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One of the most significant open problems in the theory of
combinatory logic is the so-called basis problem. That is, given a
finite set § of proper combinators, is $§ combinatorially complete?
It is known that this question is undecidable when we only require
that 8 be a finite set of normal combinators. In this study, we
will look at the basis problem modified with respect to certain
restrictions on the sorts of combinators that we allow in §. It
should be noted that although one may think of combinators as A
terms, we will attempt to consistently treat them as combinators
with reduction rules.

In Curry and Feys, the "effect" of a proper combinator is
described according to the action on the arguments in the reduction
rule of the combinator. The definitions are fairly intuitive: a
(non—-identity) proper combinator must have at least one of
permutative, selective, compositive, or duplicative effect. We
will restrict our attention to a special class of proper
combinators which we shall say have pure effect, meaning that each
combinator has only one effect. We should note that for this paper
we will consider an identity combinator as having no effect, and
hence in particular as not having any pure effect.

We begin by giving a generalization of the following result of
Statman: every proper combinator is definable from B, I, Ci, any
proper combinator with selective effect, and any proper combinator
with duplicative effect. We will show that Cx may be replaced by
any proper combinator with pure permutative effect and the result

will be the same.
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Remark: (The use of T-conversion) For a proper combinator P with
pure permutative effect, let p = max{i€l..order(P) : m(i) #i},
where T is the permutation associated with P. Let X be the proper
combinator with pure permutative effect associated with the
restriction of ® to 1..p. Then clearly X =1 P. Thus, we may
assume that P has the property that its last argument is not
"fixed" under fB-reduction. We also assume that I is present since

every identity combinator is T -equivalent to I in this way. //

Let 8 be the set {B,I,P}, where P is any proper combinator
with pure permutative effect of order p such that the
corresponding permutation ® € Sp does not fix p. Then we have the

following

Lemma 1 : If there exist Qg,..,Qx € 8% such that Q_xQ;Qry = vx,

then Cx € 87

Proof (By induction on k)
(Basis of the induction)

If k = 0, then Cx = Q, € 8%
(Inductive step)

Let k € N be given and suppose the result holds for
this value of k. Let Qg,..,Q/,Qx+1 € st be given such that
Qo%Qq1 "QxQx4+1Y = yx. Then note that
QoxQ1 B Qox(IIQq)

B (BQ;;:()P);'"IQ:L , where B is an appropriate

applicative combination of B's ,

B TI(BQ,x)IIQ

) -1



B Pll,l'"llp_l(QQox) ,for some U,, ..,llp_l € s,
g BRI U 1) (BQ,)x
Hence, B(PW; W, 1) (BQ,)xQy"Qy41Y = Y%, so by the

inductive hypothesis, Cx € st . |

Theorem 1 : B and I along with any proper combinator with pure
permutative effect generate all proper combinators without
selective or duplicative effect.

Proof
Let P be a proper combinator with pure permutative effect as

before and let j := n’l(p) . Then clearly,

yx g y(%‘;(%f)
13(— ByI--Ix , where B is an appropriate applicative
combination of B's ,
g w(my)l---xx

wip)-1

B pul---uj_lxnjﬂ---up(zsy) , for some W4, ..,llp e st
g B(PU; Wy xUy,,~U,) By
g B'Bel; U xlly,) ~U By , where B is an
appropriate applicative combination of B's.
Hence, B'BPlll"'llj_lxllj+l'"llpBy = yxX, S0 by Lemma 1, Cx €

{B,I,P}+, and since {B,I,Cx} generates all proper combinators

without selective or duplicative effect, then so does {B,I,P}. ]

We may now combine this result with the previously mentioned
lemma of Statman to get the following characterization of a class

of combinatorially complete sets



Corollary : A set containing B, any identity combinator, any
purely permutative proper combinator, any selective proper
combinator, and any duplicative proper combinator is (with 1)

combinatorially complete. ]

An obvious question to follow this result is to ask if the
condition that B be present is really necessary. The answer to
this question is as yet unknown. But if we relax the problem to one
of finding sets of proper combinators with pure non-duplicative
effect that generate all non-duplicative proper combinators, then
we will show that one can answer this question efficiently.
Clearly, from the above results, we can establish that any set of
proper combinators containing B, I, a combinator with pure
permutative effect, and a combinator with pure selective effect
generates all proper combinators with non-duplicative effect. But
if we replace B with an arbitrary combinator with pure compositive
effect, then we do not necessarily have a set of combinators that
generates all non-duplicative proper combinators. For example, it
will be a consequence of this paper that B ¢ {I,P,S,B}", where the
reduction rules of P, S, and ﬁ are Pxyz — zyx, Sxyz — x, and

Bwxyz — w(xyz), respectively.

