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1. Introduction

We would like to study memory effects in homogenisation of the following sequence of
equations:

(1) -d2
xu

e(x, t) + b£(t)dxu
e(x, t) + c€(t)ue(x, t) = v(x, t) ,

where the sequences (b€) and (ce) are bounded in L°°:

(2"! ~~7 _ _ 7
{ } 0 < a < ce < 0 .

The above equation is essentially an ordinary differential equation with constant coeffi-
cients (in x) , while coefficients depend on the parameter t (and they oscillate in t). Before
turning to the above problem, let us briefly describe the method on a simpler example ([Tpri]
and [Mlhp]).

First order equation: a simple example. We consider the following sequence of initial value problems:

This Caucby problem for an ordinary differential equation of first order is equivalent to the integral equation:

The solution can be explicitly written as: tic(x,<) = e~a'^x. Assuming that the sequence (ae) is bounded
in L°°, so that it has a weakly * convergent subsequence (same notation), we find that the limit of the
(sub)sequence (of) u€ is given by: uo(x,*) = f e~xXdvt{X), where vt denotes a Young measure corresponding
to a subsequence (a£) (see [Tcca], [Ewcm]). The question is: wbich equation does u° satisfy?

Let us search for the equation for u° in the form: u° -f K • u° = 1, for x > 0; where the convolution is
taken in x. We should find the kernel K. First, the function u° should be extended to the whole of real line,
more precisely define:

x < U
x> 0

Now the equation becomes: S + K * S = X[o,oo)- Differentiating, we shall obtain an analogous equation to
the differential equation we started from. We denote: S' = 6Q •+• <7, where

Finally, we obtain:
# *(«o + <7) = - (7 ,

and after inverting 60 + g (in the convolution algebra), under assumption that || g ||LHO,JR)< 1) f°r some
R > 0, we obtain: Zf:=-(7 + 0 * ( 7 - - 0 * $ r * 0 ± . . . .

2. Fundamental solutions of the ^-problem

Now we return to the study of the equation (1). Let us first find the fundamental
solution of the above differential equation. We are looking for the solutions in the form:
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u(x,i) = er^x. The characteristic equation is (t is a parameter): — r2 + ber + ce = 0, so the
two solutions are given by:

In order to have the fundamental solution bounded, we shall take it to decay at both — oo
and +00; we can use the fact that r i < 0 and r^. > 0. This leads to the following ansatz:

E£(x t\ - C£(tE{x,t)-C

We should find a Ce such that the following equation is satisfied:
-d2

xE
£ + bedxE

£ + c£E£ = 60 ,

where 60 is the Dirac mass at x = 0. Away from 0 the equation is clearly satisfied. At 0 we
have dxE

£{0~, t) = C£(t)r+(t) and dxE
£(0+, t) = C£(t)r-(t); so for the second derivative the

singular term is C£(t)(r-(t) - r+(t))6Q, and the right choice for Ce is [(b£(t))2 + 4c£(t)]~1/2.
Thus, the fundamental solution is of the form:

'i(0«, x < 0 _ 1 f e'i«>*, x < 0

The fundamental solution enables us to write down the formula for the solution of non-
homogeneous equation ue(x,t) = [E€(.,t) * v(.,t)](x) (convolution is taken in x).
Remark. Let us consider the sequence of solutions of a bit more complicated equations:

(3) -a<{t)dlu\x,t) + b\t)dxu*{x,t) + c\t)u\x,t) = v{x,t),

where the sequences a€, b€ and ce are bounded in L°°:

- 7 < f>e < T

(4) 0 < en < a€ < 0i

0 < a2 < ce < fa .
Dividing the equation by ae, we would have the coefficients satisfying inequalities as required in (2):

