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1. INTRODUCTION The oscillatory properties of a sequence of weak* convergent
functions may be summarized by the parametrized measure, or Young measure, which it generates,
Young [81]!2. The parametrized measure generated by a sequence fX € L*(Q;RN) with

X — f in L(Q;RN) weak*

is a family of probability measures v = (vx }xe n With supp vx © RN such that, for every
function y continuous in A and measurable in x,

VX > Y = ‘INvo.,x) dvx() in L=(Q) weak®, .1

where 2 © RPis bounded. Restricting, if necessary, to a subsequence, every weak* convergent
sequence generates a parametrized measure. Thus the parametrized measure describes the weak
limit of any continuous function composed with the sequence, which leads to its use in problems
where sequences converge weakly but not strongly. In this framework, every family

Vv = (vx )Jx e n of probability measures with uniformly bounded support is a parametrized
measure.

1 Research group Transitions and Defects in Ordered Materials, fonded by the NSF and the AFOSR (DMS 87-
18881) and by the ARO (DAAL 03 88 K 0010).

2 To appear in Proc. Nonlinear Diff. Eqns. and their Appl., College de France Sem, Brezis, H. and Lions, J.-L., eds.
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Variational principles used to study equilibrium configurations of crystalline solids or other
materials with order are not lower semicontinuous. Our interest in the foundations of this theory
begin with the work of Ericksen, cf. e.g. [27-38]. In these circumstances, the infimum of energy
is attained only in some generalized sense while a minimizing sequence may develop finer and finer
oscillations, reminiscent of a finely twinned microstructure. The weak limit of the sequence may
be inadequate to describe many properties of the configuration, but the parametrized measure has
proven useful both to determine macroscopic properties such as energy and stress and
microstructural properties such as variant arrangement and location, cf. Ball and James [5,6],
Chipot and Kinderlehrer [18], Chipot, Kinderlehrer, and Vergara Caffarelli [19], Fonseca [42-45],
James [49], James and Kinderlehrer [50], Kinderlehrer [54], Pedregal [72,73], Matos [65,66],
and Battacharya [11,12]. It has also led to computational developments, Collins and Luskin [21-
23], Chipot [16], Chipot and Collins [17), Collins, Kinderlehrer and Luskin [24), Luskin and Ma
[64], and Nicolaides and Walkington [71]. A recent accounting of some of these and related
developments may be found in [39]. In addition, the analysis we discuss here has close
connections with the work of Ball and Murat [8,9], Ball and Zhang [10], Brandon and Rogers
[14], Firooze and Kohn [41], Kohn [62], James and Kinderlehrer [51-53], Sverak [75-77], and
Zhang [82-84].

The use of the Young measure to study possible oscillations of solutions of partial
differential equations was initiated by Tartar [78-80].

The two immediate difficulties which arise in applying the ideas leading to (1.1) are
. the variational constraint that f& = Vuk, and

o the (fX) are not generally bounded in L=(QRN), but instead in
LP(Q,RN), for some p € [1,%).

In this note, we would like to discuss our recent thoughts about these questions. Details appear in
[57]). Our objective is to characterize the gradient Young measures which arise from sequences
bounded in HILP(QRM), 1 < p < oo, We found subtle differences between the cases p < e and
P = oo, and since we have reported on the latter case in [55),[56),[58], we concentrate here on the
case where p is finite. In the remainder of this section we shall introduce the notions we intend to
study and state our prinicpal result, THEOREM 1.1.

As our starting point we recall a more general framework for the study of oscillations
described by Ball [3] and also studied by Matos [65). We retain the convention that 2 < R® is
bounded (and measurable.) Suppose that fk e LP(Q;RN), for some p € [1,e0), and

Jlfklpdx < M. 1.2)
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Then thereisafamily v « (v,)Xxen of probability measureson RN and a subsequence of the
(£%), not relabelled, such that whenever

wi® -~V in iMfk), for ye C(RVY),

then

V(x) m fy(X)dvy(X) in Q ac. (1.3)
R

For example, it isobvious from Holder'sinequality and the Dunford-Pettis criterion that given a
sequence satisfying (1.2), theconcluson (13) issatisfied whenever

ly(X)] S C(L + IXW), JI€RN, (1.4)

whenever q < p. However, it is also obvious from theviewpoint of applicationsthat we wish to
have some interpretation of (1.3) when p = . The subsequence (fr) determines aunique
parametrized measure. Theproblem isto decide when it identifiesweak limits.

