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1. INTRODUCTION.
The classical Stefan problem, for two-phase heat conduction in a

region SB in IRn, is based on balance of energy

f = -divq (1.1)

away from the phase interface, the constitutive equations

q = -K1(e)Ve in the solid, ^ ^

e = e2(e), q = -K2(e)Ve in the liquid,

the local equilibrium hypothesis

[B] = 0, (1.3)

and the free-boundary conditions

{V = [q]*m, 0 = ©0 on the interface, (1.4)

with the solid region B^t), the liquid region B2(t), and the interface Z{t)
given by

B1(t) = { x : e(x,t) < e0 },
B2(t) = { x : ©(x,t) > ©0 }, (1.5)
^(t) = { x : e(x,t) = e0 }.

Here e(x,t) is the internal energy, ©(x,t) is the temperature, q(x,t) is
the heat flux; ©0 is the transition temperature;

i = e2(e0) - S/OQ) (1.6)

is the latent heat; m(x,t) is the unit normal and V(x,t) the normal
velocity for the phase interface with m directed outward from the solid;
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I ] denotes the jump across /8(t) (liquid minus solid).
The standard weak formulation of (1.1)-(1.6) consists in interpreting

the PDE

£(©)• = -divq(©,v©) (1.7)

in the sense of distributions, with e(e) = 61(e) for ©<©0 and e(©) = 82(©) for
©>©0, and similarly for q(©,V©). In this formulation the solid and liquid
regions and the interface are defined, a posteriori, through (1.5).

It is possible to cool liquids below the transition temperature ©0, and
to heat solids above ©0. Supercritical behavior of this type is still described
by (1.1)-(1.4), but we can no longer define the phase regions and the
interface through (1.5); now the solid (or liquid) region must be separately
tracked. Writing

X(x,t) = 0, otherwise

for the characteristic function of the solid, and defining

(1 - X)e2(©), (1.9)

q(©,V©,%) = - XK1(©)V© - (1 - X)K2(©)V©,

we can write the bulk equations (1.1), (1.2) and the interface condition (1.4)1

as a distributional equation

,X)# = -divq(©,V©,X), (1.10)

but now the interface condition

© = ©0 on Z(t) (1.11)

must be adjoined to (1.10). We will refer to (1.10) and (1.11) as the
supercritical Stefan equations. The free-boundary condition (1.11) is
unfortunate, as its locality compromises the usefulness of the distributional
equation (1.10).

The object of this paper is to discuss the supercritical Stefan equations
within a thermodynamical framework,1 the crucial ingredient being an
appropriate entropy inequality (the Clausius-Duhem inequality) and, in
some cases, an entropy balance. For single-phase heat-conduction an
entropy balance is a direct consequence of balance of energy and the
1Cf. Gurtin 11988].



underlying constitutive equations, but for two-phase materials this
inequality is an independent postulate, essentially equivalent to (1.11) when
the interface is dissipationless. In fact, this entropy balance yields a
distributional PDE which with (1.10) provides a weak formulation of the
supercritical Stefan equations.

The richness of the supercritical equations emerges when these
equations are interpreted within a thermodynamical setting, for then it is
possible to extend the development to include phenomena such as
nucleations.2 Here nucleations are instantaneous, entropy-producing,
isoenergetic phase changes over regions of nonzero volume, a definition that
not only includes the instantaneous formation of, say, solid particles in
sufficiently supercooled liquid, but it also includes situations in which an
existing interface jumps.

The entropy inequality is based on a general nonlinear formulation of
the basic equations. Most applications, however, are based on an energy
equation - linear in each phase - that models behavior near e0. With this
in mind, I formulate the thermodynamics in a manner that is applicable to
the general nonlinear theory as well as to the approximate model with
linear energy equation. I believe that this formulation, in which a suitable
Gibbs function replaces the entropy, is new.

Initial/boundary-value problems associated with the supercritical
Stefan equations have been studied by many authors.3 An important
result4 is that liquid temperatures that are sufficiently low can result in
unbounded interfacial velocities in finite time. I believe that such
unbounded velocities signal a desire of the material to undergo nucleations,
and that the theory developed here can be used to extend the solution past
the "blow-up time".

I not only generalize the supercritical Stefan equations to allow for
nucleations, I also develop a theory in which nucleations take place
whenever possible. This leads to a set of equations, the nucleated Stefan
2Luckhaus [1990] was apparently the first to use the fact that nucleations
furnish weak solutions of the energy balance, although the basic idea seems
due to Visintin [1988,1989]. Luckhaus [1990] and Almgren (private
communication), working within a framework that includes interfacial
free-energy, allow for isoenergetic phase changes that (in a certain sense)
yield positive entropy production for the body as a whole; unfortunately,
their proceedure - although a major development in the solution of such
problems - does not ensure that the entropy production in arbitrary parts of
the body be nonnegative, so that thermodynamically inadmissible solutions
are not ruled out.
3E. g., Sherman [1970]; Friedman [1976]; Fasano and Primicerio [1977];
Fasano, Primicerio, and Lacey [1981]; Howison, Ockendon, and Lacey [1985];
Fasano, Primicerio, Howison, and Ockendon [1990].

^Established in various stages by Sherman [1970], Fasano and Primecerio
[1977], and Fasano, Primicerio, and Lacey [1981].



equations, which, for the simple theory that models behavior near ©o
have the form

u* =

u* =

V =

Au,

Au,

-[Vu]-m,

u <

u >

u =

i
-\
0

in

in

on

the

the

the

solid,

liquid,

interface,

(1.12)

where u = (e-eo)/eo , while A is the Laplacian.
My final step is to further stabilize the Stefan equations by allowing

for fine phase mixtures. This is formally equivalent to replacing the
constitutive equations for the entropy with a single convex relation, and
reduces the resulting free-boundary problem to a standard problem that
allows for mushy zones containing fine phase mixtures of liquid and solid.



2. SINGLE-PHASE THERMODYNAMICS.
To fix ideas, we consider first a homogeneous single-phase heat-

conductor that occupies a region B in Rn, and let e(x,t) denote the
internal energy, e(x,t) the temperature, q(x,t) the heat flux, and
r(x,t) the external heat supply.