Remark (Addendum to remark on the use of 1) Since 1 is present,
we may assume (by reasoning similar to the previous remark) that
each proper combinator with pure compositive effect does not leave

the last argument unbound by parentheses in its reduction rule. //



In order to give a precise charaterization of when such a set
generates all non-duplicative combinators, we first must describe
each proper combinator with pure effect in terms of certain

parameters.

Parameterization of proper combinators with pure effect:

The parameters that follow each correspond to the change in
the number of terms following a particular "marked" argument of the

combinator in its reduction rule.

(1) (Permutative effect) Let P be a proper combinator with
pure permutative effect, and let p be the order of P. Then there
is a permutaion ® € Sp such that the reduction rule for P is
le.nxp — X (1) “Xn(p) - Let d(j) = ®(j)-j for each j € 1..p.
Note that since =w(p) #p, then d(p) < 0.

Example: Let P be the combinator with the reduction rule

PxixoxX3xXg™> X4X1X3%Xp. Then d(1)=1, d(2)=2, d(3)=0, and d(4)=-3.

(ii) (Selective effect) Let S be a proper combinator with
pure selective effect, and let k be the order of 8. Then there is
a positive integer t < k and a monotone function s:1..t — 1l..m
such that the reduction rule for P is Pxjxp — X5 (1) "Xs(t) - Let
0(j) = (k-s(j))—-(t-j) for each j € 1..t. Note that S is
parameterized in terms of the result rather than the argument of
its reduction rule.

Example: Let S be the combinator with the reduction rule

Sx1xpx3 — x1x3. Then 0(1)=1 and 0 (2)=0.



(iii) (Compositive effect) We will give two equivalent
formalizations of the parameters for a proper combinator with pure
compositive effect in order to simplify later arguments. Again the
strategy is to count the change in terms trailing a marked variable
in the reduction rule of the combinator. Both (a) and (b) below
count this change and hence are equivalent.

(a) Let B be a proper combinator with pure compositive effect,

and let n be the order of B. Then for each j € 1..n, there exist

terms P, . "g)m(j) such that BI'"I_zxj+1'"xn —g 12)1'"2)m(j) . Let
31
b(j) = (n-j)-m(j) for each j€ 1l..n
(b) Let P be a proper combinator with pure compositive effect,
and let n be the order of B. Then for each j € 1..n, there exist
terms 91,..,9m+1 such that z is a subterm of each @h, and
Bxl'"xj_lzxj+1'"xn —*ﬁ @1 ; Where 9m+1 = z, and for each h€ 1..m,
- yh_..xh h ...yh :
@h = x 1 x j(h) _19h+1$ j(h) +1 x l(h) for suitable terms
&hl, R xhj (h)-1r &hj (h)+17 -7 &hl (h) s where &hl is always one of
m
the variables X, if j(h)>1. Certainly, }E(l(h)—j(h)) counts the
h=1
number of terms trailing variable x: on the right hand side of the

J

reduction rule for B and hence is equal to m(j) from (a) above.
m
Thus b(3) = (n-3)-9,(1(h)-3(h)) for each j€Ll..n.
h=1
Also, note that since the final argument x, of B is assumed

to be bound by some parentheses, then 3 W€ 2..n-1 such that

BI'"IXn—fn'"Xn = x-m(Xn—m+1"%¥p) - Denote BI1 by B* and note
N=-M-1 -
that b(n-M) = Mm-1.