_i<*l<JL

»<2i<4<*.
Pi ac oci

Unfortunately, we cannot just reduce this problem to the problem (1), as division by ae would introduce
oscillations in the right hand side term v; but the same abstract procedure as for the problem (1) can be
applied for the problem (3). The fundamental solution would be:

x < 0 _t
t ) " a.0)(r+(t) - r_(«)) I e^-^, « > 0 " ̂ tf+ **<&.{t) I ̂ > - > 0 •

Of course, the roots r€
± of the equation —a€r2 + ber + c* = 0 (t si a parameter) are given by: r̂ . =

^ — v 2a* *Aa*c€ - This fundamental solution satisfies the differential equation:

-a* d2
xE

e + 6 ea rS£ + c e £ c = 60 ,

and the solution of (3) can be written as: ue(x,t) = [E£(.,*) * v(.,f)](x).
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3. The limit problem

The sequence (ue) of solutions of (1) is bounded, so there is a subsequence (same nota-
tion) that converges weakly to a function u°. This function can be written as u° = F * v
(convolution in x, while t is a parameter), where F(x,t) := JN E\li\2(x)di/t(\i^ X2)* The
one parameter family of probability measures v% is the Young measure* associated to the
sequence (6£,ce), while the function E\^\2 is given (compare the expression for E£) by:

F , > 1 f e + » < 0 1 I e ( ) t x < 0
XlMX) r + - r t e - * >0

where, of course, r± := | (A i± A/AJ + 4A2). Clearly, the above function satisfies the equation:
E*iM + XlEXiM + A2^Ai,A2 *o-

Tne main result is given by the following:

Theorem 1. The limit u° of the sequence of solutions (u£) of the problems (1), under the
assumptions (2), satisfy the equation:

-6%u°(x,t) + bejt(t)dxu°(x,t) + Ceff(<)u°(x,t) + [K(.,t) * u%,t)](x) = v(x,t)

where the kernel K (containing the memory term) is given by its Fourier transform: K =
A / ( l + A ) , whereF^x.t) := / G A I , A 2 ( M ) < M A I , A2) and F2 := - ( - ^ + 6effdx+Ceff£o)*Fi,
wiiiie t i e function G\l9\2, as well as the effective coefficients 6eff and ceff, is defined below.
This kernel K is in any 1/ space, for p 6 [2,00).

Let us determine the coefficients 6eff and ceff first. Using the expression for ti°, we can
cancel the function t; and obtain a functional equation:

(6) * F =

We recall that £0 * EXl,\3 = EXu\2(0) and dx * EXlM = E'XlM = r±EXlM. Thus, the
convolution of the first three terms with F gives us:

J
Al, A2)

- A2)] * EXlMdut{\u\2),

where we have used the equation: —Ex'lX2 + XiE'XiX2 + A2^Ai,A2 = *o in order to express
the term involving E'x Aj.

We define GXuXi{.,t) := [(6eff(<) - X\)dx + (crf(0 - A2)] * EXuX2, and consider it as a
function of a; (take <, Ai and A2 as parameters).

More details on such applications of Young measures can be found in [Ewcm].
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Using the explicit formula for E\ly\2 we can write the above defined function GrA1,A2

explicitly:

A) ff(t)A2 n
u *

In the second equality we have used the fact that r+ and r_ are the solutions of the quadratic
equation: — r2 + Xir+A2 = 0. This allowed us to express the quadratic term: r± = Air± +A2.

The first and second derivatives of G\\i,A2 can easily be computed as well:

5xGA l ,A 2(x,i)= §

r+-r_

{ ri(-ri+teff(f)r++Ceff(t))

e x>

+ (Xj + A2 - 6effAi - ceff)<50 + (Ai -
Lemma 1. In order that the integral of G\lt\2 be continuously differentia We in x, it is
necessary and sufficient that 6effW = lim&£(<) = J\idut(\i, A2) and that b^(t) + ceff(<) =
/2

Dem. We only need to check continuity at x = 0. Using the formula for E\x\2 obtained
above, we have:

so that the jump of GA1?A2
 a^ 0 is Ai — feeff; and the continuity reduces to the condition:

J Aidz/t(Ai, A2) = bef[(t). Next, for the continuity of the derivative, we first compute limits
from left and right for the derivative:

Using the fact that r+ + r~ = Ai, the condition for the continuity can be written as:
J(Ai(6eff(t) — Ai) + Ceff(t) — A2)rfz/̂ (Ai, A2) = 0. The required result follows, because v is a
probability measure.

