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"New Developments in Partial Differential Equations and Applications to Mathematical Physics"
Ferrara, Italy, October 1991.

ON MATHEMATICAL TOOLS FOR STUDYING PARTIAL DIFFERENTIAL EQUATIONS

OF CONTINUUM PHYSICS: H-MEASURES AND YOUNG MEASURES

Luc TARTAR

Abstract Some basic results concerning the mathematical tools of YOUNG measures and ^-measures
are described on a few examples. This includes questions of homogenization, in cases of small amplitude
homogenization and in cases where nonlocal effects occur, and questions of propagation of oscillations and
concentration effects for a scalar hyperbolic equation and for the wave equation. An application to the
relaxation of a functional arising in micromagnetics is given, based on partial knowledge of the relations
between YOUNG measures and H-measures.

LEARNING FROM THE PAST

While preparing my lecture for a conference celebrating the 600t/l anniversary of the University of
Ferrara, I thought about its title "New Developments in Partial Differential Equations and Applications to
Mathematical Physics" and I wondered what could have meant Mathematical Physics six hundred years
ago. In my understanding, Physics is mostly now concerned about Light and Matter in their different forms
and, for a mathematician like me, it means a lot of questions in Partial Differential Equations, some much
more difficult than others. I knew a question about Light which had been the subject of discussions five
hundred years ago, as I had learned about a solution proposed by Leonardo da VINCI1 (l\ and this was
directly related to the subject of my talk. For what concerned Matter, I chose the question of motion of
celestial bodies as adequate for that period, and thought the pioneer to be COPERNICUS/2) Only after
having prepared my lecture was I told that he had studied in Ferrara: he had mostly studied in Bologna and
Padua, but he also obtained the degree of doctor of canon law in Ferrara in 1503.

Although not much of our Mathematics and Physics was known at that time, it was certainly not easy in
those days to introduce with success a new idea. Not so long ago, PLANCK^3) did not perceive the situation
to be much better when he wrote^4) A new scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents finally die, and a new generation grows up that
is familiar with it.

To us the system of COPERNICUS seems but a small improvement on the old Ptolemaic system
with its circles rolling on circles for explaining the apparent motion of the planets: the Sun indeed had
been put at the center, instead of the Earth. This seems unnecessarily complicated, compared to the laws
that KEPLER^5) derived using the precise observations of BRAHE/6) One was still far from imagining

W Leonardo da VINCI, 1452 - 1519.
<2> Nicolaus COPERNICUS (Mikolaj KOPERNIK), 1473 - 1543.
<3) Max Karl Ernst Ludwig PLANCK, 1858 - 1947.
<4> Quoted by Clifford TRUESDELL, Rational Thermodynamics, second edition, Springer, 1984.
<5) Johannes KEPLER, 1571 - 1630.
<6) Tycho BRAHE, 1546 - 1601.
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In those remote days one had to interpret natural phenomena without the help of fancy mathematical
models; I learned of such an example in 1982 while I was spending a few days at Scuola Normale Superiore
in Pisa. I was advised to go to Florence to see the exhibit of a manuscript of Leonardo da VINCI1 and one
of Leonardo's idea which struck me was related to a question, which I was not even aware of, concerning
the light of the Sun reflected by the Moon: if we apply the law of reflection there is only one point of the
Moon that can reflect the light from the Sun directly into our eye, and therefore we should only see a bright
spot on the Moon and not the totality of the illuminated part. Leonardo's explanation was that there were
seas on the Moon and that because of the waves, there was always the possibility to receive light from every
illuminated point on the Moon. Of course there were skeptics arguing that there were no waves because
there was no wind or, as we would say now, that there were no seas there, but the point is not that we know
his hypothesis to be inaccurate, but that it contains the seed for an important improvement: if Leonardo
had noticed that the size of the waves did not matter and that only the angles made by the waves were
important, he might have discovered that the same result was expected for infinitesimal waves and deduced
that rough surfaces reflect the light in every direction. Of course, we know all these facts because we have
been told about them, not because we are more intelligent than Leonardo was.

Geometrical optics gave the impression that Light was a question for geometers, and certainly reflection
of light or SNELL's<18) law of refraction of light is a matter of sines. DESCARTES/19) to whom this law
is attributed in France because he published it first, went further than finding it experimentally because he
tried an explanation of that law from more basic principles, but his analogy with the propagation of sound
in solids was wrong and justly criticized by FERMAT/20) whose own derivation needed a finite propagation
speed for light, a fact only accepted after ROMER's^21) explanation in 1676 of the anomalies in the eclipses
of the moons of Jupiter. HUYGENS(22> later showed the wave nature of light, but MALUS's<23) discovery
of polarized light cannot be explained in the same framework of a scalar wave equation. MAXWELL'S^24)
system of equations, introduced for unifying electromagnetism, does explain polarization of light, but does
not explain some more recent discoveries.

Should one believe the theory of quanta of light imagined by PLANCK, the ondulatory nature of elec-
trons shown by de BROGLIE/25) the spin of the electron and the existence of the positron explained through
DIRAC's^26) system of equations, or even accept the rules of quantum mechanics and SCHRODINGER's^27)
equation, as it is not even an hyperbolic system. Indeed, is it still reasonable to prefer NEWTON's idea
of action at distance and a world described by ordinary differential equations to EINSTEIN's idea where
a particle only feels a local field but tells of its presence through a system of partial differential equations,
hyperbolic and probably semilinear for having only the speed of light as characteristic velocity?

Should one ask again the obvious question: what is a particle, anyway? Or in a simpler way, what is the
meaning of the physicists' saying that an electron cannot be a point because a point would radiate energy?
What was meant in mathematical terms was that there is no solution of Maxwell's equation corresponding
to a point mass, stationary or moving around. Was it then assumed that Maxwell's equation could also
describe electrons, although it had been only designed for describing electromagnetic effects, i.e. Light? One
could argue now that DIRAC's equation is considered more appropriate for discussing about electrons.

