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Abstract

Let a(G ) denote the independence number of the random graph G

Let d = np. We show that if e > 0 is fixed then with probability going to

1 as n -» °°

< l d l l d - Iog2

provided d < d = o(n), where d is some fixed constant.
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This note is concerned with the independence number of random graphs. As

usual G denotes a random graph with vertex set V = {l,2,...,n} in

which each possible edge is independently included with probability p = p(n).

The independence number a(G ) is the size of the largest set of vertices

not containing any edge. This has been studied by, inter alia, Matula [5],

Grimmett and McDiarmid [4] and Bollobas and Erdbs [3]. The aim of this paper

is to prove the following

Theorem

Let d = np and e > 0 be fixed. Suppose d < d = o(n) for some

sufficiently large fixed constant d . Then
e

p ) - |i ( l o g d _ loglogd - Iog2

with probability going to 1 as n -» °>. D

(All logarithms are natural). The case p constant is well understood and

2/3
the content of the theorem is already known for d > n (see Bollobas [1],

[2]). The upper bound of the theorem is already known and straightforward to

prove (see [1] Lemma XI.21). The lower bound is close to what one might

expect and our aim is to prove it and demonstrate what may turn out to be a

useful approach for other problems.
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Let m = [ ^—o-L n' = |n/mj and P. = {(i-l)m+l, im},

(ldr x

i = 1,2, . . . ,n' be a partition of V , . Let a set X C V , be
r mnf - mn'

P-independent if it is independent and satisfies |X D P. | < 1 for

i = 1,2,...,n'. Let |5(G ) < a(G ) denote the size of the largest

P-independent subset of G (It was Luczak who suggested j3 in place of

a. This leads to a strengthening of our original result).

Let Xp denote the (random) number of P-independent sets of size 2 in

G . The theorem follows from the following
n,p

Lemma

(a)

Let p = E(p(Gn )). Then

2
Pr(|P(G ) - fi\ > t) < 2exp{ ^ - ~ - } for t > 0.

n > P 2(logd)2n

(b)

Let k = §2- (logd - loglogd - Iog2 + 1 - | ) . Then

d

D

Indeed, putting t equal to t0 = en/6d in (a) and comparing with (b) we see

that /3 > k - t^. We then apply (a) again with t = tQ to obtain the lower

bound of the theorem.

(In the following, inequalities need only hold for sufficiently large d and

sufficiently small values of p).



Proof of the Lemma

(a)

Using a martingale inequality of Azuma, (see Stout [7]), Shamir and

Spencer [6] have shown that

2

Pr(|Z - E(Z)| > t) < 2e~t / 2 n for t > 0

for any random variable Z defined on G satisfying

|Z(G) - Z(G')| < 1

whenever G' can be obtained from G by changing the edges incident with a

single vertex. This is clearly true of the random variable a(G ).
n, p

The same proof yields

2
Pr( |Z - E(Z) | > t) i 2^* /2n'

for any random variable Z defined on G which satisfies
n,p

|Z(G) - Z(G)| < 1

whenever G can be obtained from G by changing some of the edges incident

with the vertices in a single P.. This is clearly true of P(G ) and (a)

follows.

(See Bollobas [2] for a superlative use of a martingale inequality in the

solution of the chromatic number problem for dense random graphs. Also Shamir



and Spencer [6] prove a sharp concentration result for the chromatic number of

sparse random graphs by using an '(a) type' inequality plus a f (b) type'

inequality with an unknown k.)

(b)

We use the inequality

(1) P r ^ > 0) >

Now

E ( x k } =

and

k fkW*)
O lr rk'—ft \r—P *>9' * 9 '

•"-*v'*i y S - ^ i ^ i # -Z l o i i i A jm i i — p i

Thus

(k )m

2 k

(2) < exp{2(logd)^} 2 u

w h e r e



2
Observe that (A/£) is maximised at t, = A/e and so

(3)

and

,k 6 logd r*d

Case l: 0 < 2 < k/2

Here exp{p—} < Jd" and so, by (4)

u < .6 k logd.I

. r6klogd, , ,»>
< exp{ 9—f-} . by (3)

(5)

Case 2: k/2 < £ < ~ (logd - loglogd - 3)

By (4),

< f12 logd

,12 logd d ^

e logd

(6) < 1.



Gise 3: ?p (logd - loglogd - 3) < i < k.

„ "e m(l+l)(n'-2k + l+l) - (21+1)d,

Now - = -* " g e x p<~ 2n }

Hence

3 2
, kn e (logd)
- 9 9 '
(k-«r a

2 £ 1/2
Now observe that (A/£ ) is maximised at i = (A/e) and so

3/2

(7) " *?f

Now

2
k = (k )m exp{- 2^-

exp{- {£r + (
k
T)

2)}m exp{
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= ((1 - 6(d))d£ / 3)k

8

where lim 6(d) = 0

(8) > 1 for d sufficiently large.

Part (b) follows from (2) and (5)-(8). D

Before the introduction of Azuma's inequality into the study of random graphs

we would have to try something else if the variance 'blew up*. The proof of

our theorem shows that in spite of this something can sometimes be gained.
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