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Abstract: We study the limiting behavior of the solution of the Cahn-Hilliard
equation using "energy-type methods". We assume that the initial data has a
"transition layer structure", i.e., ue w ±1 except near finitely many transition
points. We show that, in the limit as e —> 0, the solution maintains its transition
layer structure, and the transition layers move slower than any power of e.

§1. Introduction

The Cahn-Hilliard equation

ut = MA (-2KAu + W'(u)), (1.1)

where W is a double-well potential, was proposed in [CH] and [C] as a simple model for
the processes of phase separation and coarsening in a binary alloy at fixed temperature.
The function u represents the concentration of one of the metallic component of the alloy
and hence the composition of the mixture if we assume that the total density is constant.
The coefficient M in (1.1) is a positive kinetic coefficient, and K is the gradient energy
coefficient; it is proportional to the square of the interaction distance, which is assumed to
be small compared to characteristic dimensions on the laboratory scale. Since the total free
energy of the mixture must decrease in time (for thermodynamical reasons) and since the
mixture cannot pass through the wall of the container, the natural boundary conditions
are

dnu = dn(-2KAu + f(u)) = 0 on dft, (or equivalently dnu = dnAu = 0 on )

where dn denotes the normal derivative on the boundary of the vessel Q. Here we are
assuming that the alloy and the vessel walls do not react. These conditions also ensure
that the mass of the mixture is preserved.

We describe now the dynamics modeled by the Cahn-Hilliard equation, beginning
with the "spinodal decomposition". A uniform liquid mixture at high temperature and
of concentration u is suddenly quenched to a lower temperature. If u lies in the spinodal
interval (where W"{u) < 0) corresponding to this new temperature, the uniform mixture
u = u becomes very unstable and phase separation takes place. After spinodal decomposi-
tion, the alloy has a fine grained separated structure with u « u\ in the solid regions and
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u » u*i in the liquid ones, where u\ and u<i are the positions of the two local minima of W.
For mathematical results on the spinodal decomposition of the Cahn-Hilliard equation, we
refer to [G]. (See [E] for the case of one-dimensional Cahn-Morral systems.)

The solution then evolves on a much slower time scale. In the one dimensional case,
there exist stationary solutions with this fine grain property, but they are unstable (see e.g.
[BF]). Therefore even though the solution will be typically drawn toward the associated
unstable manifold ([G]), it will move very slowly away from this stationary solution until
it reaches the neighborhood of a coarser-grained starionary solution. One expects this
"cascading" process to continue, with coarser grains corresponding to even longer time
scale ([BF]), and is known to the metallurgists as coarsening.

At the end of this coarsening process, the solution will generically approach a stable
state, which minimizes the free energy. In one space dimension, convergence to a stationary
solution has been proven by [Z]. Furthermore, [CGS] have shown that all local minimizers
of the free energy are monotone functions. Consequently, grains must eventually coalesce
to produce a (single transition) stationary state, but one must wait an extremely long time
to observe this. It is the phenomenon of "slow motion" of interfaces which we study in
this paper. (See below for an explanation of this slow process based on "energy".)

In order to study the dynamics of this problem in one-space dimension, we introduce
the dimensionless Cahn-Hilliard equation

ut = (~e2uxx + 2(i/3 - u))xx in (a, 6) x R+ (1.2)

where e2 is the ratio of K to characteristic dimensions, and is therefore small. We shall
study the limiting behavior as e —> 0 of this problem with either a Neumann type boundary
condition

txx(a,<) = ux(b,t) = 0 and uxxx(a,t) = uxxx(b,t) = 0 t> 0, (1.3)

or a Dirichlet type boundary condition of the form

ti(a,t) = ± l , u ( M ) = ±1 a*Kl tix*(M) = u**(6,<) = 0 t> 0. (1.4)

We assume that spinodal decomposition has occured, and that UQ(X) W ±1 except near
finitely many transition points.

