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Computation of Microstructure Utilizing Young Measure
Representations*

R. A. Nicolaides* and Noel J. Walkington*

Center for Nonlinear Analysis
Department of Mathematics, Carnegie Mellon University

Abstract

An algorithm is proposed for the solution of non-convex variational problems. In order
to avoid representing highly oscillatory functions on a mesh, an associated Young measure,
which characterizes such oscillations, is also approximated. Sample calculations demonstrate
the viability of this approach.

keywords: Calculus of Variations, Young Measures.

1 Introduction

A recent development in continuum mechanics is the introduction of continuum energy func-
tionals modeling nonlinear effects of crystal thermoelasticity [2, 6, 7, 8], Among other things
these functional can be used to study displacive phase transformations and shape memory
effects [9].

A characteristic feature of the energy functionals is their multiple well structure. Typically, each
well represents a potential equilibrium state of the crystal, and at a transformation temperature
more than one well is accessible to the crystal as a stable configuration.

The variational approach to finding an overall equilibrium state for the crystal requires that the
energy functional be minimized in some suitable sense. In attempting such minimizations, one
frequently encounters minimizing sequences of rapidly oscillating functions. These oscillations
are usually a mathematical precursor to the formation of microstructure. This microstructure
is characterized mathematically by probability distributions which, in principle, can be found
by taking certain averages of the oscillatory functions.

In computational practice, the minimizing sequences are often constructed using a finite mesh,
for example by finite elements. The oscillations referred to above then show up as grid scale
oscillations of the (generally nonunique) minimizer. As the mesh is refined, the oscillations
persist becoming more and more rapid while remaining of finite amplitude e.g. [4]. Usually, one
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wishes to know the values of macroscopic quantities associated with the deformation. These
are computed in two different ways. Essentially, linear functions of the deformation can be
obtained as the limits of the same linear functions of the minimizing sequence. On the other
hand, nonlinear functions of the deformation (including energy) in general have to be computed
as expected values of the probability distribution mentioned in the previous paragraph.

In some situations, the probabilities that are needed for computing nonlinear functions of the
deformation are known a priori. In this paper we are interested in the opposite case. Although
in principle it must be possible to compute the probabilities from the oscillatory minimizing
sequence, in practice this could be very difficult if there were a relatively large number of wells.
Also, it is easy to imagine that a rather fine mesh would be necessary to accumulate enough
data to permit the evaluation of stable averages. We refer to this as the "microscopic" approach.

An alternative method is to compute with the probabilities as dependent variables. However,
this is feasible only if we have some information about the limiting probability distributions
which can occur. It turns out that frequently there is enough prior information to permit the
computation to be done in that way. Our main goal is to investigate this alternative approach,
which we will call the "macroscopic" methodology. Its potential advantage is that since the
probabilities are smoothly varying quantities, a relatively coarse mesh can be used to approxi-
mate them. In this way we can avoid the need to deal with the oscillations explicitly. Nonlinear
functions of the deformation (and linear functions as a special case) may be approximated using
the computed probability distributions.

In the sections which follow, we state our algorithm and explain the ideas behind it. Then we
present the results of some model computations. The work reported is of a preliminary nature.
So far, we do not have sufficient experience with the algorithm to make rational comparisons
with other approaches. It is hoped to address these issues in a future report.

2 The macroscopic formulation

We will begin with a simplified presentation of some background information in variational
methods which is sufficient for understanding the principles behind the formulation of the
algorithm. More detailed accounts can be found in [5, 12, 13].

We consider variational integrals

J{u) := / F(x, u, V u ) dx, u € W]*{Sl)m, (1)

where Q, € Rn is a bounded domain and F(•,-,•) is continuous. Inhomogeneous boundary
conditions can easily be accommodated if necessary. The case of most interest is when F(x, u, •)
is not convex with respect to its last variable. The multiple well property of stored elastic
energy functions causes this lack of convexity. In this case, the infimum of J(-) usually cannot
be reached in W^tP(f2)m and it is necessary to admit generalized solutions.

The standard example to illustrate this is

J(u) := f\un - I)2 + u2 dx, u € W0
M(0, 1).

Jo
The sequence {uk}, whose first three members are illustrated in Figure lb below, gives

J(uk) = / u\dx -> 0 = inf J(u),
Jo w,?'4



so that {uk} is a minimizing sequence. Also clear is that limjt-̂ oo Uk = u = 0. On the other
hand, u'k •/> 0 in any ordinary sense, and so for this {ft*}, inf^i,* J(u) is not attained. It is the
existence of the two wells at ±1, illustrated in Figure la, which is responsible for the oscillatory
behavior of the sequence {u'k}.

