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1. HfTROBOCTIOIf

In the recent article [10] we developed a complete theory, based on

stochastic calculus, for the consumption/investment problem of a small

investor with a general utility function, in a financial market where stock

prices are modelled by semimartingales. Such generality notwithstanding, we

were able to provide explicit expressions for the optimal consumption policy

and terminal wealth of the agent. The present paper draws on the methodology

of [10] to construct equilibrium in a multi-agent economy, and to establish

uniqueness.

Our model of equilibrium is inspired by the work of Duffie and Huang [2],

[3]. [4], [9]. We suppose there is a finite number n of agents (small

investors) who receive endowment streams denominated in units of a single,

infinitely divisible commodity; the latter is traded at a "spot price" \p, and

each agent attempts to maximize his expected total utility from consumption of

this commodity, over a finite horizon [0,T]. The agents can borrow and invest

in the financial assets in order to hedge the risk associated with their

endowments. An equilibrium spot price process yp is one which, when accepted

by the individual agents in the determination of their optimal policies, calls

for the commodity to be entirely consumed as it enters the economy and for all

the financial assets to be in zero net supply.

In the stochastic, dynamic model under consideration, we provide a very

precise characterization of equilibrium in terms of the vector

A = (A- X ) of weights used by a fictitious "representative" of the n

agents. Roughly speaking, this representative agent acts as a proxy for the

individual agents (with utility functions U, (t,»), 1 < k < n) by receiving

their aggregate endowment, solving his own optimization problem with utility
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function

(1.1) U(t,c; A) = max 2 X.U. (t.c.)
c1>0,...,cn>0 k=l

C.+...+C =C
1 n

and then apportioning his optimal commodity consumption process to the agents,

instead of actually consuming it. The search for equilibrium is reduced to a

search for an appropriate vector A € (0,00) in (1.1); cf. sections 7, 8.

This allows for equilibrium to be constructed in 1R , rather than in some

infinite-dimensional functional space (as, for instance, in £4], [5]).

Under the condition that c ** cU'(t.c) is nondecreasing for every

k € {l,...,n}, the lattice fixed point theorem can be used to establish the

existence of equilibrium, and a separate simple argument settles the question

of uniqueness (section 9). It turns out that the equilibrium spot price is

determined up to a multiplicative constant, in a way that is affected by the

coefficients of the financial market; by constrast, the equilibrium allocation

of the commodity among agents is uniquely determined, and only by the

individual endowments and utilities (the so-called primitives of the model).

Some explicit computations are carried out in section 10.

For simplicity and economy of exposition, we consider utility functions

with U'(t,O+) = » and exclude capital assets from the model. A full account

of the theory without these restrictions appears in [11].

2. THE FIHANCIAL MARKET

Let us consider a market in which d+1 assets are traded continuously.

t

One of them is a pure discount bond, with price PQ(*) = e*P{ r(s)ds} at time
J 0



t. The remaining d assets are risky stocks, and the price-per-share P.(t)

of the i stock is modelled by the linear stochastic equation

(2.1) dP.(t) = P . ( t ) [b . ( t )d t + 2 a i j ( t )dW j ( t ) ] ; i = l , . . . , d .

Here W = (W1.... ,W,) is an R -valued Brownian motion, the components of

which can be thought of as modelling the sources of uncertainty in the market;

W is defined on a complete probability space (fi,?,IP) and on a finite horizon

[0,T], and we shall denote by {9 } the augmentation of its natural filtration

W
9 = a(W(s); 0 < s < t). The interest rate r(») of the bond, the
\,

appreciation rate vector b(#) = (b.. (•),..., (b,(#)) of the stocks, and the

volatility coefficient matrix a(») = {a. .(•)}1<. .<H, will all be bounded

processes, progressively measurable with respect to {^t}- * n addition, we

shall impose the strong nondegeneracy condition

(2.2) f*cr(t,<o)a*(t,w)f > 6 llfll2; V f € Kd, (t,w) € [0,T] x Q

9£

for some 6 > 0. Under (2.2), the inverses of both a(*) and a (•) exist and

are bounded; in particular, the relative risk process

G(t) = (a(t))"1[b(t)-r(t)l>], 0 < t < T, is bounded and progressively

measurable.

It follows then from the Girsanov theorem (e.g. [12], section 3.5) that

the exponential supermartingale

(2.3) Z(t) = exp{- f 6*(s)dW(s) - | J Il9(s)ll2ds}, ?t; 0 < t i T,
0 0



is actually a martingale, and that

(2.4) W(t) = W(t) + f 0(s)ds; 0 < t < T,

0

is Brownian motion under the probability measure IP(A) = E(ZL1.); A € ?