The first two laws of thermodynamics are balance of energy

= - Jq-ndA + JrdV (2.1)
V

and growth of. entropy

{jT)dV}# > -Je^q-ndA + Je^rdV (2.2)
V dV V

for every part V (subset of B), where n is the outward unit normal to
dP. Granted sufficient regularity, these global laws are equivalent to the
local laws

e* = -divq + r, (2.3)

71# > -div(e"1q) + e-1r. (2.4)

For our purposes it is most convenient to consider constitutive
equations in which the temperature and the entropy are functions of the
internal energy,5 and the heat flux is given by Fourier's law:

e = e(e), i) = f|(e), q = -K(e)Ve (2.5)

with K(e), assumed invertible, the conductivity tensor. The heat supply
r is not prescribed by a constitutive equation, but is, instead, arbitrary.

Given a smooth energy field e(x,t), the constitutive equations can be
used to compute corresponding fields ©(x,t), T)(x,t), and q(x,t); balance of
energy (2.3) then tells us the heat r(x,t) that must be supplied to support
this constitutive process. The second law (2.4) remains to be satisfied; if we
assume that all constitutive processes are consistent with (2.4), then, by
substituting the constitutive equations into the inequality

TT - e~V - e~2q-Ve > o . (2.6)

use of internal energy as independent variable (rather than
f temperature) facilitates our study of nucleations, which for us are
< instantaneous isoenergetic phase changes over regions of nonzero volume.



obtained by eliminating r between (2.3) and (2.4), we are led to the
temperature-entropy relation

e(e) = fi'(e)-1 ' (2.7)

in conjunction with the standard restriction

K(e) positive definite. (2.8)

The restrictions (2.7) and (2.8) are necessary and sufficient that smooth
"constitutive processes" consistent with balance of energy obey the second
law.6 Thus, granted (2.7) and (2.8), we can omit all mention of the
second law and simply consider balance of energy. This will not generally
be true when we study two-phase materials.

Note that, because of the constitutive restrictions (2.7) and (2.8), and
by the energy balance (2.3), the entropy inequality (2.4) reduces to an
entropy balance

T\* = -div(e"1q) + e"1r + If, ( 2 9 )

* = e~2Ve*K(e)Ve > o,

with tf the local entropy production. We emphasize that, in contrast to
(2.4), which is basic, (2.9) is a consequence of the underlying constitutive
theory.

The requirement that the temperature be strictly positive yields the
restriction f)'>0; we assume, in addition, that

ff < 0, (2.10)

which ensures that - as functions of energy - the entropy is strictly
concave, the temperature, is strictly increasing. The relation O=e(e) then
has an inverse e=e(e); writing

C(e) = e'(e) > 0 (2.11)

for the specific heat, balance of energy is then equivalent to the classical
parabolic PDE

C(e)e- = div(K(e)Ve) + r. (2.12)

6Cf. Coleman and Noll [1963]. Note that (2.7) is the classical relation

de«edT).



3. FORMULATION OF THE SINGLE-PHASE THEORY IN TERMS OF A
GIBBS FUNCTION.

Most studies of two-phase heat conduction concern behavior near the
transition t empera ture ©0. Dynamics v/ith small t empera ture changes is
cumbersome using a formulation based on entropy; a more useful version of
the second law involves the Gibbs function

<p = e - e0Tj. (3.1)

3.1. THEORY FOR SMALL TEMPERATURE-DEVIATIONS.
We are chiefly interested in situations involving small depar tures

from a given fixed, constant t empera tu re ©0. With this in mind, we
introduce the temperature deviation u defined by the relation

e = e o ( l + u). (3.2)

Our goal is a theory - appropriate to small temperature deviations - tha t is
consistent v/ith its own version of the second law. To deduce a suitable
"growth inequality" for the theory we use (3.2) with u small to justify
replacing &'1 in the entropy-growth inequality (2.2) by ( l - u ) / O 0 ;
multiplying the resulting relation by ©0 and using (3.1), (3.2), and balance
of energy (2.1), we are led to the inequality

{ J<pdV}# < - Juq-ndA + JurdV (3.3)
P OP P

for every P. We will refer to (3.3) as the dissipation inequa l i ty ; this
inequal i ty will play a role analogous to t h a t played by the ent ropy
inequality in the general theory. We will sometimes use (3.3) in the slightly
weaker form

t 2 t 2

J<p(-,t2)dV - Jcp(-,t1)dV < -J Juq-ndA dt + J JurdV dt (3.4)
P P t

for all parts P and times t2>t lf or in the local form

<p# < -div(uq) + ur. (3.5)

The theory of small t empera ture deviations is based on balance of
energy (2.1) and the dissipation inequality (3.3). In this theory cp and u
play the roles previously played by T\ and ©; we therefore begin with
constitutive equations



u = u(e), <p = {p(e), q = - M V u , , (3.6)

v/ith M*0 constant and invertible.
As in the general theory described in Section 2.1, we require

compatibility of the constitutive equations v/ith thermodynamics; here the
requirement is that all smooth processes consistent with (3.6) and balance of
energy (2.3) obey the dissipation inequality (3.5). The results are the
restrictions

u(s) = cp'(e), M positive definite. (3.7)

A further requirement is that the underlying PDE - obtained by
substituting (3.6) into balance of energy (2.3) - be linear. We therefore want
an affine relation between u and e, and hence a quadratic relation
between <p and e. We assume that there is a unique e0 v/ith u(eo) = O,
and we define cp=qp(e) through (3.1) with T)=T)(e) approximated to
quadratic terms near e = e0; we then define u=u(e) through (3.7); the
results are

<p = (p(e) = <p0 + $B(e-s 0 ) 2 , u = u(e) - B(e-e 0 ) , (3.8)

v/ith

ô = eo " «o^^o^ B = -«o^ e o^ > °- (3-9)

These equations simplify when u is used as independent variable:

V = <Po + i c u 2 ' 8 = 8o + c u ' c = B"1 ' (3.10)

and (3.10) with (2.3) and (3.6)3 yields the classical linear heat equation

cu# = div(MVu) + r . (3.11)

* Finally, solutions of (3.11) are consistent with the dissipation balance

(p# = -div(uq) + ur - C, C = Vu*MVu > 0, (3.12)

which has the global form

- = - Juq -ndA + Ju rdV - JcdV (3.13)
p SP P P



for every part P; the relation (3.12) is an analog of the entropy balance
(2.9).