Elliot and French [EF] and McKinney [Me] have done numerical computations on this
problem which suggest that the evolution of the transition layers is in fact exponentially
slow (e~"£). Using a dynamical systems approach, Alikakos, Bates and Fusco [ABF] have
studied the above dynamical picture using (1.2) and (1.3), with the extra hypothesis that
the initial data has only two transitions layers. Their approach is similar in spirit with that
of Carr and Pego ([CP]) and Fusco and Hale ([FH], [F]) for the Allen-Cahn equation and
they obtain similar metastable patterns. Their results on the evolution of the transition
points show that the velocity of displacement of the transition points is of the order of
e~~ « , where C is a constant and / is the minimum distance between the transitions in the
initial data. The analysis of Alikakos, Bates and Fusco is based on an ansatz for the form



of uc, and on estimates for the linearization of (1.2) about this ansatz. We use "energy-
type" estimates to show that as e —> 0, the transition points move slower than any power
of e. Our result is weaker than that of [ABF] but our analysis has the advantages that
it is far more elementary, it can handles any number of transition layers with essentially
no changes and it places less stringent requirement on the form of the initial data. We
can also handle both boundary conditions (1.3) and (1.4) with equal ease; however the
Neumann type boundary condition (1.3) is more physical since in that case the mass is
preserved.

The energy-type method we use was developed in [BK] in the context of slow evolution
for the Allen-Cahn equation. This method relies essentially on the fact that the Allen-
Cahn equation is a gradient flow in JD2(a, 6) for an appropriate Lyapunov functional F€.
Fife [Fi] derived equation (1.2) with (1.3) as the gradient flow in (H1(a^b))f for the same
Lyapunov functional Fe

j'\vt\
2 + \(v2-l)2dx. (1.5)

(See [Fi] and Lemma 2.1.) Therefore the results that we obtain are very close to the results
in [BK] for the Allen-Cahn equation and the methods of proof are similar. However extra
difficulties arise from the fact that we have to work in either (H1(a^b))1 or in H^1(a,b).
Furthermore we cannot characterize the interfaces by following the zeroes of the function
ue in time, as was done by [BK] for the Allen-Cahn equation. Instead we use some methods
developed in [B],

The method developed in [BK] is based on F-convergence properties of the Lyapunov
functional (1.5) (see [Ml,2], [MM], [S], [KS], [LM]) which has been normalized so as to
keep it positive and finite as e —» 0. The results of [MM], [Ml], or [S] asserts that in one
space dimension the minimum energy of a transition between 1 and — 1 is asymptotically

l-s2)ds = ±. (1.6)

In other words, if we consider a sequence {v€} which converges in Ll(a, b) to a limit v°,
and if v° has N transitions between 1 and — 1, then letting

J^\v*\2 + Y£(v
2-l)2dx (1.7)

be the normalized energy, we have

liminfc^o£e[t;c] > Nc0, (1.8)

with equality if the sequence {ve} is properly chosen. The important step in this approach
is an improvement of this result. The following error estimate for (1.8) can be found in
[BK]:

Ee[v
e}>NcQ-Cek, (1.9)



for any k > 0 and for e sufficiently small. (See Proposition 2.3.)
The idea of the method is that the velocity of the transition points is related to the

dissipation of energy through the equality:

Ee[u<}(0) - Ee[u<](T) = e"1 f \\u\f_x dxdt (1.10)
Jo

where || • ||_! denote either the (H1)' or the H~x norm. (See Lemma 2.1.) As essentially all
of the energy is accoimted for by the existence of the transition via the lower bound (1.9),
there is very little excess energy to be dissipated in the motion of the transition points and
hence the speed will be very slow.

In higher space dimensions, one expects a very different behavior. We refer to Pego
[P] for formal results in this case.

Finally the results in this paper carry easily to the more general equation

where W is a bistable potential with wells of equal depth. The case of wells of non equal
depth can be reduced to this case by a linear transformation. We focus on (1.2) only for
the sake of simplicity.

§2. A bound on the time derivative

We consider only initial data with a "transition layer structure"; more precisely we
fix an integer N > 1 and we let

v(x) = ±1 a.e.

be a piecewise constant function with exactly N discontinuities. We suppose that

lim u€(x,0) = v(x) in Ll(a, b) (2.1)

and moreover that for all sufficiently small e

E€[u
e](0) < Nco + Cek, k G N (2.2)

with c0 as in (1.6), and Ee as in (1.7). The first condition gives the number of transitions
of the initial data and their relative positions as e —• 0. The second condition requires
"efficient" transitions, i.e. that the excess energy in making the transitions is at most
Cek over the minimum possible (see Proposition 2.3). Given any such function v and any
k > 0, one can easily construct such initial data provided e < So(k) by arguing as in [S] or
[Ml].