Q.E.D.
Remark. Let us see what would the formulae be for the problem given in (3). As for (1), we have the
convergence, and u° = F * v, where F(x,t) := fN Exltx3,x3(x)dut(Xi, A2, A3).

E ( ) J r ± x ^

where, again, r± := 3 V | J—i. For the effective coefficients we get:
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The limit problem is, of course:

o(ztt) + beft(t)dxu°(xtt) + ceff(t)ti°(x,t) °

Written in a more abstract form (no v) the problem reads: ( - aef[(t)dl + ben(t)dx + ceff(*)<$0 + K) * F = <5o,
and:

y i, A2, A3) ,

where:

+ C e f f ( t ) r ^ ( M O - > 2 ^ ) r ± + ceff(<) - A 3 ^
C = Al(r+ - r_) *

4. L1 set t ing

We defined: Fi(x,t) := JG\li\2(x,t)dvt(\i,\2). The convolution equation can now be
written as: K*F = — Fi. Applying the operator ( — d2

x + be$(t)dx + ceff(t)So) on both sides,
after using the relation just established, we obtain: K*(6Q+FI) = — (—^+6eff5x+ceff^o)*^i-
Denote the right hand side by i<2, and finally we obtain the expression: K = F2 * (<$o + Fi)~~ •

If the L1 norm of F\ is less than 1, then the inverse can be written in the form of a series:
(£0 + ^ l T 1 = So - Fi + Fi * Fi - Fi * Fi * Fi ± . . . .

Let us estimate the L1 norm of F\. We have:

7-OO l j 2 ' r+-r- 7_o

— A2I f°° r— k e~r+-r-
-A2| |(6efFW-Ai)r_ + Ceff-A2|

r+(r+-r_) r_(r+-r_;
\ 1

r_-r+

r+-r_
- A 2 |

After taking into account r+ — r~ = J\\ + 4A2 and —r+r- = A2 we obtain:

1 1

q + 4A2
 J A2

This estimate can be used to prove the invertibility of 60 + F\ in a special case of small first
derivative term.

Let us compute F2 = - ( — &* + bef{dx + ceff<50) * Fi explicitly. Changing the order of
integration, we can use the expressions for the derivatives of G?A1,A2 computed in the previous
section.
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After integration in Ai, A2 with respect to v, because of the previous lemma, the terms
involving Dirac masses drop out. Thus, we have:

F2(x,t) = I [dlGXltx2(x,t) - be«(t)dxGxltx2(x,t) - CetMGx^ix^dvtiXu A2)

-er±xdvt

This gives that F2 is a nice function in x — it decays exponentially both at 00 and —00,
and has only one point of discontinuity (x = 0), where it has finite limits on both sides. The
difference of the limits at zero (the jump) is equal to: /(Ai — &eff)[^i(^l — &eff) +

) ] M A A )
As a function of x, F2 is in the intersection L1 DL°°, so its Fourier transform is in L2nL°°.

If we assume that ceff > f$ (which may indeed happen), then from ĴJL < v5^1 we can

conclude that || F\(.,t) | |L 1 (R)< 1-

5. L2 setting

Lemma 2. The function 1 + F\ is nowhere zero.
Dem. In order to simplify the notation, we shall suppress explicit writing of the parameter
t, that appears in 6eff?