Under this measure, the discounted stock price processes

(2.5) Q.(t) = P(t)P.(t) , with /3(t) £ (P0(t))
-1 = exp{- J r(s)ds}

0

are martingales, a fact of great importance in the modern theory of continuous

trading (cf. [7], [8], [13] for its connections with the notions of "absence

of arbitrage opportunities" and "completeness" in the market model). We shall

see in Remark 6.1 that the process

(2.6) f(t) = P(t)Z(t) ; 0 < t < T

acts as a "deflator", in the sense that multiplication by f(t) converts

wealth held at time t to the equivalent amount of wealth at time zero.

3. THE ECONOMY

The economy we envision consists of

(i) the financial market of section 2,

(ii) a single consumption good or "commodity", traded at the spot price

; 0 < t < T}, and



(iii) a finite number n of agents (small investors). Each one of

these receives an exogenous endowment at the rate

e, = (e. (t); 0 < t < T}, denominated in units of the commodity;

he can either consume this endowment, or turn it into cash and

invest the proceeds in the financial market. The goal of each

agent is to maximize his expected total utility from consumption,

subject to having nonnegative terminal wealth.

The equilibrium problem for such an economy is to determine a spot price

\f> so that the markets "clear" when each agent behaves optimally and the

commodity is traded at the price \J/. We shall provide a very precise solution

to this problem (sections 7-9), after having presented the explicit solution

of the individual agent's optimization problem in the manner of [10] (section

6).

Let us list our basic assumptions* the commodity endowments (e.. ,. . . ,e )

are positive and {? }-progressively measurable processes, and the aggregate

A n

endowment e(t) = 2 ^i_(t) satisfies

k=l K

(3.1) 0 < k < e(t) < K ; V 0 < t < T,

for two finite constants K > k. On the other hand, the spot price process yp

is supposed to be positive, {? }-progressively measurable, and such that the

"deflated" spot price £\J> is bounded away from zero and from above (as in

(3.1)).

4. THE k*1* AGENT'S SITUATICW

Each agent (say the k ) acts as a price-taker. He views the price



as given, and has at his disposal the choice of an IR -valued portfolio

process ^ ( O = (^vi^) ^ k d ^ ^ anc^ °^ a n o n n e S a t i v e consumption rate

process c,(t), 0 < t < T. These processes are both progressively measurable

T

with respect to {? } and satisfy (ck(t)\//(t) + lhrk(t)ll }dt < <», almost

0

surely. The interpretation here is that ir, .(t) represents the amount

invested, at time t, by the k investor in the i stock.

4.1 Remark: If we denote by ^ ( t ) the wealth of the k investor at time

d
t, then X, (t) - 2 ir, .(t) is the amount that he invests in the bond.

K i=l K l

Neither this amount nor the individual TT, .(t)'s are constrained to be

nonnegative; this means that unlimited borrowing at the interest rate r(*),

and short-selling of stocks, are permitted.

Obviously, the wealth X, corresponding to a given portfolio/consumption

process pair (1"i..ci.) satisfies the equation

d d
>^(t)[ek(t)-ck(t)]dt + 2 7rk.(t)[b.(t)dt + 2

d
(4.1) H\(t) - 2 irk.(t))r(t)dt

= r(t)Xk(t)dt + ^(t)[ek(t)-ck(t)]dt + irk(t)a(t)dW(t)

(cf. (2.4)), whose solution is given as



(4.2) PCtJX^t) = J P(s)*(s)[ek(s) - ck(s)]ds + J /?(s)7r£(s)a(s)dW(s)
0 0

4.2 Definition: A portfolio/consumption process pair 0*1^*0 i s called

admissible, if for the corresponding wealth process X, we have that fX, is

bounded from below and that X^(T) > 0 holds, almost surely. •

Now suppose that the k agent is also endowed with a C ' utility

function U, : [0,T] x (0,w) -» R, which enjoys the following properties for

every t € [0,T]:

(i) U, (t,#) is strictly increasing and strictly concave,

(ii) the derivative U£(t,c) i |^ Uk(t,c) satisfies

lim U£(t,c) = 0 and U^(t,O+) = lim U^(t,c) = «>.