Since (1.3) doesnot hold for arbitrary sequencesbounded in D\ we mugt either impose
an additional condition on the sequence or redrict the notion of Young measure as a
characterization of oscillatory behavior. What docsthis entail? To begin, we shall neglect the
gradient condraint and thenreindateit later.

For conveniencewe set
£P « {yeCXMV.IimtAi""—Jj"“A‘Tg exists). (1.5)

£P isisomorphic to the continuous functions on the one point compactification of M and is
separable. For technical reasons, thishas an advantage over the inseparable space of functions
suggested by (1.4) of the ssmegrowthrate

X = {yec®R"Y: ly(X)l £ CXI + 1AW, AeRN}
and will incur nolossin generality in our congder ations.

A particular circumgance leadingtothevalidity of (1.3) for all y satisfying (1.4) inthe
case p = q occurswhen | f* I[P themselves converge weakly in LKQ). This follows by
application of the Dunford-Pettis criterion and leadsusto the notion of p-Young measure

A family v = (vy)x€ft is* p-Youngmeasureor p-parametrized
measure provided there isa sequence £€ LP@Q;R")> for some
pe [l,00); anda g€ LHfi) such that
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IfklP = g in L1(Q) and

w9 =y in LYQ), where

vx) = jNvo.) dvx(d) in Q ae., for ye EP.
R

Equivalently, we may say that for any E c 0,

limg e J v = EJRNv().)dvx(l)dx for ye EP. (1.6)

Alternatively, we may define a biting Young measure for an arbitrary sequence. Recall that
if gke LY(Q) and '

Jlgkldx S M < o,

then there is a sequence Ej c Q with Ejy1 c Ej, 1E;| = 0, anda ge L1(Q) such that fora
subsequence of the ( gk ), not relabelled,

gk = g in LQ\E) foreach j.
This is the conclusion of the Chacon biting lemma [15], cf. also Ball and Murat [8]. We write that
g > g inLIQ) 1.7
and say that gk converge to g in the biting sense. Clearly if gk converge in the biting sense and

Iy(A)1 < CIA|, then y(gk) also converge in the biting sense, again by the Dunford-Pettis
criterion. Thus we are led to the notion of biting Young measure:

A family v = (vx )x €  is a biting Young measure provided there is a
sequence fX e LA(Q;RN) and ge LY(Q) such that

kPP ® g in LI(Q) and

v >y in L1Q) where

V) = jNv(x) dvx(d) in Q ae., for e EP. (1.8)
R

The bitten sets (E;) depend only on the sequence (k) and not on the particular y. A p-Young
measure is a biting Young measure. Furthermore, evident from the property of weak convergence
in L1, the Young measure determines the biting limit of a sequence and not its distributional limit.
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Suppose that j is a homogeneous biting Young measure, i.c., ix is independent of x €
Q. We may regard p as an element of EP', the dual of EP, with

hpil = J(IHMP)du(k) = (RA+1-1)). (1.9)
Even though Jt is a probability measure, it is not necessarily in the unit ball of EP'. Indeed,
consider the simple example with Q = (0,1)

£ = k12y0,1x).
These fX have the properties that

f£ — 0 inL2((0,1)) weakly and in the biting sense and

12 do not converge weakly in L1((0,1)),

IR 5 o

For any ye E2,

1
Jv®re = v+ a-Dvo.

The limit of these functionals defines an operation which is not a probability measure, but the
functional

(Ty) = W0 + limj 5 = YA)A2. (1.10)