Next we recall definitions of norms in (H1)' and in H 1.
(i) Norm in (H1)'. We use this norm when the boundary condition is given by (1.3).
Let w G {v € L2(a, 6), /a* v(x) dx = 0}. We let V be the solution of

-i/>xx = w in (a, b) (2.3)

0«(«) = V>*(&) = 0,



which satisfies

/
Ja

Then fb

W\2-1,N'.= '
'a

For later purposes, we define Zfq := — t/>x, that is

ZN(x)= [Zw(y)dy. (2.5)

(ii) Norm in H"1. We use this norm when the boundary condition is given by (1.4). Let
w € L2(a, b) and define tp by

-t/>IX = tu in (a, b) (2.6)
t/>(a) = tl>(b) = 0.

Then ft

ll»llii,D == / *l (2-7)
J a

Here also we introduce the function ZD(X) := — V x̂(̂ )̂  which is given by

w{s)ds. (2.8)

For the remainder of this paper we indiscriminently use || • ||-i to mean either the
(H1)' or the H"1 norm. Also for simplicity of notation we often write u(t) instead of
u<(x,t).

In addition to (2.1) and (2.2), we suppose for the sake of simplicity that:

ue(-,0) 6 H4(a,b), and satisfy (1.3) or (1.4). (2.9)

This hypothesis ensures that ue € C(R+; H2) f\ L2(0, T; H% VT > 0 (see [T]) and that
Ut and uzt are square integrable.

Finally, keeping in mind (2.5) and (2.8), we define in the case of the Neumann bound-
ary condition (1.3)

Z(x,t)= [X(u(y,t)-u(t))dy, (2.10)
Ja

where

while for the Dirichlet condition (1.4), we define

Z(x, t )= / tz(y,<)<fy--J— / dy I*u{s,t)ds (2.11)
Ja °~a Ja Ja



Then it follows from (2.4), (2.7) and the fact that j u% = 0 for the Neumann boundary
condition (1.3), that f(Zt)

2dx = I M ^ .
Now we can prove a key lemma which says that the functional

is a Lyapunov functional.

LEMMA 2.1. Let ue be a solution of (1.2) with either boundary condition (1.3) or (1.4),
and assume that tz*(x,0) satisfy (2.1), (2.2) and (2.9). Then

PROOF:

—Ee[u
e](t)= / euxuxt + -(u2-l)uutdx

dt Ja e

= I (-euxx + -(u3-u))utdx

= / (~euxx + - (u 3 - u) J (-euxx + - (u 3 - u) J dx

%)2dx

The main Proposition of this section gives a bound on the time derivative of u€ and
hence a control on the speed of the transitions. It is the building block for our results and
it is the only technically intricate part of this approach.

PROPOSITION 2.2. Assume that the initial data uc(x,0) satisfy (2.1), (2.2) for some
choice of k > 0, and (2.9). Let 0 < 6 < 1 be an arbitrary constant, then there exist
positive constants C\ and C2 such that

(2.13)

for all sufficiently small e. The values ofC\ and C2 depend only on v and k but not on e.

Another Proposition is needed before we can prove Proposition 2.2. This Proposition
contains Proposition 2.1 and Lemma 4.2 in Bronsard-Kohn [BK], and gives, in particu-
lar, the lower bound (1.9) on the energy which is due to the presence of N transitions.
This result is purely variational in character; it applies equally well for the Cahn-Hilliard
equation and for the Allen-Cahn equation since both have the same Lyapunov functional
(1.12). Let v be as in (2.1):



PROPOSITION 2.3 [BK]. Let k be a positive integer. There exist positive constants 6 k
and Ck with the following property: if w is an Hl function on (a, 6) satisfying

L
b

\w — v\dx < 6k

and
Ee[w)<Nc0 + ek

then '
Ee[w] > Nc0 - cke

k:

Moreover, there exist positive constants So, P sufficiently small and Xj,y,- € (a, 6), 1 < t <
N, close to the jump discontinuities ofv, such that

Xi < yi < x t + 1 , yi - Xi < 4k6k,

(w^xi) - I)2 < Ce\ {w2(yi) - I)2 < Ce\

and

when e < £o-

This Proposition says essentially that w has a transition layer structure and the in-
terfaces are in the intervals (x;,y t).