The k agent's optimization problem is to maximize the expected total

T

utility from sonsumption E U, (t.c, (t))dt, over all admissible pairs {^,,

0

that satisfy

(4.3)

0

We shall let i^*0^) denote an optimal pair for this problem, and X, the

associated wealth process.

5. EQUILIBRIUM CONSIDERATIONS

We are now in a position to define the notion of equilibrium.
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5.1 Definition: A spot price process ^ is called an equilibrium spot price

process, if in the notation of section 4 we have

n ^
(5 .1 ) 2 c ( t ) = e ( t ) ; V 0 < t < T,

k=l K

n ^
(5 .2 ) 2 TT ( t ) = 0 ; V 0 < t < T a n d i = l , . . . , d ,

k=l kl

n ^
(5.3) 2 X, (t) = 0 ; V O < t < T ,

k=l K

almost surely. D

These conditions amount to the "clearing" of the spot market, the stock

markets and the bond market, respectively.

6. SOLUTION QFTHE k^1 AGENT'S PROBLEM

Let us consider an admissible pair (^'CTJ* evaluate the corresponding

wealth process X, at the stopping time

m = inf{t € [0.T]; J /^(s)lbr*(s)a(s)ll2ds 2 m} A T

0

for an arbitrary positive integer m, and take expectations in the resulting

expression (4.2) with respect to P. We obtain



p m p m

(6.1) E j *(s)C(s)ck(s)ds = E J ^(s)C(s)ek(s)ds + E[C(rm)Xk(rm)].
0 0

Now we let m -» «>; aximissibility and Fatou's lemma give

limm^[x) E[C(Tm)Xk(T > E[C(1)^(1)] > 0, which coupled with monotone

convergence yields in (6.1):

T T

(6.2) E J C(s)>p(s)ck(s)ds < E J f(s)>p(s)ek(s)ds.
0 0

6.1 Remark: This inequality has the form (and the significance, as we show in

Proposition 6.2) of a budget constraint, which justifies the terminology

"deflator" for the process f of (2.6). It mandates that the expected total

value of consumption, deflated down to the original time, does not exceed the

coresponding quantity for the value of endowment.

6.2 Proposition: Let a spot price process \f/ be given. If (^T.*0],) is an

admissible pair for the k agent, then (6.2) is satisfied; conversely, for

any consumption process c, satisfying (6.2), there exists a portfolio

process TT, such that the pair Oij-tCi.) i s admissible.

Proof: It remains to justify the second claim; for any consumption process

c, satisfying (6.2), introduce the random variable

T

(6.3) Dk = J P
0
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and observe that (6.2) amounts to ED, > 0. Now the IP-martingale

(6.4) iyt) ̂ EI^ - E{\\?t): 0 < t < T,

can be written as a stochastic integral

t

(6.5) jyt) = J P(s)7r£(s)a(s)dW(s)

for a suitable portfolio process ir, , by virtue of the martingale

representation theorem (cf. [12], Problem 3.4.16 and proof of Proposition

5.8.6). Finally, the process

t

(6.6) )yt) = ̂JJ {J P(sMs)[ek(s)-ck(s)]ds
0

is obviously, from (6.5) and (4.2), the wealth associated with the pair

(TT, ,c, ) and satisfies

T
f(t)Xk(t) = Z(t)EDk - E{Jc(s)^(s)[ek(s)-ck(s)]ds|?t}; 0 < t < T,

t

a.s. Both requirements of Definition 4.2 for admissibility follow easily from

this representation.

D

We conclude from Proposition 6.2 that the kt agent's optimization
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problem can be cast thus: to maximize the expected utility from consumption

T

E U, (t,c, (t))dt over consumption processes c, which satisfy (6.2) and

0

[4.3).

The solution to this problem is straightforward; denoting by L(t,«) the

inverse of the strictly decreasing mapping U'(t,*) from (0,<») onto itself,

and using the consequence of the concavity of U, (t,#):

Uk(t,Ik(t,y)) - ylk(t,y) = max[Uk(t,c)-yc]; V (t,y) € [O.T] x (O,-),
c>0

one can show as in [10] that a consumption process of the form

(6.7) ^(t) = Ik(t,ykC(t)^(t)); 0 < t < T

satisfies (4.3) and is in fact optimal, provided that the constant y, > 0 is

chosen so that the budget constraint (6.2) is satisfied as an equality by the

process c,, i.e.,

T T

(6.8) E J C(tH(t)Ik(t,yki:(t)^(t))dt = E J C(t)Kt)ek(t)dt ; k = 1 n.