However the biting limit determines the probability measure 8¢ which is generated by some
sequence of oscillations in L2((0,1)). Each function f& determines the parametrized measure 8g
given by

1
(8. ¥) = Jv(i*) dx

In view of (1.10), this shows that the Young measures are not closed in E2'. It is easy to see that
they also are not bounded in the norm (1.9). Conditions which ensure the convergence of a
sequence of measures in EP' to another probability measure are analogous to tightness conditions,
cf. Billingsley [13). '

Let us now impose the constraint that the functions f& which generate the measures are
gradients. We agree to call the associated measures H1.P - Young measures and H1.P - biting
Young measures, respectively.
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Recall that a continuous function @(A), where A € M, the m x n matrices, is quasiconvex
provided

o® < - Jtp(F-i-VC)dx forall {e CO(Q:R™) andFe M. (111)

A result of Acerbi and Fusco [1], which generalizes the theorem of Morrey [67], is that if ¢ € EP
is quasiconvex and bounded from below, then

Jcp(Vu)dx < liminfy_y. Jq»(vuk) dx (1.12)

whenever
uk = u in HLP(Q;RM).

The proof of (1.12) in this case is a direct generalization of Morrey's and does not require the
machinery developed by Acerbi and Fusco, cf. Evans [40], Dacorogna [25]. In fact, in the case of
linear growth of @(A), the lower semicontinuity (1.12) remains true even when we assume only
that

vk, ue HLI(Q;RM) and vk — u in D(Q).

Decp generalizations of Morrey's Theorem relevant to this situation have recently been proved by
Fonseca and Miiller [46,47], to whom we refer for additional references.

Assuming Q given, (1.12) also holds for smooth subdomains Q' < £, in particular
for Q' = Bi(a) c Q. Suppose that ( Vuk) generate an H1.P - Young measure v. Then
(1.12) implies that

BJ o(Vu)dx < Bj Qdx for () = n’ @(A) dvx(A),
a) a)

and thus by Lebesgue's Theorem, ¢(Vu(a)) < (a) in Q. Expressed differently,

®Vu@®) < J Q(A) dvx(A), where Vu(x) = [A dvi(A), (1.13)
M
whenever @ € EP is quasiconvex and bounded below. Soif v is an HIP - Young measure,
Jensen's Inequality holds for quasiconvex ¢ € EP and bounded below.

Another consequence of (1.12) concerns the Jensen Inequality for biting Young measures
and is not elementary. We know that if ¢ € EP is quasiconvex and ¢ 2 0, then

JQ(Vu)dx < lminfy e JQ(Vu“)dx. for Ec Q, (1.14)
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whenever u* -* u in HMPtffcR™). Thisresult doesrequire a substantial part of the Acertri -
Fusco apparatus and unfortunatdy we have been unable to find a smpler proof than, say, [59].
Let v = (Vx)XeQ denotethebiting Young measure generated by (V u®) and 9 the biting
limit given by (1.8). Whenever E ¢ Q\Ej, wethan have from (1.12) that

Jp(Vu)dx £ J K dx.

As limlEjl = 0, wefind again that
<p(Vu) £ c-|; in Qae.

By adding a congtant to <p, thisis seen tohold for quasiconvex functionsbounded below and by
truncation it is seen tohold for arbitrary quasiconvex functions with growth of order p. Thishas
been discussed by Ball and Zhang [10] as well. Otherwise stated, for an H* - biting Young
measure v = (Vy)Xe Q, whenever <pe £P isquasiconvex,

KVuX) € fg>(A)dv(A), where Vu(x) = Udv,(A). (115
M M
Thus Jensen's Inequality for quasiconvex functions of suitable growth holds for biting Young
measures aswell as HP - Young measures.

Our principleresult isthat (1.15) characterizestheHi* - Youngmeasures. Thusthe HIP
- Young measures are the same as the H*P - biting Young measures and are the same as the
measur es which satisfy (1.15). Of cour se, the sequence that generatesthe measure as an HMP -
Y oung measur e cannot usually bethe same asan arbitrary onethat generatesit asabiting measure.