There is not so much reason to be surprised when one remembers that a ray of light is not a solution
of the wave equation or of MAXWELL'S equation either, and that it is only an approximation valid for
high frequencies. With the new mathematical tool of H-measures which I have developed for questions

<18> Wil lebrord van S N E L van R O Y E N , 1580 - 1626.
<19> Rene DESCARTES, 1596 - 1650.
<2°) Pierre de FERMAT, 1601 - 1665.
(21) Ole Christensen R 0 M E R , 1644 - 1710.
<22) Christiaan HUYGENS, 1629 - 1695.
<23) Etienne Louis MALUS, 1775 - 1812.
<24) James Clerk MAXWELL, 1831 - 1879.
<25> Louis Victor Pierre Raymond, due de BROGLIE, 1892 - 1987.
<26) Paul Adrien Maurice DIRAC, 1902 - 1984.
<2 7> Erwin SCHRODINGER, 1887 - 1961.



mathematical equations for describing physical phenomena or designing experiments for discovering physical
laws in the spirit of GALILEO,(7) but in order to give a rational derivation of the motion of the planets and
explain the efficiency of KEPLER's laws, one had to wait for NEWTON's^8) law of gravitation and a crucial
addition to Mathematics by LEIBNIZ^9) and N E W T O N : Infinitesimal Calculus. Actually, the system of
C O P E R N I C U S was efficient enough, and we explain now its accuracy in relation with FOURIER's^1 0) result
that any periodic motion is the sum of circular motions, but the accuracy of Celestial Mechanics based on
the law of gravitation finally led to a further advance: Uranus was found in 1781 by a systematic survey
of the sky by H E R S C H E L / 1 1 ) and its irregular motion led ADAMS<12> and Le VERRIER^1 3) to apply the
theoretical work of LAGRANGE^ 1 4) and to discover the position of Neptune, observed in 1846. If Pluton
was discovered in 1930 in the same way, it went otherwise for the anomalies in the motion of Mercury that Le
V E R R I E R had tried in 1855 to explain in a similar way: the 1919 expedition to the island of Principe led by
EDDINGTON^ 1 5 ) for observing a total eclipse of the sun and measuring of how much the light coming from
Mercury would be bent near the Sun confirmed the computations of EINSTEIN^1 6) based on his general
theory of relativity.

For a mathematician, if the measurement in a physical experiment compares with accuracy to the pre-
diction of a mathematical model, it does not prove that Nature follows that precise model. A mathematician
knows that every continuous function on a compact interval can be approximated uniformly by polynomials,
but he does not deduce that polynomials are important, as they could be replaced by many other classes
of functions: he embeds the question into a more general framework, the theory of approximation. Even if
physicists transform into dogma a set of rules which has given good results on a list of interesting physical
questions, mathematicians should remain skeptical, and this has been well expressed by P E N ROSE when
he wrote^17) Quantum theory, it may be said, has two things in its favour and only one against it First,
it agrees with all the experiments. Second, it is a theory of astonishing and profound mathematical beauty.
The only thing to be said against the theory is that it makes absolutely no sense. Indeed, such a bizarre
collection of ideas would hardly have been put forward had it not been the case that an equally bizarre and
seemingly contradictory collection of experimental facts had forced themselves on the attention of the physics
community.

It is important to notice that some complicated rule can be transformed into some quite simple result
once a new mathematical theory has been developed. C O P E R N I C U S having studied canon law at Ferrara,
was aware of the complicated laws of a necessarily human Church, in opposition with God's laws for the
motion of celestial bodies which he thought probably simple, but it was probably difficult for him to imagine
that they were even simpler when expressed using 18 t h century or even 2 0 t h century Mathematics. Having
this example in mind, it is then surprising to find so many physicists and even mathematicians who think
that the world is described by ordinary differential equations, preferably in hamiltonian form, as if God
did not know better. W h y is it that they would not learn about partial differential equations and look
for developing the 21th century Mathematics which will certainly simplify most of what we think we have
understood? Probably because their new religion forbids them to do so.

<7) Galileo GALILEI, 1564 - 1642.
(8) Sir Isaac N E W T O N , 1643 - 1727.
(9) Gottfried Wilhelm LEIBNIZ, 1646 - 1716.

<10) Baron Jean Baptiste Joseph FOURIER, 1768 - 1830.
<n> Sir Will iam Frederick HERSCHEL (Friedrich Wilhelm), 1738 - 1822.
<12) John Couch A D A M S , 1819 - 1892.
<13> Urbain Jean Joseph Le VERRIER, 1811 - 1877.
<14> Comte Joseph Louis LAGRANGE (Giuseppe Luigi LAGRANGIA), 1736 - 1813.
<1 5> Sir Arthur Stanley E D D I N G T O N , 1882 - 1944.
<16) Albert EINSTEIN, 1879 - 1955.
<17) From Roger PENROSE's review of "The Quantum World" by J. C. P O L K I N G H O R N E , The Times
Higher Education Supplement, March 23, 1984. I am grateful to John M. BALL for having sent me a copy
of that review.