REMARK 3.1. This development is consistent with a direct
linearization of (2.12) near ©0, or equivalently, a linearization of e-e(©)
and q=-K(©)V© near © = ©0. By (2.7), (2.11), (3.9)2, and (3.10)3, c=©0C(©0),
so that the linear approximation of ©=©(e) near e0 is © = ©0+©0B(e-e0);
by (3.1), this is (3.8)2. The final step in establishing consistency is to identify
(3.6)3

 a s t^ ie linearization of (2.5)3; this yields M = ©0K(©0).

3.2. GENERAL THEORY IN TERMS OF A GIBBS FUNCTION.
Although the dissipation inequality (3.3) was derived as an

approximation based on the assumption that u be small, this relation
follows as an exact consequence of balance of energy (2.1) and growth of
entropy (2.2) provided u is defined by7

u = (© - ©0)/© (3.14)

rather than by (3.2).
Granted (3.1) and (3.14), the general theory can be equivalently

formulated in terms of the Gibbs function cp and the temperature
deviation u using balance of energy (2.1) and the dissipation inequality
(3.3) as basic laws. The constitutive theory begins with (3.6), but with
M = M(u), and reduces, as in the paragraph following (3.6), to

u(e) = (p'(e), q = -M(u)Vu , M(u) positive definite. (3.15)

These results are equivalent to (2.5), (2.7), and (2.8). By (3.1), the analog of
the assumption (2.10) is

cp" > 0, . (3.16)

which implies that

u = u(e) has an inverse z = e(u); (3.17)

as before we write eo= §(0).
Let ^= Cp(e) denote the constitutive equation for the free energy

y\> = e - ©T). ( 3 . 1 8 )

f • 7 The relations (3.2) and (3.14) are consistent: writing u for (3.14) and
usmall f o r ( 3 - 2 ) . w * s e * t h a t . u • u smal l + 0 ( u s m a l l 2 ) -
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Then, as a consequence of (3.1), (3.14), (3.15)1, and (3.16), we have the
( following:

PROPERTIES OF THE GIBBS FUNCTION. The Gibbs function ip(e) is
strictly convex with a minimum at e0, where e0 is the internal
energy corresponding to u = 0 (e = e0). The minimum value of (p(e) is
the free energy at e0:

<p(e0) = +(e0). ' . (3.19)

We let

c(u) « e'(u); (3.20)

balance of energy is then equivalent to the PDE

c(u)u - = div(M(u)Vu) + r , (3.21)

and solutions of (3.21) automatically satisfy the dissipation balances (3.12)
and (3.13).

Finally, the identities

c(u) = (e2/e0)C(e), M(u) = (e2/e0)K(e) (3.22)

relate the specific heats and conductivities of the general formulations.

REMARK 3.2. Note that, although the theory of the Section 3.1 is
based on an approximation of small temperature deviations u, the
resulting Gibbs function q?(e) as defined by (3.8) and (3.9) has all of the
properties stated above. Most of our discussion will be within the general
framework of this section, but all of our results will apply also to the
simplified theory based on (3.8).

REMARK 3.3. A theory based on balance of energy (2.1) and the
dissipation inequality (3.3) together with the constitutive equations (3.15) is
isomorphic to the continuum theory of (isothermal) mass diffusion with e
the concentration, q the mass flux, r the mass supply, <p the free
energy, and u the chemical potential; (2.1) is then balance of mass, while
(3.3) is the free-energy inequality appropriate to this theory.
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4. TWO-PHASE CONSTITUTIVE THEORY.
4.1. GENERAL THEORY BASED ON ENTROPY.

We assume that the solid and liquid phases, labelled 1 and 2, are
governed by constitutive equations

q = -Kx(e)VB

for the solid and

T) « T)2(8), © = ©2(8) = T|2 (8) , (4.2)

q = -K2(©)V©

for the liquid, with each set of equations consistent with the assumptions of
Section 2.1.

We assume that the graphs of f)1(8) and f)2(8) are as shown in
Figure 1. In particular, we assume that these graphs cross at a single
energy 8*; then, since each of the graphs is strictly concave, the composite
diagram is convexified by a single line £, with £ tangent to f|1(8) at a
single point 8 = 81 and to f)2(8) at a single point 8 = 82 . The common
temperature

©0 = ©^8^ = ©2(82) (4.3)

is then the transition temperature, while

t :« 82 - t1 (4.4)

is the latent heat.
The free energy (3.18) is given, in the solid and in the liquid, by

e), ( 4 5 )

e - ©2(e)f|2(e),

and it follows from the definitions of ©0, £1, and s2 that

$1(e1) = tx - 0 0 ^ ( 6 ^ = $2(e2) = e2 - ©0fi2(82), (4.6)

v/hile the converse assertion

©2(z) & vpx(w) = $2(z) «» w = e1, z = 82 (4.7)



FIGURE 1. Constitutive relations for the entropy TJ and temperature $ as
functions of the internal energy t.
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is a consequence of the strict concavity of fi1(e) and f)2(e); thus the
temperature and free energies of the phases coincide at and only at the
transition temperature.

Liquid at energies t<t2 is supercooled as its temperatures lie below
the transition temperature; similarly, solid at energies 6>e1 is
superheated. We will refer to liquid at energies e<e* as super-
supercooled, to solid at energies e>e* as super-superheated. Super-
supercooled liquid has fj2(e)< T^U), while super-superheated solid has
f)1(8)<f)2(8); in either case a change of phase at constant energy raises the
entropy, making super-supercritical material unstable to isoenergetic
perturbations.

4.2. GENERAL THEORY BASED ON THE GIBBS FUNCTION.
We now consider the alternative formulation in terms of the Gibbs

function <p and the temperature deviation8 u, with e0 the transition
temperature, so that u = 0 is the transitional temperature-deviation. This
formulation is based on the constitutive equations

<P = cp^O, u = u^e) = q '̂Ce), ( 4 g )

q = -M1(u)Vu

for the solid and

cp = (p2(e), u = u2(e) = tp2'(e), ( 4 9 )

q = -M2(u)Vu

for the liquid, with each set of equations consistent with the assumptions of
Section 3.2.