THEOREM 1.1 Let v = (v,)aea beafamily cfprobability measuresin C(M)\ Then
vV « (Vx)X€ Q isan H"P - gradient Young measureifandonly if

i) thereisa ue HAPAR" 1) such that

Vu(x) = JAdvg(A) inQa.e,
M

i) Jensen's I nequality (1.13) holdsfor all <pe £P quasiconvex and bounded below, and
iii) thefunction
wx = JIAIPdv(A) € LUO).
In

Thelast cemdition isnecessary. For example, inthecase n « m = |,let ge C(0,I) be
nonnegativc with
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1
Jgdx = oo and vy = %(8:(;)4-5_‘(;)).

Then v satisfies i) and ii) butis nota 1- Young measure. Analogously inthe p = o case,
we were obliged to assume that U supp vx was bounded. It suffices in ii) to require the Jensen
inequality for the more restricted set of quasiconvex in EP which are bounded below.

For completeness and comparison, we give the Hl* result as well.

THEOREM 1.2 Let v = (V4 )ae 0 be afamily of probability measures in C(M)'. Then
Vv = (Va)ae Q isan HL.* - gradient Young measure, or simply, a gradient Young measure if and
only if

i) there is a u e HL(Q;RM) such that

Vux) = [Advx(A) in Qae.,
M

ii) Jensen's Inequality (1.13) holds for all quasiconvex ¢ € C(M) and

iii) suppva C K, a€ Qa.e., where K is a fixed compact.

2. WEAK CONVERGENCE AND BITING CONVERGENCE There is a straight forward way to
understand the relationshiup between weak convergence and biting convergence, which, in fact,
has been used implicitly by us [59] and by Ball and Zhang [10].

PROPOSITION 2.1  Let gke LY(Q), gk 2 0, with the property that
g > g inLlQ)

A subsequence (gK') of the (gk) satisfies
g =~ g inll(Q)

if and only if

lim infy _y e Jgkdx < Iagdx. @.1)

Moreover, (gk) is weakly relatively compact in LY(Q) if and only if

lim sup i — Jg“dx < Ingdx. 2.2)
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To prove the proposition, assume biting convergence and the failure of the Dunford-Pettis
criterion. This leads to the failure of (2.1).

Consider a biting Young measure v = (Vx )xe n generated by fx e LP(Q;RN).
Suppose that @ € EP majorizes 1+IA P, i, 1+IAP S @A), and

limy e J otax = [ [ o) dviaxx @3)
The proposition then implies that
o® = | oMavi0) inLUQ). @4)

whence, by application of the Dunford-Pettis criterion again, v = (Vx )xe n is a p-Young
measure.

Here is the situation in which we shall apply (2.3), (2.4). Supposc that p e EP' isa
probability measure and that fk e LXQ), Q1 = 1, is a sequence of functions such that

lmgse [W@d = [ v a0 whencwer ve B @5)

Since we may evaluate (2.5) on @o(A) = 1+1A P, the sequence (fk) is boundedin LP and
generates a biting Young measure v, which we may assume after rescaling to be homogeneous,
cf. THEOREM 3.1 in the sequel. We claim that v = p. This will tell us that p is a p-Young
measure by (2.3), (2.4). We interpret the left hand side of (2.5) by observing that

(pky) = Jv(ﬂ‘)dx

is just the average of the parametrized measure which is the Dirac mass at fk,
(Buey ¥) = WUEKX).

Thus a probability measure in the closure of the averages of Dirac masses of LP functions is a p-
Young measure which is generated by (£k).

To show that y = v, suppose first that y 2 0. By the Lebesgue Theorem and the
Monotone Convergence Theorem,

(v = tmasr-{  [vemraum + [y duny }
R {vs1) {v>1}

= limgo - Lv“(l)du(k)
R
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= limg-limy e Jva(fk)dx.