AN EXAMPLE OF HOMOGENIZATION OF A WAVE EQUATION

In order to describe in a simple way the mathematical tools of YOUNG2 measures and H-measures3

we will consider a simple homogenization problem corresponding to the propagation of waves in a material
with periodic microstructure, but we will consider a situation where the wave length is long compared to
the period. The space variable will belong to RN, and mathematicians like to use an arbitrary value for N,
at least as long as the amount of work is not too excessive compared to the interest of the question. The
period cell will be denoted by Y = {y = YALI 0.V, 0 < 0, < 1, t = 1 , . . . , # } where yl,..., y* are linearly
independent vectors of RN, and its volume will be denoted |Y|; we will say that a measurable function / is
Y-periodic if for almost all z € RN and all t = 1,..., TV, one has f(z + yf) = f(z). The density p is assumed
to be a measurable Y-periodic function satisfying

0 < />_ < p(x) < p+ < oo almost everywhere (1)

and the acoustic tensor a is assumed to be a measurable Y-periodic symmetric tensor satisfying

N

\2<*\t\2 < J2 a«;(y)&£; < / ^ l 2 for a11 ten? and ^most ail y G Y, (2)
M = l

with
0 < a < fi < oo. (3)

For a characteristic length e > 0, we look for a solution u€ of the wave equation

d. ,x.du< ^ d ,*,du<.

where the equation is taken in the sense of distributions as our coefficients may be discontinuous, and we
ask ue to satisfy the initial conditions

ue(x,0) = v(x)^(x,Q) = w(x) (5)

where the data t; and w are independent of e and correspond to a finite energy £(0),

£|j ~. (6)

so that the solution will have the same finite energy

The case of data depending upon e and such that part of the energy is sent into wavelengths of order e,
for example v(x) being replaced by e1"N^2v(x/e) and w(x) being replaced by e~N/2w(x/e), is not entirely
understood.

The question is to understand what the solution ue looks like and to identify its limit u° as e tends to 0,
usually in a weak topology. This particular problem offers no surprise and it0 satisfies an effective equation
of the same type

^W^O, (8)



of homogenization, one can give a precise meaning to what a beam of light is for the wave equation, or
a beam of polarized light for MAXWELL'S equation. I have not checked what is the analogous result for
DIRAC's equation, but the result will still be incomplete anyway because my approach cannot yet explain
completely what happens for semilinear systems. In that spirit, as ray of lights are ideal objects which are
useful for describing the solutions of the wave equation, electrons could be ideal objects useful for describing
the solutions of DIRAC's equation, without being solutions themselves. If the obstacles due to the semilinear
character were overcome, the equation of propagation for these objects would probably involve the mass and
the spin of such an electron, the mass being probably entirely made of pure electromagnetic energy/28) with
EINSTEIN's relation c = me2, of course.

Quantum mechanics was invented for explaining the surprising effects of absorption and spontaneous
emission at specific frequencies in experiments of spectroscopy. Because physicists thought that they had to
find a list of numbers, which were thought to be proportional to 1/n2 — 1/m2 in the case of hydrogen, they
were quite happy when the spectrum of an operator related to their problem appeared to give all the 1/n2,
and they invented an argument about eigenvalues being levels of energy together with a recipe for creating
the desired operator in other situations. We know now that with a more accurate experimental setting one
finds a density of absorption for large bands of frequency: there are indeed peaks, but they are quite far
from being localized at well defined frequencies, and therefore the numbers that the physicists were trying
to recover do not even exist.

A more reasonable approach for a mathematician would be to say that an experiment of spectroscopy
consists in sending a wave into a gas which contains objects having a size comparable to the wavelength used,
so that one expects some resonance effects to occur, an extra difficulty being that these objects move and that
one does not even know what shapes they have. The mathematical problem is then to study the solutions
of an hyperbolic system in an heterogeneous material when the characteristic size of the inhomogeneities is
comparable to the wavelength. Needless to say, mathematicians do not yet know how to solve such a general
question of homogenization, but the partial results already obtained show some analogy with what physicists
say; for instance, the mathematical meaning for the absorption and spontaneous emission rules is that
effective equations often have extra nonlocal terms in space and time. In some instances, the corrections to
be added to macroscopic equations can be computed by integrating H-measures, and are therefore quadratic
corrections, very similar to some which are computed by using the rules of quantum mechanics; in other cases,
//-measures only enter into the first correction of an expansion, with some similarities with the summation
of diagrams in quantum field theory.

I have avoided an important trap that many like falling into, which is the postulate that we cannot
understand what happens at a microscopic level and that the laws of Physics are probabilistic by nature.
In studying oscillating solutions of partial differential equations, many nonnegative measures do appear in a
quite natural way but normalizing them and talking about probabilities will not change the perfectly deter-
ministic framework implied by dealing with hyperbolic systems. Of course, with only a partial information
about the oscillations at time zero, there is some uncertainty about what can be said about these oscillations
at a later time, but the mathematical understanding of the question should also tell us a way to obtain more
information.

There is still a lot to be done but once such a mathematical theory will be more developed, it should
become the natural framework for discussing many of the physical phenomena which have puzzled physicists
in the last century. Once this goal attained, physicists will probably have found new puzzling experimental
facts, and a new mathematical theory may have to be developed, which will render elementary this one
which I am trying to create, and the quest for simplicity will continue at a higher level of understanding.

(28) I have thought for a long time that mass should only be a side effect of electromagnetism, but the first
written argument which I read in that direction was an article of W. BOSTICK, based on MAXWELL'S
equation coupled with some rules about quantum mechanics; in my opinion one should work with DIRAC's
equation instead.



Some effective quantities are obtained by taking weak limits: potentials, electric or magnetic or velocity
fields, induction or vorticity fields, densities of charge or mass or energy (they are coefficients of differential
forms), while others are not obtained by taking weak limits: electrical or thermal conductivity, electric or
magnetic permittivity, elastic properties, sound speed, and this happens for mixtures, composite materials,
polycrystals.

Physicists often tend to disagree when mathematicians let some physical parameter e converge to 0,
but this is only a first step which consists in identifying what is the right topology for the various quantities
involved in order to find a limiting equation whose solution will be near the physical one. One should also
remember that there are infinitely many ways to imbed a given problem into a sequence of such problems, and
that various scalings may correspond to different physical questions, each having its own limiting behaviour.