Example: Let V be the combinator with the reduction rule



Vtuvwxyz — t(u(vw)x) (yz). Then the third argument v is
followed by four terms before the reduction and three terms
(w, x, and (yz)) after the reduction for a change of one
trailing term. Hence, b(3)=1. Similarly, b(l)=4, b(2)=2,

b(4)=1, b(5)=1, and b(6)=b(7)=0. //

So let § be a set of proper combinators with pure non-

duplicative effect along with I and let N € Z be the set of

parameters associated with the combinators in §. If we denote the

greatest common (positive) divisor of the elements in N by g, then

we have the following property.

Lemma 2 : Given any X, X,.., %y, U, ..,115 € 8% such that

xoxxl'xr —))h uo,xul'us , then ¥ = 5 m g.

Proof (By induction on the length L of the head reduction

sequence from X _X%,X, to lloxlll"'lls )

(Basis of the induction)

If L=0, then ¥ = §, so ¥ = § mod g trivially holds.

(Inductive step)

Let L € N be given and assume the result holds whenever the
head reduction sequence has length £ L. Let X, X, .., %y,
110,..,115 € 8t be given such that the head reduction sequence
X from X _xX; Xy, to 110_7{111"'115 has length L+l. Note that we

may assume that &O is head normal since otherwise contracting



a redex in io (to get fo*, say) leaves a reduction sequence of
length L from zo*xxl---xr > 110}_{111"-115 , which by the
inductive hypothesis implies that ¥ = § mod g. Also, we may
assume that X_XX; Xy is not a head normal form since
otherwise all reductions are internal implying that ¥ = §.

We consider the four possible cases for the form of &O

Case 1 : Suppose X, = IQ;Q;_q for some i € N anda Q1,4
Qi1 € §*t. Since X, is head normal, then i = 1. Hence X
must be of the form

IXE) -~ Eyp = X% - Ey oy WUy~ . But the head
reduction sequence from XX; Xy to lloxlll'"lls has length L so

by the inductive hypothesis ¥ = § mod g.

Case 2 : éuppose X, = PQ;""Q;_1 for some i € N , Q1r--/Q5-1
€ 8%, and pure permutor P € 8. Recall that we associate the
parameter d(j) with the jth argument of P for each j € 1..p,
where p is the order of P. Since we assume that io is head
normal and X,X%¥,%, is not, then we may assume that ¥ 2 p-i

2 0. Hence X must be of the form

PQ; Qi _1X%; %y —p 2)1'"g)j—lxg)j+l"'g)pxp—i+1"'zr
-y lloxlll---11§ , where j = i+d(i).
But the head reduction sequence from
2)1"'Qj-l*xg)j+12)pxp—i+1"'xt‘ to lloxlll"'lls has length L, so
by the induction hypothesis (p-j)+r—-(p-i) = § mod g. That is,
r-d(i) = § mod g, which, since g divides d(i) by definition of

g, implies that ¥ = § mod g.



Case 3 : Suppose X, = 8Q1"Q;_; for some i € N , Q1/--4Q4-1
€ 8%, and pure selector S € §. Recall that we associate the
parameter O (j) with the jth variable in the result of the

reduction rule of 8 for each j € 1..t. Since we assume that
X

that Y > k=i > 0. Note that if i##s(m) V m€l..t , then

o is head normal and X,X¥,Xy is not, then we may assume
onfl"'fr "")h ’m and ’m_»h uoxul"US ’ which is a
contradiction since X does not occur in M. Thus I m€l..t
such that i=s(m). Hence X must be of the form

PQ17Qi1 X%1.Xp —p D17 D141 D Xy—i 41 ¥y

> Uoxlly U

But the head reduction sequence from
2)1'"Qj_lxg)j_,_l"'Qtfk_i*_l"'xr to noxul'us has length L, so
by the induction hypothesis (t-m)+¥-(k-s(m)) = § mod g. That
is, r-0(m) = § mod g, which, since g divides 0 (m) by

definition of g, implies that ¥ = § mod .