ceff a^d v.
We shall first compute the Fourier transform of the function GfA1,A2- Then we can use the

formula: A(0 = JZo e~2"^( J G\iM(*)M*i, ^))dx = jGXlM{Z)dv{\x,\2) in order to
A

compute F\.
As a function of x (Ai and A2 are parameters only), G\ly\2 consists of two exponential

functions, joined at x = 0.
The Fourier transform of (?Ai,A2

 c a n ^ e computed now:

ceff t° e-2^er+Xdx + - r l + 6effr. + ceff

r+ — r_

o

— 0 0

oo

— r_ [ r+ — 27rẑ  r_ —

where the fact that r+ > 0 and r_ < 0 has been used.
After taking the difference of the two fractions in the brackets, the numerator takes the

form:

= (r+ - r - ) ( - r+r_ - ceff
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Thus, the Fourier transform of G\lt\2 takes a simpler form:

A (n -r+r- - ceff + 2?rx£(r+ + r_ - beff)
Al M U J r + r_ - 4TT2£2 - 2 jrt£(r+ + r_)

Using the definition of r+ and r_ (in the terms of Ai and A2) we obtain:

r (t\ - Ceff ~

Next, v is a probability measure and we can put the constant under the integral sign,
obtaining: \ + F\ = / ( I + G\lt\2)di>(\i, A2). Let us first try to simplify the integrand.

ceff

= (ceff + 4x2e2)(4x2e2 + A2)
TT2£2 + A 2 ) 2

We have to prove that 1 + Fi is nowhere zero. Assume that its imaginary part is
zero: Im (1 + Fi) = 0. Under the assumption £ ^ 0 (otherwise the expression reduces to
ceff / y^dv > ceff//?), this gives us:

/ A1(ce

J J^WT X2) = be«J W { ' ]'

We can now use the right hand side and insert it in the expression for the real part (the case
6eff = 0 immediately gives real part positive):

J (4TT2£
P l ( 0 ) .

The expression in brackets is not zero, while the integral can be expressed from (7), where
the integral on the right hand side of (7) is certainly positive. And this proves the theorem.

(It might be interesting to note that if 1 + A ( 0 is real, it must be positive.)
Q.E.D.

As in the lemma, we can prove the following:

Corollary 1. Tie Fourier transform of the function F2 is given by:

I 1

r+-r- r _ — r+ —
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Remark. For (almost) every t, there is a constant K (depending on t) such that |l + A|(f ,*) > K (uniformly
in £).

Indeed, the function 1 + F\ has limit 1 for f —• ±oo. By the continuity in £, there is a neighbourhood
of ±oo such that the absolute value of the function is more than 1/2 there. On the complement, due to its
boundedness and continuity of the function, and the result of the previous lemma, the absolute value attains
its minimum. If we take K to be the smaller of that minimum and 1/2, we have proved the claim.

Remark. The statement of the lemma 2 is true for the problem given in (3). Similar computations as
above give us:

( )

In order to simplify the expression for 1-f/i = / (l+G\lt\2t\9)di/t(\ij A2, A3), we express / ldi/t(Ai, A2, A3)
fleff / j-dvt(\i, A2, A3). Now, we can use the same idea to continue:

J [ A1.A3.A3 ^ J

—-— —-5 di/t(Xi, A2, A3)

o ^ f -"A2(ceff(<)-h47r2^2aeff(<)) +^eff(0(A3 + 47T2^2Ai)
2 7 r ^ / r ,2 , ^ ^ . n a^(Ai ,A 2 ,A 3 )

The proof concludes in the same way as the proof of lemma 2.
For F2 we obtain:

i r
2 ( x , f ) = I —p r c* a^t(Ai,A2, A3) ,

J Ai ( r + ~ r _ J

and for its Fourier transform:

ri + 6eff(<)r. + ceff(f))
2 (-aeffCQr2 + 6eff(<)r++ ceff(<))2 n

We can do even better—obtain an uniform bound in t.

Lemma 3. With the bounds for b€ and ce given in (2) above, the following inequalities
hold:

Dem. The assumptions we have are: |Ai| < 7 and A2 > a. Thus, it is enough to prove that:

and the difference is 2 ^ ( 2 T T | ^ | - y/a)2 > 0.