Homogenization is a mathematical theory whose first goal is to derive for each situation of interest
what are the effective equations valid at a macroscopic level, assuming that one has a complete information
about the microscopic level. Its second goal is to deduce what can be said under partial information about
the microscopic level. Uncovering new mathematical objects which carry in a concise way some impor-
tant information about the microstructure is a reward of that approach. The term microstructure is used
when dealing with sequences converging only weakly in order to express that something is happening at a
microscopic level; one also talks about an oscillating sequence of functions.

The term microgeometry is used when dealing with many oscillating sequences of functions constructed
on the same geometrical pattern: an open set Q of RN is decomposed as a countable union of disjoint
measurable subsets of fi

n = UwJ, (16)
and one only considers sequences Ue with values in RP of the form

where the functions \i a r e t n e characteristic functions of w\ and Vx are elements of Rp, often belonging to
a closed bounded set K.

The main question is to study how weak limits of [7e, or effective quantities generated from it, depend
upon the values V1 and on the information on the decomposition of ft in u\.

YOUNG measures describe the weak limits of Ue for all possible choices of V*. If

Xi converges weakly * to 0,- in L°°(ft) (18)

so that one has
0 < 0i(x) < 1 and ^ 0 , ( z ) = 1 almost everywhere in ft, (19)

t

then for every continuous function F on Rp, one has

F(Ue) converges weakly * to J^0,-F(Vr') in Z,°°(ft). (20)
t

If one defines the probability measure vx on RP by

(*,G) = 2>(*)G(V) (21)
t

for every continuous function G, then the YOUNG measure associated with the sequence U€ is the measurable
family of all these vx.

For a general uniformly bounded sequence of functions Ue taking their values in a closed subset K of
RP, there is a subsequence and a measurable family of vx which are probability measures on K such that
for every continuous function F on RP, one has

F(U') converges weakly * to / in L°°(ft) (22)
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with the same initial data

u°(x,O) = v(x),^-(x,O) = w(x), (9)

where pt^ and a*** are independent of x, due to the periodicity hypothesis, and satisfy

0 < P- < Peff < P+ < oo (10)

and
N

<*KI2 < £ atift*ts £ PM2 for a11 * € *"• (ii)
•J=l

Of course, the effective density pe*f is the average of />,

(»)rfy, (12)

but the effective acoustic tensor ae^ is not in general the average of a.

Because of the periodicity hypothesis, one can give a simple algorithm for computing the effective
acoustic tensor ae^: it requires solving N elliptic problems on the unit cell Y.

For each choice of a vector A G RN, there is a unique Y-periodic function z\ € H}OC(RN) solution of

- E £ ( M » ) ( f * + A,)) = 0 (13)
tfj —-1

and satisfying the normalization condition

[ zx(y)dy = 0. (14)
JY

Then for i = 1 , . . . , AT one has

Repeating this computation for N linearly independent vectors A determines a6**, which is positive definite
(and symmetric as a(y) is symmetric almost everywhere in Y).

WEAK CONVERGENCE, HOMOGENIZATION, YOUNG MEASURES

In the preceding example with a periodic structure, averaging a function on a period eY should be
considered analogous to making a macroscopic measurement in an experiment where something happens at
a microscopic level; in our example one sees the microscopic level by looking at a length scale of the order
of e. In a nonperiodic situation, averaging is replaced by weak convergence: a sequence f€ converges weakly
to f° as e tends to 0 if f fe(x)<p(x)dx —* f f°(x)<p(x)dx for a suitable class of functions <p : e is usually
a length (or time) scale and f° will be called the macroscopic quantity corresponding to the microscopic
quantity fe. Of course, there are macroscopic quantities without microscopic analog: there is no function H
such that if fe converges weakly to f° and ge = ( / c ) 2 converges weakly to g° > ( /°) 2 one can deduce that
he = H{fe) converges weakly to g° — (/°)2 . This is analog to the situation of a gas when the microscopic
velocity is not equal to the macroscopic velocity: the averaged kinetic energy is more than the kinetic energy
computed from the macroscopic velocity and the difference is then called the internal energy, usually related
to temperature which only has a macroscopic meaning.
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H-MEASURES

A similar formula for the corrector B^ exists in the case of nonperiodic microstructures and uses
if-measures, but at the moment there is no general formula for expressing the correctors B^ with r > 3.

If Q is an open subset of RN and Ue is a sequence converging to 0 in (L2(Q))P weak, then after
extraction of a subsequence one can define a hermitian nonnegative p x p matrix of Radon measures /z in
(x,£), with £ G SN~X the unit sphere in RN; \x is called the H-measure associated to the subsequence and
it enables to compute the weak * limits of products of the type Li(U*)L,2(Uj) where L\ and Li are some
"pseudo-differential" operators of order 0, Ue being extended by 0 outside fi.

The class of symbols of these "pseudo-differential" operators of order zero have the form

*) (31)
n=l

with an G C(SN~1)) the space of continuous functions on the unit sphere and 6n G Co(RN), the space of
continuous functions converging to 0 at infinity, with

f>n||.||&n||<oo (32)
n = l

where the norms are sup norms.
The standard operator 5 with symbol s is defined by

F(Su)(O = J2 an(4r)F(6"uXO> almost everywhere in £ e RN, for u € L2(RN) (33)
n = l

where F denotes the Fourier transform. A linear continuous operator L from L2(RN) into itself is said to
have symbol s if L — 5 is a compact operator from L2(RN) into itself.

With these notations, if L\ and L2 ^ e operators with symbols sx and s2> and

Li(Ui)L,2(UJ)conveTges weakly to a measure vy (34)

one has
<*/, ip) = (fiij, ipsilii for every <p G Ce(Q), (35)

the space of continuous functions with compact support in Q.
An important consequence is the localization principle, which expresses how the .//-measure is con-

strained by any differential information on the sequence Ue: if Aij are continuous functions in Q and

E E ^-M'W - ° in ^ ( 0 ) (36)

then
N P

w ^ 5 5 ^ * ^ p- (37)
t=ii=i

An early version of the theory, the compensated compactness theory, could only handle the case of constant
coefficients and discuss the possible weak limits of quadratic quantities; H-measures give new results in other
directions.



with
f(x) = (yx,F) almost everywhere in fi. (23)

What the YOUNG measures do for a mixture is to know what are the local proportions of all the materials
used in that mixture.