We assume that ^ ( e ) and cp̂ Ce:) are consistent with the
assumptions laid down for the entropies in the paragraph following (4.2).
Then ea and t2

 a r € &ven by

u1(e1) = u2(e2) = 0, (4.10)

and we may conclude from (3.1), the properties of the Gibbs function
established in Section 3.2, and (4.6) that (Figure 2): ip (̂e) and (p2(s) are
strictly convex and cross at, and only at, 8*; t-t1 and e = e2 minimize
qp1(e) and cp2(e), respectively, and the minimum values of these two
functions coincide, so, without loss in generality, we may suppose that

^Defined by (3.2) in the theory for small, temperature deviations and by

(3.14) in the general theory.
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FIGURE 2. Constitutive relations for the Gibbs function <p and temperature
deviation u as functions of the internal energy e.
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= 0; (4.11)

super-supercooled liquid has cp2(s)>cjp1(e), while super-superheated solid
has cp1(e)>cp2(e).

Finally we note that the analog of (4.6) and (4.7) within the present
formulation is

u1(w) = u2(z) = U & cp^w) - Uw = <p2(z) - Uz ** w = 8 1 # z = 82. (4.12)

4.3. THEORY NEAR THE TRANSITION TEMPERATURE. MODEL EQUATIONS.
To model behaviour near the transition temperature we use the

constitutive equations (3.8) with cpo= 0 in each phase:

<p = cp±(e) = {B^t-tJ2, u = ux(e) = B^e-e^, (

q = -MxVu

in the solid, and

cp = cp2(e) = $B2(8-82)2 , u = u2(e) = B2(e-e2) , (

q = -M2Vu,

in the liquid, or equivalently, letting c2 = Bf1,

cp = l^ 1u 2 , £ = e1 + cxu, q = -MxVu in the solid, f
cp « i c 2 u 2 , e = e2 + c2u, q = -M2Vu in the liquid.

REMARK 4.1. For B1*B2 the graphs of cp1(e) and (p2(e) cross not
only at the energy e = e* between e1 and e2, but also at a second energy
e = s**. Thus for B1*B2 this special theory does not fall within the
general framework of Section 4.2. The crossing at 8** is spurious: it has
no counterpart within the general theory and introduces an erroneous
interchange in the stability of the two phases. In fact, this second crossing
induces a spurious phase change, since the convexification of the diagram of
(p versus 8 has a nonconvex portion around 8 = 8**. Thus extreme care
should be taken if B1*B2: solutions that have u in the nonconvex portion
around 8 = 8** could be both qualitatively and quantitatively incorrect.

In view of this remark, when considering the theory of this section we
will generally assume that B ^ B ^ (c1 = c2), which is the physical
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requirement that the specific heats of the solid and liquid phases coincide at
the transition temperature. In fact, we will assume that a scaling has been
chosen such that

B± = B2 = 1 (c± = c2 = 1), tx = 0, e2 = 1; (4.16)

then
« = 1, e* = \. (4.17)

Further, to have a simple model with a minimum of qualitatively
unimportant constants, we will assume, in addition, that the material is
isotropic with equal conductivities in the two phases, so that, modulo a
further scaling, the constitutive equation for the heat flux is given by

q = -Vu (4.18)

in each phase, which renders the dissipation (3.12)2 of the form

C = IVUI2 (4.19)
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5. BALANCE OF ENERGY AND THE DISSIPATION INEQUALITY. WEAK
FORMULATION FOR NONDISSIPATIVE INTERFACES.

5.1. BASIC EQUATIONS.
The t ime t will always be confined to a fixed interval [0,T). Let B

consist of a solid region B1(t) and a liquid region <B2^ separated by a
phase interface Z(t)t and let m(x,t) denote the unit normal and V(x,t)
the corresponding normal velocity for Z(t) with m directed outward
from the solid. Further , let X(x,t) denote the characteristic function of
S1(t) (cf. (1.8)), and let e(x,t) be an energy consistent with X(x,t) in the
sense tha t e(x,t) is smooth where X(x,t) is smooth and otherwise suffers
at most j u m p discontinuities. Further, let <j)(x,t), u(x,t), and q(x,t) be
defined through the constitutive equations (4.8) and (4.9), which we now
write in the form

(5.1)

Finally, we assume that , for almost every t,

u(x,t) is continuous in x on B. (5.2)

This assumption, which is basic to all that follows, will be referred to as the
local equilibrium hypothesis.

We neglect the energy and entropy of the interface, and therefore
consider balance of energy and the dissipation inequality in the forms (2.1)
and (3.3). Trivially, the results of Section 3.2 hold away from the interface.
Balance of energy (2.1) and the constitutive equations therefore yield (3.3)
in each phase, but (without further restrictions) (3.3) will generally not hold
automatically when V contains the interface.9 Further, it is not enough
to simply require consistency with the second law: constitutive assumptions,
which delineate the type of phase interaction under consideration, are
needed. Here we will specify such assumptions as restrictions on the
manner in which the interface dissipates energy.

Consider first a smoothly evolving interface ^(t) . Then (2.1), (3.3),
and (5.2) yield the relations

<J> = X < P

u = X u

ite) + (1

^ ( E ) + (1

Mi(u)Vi;

- X ) u

» - ( 1 -

2(e).

- X)M2(u)Vu.

r, ( 5 3 )

cp# < -div(uq) + ur
9An analogous situation occurs in the theory of shock waves: growth of
entropy holds automatically away from a shock, but must be adopted as an
independent hypothesis across such waves.
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in bulk (in tB-. (t) and in B9(t) for all t) in conjunction with the
interface conditions

[e]V = [q]-m, ( 5 4 )

[cp]V > u[q]-m

to be satisfied on Z{t) for all t. Here [ ] denotes the jump across Z(t)
(the limit from B2(t) minus that from B1(t)).