0 0

In fact, it is not hard to show that for a given spot price process x//, y > 0

is uniquely determined by (6.8)'• the function

T

= E J C(t)*(t)Ik(t,yC(t)*(t))dt ; y € (0,~)

0
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is continuous and strictly decreasing, and maps (0,°°) onto itself. There is

exactly one value y, € (0,«>) for which 3C(yk) equals the right-hand side of

(6.8).

7. CONSTRUCTION OF EQUILIBRIUM

The question now is whether one can find a spot price process ^ for

which (5.1)-(5.3) are satisfied.

7.1 Proposition: Suppose that >// is an equilibrium spot price process and

that the positive numbers y1 ,. . . ,y are defined in terms of it by (6.8).

Then \p and (y*,....y ) must satisfy

(7.1) 2 UtjJ(t)+(t)) = e(t); 0 < t < T
k=l K K

as well. Conversely, suppose that there exist a spot price process \l> and a

vector (y1,...,yn) € (0,«>)
n for which (6.8) and (7.1) are satisfied; then ^

is an equilibrium spot price process.

Proof: For the first claim, recall that the optimal consumption processes are

given by (6.7), for k € {l,...,n}; the spot market clearing condition (5.1)

leads then to (7.1).

For the second claim, notice that for the spot price process \p in

question the optimal consumption processes c,, 1 < k < n are again given by
•N. /v y\. s\

(6.7). Denote by D^, M, , ir, and X, the corresponding processes in

(6.3)-(6.6), which now satisfy ED, = 0, ̂ C 7 ) = °- ^ d observe the a.s.
n ss. n

identities: 2. DL = 0 from (6.3), (7.1); 2 M. (t) = 0 from (6.4); and
k=l *
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n ^
2 X. (T) = 0 from (6.6). Thus (5.1), (5.3) are satisfied, and it can easily
k=l K

be seen from (6.5) that the portfolios TT, , 1 < k < n can be chosen so that

(5.2) is satisfied as well.

•

In order to achieve a further reduction in the characterization of

equilibrium, let us define for every A € (0,<*>)n the function

A n -1
(7.2) I(t,h; A) = 2 I. (t.hX. l); (t,h) € [0,T] x (0,«).

k=l K K

For every t € [0,T], I(t,#; A) is a continuous, strictly decreasing mapping

of (0,c°) onto itself with lira I(t,h; A) = 0, lim I(t,h; A) = «; thus, this

hiO
mapping has an inverse H(t,»; A), in terms of which (7.1), (6.8) are

re-written equivalently as

(7.3) +(t) = ̂ (t;A) = ̂ y H(t,e(t);A) ; 0 i t $ T,

(7.4) EJ H(t,e(t);A)Ik(t, ±- H(t,e(t) ;A))dt = E J H(t,e(t) ;A)ek(t)dt; 1 < k < n,

0 * 00

respectively, with the identification A = (A-, . . . ,X ) = (—,...,—) € (0,°°).
1 n yl yn

Consequently, the search for equilibrium has been reduced to the search

for a vector A € (0t<»)
n which satisfies (7.4); once such a vector has been

found, the corresponding equilibrium spot price is given by (7.3), and the

optimal consumption policies of the individual agents as
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(7.5) ck(t;A) = Ik(t, £-H(t,e(t); A)); 0 < t < T, 1 < k < n

by virtue of (6.7).

From the properties of the function H in conjunction with (3.1), it

follows that C(*)>K#;A) is bounded, both from above and away from the origin.

8 . INTERPRETATIOIf OF H ( t , c ; A)

For every A € (0,°°) , let us introduce the function

n
(8.1) U(t,c; A) = max 2 X.U. (t.c. ); (t,c) € [0,T] x (0,«>)

c1>0,...,cn>0 k=l

c.+...+c =0
1 n

which inherits the basic properties of the individual utility functions

u
k (

t » c ) : fo r every t € [0,T], the function U(t,»; A) is strictly increasing

d_
dc

and concave, and the derivative U'(t,c; A) = «— U(t,c,; A) satisfies

U'(t,«>; A) = 0, U'(t,0+; A) = <». For this reason, U(*,*; A) is called the

utility function of a representative agent, who assigns weights X1 , .. . ,X to

the individual agents in the economy. Furthermore, U enjoys the positive

homogeneity property

(8.2) U(t,c; pA) = p U(t,c,; A); V p > 0.