SMALL AMPLITUDE HOMOGENIZATION I

YOUNG measures only see statistics and they cannot, except in dimension 1, help computing effective
coefficients like the algorithm (13)-(14)-(15) for a periodic case. In a layered material, they lack the knowledge
of an important geometric parameter, the direction of the layers. In order to compute some second order
corrections in homogenization, I have introduced a new tool, which I naturally called H-measures3, which is
a measure in (x,£), where £ is a unit direction of an hyperplane. In the periodic case, they can be described
by using the Fourier expansion of the coefficients: if we assume that

(24)

where A is symmetric positive definite and 7 is small, then ae^ is analytic in 7

ae» = A + 7^5- / b(z)dz + y2B^ + y3B^ + , (25)
MI JY

as well as the functions z\ solutions of (13)-(14), and therefore by an easy induction one can compute all
the correctors B^ by using the Fourier coefficients of b.

In the case where Y is the unit cube, one has

bm= I b{z)e-2i*{mz)dz, meZN (26)
JY

and
Kv) = E *me*'(m"> in L\Y) (27)

and an easy computation gives

< * £ & " • <28)

Using (26), the formula (28) can be expressed in terms of the 2-point correlation function

C(h) = ±JYb(z + h)b(z)dz, (29)

but it uses a singular integral with kernel

For a sequence which is not periodic, one cannot define n-point correlation functions without the knowledge
of a characteristic length. The i/-measures which I have introduced do not use any characteristic length in
their definition, and therefore one cannot deduce from them the 2-point correlation function; however, there
are situations where the complete knowledge of the 2-point correlation function is not necessary and where
.//-measures contain all the desired information.



but not necessarily strongly in £2(Q), and such that (ue)2 converges weakly to a function in /^(fi); for such
a general sequence the if-measure need not be atomic in £.

If a scalar function u€ is defined by

) with z e RN and / € L 2 (# N ) (48)

then ue corresponds to the //-measure /* defined by

(*,|!j)# (49)

for all continuous functions <p with compact support in RN x SN~l. Such a sequence will be called a
concentration effect at the point z, a more general concentration effect being a sequence ue converging
weakly but not strongly to u° in L2(ft) and such that (ue — u0)2 converges weakly * to a measure which is
singular with respect to the Lebesgue measure.

Of course, a general weakly converging sequence may show both oscillations and concentration effects.
For some partial differential equations of hyperbolic nature, one can measure in a quantitative way

the propagation of oscillations and concentration effects, and this is done by deriving a partial differential
equation in (-c,£) for the //-measure fi. In the case of a first order scalar equation, let u€ converge to 0 weakly
in L2(Q)y correspond to a H-measure \i and satisfy

bi(x)jf- = fe (50)
t=i x *

with f£ converging s trongly t o 0 in / / ,"*(£}) , the coefficients 6, be ing of class C 1 , i = 1 , . . . , N. T h e
local izat ion principle impl ies t h e n t h a t fi satisfies

0 (51)

where
N

P(*,0 = !>(*)&• (52)
1=1

In order to study the propagation properties for oscillations and concentration effects present in the sequence
txc, we assume moreover that the coefficients 6,- are real, and that fe converges weakly to 0 in L2(Cl). Under
these hypotheses, the //-measure fi satisfies the equation

(/i, {<p, P) - ipdivb) = (2Refi12, if) (53)

for all C1 test functions <p with compact support in x, where {g, h} denotes the Poisson bracket

{9'V-UetleZ-aZet:)- (54)

Equation (53) expresses a propagation effect along the bicharacteristics associated to P(x,£)

dx, dP de, dP , . ,

the equation in £ being homogeneous in £ and inducing therefore an equation on the unit sphere. In the
propagation equation (53), the source term /i12 corresponds to the //-measure associated to the sequence
(V, / £ ) , so that fin is /i; if fe = Lu€ where L has symbol s, then /i12 = S/i, but if fe is nonlinear in u€ it is
not known yet how to describe what y}2 can be for a given fi.

Equation (53) can be supplemented with an initial condition for the H-measure /*.
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SMALL AMPLITUDE HOMOGENIZATION II

We do not consider the case of periodic coefficients anymore. Let A be positive definite, and let B£ —* B°
in L°°(Q;L(RN>RN)) weak * and assume that B€ — B° corresponds to a i7-measure ft. For 7 small and
f £ #"*(£}), we solve

-div((A + jBe)gradue) = / in fi with uc G #o(fi). (38)

After extraction of a subsequence (independent of / ) , uv converges weakly to it0 solution of

-div((Ae"(x;y)gradu°) = / in fi with ti° G Hl(Q), (39)

where AeH is analytic in 7

^ °2 3 (40)

and the correction M can be computed from the H-measure fi: for t, j = 1 , . . . , AT and <p G Cc(fi), one has

(ik" ^ (41)
^ / = 1

In the particular case of a mixture of isotropic materials, with A = ao(x)7 and B£(x) = 6£(x)7, with

be - fc0 and (6C - 60)2 - P2 in L°°(fi) weak *, (42)

one deduces
B2

Trace(M) = — (43)

and therefore if the effective material is isotropic, i.e. Ae^(x;y) = ae^(x]j)I, or only isotropic at order 2
in 7, i.e. if M(x) = m(x)7, then one has

a e " = a0 + jb0 - 7 2 ^ + O(7
3) . (44)

This latter result was previously known under additional hypotheses of symmetry.
We will discuss later a similar result for isotropic linearized elasticity.