For a < 1, y* e E9 c EP, q=pa. The sequence ( y(fX) ) satisfies the Dunford-Pettis
criterion and hence is weakly (pre)compact in L1(Q2). Thus by (1.3),

Hm Jvﬂ(ﬂ‘)dx = RLwa)dv<x).

Again by the Lebesgue Theorem and the Monotone Convergence Theorem,

imasi- [vemavd) = v avin).
R R
Thus 4 = v on nonnegative Y. By decomposing an arbitrary y into its positive and negative
parts, we deduce that p = v.

An important observation is that if the sequence f& = Vuk above is a sequence of
gradients, then p is an H1P- Young measure. We have shown

PROPOSITION 2.2 Suppose that | € EP' is a probability measure and that f € LP(Q;RN),
1Q1 = 1, is a sequence of functions such that

My —ye Jv(t")dx - IRN V) du(\),  whenever ye EP.  (2.5)
Then W is a p-Young measure. If the & = Vuk are gradients, then p is an H'P - Young
measure.
For completeness we give the corresponding L™ result.

PROPOSITION 2.3  Suppose that p € CRN) is a probability measure and that f* e
L=(Q;RN), 1Q | = 1, is a sequence of functions such that

Hm g oy J V®dx = [ vhr ). whenever y e CRN).26)

Then W is a Young measure. If the & = Vuk are gradients, then y is an H1.* - Young
measure, or simply, a gradient Young measure.

A consequence of (2.6) is that for each y e ORN),

Sup IJv(fk)dxl < oo leX))

Suppose that lim i —, . sup 1fX| = 4oo. We may suppose without loss in generality that
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Ex = {IfX1 2k} bhasmeasure IEx! = ax > 0.
Let ¢ € C(RY) be any monotone function satisfying

m g e @ Pk) = oo,

aow s foatna — [ earn e,

which violates (2.7). This argument also shows that supp i = K is compact.

Thus the sequence (%) is bounded in L* and generates a Young measure, which, it is
easy to check, is J.

3. STRUCTURE OF H1:P - YOUNG MEASURES Recall the convention that

A)

YA
A ousts G.1)

Ep = {ye CM): lim Al 5 e

The homogeneous H!'P - Young measures are contained in EP'.

Let v = (Vx )xe O be an HLP - Young measure. Note that
(voyel) = [ [ vaimanax , (e Li@, ye . 62
The average Vv of v is also ameasure. It is given by
(vovet) = gl [ v v [t te L@, ve . @)

THEOREM 3.1 Assume that 10Q1 = 0. Let v be an HL'P - Young measure with
underlying deformation y(x) satisfying Y|an = Yor where yo is affine. Then V defined by

(3.3) is also an HP- Young measure.

We sketch the proof of this basic fact. Let (Vuk ) generate v. It is elementary to check that we
may assume that “klaa = y, and that yo(x) = Fox, F, € M. For each j, the collection of sets
{a+eld: ae Q,e < 15} forms a Vitali cover of £2 from which we may extract a countable (or
finite) subcover { a; +&{2: aje 0,8 < 15} of pairwise disjoint sets such that

f = U@+gll) UN, INI=0. (3.4)
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Assumethat I1QlI = 1. Lej = k in (3.4) and st
J» - | «FFpeq MeE> (3.5) |
I Fox otherwise
For ye £P ande (),

J VO id = I [wVyke) () dx

s + &

=X j v(v'uk(l‘fi)) {(x) dx

aj + g0

Te SVVur(9) O + eix) dx
= ﬁfV(Vuk(x)) dx X €? C(ii +&x),

for a choice of fii e ai + EiQ. Since (Vu*) generatethe H!* - Young measure v and the
second term isa Riemann sum for theintegral of £.

my e n[v(Vy")Cdx - limk—»"de(VUk(X))dxzE?C(ﬁi-'-m)

n[i:dx JCdx

Jv(A)dv Ade.