We will consider materials for which smooth interfacial motions of
this type are nondissipative. To state this assumption precisely, we define
the dissipation T(V) in any part P by

HP) = { JcpdV}' + Juq-ndA - JurdV < 0. (5.5)

Let (Pn) be a sequence of parts none of which contain the interface at
time t. Then, by (3.13), which holds in the individual phases,

T(Pn)(t) -> 0 if volume (Pn) -> 0. (5.6)

Our hypothesis of a nondissipative interface is the requirement that (5.6)
be satisfied for all sequences {Pnh irrespective of whether or not the Pn's
contain the interface.10

This assumption has strong consequences. It implies a stronger
version of (5.4)2, namely,

[q>]V = u[q]-m; (5.7)

and, since (3.13) holds in B1(t) and 3B2^' W € ma>" u s e ^5-7^ t o s h o w t h a t

the dissipation balance (3.13) holds for all parts P; in fact,

HP) - -JedV. (5.8)
P

Further, (5.4)x and (5.7) yield

{[<p] - u[e]}V = 0, (5.9)

1® There are theories of interfacial behavior in which the interface is

dissipative; e. g.f interfacial kinetics is often modelled by allowing the limit

(5.7) to have the form b(e,V)V^ (b>0) when V approaches the interface

(cf., e.g., Gurtin [1988]).
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and, appealing to (4.10), (4.12), and (5.2), we see that, for V*0, the
temperature deviation obeys the classical Stefan condition u = 0. However,
we do not have the classical Stefan problem, since the temperature
deviation is not required to be >0 in the liquid and <0 in the solid. What
we have shown is that,11 granted balance of energy and the local
equilibrium condition (5.2),

the Stefan condition u=0 is a consequence of the balance law for entropy.

Further, (4.4), (4.10), and the Stefan condition yield [e] = i, so that (5.4)1

becomes {V=[q]-m.
Summarizing, we have the system:

s* = -divq + r, in bulk, (5.10)

{V « [q]*m, u = 0 on the interface

supplemented by (5.1) and (5.2). Conversely, solutions of this system satisfy
the energy and dissipation balances (2.1) and (3.3).

Thus the global balances furnish a weak form of the system (5.10). A
possibly more useful formulation utilizes the distributional form of these
balances. If w, h, and p are smooth away from the interface and have

at most jump discontinuities across the interface, then w# = -divh+p in the
sense of distributions on B*[0,T) if and only if this equation is satisfied
classically away from the interface and [w]V = [h]*m across the
interface.12 Using this result, we are led to the following proposition, in
which e(x,t) is consistent with X(x,t), in which the local equilibrium
hypothesis (5.2), the constitutive equations (5.1), and the constitutive
assumptions stated in Section 4.2 are tacit, in which C is given by (3.12),
and in which the interface >8(t) evolves smoothly.

ALTERNATIVE FORMULATIONS OF THE SUPERCRITICAL STEFAN
EQUATIONS. The following are equivalent:

(i) (e,X) satisfies balance of energy (2.1) and the dissipation inequality
(3.3), and the interface is nondissipative in the sense of (5.6);

(ii) (s,X) satisfies the energy and dissipation balances (2.1) and (3.13);
(hi) (s,X) satisfies the Stefan system (5.10);
(iv) (e,X) satisfies the balance laws

11Gurtin [1988], Remark 6.1.
12Cf. Dafermos [1983] for a discussion of distributional balance and growth
laws and their relation to integral laws such as (2.1) and (3.3) and to jump
conditions such as (5.4).



18

8- = -divq + r, (5

<p# = -div(uq) + ur - f

in the sense of distributions.

The distributional equations (5.11) make sense under regularity
conditions far less stringent than those used in their derivation, and they
apply in the presence of multiple interfaces that may merge or disappear.
We will refer to (5.11) supplemented by the constitutive equations and by
(5.2) (for almost all t) as the supercritical Stefan equations.

5.2. MODEL EQUATIONS FOR BEHAVIOR NEAR THE TRANSITION
TEMPERATURE.

In terms of the simple theory based on the model equations (4.13)-
(4.18), the constitutive relations (5.1) have the form

2<p = Xe2 + (1

u = xe + ( 1 - X)(e-1), (5.12)

q = -Vu,

or equivalently,

2<p = u2,

e « Xu + ( 1 - X)(l + u)f . (5.13)

q = -Vu.

In this case (5.10) reduce to

u* = Au + r in bulk, /& ^

V = -[Vu]*m, u = 0 on the interface,

while the distributional equations (5.11) take the form

E1 = Au + r, (5.15)
cp* = div(uVu) + u r - IVul2,

and the requirement (5.2) should be borne in mind. Here A denotes the
Laplacian.

5.3. REMARKS ON THE ONE-PHASE STEFAN PROBLEM IN R.
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Consider the simple theory of the last section. Suppose that the
underlying space is IR, with 33 the interval (0,1), and assume that the
body is isolated in the sense of the restrictions

q(0,t) = q(l,t) = 0 (5.16)

and rsO, with q(x,t), the heat flux, now a scalar field. Suppose that
initially there is a single interface, located at x = s0, with (0,s0) solid and
(so,l) liquid, and that the initial temperature-deviation uo(x) satisfies

uo(x) = 0 for 0 < x < s0, (5.17)

but is otherwise arbitrary. Assume that the resulting interface x = s(t)
(s(0) = s0) evolves smoothly for t small. Then, since q(0,t) = u(s(t),t) = 0,
(5.14) reduce to the bulk equations

u(x,t) = 0 0 < x < s(t), (5 l g )

ut = uxx s(t) < x c 1,

in conjunction with the interface conditions

s-(t) = -ux(s(t),t), u(s(t)ft) = 0. (5.19)

Were the temperature deviation u required to be >0 in the liquid, this
would be the classical one-phase Stefan problem; since we allow
supercooling there is no such sign restriction on u, and the resulting
problem is far more difficult.13 Consider the problem (5.16), (5.18), and
(5.19) with so = O, so that 33 is initially liquid except for a seed of the solid
at x=0. If

uo(x) < -1 for 0 < x < 1, (5.20)

this problem has no (classical) solution;14 if uo(x) is sufficiently smooth
with u0(0+) = 0 and

1
Juo(x)dx < - 1 , (5.21)
0

13Cf. Sherman (1970]; Friedman [1976]; Fasano and Primicerio [1977];
Fasano, Primicerio, and Lacey [1981]; Howison, Ockendon, and Lacey [1985];
Fasano, Primicerio, Howison, and Ockendon [1990].
14Cf. Fasano, Primicerio, and Lacey [1981].
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then15 there is a solution up to a maximal time T, but

liminfs-(t) = «,. (5.22)
t-T

I believe that the infinite velocity (5.22) indicates a tendency of the
interface to jump at t=T, thereby inducing an instantaneous phase change
over a spatial interval of nonzero length. 1 further believe that, while there
is no solution with smoothly propagating interface for data consistent with
(5.20), there is a "solution" in which the entire body instantaneously
changes phase. In Section 6.1 I will discuss formulations that might
hopefully account for behavior of this type.