8
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This proves the first inequality. For the second, let us first note that:

,2 t2

The second factor is certainly bigger than its real part. For the integrand we have, using the
first inequality:

( £ 2) + 4*

Thus, we have that:
C e f f

But, the rational function is 1 at ±oo, and the only critical point is at zero, so it is greater
than the minimum of 1 and ceff//?-

Q.E.D.

Let us first recall that u° = F * v. So, it is enough to prove that (6) is satisfied by F.
We have already obtained that K * (So + F\) = F2. Applying the Fourier transform (in x)
to this equality, we get: K(l + F\) = F2, or:

We should only check that the above makes sense. Clearly, everything except division is
justified in the space S1 of tempered distributions.

The previous lemma gives us that \l + F\\>C (almost everywhere), so Il + Fil""1 < \jC
and the reciprocal is in the space L°°(R). From the explicit form of F2 (corollary 1), we
conclude that it is in the space Lg, for every q G (1,2]. Thus K G L9 as well.

The inverse Fourier transform of K is in I / , for every p G [2,00); and this completes the
proof of the theorem 1.

6. Boundary value problems

One space dimension
Let us consider the following sequence of boundary value problems on the line [0, TT] (the

length is taken to be TT just for notational convenience), in the time t 6 [0,T]:

-ae(t )d2
xu\x, t) + ce(t)u€(x, t) = / (* , t)

(8) uff(0,.) = 0

In the unbounded domain, this problem was studied by L. Tartar and F. Murat (see
[Trho]).
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The solution can be sought in the form of a series (eigenfunction expansion for the
rectangle, after extension of all the functions to [—7r,7r] as odd functions):

The second derivative in x can be computed easily to have the expansion:

oo
32 £/d2

xu
e(x, t) = - J2 *2fc*(0 sin kx •

Jb=i

For (almost) every fixed i, ue and d%u€ are odd functions (on [—7r,7r]), SO / has to be
odd in x as well. This is a compatibility condition. We can write:

oo

where coefficients dk can be computed as integrals: d^t) = ~ f£ f(x,t) sin kx dx.
Inserting the expansions in the equation (the boundary conditions are satisfied because

of the odd extension), after equating the coefficients in front of eigenvectors, we obtain:
k2a*(t)bl(t) + c£(t)bl(t) = dk(t), so:

he(A_ dk(t)
W )

If the coefficients ac and ce are uniformly bounded (for almost every t); more precisely:

0 < a < ae(t) < 0

then these sequences converge in L°°(0,T) weak * and define the functions Ao by ^-
and Ci,C2,... by:

(c£)m , Cm

In order to determine the limit problem, we should study the behaviour of the following
sequence of functions:

\•= za*(t)\<?{t) •

Lemma 4. The sequence of functions (ye(^))c€R+ converges in L°°(0, T) weak * (for every
z close to infinity) to a function <p.(z) wtth the following expansion around infinity:

10
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Moreover, for almost every t, function (ft can be extended to a holomorphic function on
the complex plane without the segment [—/?', —a'] of the real line, and it has a representation:

f= JN
Dem. For a fixed t, the function </?< can be represented as a Taylor series around infinity:

1 1 1

gae

The above expansion is valid for |Q^x) \ < 1, and this is certainly the case whenever \z\ > ftf.
For such a z we can pass to the limit, and obtain (the bounds are uniform in t and locally
uniform in \z\ > /?'):

A priori, this expansion is valid only for \z\ > 3f. In order to prove that <pt can be
extended to the complex plane without the segment [—/?', — a'], we shall need another tool—
Young measures.

There exists a probability (Young) measure v% in the variables (Ai,A2), associated to
a subsequence of (ae,ce). Its support is contained in the set iV := {(Ai,A2) € R2 : Ai G
[a, /?], A2 € [Aict1, Ai/3']} and ip% can be written as:

HH{z) = I
JN z\\ + A2

Because the integrand has poles at z = —A2/A1, the function Kp% is holomorphic for z 6
C \ [-/?',-a'].