Case 4 : Suppose X, = BQ;Q;_1 for some i € N , Q1/-+r Q51
€ 8%, and pure compositor B € §. Recall that we associate

D argument of B for each j€1..n,

the parameter b(j) with the jt
where n is the order of B. Since we assume that io is head
normal and X, XX ¥p is not, then we must have that ¥ 2 n-i
20. Note that in order for the head reduction sequence to
terminate in the form lloxlll"-lls , the @i's associated with B
and X (as described in the preceding parameterization

discussion (b)) must come to the head in order in X. Hence X



must have the following form

Bo; 0 1X%; Xy =y 0:%,_ ;4 Xy

= 91,-9015(1)-1929%5(1) 417911 (1) Fn-i+1 Fr
>y 92921"'22t(2) (Call this reduction sequence X,)
921"'2)2j(2)-1932)2j(2)+1"'2)21(2)221""Q’2t(2)

>y ehﬁhl'"ﬁht(h) (Call this reduction sequence X))

97105 (n) 1804195 (n) 417 D1 () BP0 ()

-, O 8m, --gm (m) (Call this reduction sequence X))
= g)ml...gmj (m) —1X2)1j (m) +1...9ml (m) gml...gmt (m)
-y 1102{111'"115 , where X is a subterm of @h for each
h € 1..m.

Since each head reduction sequence Xh has length £ L, then by
the induction hypothesis (applied to each sequence), we have
that t(h+l) = t(h)+(1(h)-j(h)) modg V n € 2..m-1, t(2) =
r-(n-i)+(1(1)-3j(1)) Mmod g, and t(m)+(l(m)-j(m)) = § modg.
Hence by iterated substitution it is easy to see that

m m
£(2)+Y,(1(h)-j(h)) = s mod g. That is, ¥-(n-i)+Y,(1(h)~3(h))

h=2 h=1
= § mod g, which is precisely r-b(i) = § mod g. And since g

divides b(i) by definition of g, we have that ¥ = § mod g. |

10



We next give a constructive algorithm (similar to Curry's
abstraction algorithms) for building combinatory terms in a
predetermined way. Each step in the algorithm takes as arguments a
term of the form QOIleQq with "marked" subterm Y, a proper
combinator with pure non-duplicative effect, and a natural number
that refers to one of the arguments (or variables in the result, in
the case of selective effect) in the reduction rule of the
combinator. The algorithm then returns at each step a term of the

form LB Y28, T8 We refer to the subterms following the marked

ql
subterm as the trailing terms. We should note that we are
generally only interested in the number of trailing terms, not in

their actual respective forms.

: . . £t} . ] B- . ] {t]
Let a term of the form QOXQl'"Qq be given. The following labels

serve as references to each step in the algorithm.

[P:3] If q 2 p-j, then we note that Q,Y0;Qq
— I-I(I-—I “ee
PRy Ty (4) 1 (T IQY) Wy_g (5) 41 WpQp 541" Qq
*
B BT (Rl Wy g5y ) TTOYI S 5y 41 WpQp5417Qq
Hence, let 2B, be ﬁ*(Pujj"nj_d(j)_l)i:fQo , and the

number of trailing terms becomes g + d(Jj).

[S:j] If q 2 k-j, then we note that QOXleQq

yei

g sty Uy g (4)-1 (XTI Wy g (4) 41 UkQx—54+17Qq

11



*
pe B sty Uy i (4) 1) T IQIR i (4) 42 WyQx—5417Qq
Hence, let I8, be B*(Slll'"llj_o«(j)_l )I-IQ, , and the
-2

number of trailing terms becomes q + 0 (j).

[B:3] Let Bj = B;?Tg . Then ﬂjxj'"xn = xjg)l---g)m(j) for some terms
Dir- Qm(j) as in the parameterization (a) of B. If g 2
m(j), then we note that QOXQl"'Qq
B (%QOI)Ql"'Qq
e (TIQLY) ([§==i\,Q1]91)'"([§==f,Qm(j)]gm(j))Qm(j)+1"'Qq
B By (TI0Y) Wy Wy 500 (4) 4179
g B BT 10 Yy Wy 500 () +17Qq + where (X:=I,¥] z is
the result of substituting ¥ for the last variable in Z and
I for all of the other variables in Z. Hence, let 2330 be

ﬁ*BjI-"IQO , and the number of trailing terms becomes

g + n-j-m(j) or g + b(3j). //

Lemma 2 : If g = 1 and if there is some pure compositor B in 8,

then VX € 8, 3 1 € 8%, such that WUx >g XxI.