15Cf. Sherman [1970], Fasano, Primicerio, and Lacey [1981].
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6. NUCLEATIONS.
6.1. BASIC EQUATIONS.

Suppose that, at a fixed time X, a portion Q of the liquid is super-
supercooled. Then, instantaneously changing the phase of each xcG from
liquid to solid - holding the internal energy e(x,X) fixed - raises the entropy
at each x from fj2(e(x,X)) to f)1(e(x,X)), or equivalently, lowers the Gibbs
function from q>2(e(x,X)) to ip1(e(x,X)). Since e(x,X) doesn't change, it is
reasonable to expect that such a change is consistent with balance of energy
in either the integrated form (2.1) or the distributional form (5.11)1. On the
other hand, since n(x,t) and (p(x,t) jump in t at t = X for all xcQ, if
volume (GO * 0 then such a bulk phase-change, or nucleation,1^ produces
entropy

Jfil(e(x,X)) - f)2(e(x,X)) dV(x), (6.1)

Q

or equivalently, dissipates energy

Jcp2(e(x,X))-cp1(8(x,X))dV(x). (6.2)
Q

For this reason application of an entropy or dissipation balance is delicate.
In particular, the left side of the dissipation balance (3.3) is not defined at
t = X, although, presumably, it is -«>, and it is not clear whether or not the
distributional dissipation balance (5.11)2 has meaning. If the dissipation
C = Vu*MVu is integrable on Bx(0,T), an assumption consistent with (5.2),
then this distributional equation might very well be appropriate.17 On the
other hand, (5.11)2 might be too strong to include nucleations; in that case
we might use (3.5) distributionally on B*[0,T) and (3.5) distributionally on
sets Bx(T1,T2) that do not include nucleations.

We are therefore led to consider the supercritical Stefan equations
even in the presence of nucleations. Nucleations seem physically
reasonable; they result in an instantaneous increase in entropy and hence
tend to stabilize the system, at least when the actual interfacial entropy is
too small to. negate the effect of nucleation-inducing fluctuations.

Nucleations introduce a seeming lack of uniqueness. For example, if
B is initially liquid with a part P super-supercooled, and if the body is
isolated in the sense of the conditions

16This use of the term includes situations in which an existing interface
jumps.
i7Here I acknowledge valuable discussions with Michiel Bertsch and
Roberta Dal Passo.
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q-n = 0 on 3Bx[0,T), r = 0 on B*[0,T), (6.3)

then I would expect a solution in which portions of P remain liquid, and
another solution in which P instantaneously changes phase to solid.

6.2. THE NUCLEATED STEFAN EQUATIONS.
One method of limiting the lack of uniqueness discussed above is to

assume that nudeations take place whenever possible. This is equivalent to
requiring that super-supercooled liquid instantly undergo an isoenergetic
phase change, and similarly for super-superheated solid; mathematically,
this is accomplished by adding the constraint

X = 1 when e < e*, X = 0 when t > e*. (6.4)

We will refer'to the distributional equations (5.11) supplemented by the
constraint (6.4), the constitutive equations (5.1), and the local equilibrium
hypothesis (5.2) as the nucleated Stefan equations.

The constraint (6.4) renders irrelevant the supercritical branches of
the constitutive equations. Since the Gibbs functions ip^s) and cp 2 ^
coincide at e = e*, this allows us to introduce a combined Gibbs function

(p(e) = fp«(e) for e < e*,

= tp2(e) for t > 8*

for the two phases (Figure 3). We can also define a combined constitutive
equation for the temperature deviation by

u(e) « (p'(e); (6.6)

u(s) coincides w i t h u1(e) for e<e* and wi th u 2 ( e ) for 8 > E * , and

hence suffers a j u m p discontinuity a t e = e* wi th limiting va lues

ux* := u(e*-0) = u^c*), u2* :« u(e*+0) = u2(e»). (67)

The nucleated Stefan equations simplify when the set

G*(t) = {x:s(x,t) = eM (6.8)

has an empty interior at each t, for then the problem reduces to solving
the distributional equations (5.11) in conjunction with the local equilibrium
hypothesis (5.2) and the constitutive equations (6.5), (6.6), and



FIGURE 3. The Gibbs function <p(e) and temperature deviation u(c) for
the nucleated Stefan equations.
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q = -Mx(u)Vu, t < e*, ( 6 9 )

-M2(u)Vu, e > e*.

In this formulation the constraint (6.4) as well as all mention of X are
omitted, and the solid and fluid regions may be defined a posteriori by

S^t) = { x : e(x,t) < e* ), ( 6 1 0 )

B2(t) = { x : e(x,t) > e* }.

I conjecture that if the body is isolated, then Q*(t) has an empty interior
for all t>0.

Note that the initial energy-distribution e(x,0) satisfies e(x,O)<e* in
B1(0) and e(x,0)>e* in tB2(0). If the solid, say, had just nucleated from
a continuous energy distribution, then e(x,0) would be continuous across
the interface with value e* on the interface; hence the initial temperature
deviation would suffer a jump discontinuity at t = 0 (cf. (6.7)). If the
resulting interface Z(t) evolves smoothly in time, at least for t>0 small,
then (5.2) and the analysis leading to (5.10) tells us that the temperature
deviation u(x,t) on B(t) instantly assumes the value u(x,t) = 0, and
that18 for all sufficiently small t the equations reduce to:

q + r, e < z*,

u = ux(e), q = - M 1

in the solid,

e* = -divq + r, t > e*,
u = u2(O' q = -M2(u)Vu

in the liquid, and

{V = [q]-m, u - 0 (6.13)

on the interface.