1.0 •

0.5 -

0.25-

-1.0 1.0

Figure la. Double well energy. Figure lb. A minimizing sequence.

The behavior of the sequence {u'k} strongly suggests that its "values" at any point 0 < XQ < 1
may be described by the probability distribution uf(xo) = ±1 with probability 1/2. In fact there
is a general result from which this can be inferred: for any bounded sequence in WliP($l)m,
II v>k ||i,p< M, {v>k} contains a subsequence { t^} such that Uk, —• u € Zp(ft)m. Additionally a
subsequence of {ukj} exists (denoted the same way) with the property that for any continuous
g which is reasonably behaved at infinity, and for each x £ ft there is a probability measure vx

such that
0(V«fc>) - G € Ip(fl)m , (2)

where

(3)G(x)= f g{y)dvx(y)
JRn

for almost all x 6 ft. A useful version of this result, due to Kinderlehrer and Pedregal [10],
states that if the sequence {uk} is a minimizing sequence for a variational problem having
non-negative integrand with p-growth, then g may also have p-growth.

A family of probability measures {vx} obtained in this way is called a family of gradient Young
measures [11]. Young measures also exist which are not gradient measures. They are derived
in a similar way from bounded sequences in Zp(ft)m.

There is a very useful characterization of Young measures vx due to Ball [1]. We will state
this for gradient Young measures: let v^ 6 denote the probability distribution of the values of
S?Uk(z) as z is chosen uniformly at random from 2?(z, 6), the open ball with radius 6 and center
a: € ft. Then

/ g(y)dvx(y)-[ g{y)duk
6{y)

\jRn jRn '
0.

This result reveals how it is the minimizing sequence that determines the probability distribution
vx and provides a way to approximate it.

The result (2)-(3) does not give any information about the structure of the measure vx, and
in particular whether it is discrete. General results on this do not appear to be available.
Nevertheless, there is a large class of problems where it is expected on physical grounds that vx

is indeed discrete. This class includes most, if not all, of the continuum functional used so far



to model crystal energy. Since we want to make essential use of discreteness, we will introduce
it as a hypothesis. Specifically, we will assume that

L

, (4)

/ < 1 , (5)

where SA^X) denotes a Dirac mass with pole at Ai{x) and \\{x) varies measurably with x.
References [3, 2, 8] contain examples satisfying the discreteness hypothesis.

Choosing g in (2) to be F(x, u(x), •) and denoting by {uk} a minimizing sequence bounded in
, we have

Urn = f (vxJo

where (vx, •) denotes the action on the right side of (3). Additionally, choosing g in (2)-(3) to
be the identity mapping shows that

These results motivate the following generalized variational problem: minimize

(u) := / <i,x, F(x, u(x), .)> dx9 u e < ' p (n) m , (6)
Jo

subject to

over suitable A\ € ip(f i )m n , A/ 6 L°°(Sl), I = l , 2 , . . . , i . Solutions to this problem are
regarded as generalized solutions to (1). Notice that classical solutions to (1) may be recovered
from the generalized formulation by taking, say, Ai = 1.

The variables in the generalized formulation are, in principle, slowly varying or macroscopic.

3 Numerical Algorithm

In this section we consider discretizations of the generalized problem. Basically, we use contin-
uous piecewise linear approximations for w, and piecewise constant approximations for the A\
and A/, 1 < / < L. However, it is important to note that the A\ cannot be always be arbitrarily
chosen, since the combination on the right of (4) must be a gradient Young measure. We present
a general way to handle this issue.



3.1 Computing the Constraints

The algorithm presented above involves several constraints, namely,

L L
1, and 0 < A/ < 1, 1 < / < L

(recall that the discrete u is piecewise linear, so its gradient is piecewise constant, as are
the discrete A\ and A/). In addition to these obvious constraints, when u is vector valued
further constraints on the representation of the gradient are required to guarantee that v —
YJI=\ ^AI is a gradient Young measure. The constraints on {A/}^=1 are convex and trivially
accommodated; however, the constraints associated with the gradient are not convex. Moreover,
since imposing constraints can be computationally taxing, it is imperative to resolve them in
an efficient manner. Below we outline an algorithm that effectively eliminates the constraints
on Vu analytically.

We begin by considering the case with L = 2, i.e.