PROPAGATION OF OSCILLATIONS AND CONCENTRATION EFFECTS I

//-measures can be used to describe both oscillations and concentration effects.
If a scalar function ue is defined by

ue(x) = v(x^) (45)

with v(x,y) periodic in y with average 0 (and smooth enough), the period Y being the unit cube for
simplification, and if the Fourier expansion of v in y is

v(x,y)= J2 »m(*)ea"(m-*). (46)

then ue corresponds to the fT-measure fi defined by

<"'*>= E jh«m(*)|V(*,|^)<** (47)

for all continuous functions <p with compact support in fi x SN~l. Such a sequence will be called a periodically
modulated oscillating sequence, a more general oscillating sequence being a sequence ue converging weakly

10



and is here related to the linearized strain tensor ee defined by

^S*""- 1 "• <63)

where ue(x) denotes the displacement of the point x. The particular constitutive relation corresponding to
an isotropic material has the form

N

^=2/i<4.+ ̂ £ 4 * (64)

and the hypothesis of small amplitude means that

/ie = jio + 7A*i; Ae = Ao + 7A1, (65)

where for simplification we assume that /if and Af converge to 0 in L°°(Q) weak *. Of course, 7 is assumed
small enough so that /ic and Ac uniformly satisfy the usual ellipticity condition required for applying the
theory of homogenization, i.e. /i* > 0 and 2/ic + NX€ > 0. The homogenized equation will have the same
form, but may correspond to a general anisotropic material with constitutive relation

»«= £ <#««« (66)
k,l=l

with the usual symmetries in ijkl. Of course the effective elasticity tensor C'H is analytic in 7

Si,Sik) + \o6ti6k, - T*DiJkl + 0{i3) (67)

and the coefficients Dijki can be expressed in terms of the //-measure v associated to the sequence (/if, X\).
The formulae involve the moments of order 4 of i/11, the moments of order 2 of i/12 and the moment of order
0 of i/22. The contribution of u11 to Dijki is obtained by integrating

+ SiitjSk + Sjktiti + Sjititk) ^.ft&ftOio + Ap)
+ A0) '

the contribution of 1A2 to Dijki is obtained by integrating

o(frbf&£j + tijjZkti)
(2/io 4" Ao)

and the contribution of i/22 to Dijki is obtained by integrating

Ao)'
(70)

In the very special case where the effective material is isotropic, or simply isotropic at order 2 in 7, i.e. if
Dijki has the form

Dijki = MiSaSji + SuSjk) + A«0-«w> (71)

then M and A can be computed using only the moments of order 0 of */, i.e. from the weak * limits of the
quantities (/if)2, /ifAf and (Af)2: one finds

4(N
M =

and
2Af + NA = -777- r—rtveak * lim(2u,\ 4- N\\)2. (73)
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PROPAGATION OF OSCILLATIONS AND CONCENTRATION EFFECTS II

Let us consider now the question of propagation of oscillations and concentration effects for a wave
equation. For this we consider a sequence u' converging weakly to 0 in H1^1*1 x (0,T)) and satisfying

91 ( \ d u \ r (56)

with gradu* corresponding to a i/-measure /i; the localization principle implies that /i has the form

/i*' = Zttjv for ij = 1 , . . . , N (57)

with a nonnegative measure v. Assuming that the functions p and at;-, i, j = 1 , . . . , N are continuous and
that fe converges strongly to 0 in #/"*, the localization principle implies that v satisfies

Q(x,Z)v = 0 (58)

with
N

(59)

where, as usual, t is replaced by Xo with dual variable £0- Notice that (58) is a way to describe the principle
of equipartition of energy.

If we assume now that p is real positive and of class C1, that the acoustic tensor a is real symmetric
positive definite and of class C1 , then v satisfies the propagation equation

M ^ Q } > = <2i?ei/12,^) (60)

for all C1 test functions <p with compact support in x. In (60), v12 corresponds to some components of the
i7-measure associated to (gradu* , / * ) . Equation (60) expresses a propagation effect along the classical light
rays, which are the bicharacteristics associated to Q(z,£),

dxi dQ d£i dQ
-d7 = dT<>'d; = ~ d T i

{ o i t = 1 ' - - ' N >

the equation in £ being homogeneous in £ and inducing therefore an equation on the unit sphere. This result
gives a mathematical framework for what is meant by a light beam at a point x0 pointing in a direction
£o. The H-measure is neither a solution of the wave equation, nor a formal asymptotic solution for high
frequency: it describes, in the limit of infinite frequency, the way to decide where the energy goes for any
oscillating sequence of initial data with finite energy.

Equation (60) can be supplemented with an initial condition for the /f-measure u.

SMALL AMPLITUDE HOMOGENIZATION III

Once the framework of an application of if-measures has been developed, it can be generalized to
various equations or systems at the only expense of having to perform some often tedious computations of
linear algebra. Let us describe for example the question of small amplitude homogenization for the system
of linearized elasticity in the case of a mixture of isotropic materials4. The stress tensor <T€ satisfies the
equilibrium equation

N d €

W^ifori^l Ĵ, (62)
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where u° is the solution of
-div(gradu° + m°xn) = 0 in if*. (81)

By following the construction of v and f-t, one can put a topology on X that makes it compact and renders
J\ continuous, so that J\ does attain its minimum on X. The initial problem is imbedded into this new
one and corresponds to each vx being a Dirac mass and \x being 0. Of course, the preceding result is only a
change of language for recasting the problem.

A precise description of X is not yet available, but a partial result shows that for a given YOUNG
measure t/, there is a pair (y,/i) belonging to X such that 5lfj=1Oi tJ\&£j) = 0. This gives rise to a new
relaxed problem defined on the set Y of all YOUNG measures, where one defines a functional J2 by the
formula

J2(*/) = / \gradu°\2dx + [(vx,<p)dx- f Ho.modxy (82)
JR* JCI Jn

with m° and u° defined by (79) and (81). If Y is equipped with the weak * topology, then Y is compact and
J2 is lower semi-continuous and does attain its minimum. The initial problem is imbedded into this new one
and corresponds to each vx being a Dirac mass.