Q.E.D.

The function -f- is a Nevanlinna function; i.e. for Im z > 0, we have Im —4-r > 0. Indeed:
ft ' <Pt(z)

the imaginary part of j ^ is j f g j ^ r ; so:

1 Im <pt(z) f Xidut 2

y kA!+A2i2 ^

This function is regular on C \ [—/?', — a1], and it is real for z G R \ [—^;, —a'].
The classical representation theorem for Nevanlinna functions (see [A&Klpm]) assures

that there is a nonnegative measure ^*, supported on the interval [—/?', —a1], and real num-
bers At G R + and C< G R such that:

— r- .

J z~^
11
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On the other hand, the function l\ can be expressed as the sum Ao(t)z + gt(z), where
the expansion around infinity is given by:

Now, we determine the constants At = Ao(t) and Ct = Ci(<) by comparison in the expansion
around infinity.

Theorem 2. The limit u° of the sequence (ue) satisfies the following equation:

(9) -A0(t)d
2
xu°(x,t) + Ci(t)t*°(*,t) - Hu°(x,t) = /(*,*) ,

witi the same homogeneous Dirichlet boundary conditions, where the operator 7i is the
integral operator 7iu°(x, t) := f£ k(x, y, <)wo(y, t) dy, where the kernel can be expressed as a

sum k(x,y,i) := 2 ^ ^ = 1 hk(t) sin kx sin ky, with hk(t) := ^ J -Srz\ (of course, the measure
fit is the one from above, its existence being the consequence of the representation theorem).
Dem. From the simple formula: J^ sin ky sin ly dy = f<$j;/, w e obtain the following expres-
sion for 7iu°(x^t) = ^kLifthkfyb^fysinkx. Expanding all the functions in the Fourier
series and equating the coefficients in the equation (9) we obtain:

A0(t)k
2b°k(t) + Ci(t)6j(<) - *hk(t)b

o
k(t) = dk(t),

or after division by b^(t) (otherwise dk(t) has to be 0, and hk(t) is not defined, so we can
take for it any value we choose):

- *hk(t) = | | | 1 = - 1 ^ = A0(t)k> + d (0 - J p ^ x

Q.E.D.
Remark. The operator Ji can be expressed as a convolution:

Hu\x,i)= f H(x-y,t)u°(y,t)dy,

where the kernel H has an expansion in eigenfunctions given by H{x)i) = YlTLi hk(t)coskx. H is assumed
to be extended by periodicity, while u° is extended to [—TT, 7r] by the odd extension.

Indeed, by using the orthogonality:

/ ' H(x-y,t)*°(v,t)dy= f (f>(')cos*(s - y)) f^

( c o s ^x c o s by + s i n kx sin ky) sin ly dy
*=i 1=1

OO

This expression depends on addition formulae for trigonometric functions, and it is not true in other cases.

12
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Remark. The sum appearing in the expression for the kernel k can be computed explicitly. First, note
that:

2 f f^sinkxsmky] AJ Ig v-\ 1 *"'(*>•
/

If we denote (A is negative, so all the sums are finite):

^ sin kx sin ky _ ̂  ̂  cos fc(x - y) — cos fc(x -f y)
V) ' 2£ *2_A 2£ *»-A

then F can be expressed in terms of the even function G: F(A, x, y) = ^ [G(A, ^ ^ ) — G(A,
Next we define a sum of exponentials:

and express G in the terms of H:

1 — e2*ikz 4?r2 C2«**v _ 1 v ^ e

Jlrikz

where a := 27T\/—A, and A < 0.
The sum defining H can be computed explicitly. It is a periodic function in zf with period 1. We shall

try to determine H as a solution of an ordinary differential equation.
The second derivative of H in z is:

" > . * > = \ E f ^
so # satisfies: —H"(a,z) -f a2i7(a,2r) = 5Zik€Z e2w"**z. On one period (say (0,1)), the solution is given by

From Poisson's formula (valid for sums in distributional sense, see: [Smmp], pg. 98):

we can determine the constant C = 2asKT> which gives for H:

Let us use this expression in order to find F. First, we should note that G(A, |z|) = G(A, z), because G
is even in z. Thus we have:

1

2A

=TX (x + y - T ) J

^T 2\/—A sh.7Tv—A -̂A

13
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and finally for F:

From this explicit computation it directly follows that kernel k is a Lipshitz function, and even of class
C°° outside of the diagonal x = y.

Several space dimensions
A possible generalisation of the problem (8) to several space dimensions can be obtained by replacing

the differential operator —d2 by another positive operator, —A. The new problem reads:

( -ae(t)Aue(x,t)-
ut = 0 ,

where x 6 f i , while T is the boundary of Q.
The proposed method will be described for some specific domains.

Rectangular domain. The Laplacian —A on the domain [0, TT] X [0, TT] (X = (x1, x2)) has A = m2 -f n2,
m, n 6 N as eigenvalues, and vmjn(x) = sinmx1 sinnx2 as corresponding eigenfunctions.

Taking the ansatz tte(x,tf) = Ylmn=i ^m,n(O s m m x l s m n ^ 2 f°r the solution, we have for the Laplacian
the following expansion: — Au*(x, t) = ]Cm,n=i(m2 + n2)^m,n(0 s m mxl s m nx2-

The function / can be expanded in a series: /(x,f) = ]Cm,n=i d^^t)sinmx1 sinnx2. Equating the
coefficients in the expansion we arrive at:

Under the same assumptions on (ae) and (cc) as in the one-dimensional case, we can apply the lemma
4 and obtain:

<Pt(z) =

2 + «2) + Ci(t) - / (

The limit u° of (wc) satisfies:

(11) -A0(t)Au°(x,*) + Ci(t)ti°(x,t) - Wti°(x,0 = / (x ,0 ,

where: Wu°(x,f) = /nib(x,y,t)ti0(y,t)(fy, while the kernel is given as a series:

oo

jfe(x, y, t) = ^ Am|n(t) sin mx1 sin nx2 sin my1 sin ny2 ,
tn,n=l

The operator 7i can be expressed as a convolution:

ftU°(x,*)= [* H(x-y,t)u°(y,t)dy,
J—TT

14



Memory effects in homogenisation

where: #(x, t) = £m,n=i hmjn(t) cosmx1 cos nx2.
The same procedure leads to analogous expressions in higher dimensions.

Circular domain. The Laplacian in the domain Q := K[0,1] := {x € R2 : |x| < 1} can be written in
polar coordinates x1 = rcostf, x2 = rsint? in the form: A = \dr(rdr) + -pzdj-

Let (kn}m,m € N) be the zeroes of the Bessel function Jn, so Jn(kn,m) = 0. Then, i^m a r e t h e

eigenvalues, while the corresponding eigenfunctions are:

Jn(kn,mr) cos nil)tJn(knimr) sin nti .

We have the following ansatz and expansions:

00 »&

m=l
oo

n,m=l

m=l
oo

n,m=l

f
m=l L

so for the coefficients we get:

Lemma 4 gives us:

The limit u° of (ue) satisfies the equation (11), of the same form as above, except for the kernel:

oo

H- 2^, hn }m(t)Jn(kntmr)Jn(kniTnR)[ cos nil) cos nQ + sin nil) sin nQ]
n,tn=l

Cylindrical domain. The Laplacian in the domain /f[0,1] x [O,TT] in R3 can be written in cylindrical
coordinates i 1 = rcostf, a;2 = rsintf, x3 = z in the form: A = 75r(r9r) + ^ c ^ + 52.