Thus (2.5) is satisfied for the measure v and the sequence (Vy*) sothe conclusion follows
from PROPOSTION 2.2.

Asa parenthetical remark, we notethat the congtruction above produces any homogeneous
Young measure as a " sdf-dmilar” gructure, but that thisis quite different and not equivalent to
beinga"laminar sructure', Pedregal [73], Sverak [77].

For fixed p, 1 < p < « let Afp denote the set of homogeneous H*'P - Young
measur es with first moment F, i.e.,

A dv .

PROPOSTION 3.2  A#F |sconvex.
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This is a consequence of the averaging theorem. As before, suppose that 1 Q1 = 1.
Given v,v'e Mg and 1, 0 < T < 1, choose asubset Q' ¢ Q with smooth boundary and
IQ'| = ¢. If (uk) generate v and (u'k) generate V', one may choose a sequence of cut-off
functions 1y and a subsequence k; of the k so that

w = (1-n)uli + niuki
generate the HIP - Young measure 1 = (Jix )xe o given by

" _{v' xe Q'
x vV xeQ\Q'

Since the underlying deformation of p is y(x) = Fx, which is affine, p is again an H!.P-
Young measure. Inspection shows that

B=(0=-7V+1V.

Note that for v e Mg generated by ( Vuk), the formula

fwarav = timy o J\V(Vuk)dx. v € P,
M

is a special case of the definition, eg., (1.6). Hence the special H!'/P - Young measures

B = vy, ue HLP(QRM), u|,, = Fx, arc denscin Mp. That is, the averages of Dirac

masses (with underlying deformation Fx) are a special class of H1P - Young measures dense in
Mg.

4, THE HOMOGENEOUS CASE ~ We use the Hahn-Banach Theorem. Suppose that p € EP'
is a probability measure for which

o) < J«p(A)du(Ax where F = J A du(A), @.1)

whenever @ € EP is quasiconvex.

Let T be alinear functional on EP' in the weak* topology such that T 2 0 on MF, a convex
sct. Then thereis a Wy € EP such that

0 < {(T.v) = (V,y) = Jv(A)dv(A). ve Mg @2
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In particular, (4.2) bolds for v = 3vy, ue HLNQR™), u|,, = Fx, thatis

0< J\v(Vu) dx, ue HLXQR™), u|,, = Fx. @.3)

Let y* denote the quasiconvexification or relaxation of . Thus, assuming that 121 = 1,

V'(F) = inf, J v(Vu) dx,

A = {ue HLP(Q;RM): ul,n =Fx }.

Additional details about y* and its relationship to y may be found in Dacorogna [25] or [59].
By (4.3), y¥(F) 2 0. Note that y* < y. Thus by (4.1),

0 < W@ < J vH(A) du(A) < J V(A) dp(A) = (T, p).

Thus p cannot be separated from Mg. It follows from the scparability of FP and the density of
the averaged Dirac masses that there is a sequence vk € A such that

JV(A)du(A) = limy Jv(Vu“)dx for any y € FP.

By PROPOSITION 2.2, { is an H!'P - Young measure.

As we remarked earlier, by truncation it suffices to assume (4.1) for quasiconvex
functions ¢ € EP which are bounded below.

The general case of THEOREM 1.1 is proved from the homogeneous one by covering
lemmas and approximation. This requires that

IQIM IAPdvy(AXx < oo,

For details, we refer to [57].

In the proof of THEOREM 1.2, it is necessary to retain the framework of the (inseparable)
Jocally convex space C(M) and C(M)', cf. [55]. An interesting part of the argument involves
truncating a sequence uk e H1.(Q;R™) to a unformly bounded one which generates the same
Young measure. This is accomplished with the aid of a generalization of a lemma of Zhang [83],
itself derived from [2},[63], cf. [55] Proposition 5.3:

LEMMA4.1 Let ue CO(@QR™) and L > 0. Then there isa w € Hy"(CkR™) such that
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Wil 1 s CGL and @44

(QR™)

I{w#u}ls%{ IVuldx + Jluldx}. @4.5)
{ivul 21 }n02

where Cy and C depend only onn and m.