We finally define Z to be the convex set of functions m° satisfying

lm°(*)l < 1 almost everywhere in fi, (83)

and define the functional J3 by

J3(m°)= f \gradu°\2dx+ [ (1>(m0)-H0.m°)dx, (84)
JRS Jn

where u° is defined by (81) and where i/> is the convex function defined on the unit ball by

x/;(m) = Infu(i/,(p) for all probability measures v on S2 with center of mass m. (85)

If we equip Z with the weak * topology, then Z is compact and J3 is lower semi-continuous and does attain
its minimum. The initial problem is imbedded into this new one and corresponds to m° taking almost
everywhere its values on the unit sphere.

If no solution of this last problem satisfies |mo(s)| = 1 almost everywhere, then there are no classical
solution mimimizing J, and minimizing sequences tend to create somewhere in ft some tiny magnetic domains,
the statistics of orientations for m being described by the YOUNG measure v satisfying (85); the iJ-measure
/i, sees another kind of information, like the orientations of the walls of these magnetic domains. Of course,
having neglected the exchange energy, there is nothing to limit the size of the magnetic domains in this
simplified model.

NONLOCAL EFFECTS INDUCED BY HOMOGENIZATION

For explaining some strange rules invented by physicists, like absorption and spontaneous emission of
particles, it is important to realize that effective equations may contain nonlocal terms in space or/and time
even when the microscopic level is described by classical partial differential equations; this phenomenon seems
actually quite usual when dealing with hyperbolic equations. As a typical example, we consider the following
problem, which has been studied by Youcef AMIRAT, Kamal HAMDACHE and Abdelhamid ZIANI8, and
by myself9:

"W + ^ i S " = * (x'¥'*);**(*'*>°) = <x>y)> (86)

where the sequence a€ converges to a0 in L°° weak *. If we assume that a€ satisfies

0 < a < ae(y) < /? < 00 almost everywhere (87)
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A PROBLEM MIXING YOUNG MEASURES AND H-MEASURES

The solutions of many important problems seem to require the use of a mathematical object, yet to be
developed, which will encompass both the YOUNG measures and the fT-measures. Partial results about the
relations between YOUNG measures and i/-measures have been obtained with FYangois MURAT5 and we
can see how they can be used on an example.

We consider the model of micromagnetics of William BROWN6, for a crystal occupying a bounded open
domain ft of J?3, as studied recently by Richard JAMES k David KINDERLEHRER7. After normalization,
we consider the equation

—div(gradu + mxn) = 0 in .ft3 (74)

where xn is the characteristic function of ft and m satisfies the constraint

|m(x)| = 1 almost everywhere in ft, (75)

and we seek m minimizing the quantity J(m) defined by

J(m)= [ \gradu\2dx + [ (<p(m) - H0.m)dx. (76)
JR* Jn

In that model the magnetic field H is gradu and the magnetic induction field B is H + m, m corresponding
to a spin effect, <p is an anisotropic energy due to the crystalline nature of the body and Ho is an applied
magnetic field.

An exchange energy, usually taken to be quadratic in gradm, has been neglected.
The mathematical difficulty comes from the fact that the functional J is not lower semicontinuous for the

natural topology for m, the (L°°(ft))3 weak * topology. Minimizing sequences might then develop oscillations,
and this is in qualitative agreement with the experimentally observed formation of small magnetic domains,
although there are still some quantitative discrepancies and it is not clear yet how good this model is. A
better understanding of the relaxation of the functional J might shed some light upon this question.

If a sequence me converges to m° in (L°°(ft))3 weak *, the computation of the limit of <p(m£) requires
more than the weak * limit of m€ (as tp is not affine) and can be obtained from the YOUNG measure v
associated to a subsequence; on the other hand the computation of the limit of \gradu€ |2 cannot be computed
from the YOUNG measure v alone, but can be computed from the i/-measure /i associated to a subsequence
of me — m°. One has

and

for every bounded continuous function tp, where tx° denotes the solution corresponding to m°, which only
satisfies |m°(x)| < 1 for almost every x £ ft, as m°(x) is the center of mass of the probability vx which lives
on the sphere S2 , i.e.

m^(y) = (yyixi) almost everywhere in ft for f = 1,2,3. (79)

The crucial question is then to understand what relations link the YOUNG measure v and the .ff-measure
/i. Without answering this question, we can only describe an abstract relaxation problem where we seek to
minimize the functional J\ defined in the following way. We let X be the space of all pairs (i/, p) for which
there exists a sequence me satisfying the constraint (75), such that m€ defines the YOUNG measure */, and
such that me — m° defines the H-measure ji, where m° is defined by (79). We define the functional J\ on X
by the formula

ijZ1

/ <p{m€)xl>{x)dx -> / (vg,<p)1>(z)dz (77)

\gradu'\2iKx)dx-* f \gradu°\^(x)dx + ]T (^,V(*K^> (78)

= I \gradu°\2dx+ £< / / ' ,&£;)+ l(vx,<p)dx- f H*.m°dx, (80)
JR* ijZ1 Jet Jft
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With these notations one has

Zx{x,t) = -2 / Mm(x,8,t)ie(x,8,t)d8 (99)
Jo

ft ft

t) = a°(xit) / M*(x,8,*)lC(x,8,t)ir(x,(r,t)d8d*. (100)
Jo Jo

In the equation for Uz appears the function M3 such that be(xiti)be(x1t2)be(x,t3) converges in L°° weak
* to M3(x,ti,<2>*3)> a n d s o o n - A complete analysis would probably lead to similar procedures than that
followed by theoretical physicists when they deal with their beloved diagrams.