We are now ready for the proof of Proposition 2.2.
PROOF OF PROPOSITION 2.2: We prove this Proposition in two steps: we first show that
if T = Te satisfies

/ ' / \Z€
t\dxdt<eQ a = ^ — , (2.14)

Jo Ja 2

where Z is given by either (2.10) or (2.11), then ue satisfies the property

l1dt<Cek+1. (2.15)

C
Then we prove that (2.14) holds for Te = "Tf?* (^ere and throughout, C represents a
constant that is independent of £, whose value may change from line to line.)

In order to show (2.15) we use (2.14) to obtain the appropriate lower bound on the
energy of uc(x,Te). First using (2.14) we have

/ \Ze(x,0)-Ze(x,Te)\dx< f ' / \Ze
t\dxdt,

Ja Jo Ja

which tends to zero as e —* 0. Moreover using (2.1) we find

rbrb

Urn / \Zo{x)-Ze(x,0)\dx = 0,



where Z$ is defined as in (2.10) or (2.11), respectively for the boundary condition (1.3) or
(1.4). We deduce that

lim / \Z0(x)-Z'(x,Te)\dx = 0. (2.16)
e~*° Ja

Next it follows from Lemma 2.1 and (2.2) that for all* > 0

__ 2 * ' 2e

so that if we define

[\T2-l\dT (2.18)
o

and use the inequality 2|a||6| < a2 + 62, we obtain

\^-g(u(x,Te))\dx = j \(u(x,Te)
2-l)\\ux(x,Tc)\dx

Moreover since g(s) « Cs3 for large s,

|#(u)| < ca + c 2 ( u 2 ~ l ) ,

for a suitable choice of the constants c\ and c2; it follows using (2.17) that

6

\g(u(x,t))\dx<C.

Thus g(u€(x,Te)) is bounded in BV(a,b) and (since B F <^ L1 compactly) there exist en

and Y (

y(u^(x,Te n)) -4 X(x) in ̂ (^fe) (2.19)

and
<7(ue»(x,Ten))->x(s)a-e.

as en —• 0. Since g is strictly monotone, it follows

g-* b(u-(x,T«.))] = u e » ( x , r e j -* ̂ ^(xC*)) a.e. in (a, 6). (2.20)

Applying (2.16) and (2.17) we now claim that

ue»0r,Ten) - v(x) in L4(a,b) (2.21)

8



as 6n —> o. In the case of the Dirichlet boundary condition (1.4), this is immediate since ue

are uniformly bounded in L4(a,fc). In the case of the Neumann boundary condition (1.3),
we have ue(z, Te) - vT(Te) —•> v(x) - v in £4(a, b) as e -4 0, hence

ue(x,Te) - ti(z) + d in X4(a,6). (2.22)

Using (2.20) and (2.22), it follows that u€n(x,Ten) - • v(x) + Cx a.e., whereas by (2.17)
(ue(x,Tc))2 —* 1 a.e.. We conclude that C\ must be zero.
It follows from (2.20) and (2.21) that g^ix) = t>» a^d s o ^ ^ g (2.19) we have

g(u€(x,Te)) —> g(v(x)) in L1(a,6) as e —* 0.

Again using that (7(5) « Cs3 for large 6, we finally deduce that

ue(x,Te) -» r(x) in I^^fc) as e -> 0. (2.23)

Next we apply Proposition 2.3. By (2.23) there exists a positive constant e\ such that for
all e < £1

/ \ue(x,T€)-v(x)\dx<6k
JCL

so that
^e[ue](re)) > iVc0 - cke

k.