Proof (By construction) .

Let X € 8* be given. Since g = 1, then 3 a,b € W such that
ged (a,b) = 1. That is, 3 1,J € Z such that IaG + Jb = 1. Let
na==mi1\{m€N: -I-m*d(p) 2 0} and nb==‘min{m€|N: -J-m*d(p) 2 O},
and let I't= -I-ng*d(p) and J':= -J-np*d(p). Then clearly I',J'€N
and na*a+nb*b 2 0. Hence

I'*a + J'*b + 1 = - d(p) *(ng*a+np*b). (i)

The general strategy will be to start with ¥XxI and apply the

12



algorithm step associated with @ precisely I' times , the step
associated with b precisely J' times, and then [P:p] precisely
(na*a+nb*b) times to leave no trailing terms. We must however
guarantee that there are enough trailing terms at each step to
insure that each may in fact be carried out. (Note the restrictions
in the algorithm description on the number of original trailing
terms necessary to perform each step in the construction.) For
ease of exposition, we will use an extreme brute force approach of
accomplishing this.

Recall that ™ is the positive natural number corresponding to
B* (B* = BI--I). 1If we apply [B : n-m-1] to XxI, precisely B =

n-m-1

(—d(p))*(I';g')*max{n,k,p} times, then there will be 1+B*(th-1)
trailing terms (in particular, trailing I's). Since G € N, then
d a combinator Q@ € 8 such that @ 1is the parameter associated
with the, say, jth argument (or variable in the result, in the case
of selective effect) of the reduction rule of Q. Similarly, since
b € ¥, then 3 a combinator V € 8 such that b is the parameter
associated with the, say, ith argument (or variable in the result,
in the case of selective effect) of the reduction rule of V. Since
1+B* (M-1) 2> I'*max{n,k,p} , then if we apply [Q:j] I' times to
the term with 1+B*(M-1) trailing terms, then we will get a term
with 1+B* (M-1)+I'*@ trailing terms. Since 1+B*(M-1)+I'*a 2
J‘*max{n,k,p}  then if we apply [V:i] J' times to the term with
1+B*(M-1)+I'*@ trailing terms, then we will get a term with
1+B* (M-1)+I'*@+J'*b trailing terms. But from (i) and the
definition of B, this is exactly B*(M-1)-d(p)*(ng*@+np*b) =

-d(p) *C trailing terms, where C := (na*a+nb*b)+(1'+J')*max{n,k,p}.

13



Certainly C € N, so if we apply [P:p] C times to the term with
1+B* (M-1)+I'*@+J'*b trailing terms, then we will get a term WUx

with 0 trailing terms such that Ux >g XxI, as desired. [ |

Theorem: (a) If g=1, then B € §%.

(b) If g#=1, then Cx ¢ S%t.

Proof:

(a) Suppose g=1 and that there is a compositor B € §. Note
that x(yz) = ﬁ*xgﬁﬁgyz. But by M-2 applications of Lemma 3,
there exists Qg € 8% such that Qox = ﬁ*x;;ég. Hence, Q. xyz =

"o

x(yz), so B =Q, € st. ’

(b) Suppose g#1. Assume that Cx € §*- That is, there
exists a combinatory head reduction C*xy;—»p ¥xX. But by Lemma 2,

this implies that 1 = 0 M8d g, which is impossible since g#1.

Therefore, Cx ¢ S™T. |

Therefore, we have found necessary and sufficient conditions
for such a set § to generate all proper combinators without

duplicative effect.

Corollary : A set $ (containing an identity) of combinators with
pure non-duplicative effect generates all combinators without
duplicative effect if and only if combinators with each effect

are present in § and g = 1.

14



Proof

(€)

(=)

Suppose combinators of each effect are present and g = 1.
Then by Theorem 2 (a), B € $*. Since B and I are present
along with some proper combinator with pure permutative
effect and some proper combinator with selective effect in S,
then by the corollary to Theorem 1, all combinators without

duplicative effect are in S87¥.

Suppose 8 generates all non-duplicative combinators.
Then 8§ certainly contains at least one combinator with each
other effect. And, in particular, Cx € st. Hence, by

Theorem 2 (b), g = 1. B

15
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