QUASI-CRYSTALS

By quickly cooling some Al-Mn alloys, experimental physicists11 discovered in 1984 a resulting material
whose X-ray diffraction pattern showed an unexpected five-fold symmetry or icosahedral symmetry. Tiling
games following the work of Roger PENROSE have often been played by theoretical physicists to generate
average five fold symmetries, but they cannot cast any light upon what could have happened inside the
material to create this strange observation.

If one submits a material to a combination of heat and stress, the material will change its microstructure
in order to adapt itself to these new constraints: this is in essence what the blacksmith's art is about. If
the different components of a mixture are allowed to rearrange themselves locally in order to optimize some
criterium, one should find the optimal configuration by studying all the effective coefficients corresponding
to given proportions and then optimize the criterium on this set of effective coefficients. Unfortunately, even
for two-component mixtures, there is not yet a complete description of such a set of effective coefficients.

A reasonable guess is that optimal effective coefficients are usually on the boundary of the set of effective
coefficients. In the case of small variations of elastic properties (and using the oversimplification of linearized
elasticity), we have seen that .//-measures can be used for computing a better approximation of the effective
coefficients and that the formula used the set of moments of order 4 of a nonnegative measure on the sphere
SN~l. Even if thin ribbons have often been considered, they should be first thought as three-dimensional
bodies in order to understand what happens inside them and so we should consider the case N = 3, although
many tiling games have been played in the plane.

Of course, the preceding analysis would be useful if it was true that the results of X-ray diffraction
experiments were connected to //-measures; strictly speaking it cannot be so as //-measures are defined
without using any characteristic length, while for X-ray diffraction experiments it is important to select a
wavelength related to the characteristic atomic distances. A variant of //-measures using a characteristic
length has been introduced by Patrick GERARD12 under the name of semi-classical measures, and it may
be more appropriate for that question. Nevertheless, it might be useful to understand the structure of the
set of moments of order 4 of nonnegative measures on the sphere 5 2 , as it appeared in the formula for
computing second order effects, and check if five fold symmetry or icosahedral symmetry can indeed be
related to the structure of this set of moments, which I have studied then with Gilles FRANCFORT and
Francois MURAT13.

In dimension 3, there are 15 moments of order 4, so the set of moments of order 4 of nonnegative
measures on S2 is a closed convex cone of i£15. One can show that points on the boundary of this convex
cone can be obtained as moments of at least one measure which is combination of at most 5 Dirac masses,
while a minimum of 6 is required for points in the interior.

The 15 moments of an isotropic distribution do not correspond to a boundary point. If a nonnegative
measure has this list of moments and is a combination of only 6 Dirac masses, then the 6 points (and
their antipodes) must be the vertices of a regular icosaedron, a geometry which had already been used by
Gilles FRANCFORT and Francois MURAT14 for constructing isotropic mixtures. On the other hand, the
15 moments of a transversally isotropic distribution may correspond to a boundary point. In such a case,
if a nonnegative measure has this list of moments and is a combination of only 5 Dirac masses, then the 5
points (and their antipodes) must be the vertices of two regular pentagons.
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and if the sequence ae defines a YOUNG measure i/, then one can characterize the effective equation which
the weak * limit u° of the sequence ue must satisfy (there is indeed only one such equation if one restricts
attention to linear convolution equations in x and t). Another nonnegative measure ir will appear in the
equation and it is obtained from v through a nonlinear transformation. With data which are measurable
and bounded, the effective equation is

w+o0(y)lr+M = /(*'y' *); u°{x' y>0) = v(Xi y) (88)

where the nonlocal term M has the form

One sees that a transport equation with velocity constant along the flow but fluctuating in another direction
induces a nonlocal effect in space and time; of course the effective equation does possess the finite propagation
speed property.

More general questions and in particular nonlinear effects should be understood in order to explain
turbulence effects for example.

Quite intricate hierarchies of corrections can occur in nonlinear situations, as can be seen with the
following example10, related to the equation

££• + (a°(x,t) + 7&'(s,t))K)2 = /(«,«); «'(*, 0) = v(x). (90)

Let us assume that a0 and be are uniformly bounded measurable functions, that

0 < a < a°(x,t) almost everywhere, (91)

be is uniformly equicontinuous in t and converges weakly * to 0, (92)

and that the functions / and v are nonnegative, measurable and bounded. Then when the parameter j is
small, the solutions ue stay nonnegative and are defined for all t. After extracting a subsequence one has

ue converges to Uo + J2U2 + 73U3 + O ( T 4 ) in L°° weak * (93)

where Uo is the solution of

Wo . „,.

and U2 is the solution of

^ + 2a°(x,f)C/of/2 + ^i + ^2 = 0;C72(x,0) = 0, (95)

where the nonlinear memory effects Z\ and Z2 are defined in the following way. One first extracts a
subsequence such that

be(x,s)b€(x,t) converges to M2(x,s,t) in L°° weak*, (96)

and then one defines M* and R* by the formulae

M*(x,s,t) = M2(x,8,t)Uo(x,8)Uo(x,t) (97)

ie*(x,s,t) = U0(x,8)exp(-2 I a°(x,r){70(x,r)<fr). (98)
J»
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At the moment, there is no obvious reason why only //-measures with the least number of Dirac masses
for a given list of moments would play a role in such a problem. Understanding the correction in 73, or
introducing a characteristic length in the definition of //-measures, could shed some light on this question.

CONCLUSION

YOUNG measures is a simple mathematical tool for describing questions of local statistics, too simple
for solving the important questions of homogenization which are so crucial for understanding Physics. The
introduction of //-measures is just a step forward in the construction of new mathematical tools for under-
standing more of these questions of Physics; //-measures appear quite useful for the computation of many
quadratic corrections, but a better mathematical tool still has to be developed.
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