Using Lemma 2.1 and (2.2), we deduce that

rp

7 / ' ll««Hii rf< = EeW'm - EeW]{Tt)
£ Jo

< Nc0 + Cek - Nc0 + cke
k

so that

['\Wt\\2-idt<Cek+\
Jo

Q
Thus to prove (2.13), we must simply show that (2.14) holds with Te = . Either

fc ,

I00 I \Zt\dxdt<ea

J0 Ja

and there is nothing to prove, or there exists T\t such that

\Zt\dxdt = ea.
a



Then

ea= I U f \Zt\dxdt
Jo Ja

i^ (J U J (Zt? dxdtj

^ U^llij dt J .

Using the implication {(2.14) =£> (2.15)} we deduce that

eQ <

1-6
so that using a = —-—

§3. Slow motion
In this section, we deduce the slow motion of the profile of u from Proposition 2.2 ;

we show that "nothing happens on a time scale of order £~*+1 ":

THEOREM 3.1. Assume that the initial data t/c(z,0) satisEes (2.1), (2.2) for some k > 0
and (2.9). Then for any m > 0 and 0 < 7/ < 1

lim sup ||u
e(*)-t;||Li =0 (3.1)

e~*° 0<t<e-k+im

We first prove the following inequality which will be needed for the proof of the
Theorem.

LEMMA 3.2. Let w be in ^(a.b). Ifw € Hl(a,b) de&ne Z by (2.8), or else de£ne Z in
a similar way as (2.10). Then

J'\u,(x)\2dx<(j\z(x)\*dx) (£\wx(x)f dx) .

PROOF: Using that Zx(x) = w, and the properties of Z and w, we find

rb rb

/ \w(x)\2dx= / Zx(x)w(x)dx
Ja J a

= [Z(x) w(x)}z
xZ

b
a - f Z(x) wx(x) dx

J aa

(£ \wx(x)f dxj

10



We are now ready for the proof of Theorem 3.1.
PROOF OF THEOREM 3.1: First we remark that Proposition 2.2 is equivalent to

l
J0 Ja

Therefore under the change in time scale

we have

/ /
O Ja

Thus for T <m

( )2 J ( TJ (2'(X,T)- Z'(X,0))2 dx < J (jT ZJ *•) dx

, (3.2)

provided that e is sufficiently small and that m < 6^ . Moreover, letting U(X,T) =

tx€(x,e""l:"l"T/r), we have
EC[U](T) < C for all r > 0

so that

/ (ux(x,r))2dx < - and / (ux(x,0))2dx < - . (3.3)
Ja £ Ja £

Therefore Lemma 3.2, inequalities (3.2) and (3.3) yield

J\U(X,T)-U(X,0))2 dx < H* (ze(x,r)-Ze(x,0))2 dx\

( /

b

(u(x,T)-u(x,0))2
xdx

a

We conclude
sup | |U(T) - fi(0)||Li(B|l) < Ce*, (3.4)

0<r<m
which together with (2.1) yields

lim sup ||ii(r) - v\\Li(ah) = 0.
c~*u 0<r<m

We remark that an argument analogous to the proof of Theorem 3.1 shows that ue is
Holder continuous in t: f* \u€(x,t2) - u€(x,t{)\dx < C(t2 -

11



§4. The transitions move slowly

In this Section, we give a more direct description of the motion of the "transition
points" by showing that each "interface" remains in an arbitrarily small interval around
the transitions of the function r i n a time scale of order £~*+1,

We remark that since we have to deal with a fourth order equation, we cannot char-
acterize the interface by using the zeroes of the function u as in [BK]. Instead we follow
an approach of [B].

First we rescale in time as in Section 3, and let

By (3.4) and (2.1), supo<r<m ||u(r) — v||x,i(a|&) can be chosen arbitrarily small. Let 6 > 0,
and choose eo(6ym) so that for e < So(6,m),

sup ||u(r)-t;||Li(af6) <<$*,
0<r<m

with2fc<5* < -. (4.1)

Without loss of generality we assume that v(a) = —1. Moreover, let 7, be the location of
the jump discontinuities of v. Then for each r € [0,m], one can find points Xi(r) and yi(r)
such that

*i(r) € (7. - 2k6k, 7t) , and y,(r) € (7i, 7l- + 2k6k) (4.2)

with

u(x t(r), r) > 1 — ce2 and u(j/t(r), r) < — 1 + ce *, if i is even,

tx(x,(r), r) < — 1 + ce2 and u(yi(r), r) > 1 — ce *, if i is odd,

as in Proposition 2.3. (See the proof of Proposition 2.1 in [BK].) Since u is continuous,
it takes on all the values between u(x,(r),r) and tx(j/i(r),r) in the interval (x t(r), j/,(r)).
The next Proposition shows that u has exactly N interfaces.