15
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The eigenvalues are I2 + fc^mi where kn,m are the zeroes of Bessel functions Jn , and / € N. The
corresponding eigenfunctions are:

Jn(kn,mr) cos nt?sinIz, Jn(kn,mr)sinntisinIz .

The expansions are:

m,/=l
00

+ Yl [bn,m1l(
t)Jn(kn>™r) COS nt* s i n lz + ^m,lW^( in,m» l) sin fit? sin Iz]

n,m,/=l
00 6C (t)

m,/=l
oo

+ ^ (*n,m + '2) [^n,m,/(0^n(^n,m^) COS n^ sin h + ^jm,/(0^n(^n,m^) sin 711? sin /z]
n,m,/=l

m,/=l

so the coefficients can be expressed as (similar expressions for b€
nml)\

Lemma 4 gives us:

The limit w° of (we) satisfies the equation (11), of the same form as above, except for the kernel:

tn,mr) cos ni? sin lzJn(knfmR) cos n0 sin /Z
n,m,/=l

+ «7n(̂ n,mr) sin nt? sin /z«7n(^n,m^) sin n© sin IZ]

Spherical domain. The Laplacian in the ball K[0,1] in R3 can be written in spherical coordinates
x1 = rsint?cos<p, x2 = rsint^sin^, x3 = rcost? in the form:

A = ^dr(r
2dr)r2

r z ' x ' r2 sin t? r2 sin2

16
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The eigenvalues are the squares of the zeroes of Bessel functions: &^+1y2 m> a n d the eigenfunctions:
r ) - The Laplace spherical harmonic Yn has the form:

n

2 3 (Qh COS ̂  + bh Sl

So, for n-th eigenvalue we have 2n + 1 eigenfunctions: Pn(cost9), cospPn , i (COST?), . . . , cos n p P n jn (cos
sinpPn , i (cost?) , . . . , sinn<pPntn(cost?).

The expansions are:

m = l

sin

m = l ^ n,m=l
n 1

Sin h ) ]

m = l

^,>>( ) (n ,m, fc ( t ) COS
h=l

1 J1/2(jbl/2mr)+ g [ < ^ ) P n (
^ n,m=:l

1 1+ dn,m,/i(0 Sin ftp) j -^= Jn

so the coefficients can be expressed as:

Lemma 4 gives us (analogous expression for 6m>n,/>):

+ Ul(t) - J jfc5+i/3_m_A

The limit w° of (ue) satisfies the equation (11), of the same form as above, except for the kernel:

n,m=l

(cos 6)ftn,m,/l(t)( cos ftp cos ft$ + sin ftp sin ft$

-7=^n+l/2(^n-hl/2,^)-7

2 2n+l(n-/Q!! /
! J* » + 1 / a , m - A •

17
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Genera! result
In general, we consider a domain ft with boundary F, and the eigenvalue problem for

the (negative) Laplacian:

{ Aw + Xu = 0

- I r - -
Let (An, vn) be a complete set of eigenpairs for the problem (12). By positivity An > 0, and
by the compactness of the operator (—A)""1, the eigenvalues An —> oo.

Let us consider the problem (10) now. If we expand /(x,<) = ^2dn(t)vn(x) and
txc(x,<) = J2bn(t)vn(x), the coefficient be

n is given by:

w - *•«
\na*(t)

Under the assumptions on (ae) and (ce) stated before, and with the same notation, the
following theorem is true:

Theorem 3. The limit u° of the sequence (u€) satisfies the following equation:

(13) -Ao(t)Au°(x,t) + d(t)u°(x,t) - «ti°(x,0 = /(x,<) ,

where the operator H is the integral operator 7iu°(x,t) := fQ A:(x,y,i)uo(y,<)dy, with the

kernel fc(x,y,<) := Y^Li hn(t)vn(x)vn(y), where hn(t) := / " ^ z j (of course, the measure
fit is the one from above, its existence being the consequence of the representation theorem).

I would like to thank professor Luc Tartar for suggesting the research topic and for constant encourage-
ment and advice while writing this paper.
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