independent

utility function U.(c). Assume that there is a positive number c such that

P[ 2 c.(t) = c] = 1, 0 £ t < T. We show that the equilibrium deflated spot

price C(t)>Kt) is constant, and each agent's optimal equilibrium consumption

is constant and equal to
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(14.9) c* ̂ E J CjCOdt, j = l
0

To do this, we define A = (X- X.), where

(14.10) X. = * H .

According to (10.3),

I(1;A) = 2 I.(^~) = 2 c* = c,

so U'(c;A) = 1 = X.U'(c*). From (12.1) we have
J J

1

S.(1-;A) = 1X^.(1-) - X. J c.(t)dt=0,
J J n0

so A is a fixed point of the operator L defined by (12.4). In other

words, with T].(A); j = 1.....J, as described in Theorem 10.2, relation

(10.17) holds. It follows from that theorem that x//(t) = ^rpr is the (unique

** 1
up to a multiplicative constant) equilibrium spot price and c. = I.(=—) is

J J Aj

the (unique) optimal equilibrium consumption for agent j. Note in this

example that agents' income processes can be random and time-varying, so

although their optimal equilibrium consumption processes are constant, they

will in general need nonconstant portfolio processes to finance this

consumption. D
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In the absence of condition (3.9), there can be equilibrium spot price

processes which differ from one another by more than a multiplicative

constant. When this occurs, we are unable in any generality to prove

uniqueness of the optimal equilibrium consumption processes for the individual

agents. Such uniqueness is present, however, in the following example. It is

an open question whether this uniqueness is always present when all the

conditions of our model except (3.9) hold.

14.4 Example. Let J = 2 and define

log c; 0 < t < | ,

Ux(t,c) £ I
[log (c+1); | < t < T,

flog (c+1); 0 < t < I

U2(t,c) £ I
[log c ; 1 < t < T.

Direct computation reveals that

£ ; 0 < t < | . y > 0 ,

— , : % < t < T, y > 0.

I2(t.y) =

T, y > 0,
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U'(t,c; X r

T

< t < I c
s t s 2 , c

9 T

^ I < t < T,
1 < t < T c >
2 * t S '

i

l ^and so if 0 < c < min{r—, r—}, we have

c ; 0 < t < 2-

0 ; g- < t < T,

c 2 ( t , c ; Xj,

0 ; 0 < t < 2- ,

c ; ^ < t ^ T.

Now take the income processes to be

Ci(t) =

2-; O

1
0; 2-

T

c2(t) =i-- Cl(t); 0 < t i T.

If > 0, X2 > 0 are chosen to satisfy

(14.11) 1
m i n ^ ' 2 '
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then the equilibrium conditions

(14.12)

0

T

-Jo.(«.
0

; j = 1,2,

are satisfied. In particular, the corresponding equilibrium spot price is

(14.13)

i
C(t)

: 0 < t < i

J < t

which is not determined up to a multiplicative constant. In fact, (14.12) can

be used to show that all the equilibrium spot price processes are given by

(14.13), where (14.11) is satisfied. Consequently, the unique optimal

equilibrium consvunption processes are

c*(t)=c(t), c*(t)=c(t); 0 < t < T.
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15.1 Appendix. Proof of Uniqueness when U'.(t.O) < « for some t and j

The proof of uniqueness of equilibrium in Section 13 was given under the

assumption (13.1). In this section, we provide the modification of that proof

required when (13.1) is no longer assumed. As in Section 13, we assume here

without loss of generality that J > 2.

For t € [0,T], c € [0,«>) and A € (0,«>)J, let

(Cj(t,c; A), . . . ,Cj(t,c; A)) denote the maximizing argument in (10.1), which is

given by (10.4). (Recall (10.7) in this connection.) Then (13.2) and (13.4)

are valid, but instead of (13.3), we have the conditions for j = 1.....J:

(15.1) c^t.c; A) > 0,

(15.2) Ur(t,c; A) - A.U'.(t,c.(t,c; A)) > 0,

(15.3) c^t.c; A)[U'(t,c; A) - A ^ t . c ^ t . c ; A))] = 0.

15.1 Lemma. For each t € [0,T], the functions I(t,»; • ) . U'(t,»; •) and

c.(t,#; •) are Lipschitz continuous on compact subsets of (0,«>) x (0,00) .