= AAO + ( 1 -

Letting b = A\ — Ao, we may write

Ao = Vu - (1 - A)6, and

In this situation,

= XF[x, u, Vti - (1 - A)6] + (1 - X)F[x9 ti, Vu + Xb].

In the scalar case, b € Rn can be selected arbitrarily; however, when u is vector valued,
Vu € i l m x n , and it is necessary and sufficient that 6 = A\ - A$ be a rank one matrix,
Ai — AQ = a ® n, in order to obtain a gradient Young measure (a £ i?m, n 6 Rn may be chosen
freely), i.e.

Ao = Vu - (1 - A)a ® n, Ai = Vw + Aa ® n,

- (1 - A)a ® n] + (1 - X)F[x, u, Vu + Aa ® n].

To obtain a representation of the gradient for arbitrarily large i , we repeat the construction as
follows. Given AQ and A\ as above, write

AQ = AoAoo + (1 - Ao)Aoi, A\ = AxAio + (1 - Ai)An,

where

if u is scalar valued, and

Aoi — AQO = ao 0 no, and An —

it u is vector valued. The representation for the gradient then becomes,

Vu = AAQAQO + A(l - Ao)Aoi + (1 - A)Aii4io + (1 - A)(l - Ai)An.



The quantities Aoo etc. are determined from b (or a and n), A, 6Q (or ao and no), Ao, etc., for
example,

Aoi = Vu - (1 - A)6 + Ao&o

in the scalar case, and
-Aoi = Vu — (1 - A)a ® n + Aoao ® no

in the vector case.

By repeating this process N times, we obtain admissible Young measures consisting of 2^ Dirac
masses. This construction is conveniently represented with a binary tree as shown in Figure 2.
Each matrix occurring in the representation of the measure corresponds to a leaf on the tree,
and is uniquely identified by a binary word of length N.

= Vu

Ai = A + xa®n

Aoi Aio= Ai - [1-Xi]ai®rii An

Aioi = Aio + A, io flio^nio

Figure 2. Binary tree representation of the micro structure
This representation of the gradient has the following desirable properties.

• If F is convex in its last variable, then trivially the minimum of (F(x, u,.), v) is attained
with b = 6o • • • = 0, Ao = A\ = . . . = Vt£, and in this situation the problem reduces to
the classical algorithm for approximating the solution of elliptic problems using piecewise
linear functions.

• Given a guess for the minimizing function w, minimizing with respect to the piecewise
constant functions 6, A &o etc. can be done in parallel over each element, suggesting
the overhead associated with calculating a Young measure can be minimized by taking
advantage of modern computer architectures.

4 Numerical Results

4.1 Computat ional Considerations

To obtain a solution of the discrete problem, simple relaxation was used in conjunction with
the "numerical tricks" discussed below. The idea behind relaxation is to freeze all but one



unknown, f (a nodal value of u, or a A value for an element, etc.), and to make one Newton
iteration for the Euler equation dl/d( = 0, i.e. fn+1 = £n - A O / A D - The following
embellishments were required for a practical algorithm.

• Clearly it is necessary to restrict A to lie in [0,1], Moreover, since the algorithm degener-
ates when A = 0, A = 1, or 6 = 0, A was required to satisfy e < A < 1 - e for some e > 0
(typically € = 10~6 or 10"7). Additionally, terms of the form c(A - 1/2)2 were added to
the integrand to give a preferred value of A = 1/2 when 6 = 0.

• Except for the Dirichlet data, initial values of u = 0, b = 0, and A = 1/2 were chosen. It
was observed that initially oscillations in u might develop before a suitable microstructure
was found (this corresponds to computing a minimizing sequence directly). In order to
suppress these oscillations while the microstructure developed, an "artificial viscosity" of
the form fi(Au)2 was added to the integrand. In all instances, [i was set to zero for the
latter iterations.

• Since relaxation is a local algorithm, it is prone to "getting stuck" in local minima.
It was frequently observed that microstructure would be present in one element, but
not in an adjacent element. To remedy this problem, the micro-variables (A, b etc.)
were substituted for those in adjacent elements. If this lowered the energy, the modified
microstructure was accepted. This non-local move was very effective for avoiding local
minima.

This modified relaxation algorithm was found to be very effective for the computation of global
minima. As with classical relaxation for the solution of elliptic problems, convergence was slow,
especially in the latter iterates.