6.3. MODEL EQUATIONS FOR BEHAVIOR NEAR THE TRANSITION
TEMPERATURE.

For the model equations (4.13)-(4.18), the nucleated Stefan equations
(6.11H6.15) reduce to 1 9

18We expect no new nucleations if the system is isolated.
i9Visintin [1989] proposes a problem of this type to model nucleations, but
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for the temperature deviation, or

e# = Ae + r, e < \ in the solid,

e# = Ae + r , e > % in the liquid, (6.15)

V = -[Vu]-m, € 5 = 0 , 6L * 1 on the interface

for the internal energy, where e s and sL denote the limiting values of
the internal energy from the solid and liquid, respectively.

REMARK 6.1. Within this framework - in which nucleations take
place whenever possible - we can allow for different specific heats in the
solid and liquid without introducing erroneous behavior: since we require
that the material be solid when e<e* and liquid when e>e*, the spurious
change in stability for e = e** (cf. Remark 4.1) cannot manifest itself. In
this case, for c1 = c, c2

 = l , €1 = 0, 62 = 1,

e* = f c / ( l + fc), U J ^ C ^ E " , u2* = e*-l (6.16)

(cf. (6.7)). In this case, if we retain (4.18) as the constitutive equation for
the heat flux, we are led to the following generalization of (6.14):

cu1 = Au + r , u < c^e* in the solid,

u# = Au + r, u > e* - 1 in the liquid, (6.17)

V = -lVu]*m, u = 0 on the interface;

with obvious modifications we can also account for different conductivities
in the two phases.

6.4. FURTHER DISCUSSION OF THE ONE-PHASE PROBLEM IN R.
We now return to the one-phase Stefan problem based on the model

equations (4.13)-(4.18). Consider first initial data consistent with (5.20), in
which case the problem as presented in Section 5.3 has no solution. Within
his bounds u < a ^ in the solid and u > - a 2 in the liquid (a^ , a 2 > 0) are

i n d e p e n d e n t c o n s t i t u t i v e quant i t i e s unre la ted to t h e Gibbs func t ions ipiCe)

and $2 (s). I bel ieve tha t this might possibly lead to inconsistencies .
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the framework of Section 6.1 (nucleations allowed, but not required), this
problem has a (probably nonunique) solution in which the entire interval
(0,1) changes phase to solid, the change being isoenergetic and
instantaneous. If we consider the nucleated Stefan equations (nucleations
occur whenever possible), then, by (6.14), the temperature deviation in the
liquid must satisfy the constraint u(x,t) > -\ = u2* . Thus (5.20), with (0,1)
liquid, is inadmissible initial data. (Such data is rendered admissible by an
isoenergetic phase change of the entire interval to solid.) If we allow the
specific heats in the two phases to differ, as in (6.17), then, by (6.16), the
lowest possible value for the limiting temperature-deviation u2* in the
liquid is -1 (for c = 0), so that (5.20) remains inadmissible.

Consider next initial data consistent with (5.21). For the nucleated
Stefan equations such data, with (0,1) liquid, is inadmissible; it is rendered
admissible by an isoenergetic phase change, to solid, of points x with
uo(x)<e* - 1. On the other hand, within the framework of Section 6.1, the
data (5.21) is admissible. According to Fasano, Primicerio, Howison, and
Ockendon [1990], the singularity (5.22) at t*T occurs when the interface
contacts the u - - l level set. In this case, if the set {x: u(x,T-0) <- l} has
a connected component of the form [s(T-0),Y], I would expect that the
solution can be continued past t = T using an isoenergetic phase change of
[s(T-0),Y] to solid at time T, and then starting the interface smoothly
again from Y at T (Figure 4). Working within the framework of the
simple model (4.13)-(4.18) (with equal specific heats) the temperature
distribution in the solid (0,Y) at time T+0 is generally no longer u = 0: it is
determined by setting the energy of the solid material in [s(T-0),Y] equal
to the energy in [s(T-0),Y] in the liquid phase at t=T-O; by(5.13)2,

u(x,T+0) = 1 + u(x,T-0), s(T) < x < Y. (6.18)

The resulting problem, now two-phase, consists in solving

u t = uxx x * s(t),

s*(t) = ux(s(t)-0,t) - ux(s(t)+0,t),

u(s(t),t) = 0, ( 6

u(x,T+0) = g(x) 0 < x < L,

s(T+0) = Y,

ux(0,t) = ux(L,t) = 0x(0,t) = ux(

for t>T, where g(x) is zero on (0,s(T)), is given by (6.18) on [s(T),Y], and
is given by u(x,T-0) on (Y,L).

If we neglect the conductivity of the solid, then the problem for t>T
is the one-phase problem:20
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FIGURE 4. Interfacial motion in which the interface jumps at time T
indicating a nucleation.



26

u t = ux x s(t) < x < L,

s-(t) = -ux(s(t),t),

u(s(t),t) = 0, (

u(x,T+0) = u(x,T-0) Y < x < L,

s(T+O) = Y,

ux(L,t) = 0.

There is an apparent lack of uniqueness in the continuation process
described above for both (6.19) and (6.20). I believe that a solution can also
be continued using as nucleation interval any super-supercooled interval
[s(T-0),Z] with Z>Y and u(Z,T-0)>-l. A possible method of investigating
this issue is to allow for kinetic undercooling,2 1 which leads to the
regularized problem:

u t = ux x s(t) < x < L,

s-(t) - -ux(s(t),t),

u(s(t),t) = -bs#(t), (6.21)

u(x,0) = uo(x) 0 < x < L,

s(0) = 0,

ux(L,t) = 0,x(

with b>0. Given initial data uo(x) consistent with (5.21), an interesting
question is: Does the limit as b —> 0 of the solution of (6.21) exist, and if so
is it a solution of one of the continuation processes described above? I would
expect the limit to be the nucleation to Y. The nucleations to Z>Y have
u(Z,T-0)>-l v/ith Z super-supercooled at t = T-0 for the model with equal
specific heats. But the one-phase problem (6.20) makes no mention of the

r solid-liquid systems the individual conductivities are generally equal
in order of magnitude, as are the specific heats, so a two-phase theory seems
more suitable. A one-phase theory is often applied to mass transport (cf.
Remark 3.3), where the diffusivity within the solid is usually orders of
magnitude lower than that within the liquid.