Proof: Let t € [0,T] be fixed. Each function I.(t,») is piecewise
J

continuously dif ferentiable, and on compact subsets of (0, U'.(t.O)), I'.(t,#)
J J

is bounded. The Lipschitz continuity of I(t,#; •) on compact subsets of

(0,«>) x (0,°°)J follows immediately from (10.3).

Define M(A) = max A.U'.(t.O) for all A € (0,«>)J, and set

M = {(y,A) € (O,«o) x (0,«>)J| y < M(A)>. For fixed A, U'(t.*; A) maps (0,«>)

onto (O,M(A)), and the inverse I(t,#; A) is piecewise continuously
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differentiable. If F is a compact subset of M, then there exists a

positive constant a(F) such that If(t,y; A) < - a(T) for all (y,A) € F

wherever this derivative (with respect to the y-variable) is defined.

Therefore, for every e(F) > 0 chosen so that (y,A) € F implies

(y ± e, A) € M, for every e € (0, e(F)), there is a positive number

a(e(F), F) such that

(15.4) |l(t,y; A) - I(t,y; A)| > a(e(F),F) |y-y|; V (y,A) € F, y € [y-e, y+e].

We first prove (nonuniform) Lipschitz continuity of U'(t,#;#). Define a

norm on (0,«>)J by IIX , ...,XJI = max |X.|. Let (c,A) € (0,°°) x (0,«>)J be
J 1<J<J J

given, set y = Ur(t,c; A), and let e > 0 be such that (y ± e, A) € M. We

may then choose a(e) > 0 such that

(15.5) |l(t,y; A) - I(t,y; A)| > a(e) |y-y|; V y € [y^e, y+e].

The local Lipschitz continuity of I(t,»;») allows us to choose p > 0, K > 0

such that for all y € [y-e, y+e] and all A satisfying IIA-AII < p, we have

(15.6) |l(t,y; A) - I(t,y; A) | < K IIA-AII.

Decreasing p if necessary, we assume without loss of generality that

Kp < g a(e)e. Now suppose that (c,K) € (0,«>) x (0,<*>)̂  satisfies

|c-c| < ̂ -a(e)e, IIA-AII < p, and set y = U'(t,c; A). We show that

(15 .7) | U ' ( t , c ; A) - U ' ( t , c ; A) | = | y - y | < ^ y max { | c - c | , KIIA-AII}.
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Let TT = . .. max { |c-c | , KIIA-AII}, and note that TT < e. If y < y-T, then

from (15.6), (15.5), we would have

|c-c | = I(t,y; A) - I(t ,y; A)

> [I(t,y-Tr; A) - I(t,y--r; A)] + [I(t .y-r; A) - I(t ,y; A)]

I -K IIA-AII + a(e)-r I | c -c | ,

a contradiction. On the other hand, if y > y+-r, then

|c-c | = I(t ,y; A) - I(t ,y; A)

> [I(t ,y; A) - I ( t , y+Tr; A)] + [I(t,y+T; A) - I(t,y+T; A)]

> a(e)-r - K IIA-AII > | c -c | .

It follows that y € [y-e, y+e], which proves (15.7) and thereby the Lipschitz

continuity of U'(t,»; •) at (c,A).

Now let D be a compact subset of (0,«>) x (0,<»)J and define

r = {(U'(t,c; A),A) | (c,A) € D}. Because U'(t,*; •) is continuous, T is a

compact subset of M, and we can repeat the above proof with fc(r), a(e(F) ,F)

and (15.4) substituted for e, a(e) and (15.5), and with p,K chosen so that

(15.6) holds for all (y.A), (y,A); here y € [y - e(r), y + e(O],
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HA - All < p, and (y,A) is an arbitrary point in T. Then for (c,A) € T and

(c,A) € (O.co) x (0,«>)J such that |c - c| < | a(e(r) S) e(O and

HA - All < p, relation (15.7) holds.

Being the composition of locally Lipschitz functions (see (13.2)),

,»;O is itself locally Lipschitz for each j. D
J

For t € [0,T], c € (0,«) and j € {1 J}, we partition (0,<»)J into

three sets:

(15.8) P.(t.c) = (A € (0,«>)J| U'(t,c; A) < A.U'.(t.O)},
J J J

(15.9) B^t.c) = {A € (O.«)J| U'(t,c; A) = XjU^t.O)}.