It is easily checked that the maximization in (8.1) is achieved by

c, = Ik(t, ^—H(t,c,; A)), so that U(t,c; A) =

n 1
2 X,U,(t, L(t, 5— H(t,c; A))). A differentiation with respect to c
k=l K



15

yields the interpretation

(8.3) H(t,c; A) = U'(t,c; A)

of H(t,#; A) as the derivative of the utility function of the representative

agent with weights X1 , . . . ,X .

9. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

In this section we formulate and prove the basic result of this paper.

9.1 Theorem: Suppose that for every t € [0,T] and k € {1 n},

(9.1) the function c ̂  cU'(t,c) is nondecreasing.

Then there exists a vector A € (0,«>)n satisfying (7.4). If A and A are

two such vectors, then we have

(9.2) A = -YA and ^(t;A) = T^(t;A); 0 < t < T

for some T > 0, as well as

(9.3) c,(t;A) = c,(t;A); 0 < t < T, k = 1 n. D

The relation (9.2) expresses the fact that equilibrium prices can be

determined only up to a multiplicative constant, because the currency can

always be re-valued; however, as relation (9.2) stresses, this will not affect

how real wealth (measured in optimal consumption units of the
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commodity) is distributed among the agents.

In order to set the stage for the proof, let us rewrite the equation

(7.4) in the form SjfA-jA) = 0, where

T
(9.4) Sk(n;A) = E J I H(t,e(t) :A)[Ik(t. I H(t,e(t) ;A)) - e^t^dt; 0 < U< «.

0

Because of condition (9.1), which amounts to imposing that y » yL (t,y) is

nonincreas ing, we see that S, (#;A) is strictly increasing, with

) nSk(O+;A) = -» and lim fiS^^A) = », for every A € (0,«)n. Thus there

exists exactly one number ^(A) € (0,«>) such that Sk(L(A); A) = 0, and

solving (7.4) amounts to finding a fixed point for the operator

(9.5) L = (Lj L n):

This operator is positively homogeneous: L(pA) = pL(A), V p € (0,<»). Indeed,

from (8.2), (8.3) and (9.4) we deduce Sk(pjLi; pA) = SL(jn;A), whence

Sk(pL(A); pA) = 0. In other words, if A is a fixed point of L, then the

entire ray {pA; p € (0,°°)} is a family of fixed points. We shall show that

under (9.1) there is exactly one such ray.

Proof of existence: We introduce the usual partial ordering in (0,«>)n:

A < M if and only if ^ < j^, V k € {1 ,n}, and we write A < M if

A < M and A £ M. In particular, notice in (7.2) the implications

(9.6) A < M => I(t,h;A) < I(t,h;M); V (t,h) € [0,T] x (0,«>).
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Now for A < M we have from (9.6): H(t,e(t); A) < H(t,e(t); M), and the

condition (9.1) yields S^L^A); M) < S^L^A); A) = 0 = S^L^M); M), whence

L,(A) < ^ ( M ) , V k € {l,...,n}. It develops that the operator L of (9.5) is

isotone: A £ M =* L(A) < L(M).

Exactly as in [11], section 12, one can find A_, A in (0,°») such
x> U

that Aj, < A , A. < L(A~) and L(A ) < A . From the Knaster-Tarski lattice
*• U •£ •€> U U

fixed point theorem ([6], p. 14 or [1], p. 54), one obtains then the existence

of A € (O.«)n with A. i A < A . such that L(A) = A.

Proof of uniqueness: Let A, A be two fixed points of L, define

^V f\S ^\ *\*

nr = max (A, /X, ) and M = TA, and notice A < M. If A = M, then the
l<k<n

uniqueness claims in (9.2), (9.3) follow immediately from the defining

relations (7.3), (7.5) and the positive homogeneity of H(t,c; • ) . Therefore,

we have to rule out the case A < M.

Suppose that A < M holds. Then from (9.6) we obtain H(t,e(t); A)

< H(t,e(t);M); furthermore, for any integer j € {l,...,n} satisfying

X. = TX. (and hence also X. = jx.), we have with <p.(t;A) = H(t,e(t); A)/X.:
J J J J J J

1 X

E J ̂ .(tjA) fcj(t)dt < E J <f>j(t;M)ej(t)dt ,

0 0

1 1

E J ̂ (t^IjCt.v>j(t;A))dt 2 E J <Pj(t;M)Ij(t,^(t;M))dt
0 0

by virtue of (9.1). From these two relations and (9.4) we conclude

S.(fx.;M) < S.(X.;A) = 0; but we have also S.(X.;A) = 0 by assumption, and
J J J J J J
thus S.(JLI.;M) = S.(nrX.; TA) = 0, a contradiction,

j J J J
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9.2 Remark: The financial market of section 2 has minimal effect on

equilibrium. Indeed, consider two economies (indexed by m = 1,2) with the

same primitives (endowments and utilities for the agents) but possibly

different coefficients r,b.,a.. in their financial markets, and denote by

f ,fo the corresponding deflator processes of (2.6). The functions

S, , 1 < k < n depend only on the primitives, and thus the same is true for

the operator L of (9.5). We have from (7.3), (7.5):