Note that Vw = Vu in {w=u}.

5. SOME APPLICATIONS We give a few simple applications. Let y e C(M) satisfy
cmax(1AP0) < yA) S C1 + |AP), Ae M, .1

where 1 < p < e and consider the functional

Yv) = J v(Vv) dx (5.2)
for ve A = uo + H P(QR™), with u, given.

THEOREM 5.1 If y satisfies (5.1), then the problem
min 4 ¥(v)
admits a minimizing sequence uwke A such that (1 Vuk P) is weakly convergent in L1(Q).

The proof is a direct application of THEOREM 1.1. An arbitrary minimizing sequence is
bounded in HI.P(Q;R™) and thus determines a biting Young measure on EP. By the theorem,
the biting Young measure is an H!'P - Young measure which is generated by a sequence obeying
the conclusion of THEOREM 5.1. The conclusion of the theorem fails when p = 1, as is well
known. Recent results about the relaxation of functionals with linear growth are due to Dal Maso
{26] and Fonseca and Miiller [47].

THEOREM 5.2 Let @ be quasiconvex satisfy
0 S ¢A) < C1 +1AD).

If ¢« =~ u in HLX(QR™) and

Jtp(Vu“)dx - J(p(Vu)dx as k = oo,



College de France Seminar 16 3/13/92

then
9(Vuk) *> <p(Vu) in L*(G).

Let v = (V4)Xen denotethe biting Young measure generated by (Vu®). Then thereis
another sequence (Vw¥) bounded in LP(Q) which generates v = (v¢)Xe n asan H1*-
Young measure. Let

%) - ld<P(A)de(A)-

By Jensen's Inequality, <KVU) <, '<'p Let (Ej) denotethe bitten setsfrom the Biting Lemma.
Then

fp(Vudx £ fg>(Vu)dx -»  f Ddx

Hence, letting k -> 00 and then >-» », we seethat

fep(Vudx A f ™dx.
4" g
From Jensan's Inequality quoted above, we deducethat <p(Vu) = 9. Now we have that

<pvd) A vy in L*(Q) and

limsupk-*« Jg>(Vu¥)dx = limk-+- f9(Vu*)dx = f(p(Vu)dx.
a o] a

The conclusion now followsfrom PROPOSTION 2.1. A direct proof of thiswas given in [59].

As a special case of this theorem, we give another proof of Mailer's observation about
weak continuity of det Vu in the limit case where u e H'>"(Q;R"), Q ¢ R", cf. Coifman,
lions, Meyer, and Semmes[20], Iwaniec and Sbordooc [48], and Miiller himself [69,70].

COROLLARY 5.3 Let u,u*€ HAQ*'), Q c R satitfy
1n A u in HAftRY) and
detvVu* ~ 0 in CL

Then

det Vi* -~ detVu inl Q).
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To verify this, first note that since uv&¢ = u in HI%Q;R"), it is clementary to verify by
integration by parts that
det Vik = detVu in B_(Q).
In particular

;JdctVqux 20 for 0 < e C':(ﬂ).

50 detVu 2 0 in Q.
Let @(A) = max(det A,0), a quasiconvex function satisfying
0 < ¢A) £ C1 +1AM), Ae M.

From the above, ¢(Vuk) = det Vuk and ¢(Vu) = det Vu. For any smooth subdomain Q' ¢
2, choose a Lipschitz cut-off function | with n = 1 in £'. Then

msupy e JdctVukdx € limy o e Jﬂ det Vuk dx
= Jn det Vu dx

= Jdct Vudx + m[)q det Vu dx (5.3)

Choose a sequence (1) with 7 — 0 pointwise in Q\Q'. By the dominated convergence
theorem the second integral in (5.3) tends to zero, s0 we obtain that

msupy — e JdctVu“dx < JdctVu dx

The conclusion follows from THEOREM 5.2.
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