(15.10) Zj(t,c) i {A € (0,»)
J| U'(t,c; A) > X^U^t.O)}.

Conditions (15.1) - (15.3) show that

(15.11) A € P.(t.c) <=> c.(t,c; A) > 0.

Both P.(t,c) and Z.(t,c) are open, while B.(t,c) is relatively closed in

(0,«)J.

Given a nonempty set K C {1.....J}, we define the open set

•c) = [ n P.(t.c)] n [ n z.(t.c)].
j€K J jCK J

For A € D^t.c), the definition (10.1) for the representative agent utility

function reduces to
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(15.12) U(t,c; A) = max{ 2 X.U.(t,c )| c. > 0 V j € K, 2 c. = c}

J € K J J J J j € K J

We can use this representation in the proof of Lemma 13.1 to obtain the

following extension of that result.

15.2 Lemma. Let K be a nonempty subset of {1.....J}. For all t € [O.T],

c € (0,»), A € D^(t.c) and v = (Vj v.) € RJ, we have for all j € K:

9c
(15.13) 2 v, ̂  (t,c; A)

i€K x aAi

UJ(t,c.(t,c; A)) -,-1 v± v^ U^(t,c.(t,c;A))Uj(t,Cj(t,c;A)

U^(t,c.(t,c; A))J j € K
(X7~ X j } Ui'(t,ci(t,c;A))m'(t,cj(t,c;

A))

A))

15.3 Lemma. Let A, A € (0,<»)u be given, choose j Q € {1.....J} as in

(13.14), and define A(a); 0 $ a < 1 by (13.10). Then for all t € [O.T].

c € (0,<»), the function

(15.14) y (t,c; A(a)) ̂  1
f . U'(t.c; A(a)), 0 i a < 1,

u Jo

is nonincreas ing. Furthermore, if there exist in € {1,...,J} and a € [0,1]

with the properties

j i
(15.15) — - < — - , c. (t.c; A(a)) > 0,

J0 0
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then

(15.16) y (t ,c; A) > y (t ,c; A).
J0 J0

Proof: We simplify notation by writing y(a) = y. (t,c; A(a)). We know from

Lemma 15.1 that this function is almost everywhere differentiable on [0,1].

Direct computation yields for i = 1.....J:

X (a) y(a) XX X X (a)
0 0 i 0 0

—5T77T5;— ] = y(a) " 5 — ( ) + y'(a) x fnf\ .
1 A.^CtJ A. A . 1

1 x J o
a.e. a € [0 ,1 ] .

From (15.14) we have

(15.18) c = I ( t , X (a)y(a)) = 2 I ( t . " , > ) .
Jo i = 1 i Ajlo)

an expression we wish to differentiate with respect to a. Now

Ij(t.y) = <

0

0<y<U i (t.0).

y > u-(t.o).

and I!(t,») has left- and right-hand derivatives at U'.(t.O) equal to

1
U-'(t.O) and 0, respectively. Define
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\. (a) y(a)

{ a € [0'1]l °A.(a) = ̂ (t,0)}.

Let a € [0,1] be such that y'(a) is defined, and let {OTJWI C [°.l]Ma) b e

a sequence converging to a. We may choose k large enough so that for those

values of i for which a € N., the interval between a and a, does not

intersect N.. For such k, choose 6^ ' between

J0
(«) Y(a)

so that

and

J
-) -

>0
(a) y(a)

X.(a)

X (a) y(a)

i

If a € N., then 9^' t U!(t,O). From (15.18), (15.17), we have
1 K X

(15.19) 0 = lira 2 I!(t,e

( ak ) Xj (a) y(a)l

< 2 11. I.(t.
k

i
0

T
0

( a ) y ( a )

X.(a)

S 2
i
0

J0,

J0

A (a)
J0

A. (a)

+ 2 I!(t,
{i|aCN.}

J0
A (a)
J0

2 c^
Aj(a) A A
1 2 J 0
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If y'Oz) I °. relation (15.19) can hold only if:

Vj («) y(a) x Vj

(15.20) V i € {1.....J}, ° , . < U!(t,O) => J- =-^andy'(a) = 0.
Aiv ' A. X..1 h

Because

j Xj (a) y(a)

1=1 x Ai ( a ) X V a J

X (a) y(a)
J0

we must have I.(t, \ f \ ) ̂  ̂  ^or s o m e 4» this is equivalent to

Xj («) Y(a)

° x , . < U^(t.O), and shows that y'(a) < 0 for a.e. a € [0,1].