PROPOSITION 4.1. Let

VJ := {$ € [—"5"? ir]\9(ue(xiT)) = s f°r &*> least N+l distincts values ofx},

where g is defined by (2.18), then Meas(V*) < Ce

Before proving this Proposition, we prove the main Theorem of this Section. The
content of this theorem is that the time it takes for the interfaces to move a distance 6 is
extremely long.

THEOREM 4.2. Given 6 > 0, m > 0 and 0 < 77 < 1, choose eo(S,m) small enough that
(4.1) holds for e < eo(6, m). Then for such e and for all t < m£~*+l?, we have

l*.(<) - 7.1 < I and |y,(<) - 7,| < |, l<i<N.

12



PROOF: It follows from (4.1) and (4.2) that

*i(t) € (7t - 2k6k,yi), and yt-(<) G (7I ,7I + 2k6k) ,

for 0 < * < me"*"1"11, and hence

\*i(t) ~ 7*1 < 2k6k < | , and \yi(t) - 7<! < 2k6k <

for such time.
We conclude from Theorem 4.2 that it takes a time of order at least e~k+v to see an

appreciable change in the position of the interfaces.
We now prove Proposition 4.1.

PROOF OF PROPOSITION 4.1: Using Lemma 2.1 and (2.2), we deduce

e>Ee[u
e}(r)

rb
> f \dxg(u(x,r))\dx.

J a

In the following we write £,- and t/j instead of x,(r) and yi(r) for simplicity of notation.
Applying the co-area formula (see [Fe], [Mo], [Si]),

Ja JK

which holds for any Lipschitz h and where Hn~l = n — 1 dimensional Hausdorff measure,
we find

NCQ + e > I ( # points x for which g(u(x, r)) = rj) drj

= / ( # points x for which <7(u(z, r)) = TJ) dq
JVr

+ / ( # points x for which g(u(x, r)) = 77) drj
J(V,r)cn[-Q,Z£)

+ I ( # points x for which g(u(x, r)) = T/) {f?y
^(v;r)cn[—^,^]

= mea5(V7)+ / JVJT?

+ / ( # points x for which g(u(x, r)) = 77) dfj.

13



Let

Using the definition of the x^s and yt's, and that g is a continuous non decreasing function,
it follows that for 77 € (flr(w(xt-,r)),^(tx(t/l-,r))) for i odd and 77 6 (flr(w(j/,-,r)),gf(u(xt, r)))
for i even, there exists x € (xi,Vi) such that g(u(x,r)) = 77. Therefore the number of
points such that g(u(x,r)) = 77 is exactly N whenever 77 6 (V*)c D A. In consequence, we
find

Nc0 + e> meas(Ve
r) + / N ̂ 77

Jv*nA

+ / (# points x for which g(u(x, r)) = 77) drj.

= meas(Ve
r) + f N dr\ + f Ndrj

= meas(V*) + Nmeas(A)
= meas(V*) + N(c0 — ce).

Hence
meas(Ve

r) < Ce,

and the proof is complete.

This Proposition shows that u has exactly N interfaces and that they are located
respectively in the intervals (x,(r),t/,(r)). One can show easily that the width of the
interface is in fact O(e): let ft be a positive constant in (0,1) and let A@ := {x||u(x,<)| <
1 — ft}. Then using Lemma 2.1, we have that

C > E.[u')(t)

> f -(u(x,t)2-l)2 dx
J Ap €

> -Vm(̂ ).

Hence meas{Ap) < -pe.
We remark also that the interfaces can be characterized in a more direct fashion:

this proposition implies that there is a value 77e(r) € [— f,f] and exactly N numbers
&i(T) € (xi(r)^yi(T)) s u ck ^ a t u(6f(r),r) = 77e(r). These points 6f(r) characterize the
interfaces.
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