V t ) Cm ( t ) = H(t.e(t);Am) and c^t) = yt,H(t,e(t); AJ/XJ for 0 < t < T,

m = 1,2, where the vectors A^,A~ are both fixed points of L. It follows

that A- = TA^ for some nr > 0, and thus

= c2k(t)

In other words, the choice of the financial market can affect the prices by

more than a multiplicative factor, but cannot affect the equilibrium

allocation of the commodity among agents.

10. EXAMPLES

We cite a few special cases in which the equilibrium can be computed

explicitly.

10.1 Example: U^t.c) = c6, V (t.k) € [O.T] x {l,...,n}, for some 6 € (0,1).

In this case, the vector A = (X1>...,X ) € (0,<»)
n with

= ( E J e^tMeCt))6"1^ / E J (^(t))6^ ) 1" 6; 1 i k < n
0 0
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n
gives the unique solution of (7.4) subject to 2 X T ' ' = 1.

k=l K

The equilibrium spot price and optimal consumption processes are given as

const. ^ , . .1/(1-6) , . 1 , , ,= TZZ • c.(t) = X v ye(t); 1 < k < n.
C(t)(e(t))1 k k

10.2 Example: l^(t,c) = log c, V (t,k) € [O.TJ x {l,...,n}. In this case we

recover the same formulae as in Example 10.1 but with 6 = 0. In particular,

T e1 f xv

the constant X, = =r E ? . dt is then a measure of the k c" agent's

0

relative importance in the economy, and determines what fraction of the total

supply he will be allowed to consume at any given time: c, (t) = A, fc(t),

1 < k < n. Finally, the equilibrium spot price ^(t) = r,.\ (—r is

proportional to the total supply.

If agents have different utility functions, it is not possible in general

to compute the solution of the equilibrium problem in closed form. A special

case, in which such computations can be carried out, arises when n = 2,

IL(c) = log c and U^(c) = 4c\ Another special case is the following.

10.3 Example: Constant aggregate endowment e(t) = e > 0 and

time-independent utility function. In this case the optimal consumption rates

T

are
K" ' K i ,

0

I

zv </v A 1 P
constant: c

k ( t ) = c, = ;=• E ek(t)dt, a solution to (7.4) is given by

-; k = 1,. . . ,n,
u'k

and the deflated equilibrium price is constant: ^(t) = j=TT\—"•
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11. EXTENSIONS AND RAMIFICATIONS

The results of this paper hold also in the case U£(t,O+) < «> for some

(t,k) € [0,T] x {1 n}, but the analysis becomes considerably more complex;

it is carried out in complete detail in [11].

In addition to the financial assets of section 2, one can allow the

agents to trade in capital assets, and one can associate to each one of these

assets a dividend process 6 (•), 1 < m < M, denominated in units of the

commodity. In contrast to financial assets, which are essentially contracts

between the agents, capital assets have to maintain a positive net supply.

One can show that the prices S (•) of these new assets have to be given as
m

T

(11.1) C(t)Sm(t) = E [J f(s)^(s)6m(s)ds |»t] ; 0 < t < T

t

in order to prevent "arbitrage opportunities". Once the spot price >// has

been determined by equilibrium considerations, the relation (11.1) allows the

endogenous computation of the capital asset prices S (•), 1 < m < M. Again,
m

consult [11] for the details.

Consider now an economy with deterministic endowments and no financial

market (except for a zero-interest-rate bond); agents can consume but cannot

borrow or invest, are bound simply by the budget constraints

T T

J*(s)ck(s)ds < J>P(s)ek(s)ds; 1 < k < n
0 0

(the deterministic analogue of (6.2)), and try to maximize their total
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utilities U,(t,ck(t))dt from consumption. Equilibrium amounts to the

0

requirements (5.1), (5.3) alone. In this simple model the results of sections

6-10 are all valid, provided that one sets f(t) = 1 and drops the

expectation signs in the formulae.
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