Furthermore, if io and a with properties (15.15) exist, then there exist

0<6£aip<l with 6 < /3 and c± (t.c; A(a)) > 0; V a € [5,/3]. But

c. (t,c; A(a)) > 0 is equivalent to
X0

X. (a) y(a)

so that (15.20) is violated by i = iQ. It follows in this case that

y'(a) < 0; V a € [6,0]. D

15.4 Lemma. Under the assumptions and notation of Lemma 15.3, the function

a ** c. (t.c; A(a)) is nondecreasing on [0,1] for all t € [0.T] and
J0

c € (0,«).
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Proof• The Lebesgue measure of the product set

J J
U {(c.a) € (0,«) x [0,l]| c = I(t. A (a)U;(t,O))}= {(c,a)|A(a) € U B.(t,c)}

is zero. We may choose a set C C (0,») such that (0,«»)\C has Lebesgue

J
measure zero, and for every c € C the set {a € [0,1] | A(a) € U B.(t,c)} has

j=l J

measure zero. Denote by A(c) the complement in [0,1] of this set. For c €

C and a € A(c), there exists a nonempty set K(c,a) C {1....J} such that

A(a) € DR, a>(t.c). If j o € K(c,a), then c. (t,c; A(0) is identically

zero in a neighborhood of a. If j Q € K(c,a), then (13.14), (13.16) and

Lemma 15.2 imply that

(15.21) %-c (t.c; A(a)) = 2 (A. - A.) ̂ - ^ (t,c; A(a)) > 0.
J0 i€K(c,a) X * OAi

Because a » c. (t,c; A(a)) is Lipschitz continuous, integration of (15.21)
J0

shows that this function is nondecreasing for every c € C. Since C is

dense in (0,°°) and c. (t,c; A(a)) is continuous in c, the function
J0

a » c. (t,c; A(a)) is nondecreasing for all c € (0,00). D
J0

15.5 Theorem. Assume that J > 2, and that we have U'.(t.O) < °° for some

t € [0,T], j € {1.....J}. . If both A and A are fixed points of the

operator L defined by (12.1), (12.4), then A = TA for some T > 0.

Proof: Let A and A be fixed points of L, define A(a) and F.(a) by
j
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(13.10), (13.11), respectively, and note that Fj(a) = Aj(a)[Gj(a) - Hj(a)],

where

1

G.(ct) = E f x ) . U'(t. c(t); A(a)) c (t, c(t); A(a))dt,

0

V a ) = E J xrWu>{t' *(t): A(a))
0

If c.(t, c(t); A(a)) > 0, then (15.3) shows that
J

c(t); A(a)) = UJ(t. Cj(t,c(t);

SO

1

G.(a) = E J U^t.c^t.cCt); A(a))) c.(t, c(t) ;A(a))dt

0

With j' chosen to satisfy (13.14), we have from (3.7) and Lemma 15.4 that

G. (0) < G. (1). From Lemma 15.3 we see that H. (0) > H. (1), but because of

(13.12), G. (0) - H. (0) = G. (1) - H. (1) = 0. Taken together, these facts
Jo JQ J 0

 J0

imply

(15.22) H (0) = H (1).
J0 J0

Suppose that A is not a scalar multiple of A; then we may choose
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A A
JQ XQ ^

in € {1.....J} such that < . Since c. (t,G>) is positive on a set of

positive Lebesgue x P measure, H. (0) > 0. Relation (13.12) now implies that

G. (0) > 0, from which we conclude that for some set T C [0,T] x Q with
X0

positive Lebesgue x P measure,

c. (t,c(t,o>); A) > 0 V (t,w) € r.

According to Lemma 15.3,

'(t,c(t,w); A) > ̂ U'Ct.cCt.u); A); V (t,w) € T.
J0

Finally, we appeal to (3.9) to assert that c. (t,w) > 0; V (t,w) 6 T. It
J0

follows that H. (0) > H. (1) .contradicting (15.22). •
J0 J0
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