I believe that (6.20) is valid for s#(t)>0. but for s*(t)<0 there are
problems when the interface impinges on solid material with nonzero
temperature deviation. The correct formulation (within a continuum
thermodynamical framework) of the one-phase problem seems to me an open
issue.

^Cf., e. g., Visintin [1986], Gurtin [1988], Dewynne, Howison, Ockendon, and
Xie [1989]; the latter authors refer to unpublished work of Visintin and Xie
for the existence, uniqueness, and regularity of solutions.
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specific heat of the solid, and, for u(Z,T-0)>-l there is always a choice of
specific heat for the solid such that Z is not super-supercooled at T-0 (cf.
(6.16)).

A simpler framework within which to study this issue is to consider
(6.21) with and without b = 0 for s(0) = 0 and initial data uo(x) that is
smooth on [0,1] and of the form:

uo(O) = uo(Y) « -1; uo(x) < - 1 , 0 < x < Y; uo(x) > - 1 , Y < x < L.
(6.22)
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7. FINE PHASE MIXTURES. STABILIZED SOLUTIONS. MUSHY ZONES.
Consider the Gibbs function cp(u) corresponding to the nucleated

Stefan equations (cf. (6.5)). The convexification <pf(e) of this function
coincides with cp(e) for £<tx and t>£2> while for z1<z<t2 the graph of
<pf(s) is the line between (^,0) and (e2,0).

uf(e) := cp/(e), (7.1)

so that u = uf(e) is the temperature deviation in a material whose Gibbs
function is given by <p = cpf(e):

Material -whose energy t lies between ex and e2 *s unstable to
perturbations at constant energy. Indeed, the Gibbs function is lowered by
letting the material develop a fine phase mixture, of the same energy £,
consisting of volume fractions v1 and v2 of solid at energy ex and liquid
at energy e2:

e = v1e1 + v2z2, v1 + v2 = 1, ( ? 2 )

= cpf(e) <

Consider now a solution of the nucleated Stefan equations. Let t denote a
fixed time, and let

01(t) = { x : e(x,t)c[e1,e2] }. (7.3)

Then the instantaneous formation, at each x€cU(t), of a fine phase mixture
of ex and 82,

£(x,t) = v1(x,t)z1 + i;2(x,t)e2, vx(x,t) + v2(x,t) = 1, (7.4)

lowers the integral of <p(x,t) over tKt) by the amount

J(cpf(e(x,t)) - jp(e(x,t))) dV(x), (7.5)
Ti(t)

but keeps the energy of any subset of 1i(t) unchanged. Such fine phase
mixtures stabilize the solution, and, arguing as in Section 6, it seems
physically reasonable to consider solutions for which these instantaneous
changes always take place. For such solutions we replace the Gibbs
function cp(e) by its convexification <pf(e), and, if we consider fine phase
mixtures as limits of regions of constant energies t± or e2, then the
limiting value of the corresponding temperature deviation is

) = uf(s) = 0. Thus allowing for the instantaneous formation of fine
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phase mixtures should be equivalent to replacing q?(e) and u(e) by
<pf(e) and uf(e), respectively, and hence considering the constitutive
equations:

<p = <pf(e), u = uf(s), q = -M(u)Vu, (7.6)

with M(u) = M1(u) for u<0 and M(u)*M2(u) for u>0.
Consider a distributional solution e(x,t) on B*(0,T) of the energy

equation (2.3) with u(x,t) subject to the local equilibrium hypothesis (5.2).
Because of the strict monotonicity of the function uf outside [el9t2],
spatial discontinuities in e can occur only at energies within [t1 ,e2^ anc*
hence only at u = 0, and so we need not consider the dissipation balance.
We will refer to the distributional energy equation (2.3) - supplemented by
(5.2) and (7.6) - as the stabilized Stefan equations.

The set <U(t) defined in (7.3) is also the set of x such that u(x,t) = 0.
The set 3R(t) := Int *U(t) represents a mushy zone22 containing a fine
phase mixture of liquid and solid. Assume that rsO. Fix the time t and
suppress it in what follows. Since Vu = 0 in 311, (7.6) yields q=0 for xcTR;
thus e' = 0 in JR. Consider a point y near which 3R and the solid region
B1 are separated by a surface } containing y. Then, since e<e1 in B1

and S£E1 in OIL, [e]>0 at y, where [ ] here denotes the limiting value
in the mush minus that in the solid. Assume, further, that the solid is
isotropic, so that q is parallel to (and points in the opposite direction of)
Vu in B1. Let m denote the normal to J directed outward from the
solid, and let V denote the corresponding normal velocity. Then, since u<0
in the solid, [q]-m<0 at y, and, by the analog of (5.4)1, V<0, so that the
mushy region cannot grow into the solid. Similarly, the rnushy region
cannot grow into the liquid. What we have formally shown is that, for
sufficiently regular solutions, the mushy region decreases monotonically; in
fact, 311 (t) nests as t increases in the sense that 3Tl(t)c3Tl(X) for t>X. I
conjecture that this is a generic property of weak solutions of the stabilized
Stefan equations with rsO. I conjecture further that if the body is isolated
(cf. (6.3)) and initially not all mush, then the volume of the mushy region
tends to zero in finite time.23

Finally, we remark that in the absence of a mushy zone the basic
equations are those of the classical Stefan problem.

mushy zones are known to occur in solutions of the Stefan problem
with nonzero heat supply (cf., e.g., Lacey and Taylor [1983], Ughi 11984],
Crowley and Ockendon [1987]). Detailed studies of the qualitative properties
of the mushy zone are given by Bertsch, De Mottoni, and Peletier [1984,1986].
^3A result of this type, for B*[0,l], is given by Bertsch, De Mottoni, and
Peletier [1984].
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