4.2 One Dimensional Examples

We consider one dimensional examples of the form,

I(u) = f1 F(u) + (u- f)\ u(0) = uo, i*(l) = m,
Jo

where F(p) = (p2 — I)2 (see Figure 1) is the classical double well potential, and / : [0,1] -» R
is specified. For one dimensional problems, it suffices to consider only one level of the binary
tree, i.e.

u = AA0 + (1 - A)Ai, AQ = u - (1 - A)6, Ax = u + A6.

4.2.1 Example 1 (Non-Homogeneous Young's Problem)

Setting f(x) = (x — 1/2)2, the generalized solution of the variational problem is u = / , A =
1/2(1 + / ' ) , 6 = 2. For problems of this type (i.e. - 1 < / ' < 1), it is possible to show that
the discrete solutions {uh}h>o converge to u in VF1)P(0,1) at the optimal rate of h. Similarly,
Xh —• A in £p(0,1) at optimal rate h. This is exhibited in Figure 3 where the Z2(0,1) and
if^O, 1) errors for Uh are tabulated. The solution obtained with a 16 element mesh is shown
in Figure 4a.
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Figure 4. One Dimensional Exapmles (16 Elements).

Black = well at -1, White = well at +1



No. Elements

4
8
16
32

I M I u ( o , i ) o r IIU'IIL2(O,I)

Exan

\W - uh\\LHo,i)
0.010423
0.002604
0.000654
0.000176
0.111803

lple

ll«
1

- U / J I L 2 ( O , I )
0.144338
0.072121
0.036115
0.018454
0.577350

Exan

ll« - uh\\v(o,i)
0.002352
0.000582
0.000145
0.000037
0.205711

lple

ll«
2
- U'/JIL2(O,I)
0.029793
0.015258
0.007673
0.003867
0.719047

Figure 3: Error Norms for One Dimensional Examples

4.2.2 Example 2

We consider a second less trivial example involving a "broken" extremal1. The nonhomogeneous
term is,

/(*) = -3/128(s - 1/2)5 - l/3(x - 1/2)3,

and the solution, given by

l /24 (x - l / 2 ) 3
0 < x < 1/2,
1/2 < x < 1,

has microstructure in (0,1/2) and is "elliptic" on (1/2,1). On (0,1/2), A = 1/2(1 + u) and
6 = 2. Note that the derivative of u jumps from zero to one at x = 1/2. Figure 3 exhibits the
optimal rates of convergence observed for {uh}h>o in £2(0,1) and F1(0,1). The solution for a
16 element mesh is shown in Figure 4b.

4.3 Two Dimensional Example

We consider examples of the form

I(u) =

where w1? w2 £ R2 are the locations of the energy wells. We chose £2 = (0,1)2 to be the unit
square, and impose Dirichlet boundary conditions on u. Triangular meshes are constructed by
dividing the region into similar squares, and dividing them in two along the diagonal with slope
— 1. We consider examples where the slope of u lies on the line joining wi and w2, so that
the micro-structure can be represented by a gray scale with wx colored black and w2 colored
white.

We present two examples, one being obtained from the other by a rotation of 90°. This il-
lustrates what happens when the mesh is most favorably and least favorably aligned with the
contours of the exact solution, u. In Figure 5a, a solution with wi = (—1, -1) and w2 = (1,1)
is shown having exact solution

V« = Awi + (1 - A)w2, X(x, y) = (e2 - ex+»)/(e2 - 1).
2This solution was suggested by Luc Tartar.
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(a) Black = (1,1) well, White = (-1,-1) well.
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(b) Black = (1,-1) well, White = (-1,1) well.

Figure 5. Two Dimensional Example, 8 x 8 Mesh.



The solution corresponding to a 90° rotation is shown in Figure 5b. Here wi = (1 , -1 ) ,
W2 = ( -1 ,1 ) with exact solution

Vu = AWl + (1 - A)w2, X(x, y) = (e1+x"v - l ) / (e 2 - 1).

5 Concluding Remarks

In conclusion, the computations show that the overall approach is a useful one, and that it does
produce optimal rates of convergence under mesh refinement. Certainly, more work must be
done to implement the vector case, and also to improve the performance of algebraic solvers.
It is hoped to address these matters in the future.

Acknowledgment: We thank David Kinderlehrer for many valuable conversations and sug-
gestions.

References

[1] J. M. Ball. A version of the fundamental theorem for young measures. In D. Serre, editor,
Partial Differential Equations and Continuum Models of Phase Transitions. Springer, May
1988.

[2] J. M. Ball and R. D. James. Fine phase mixtures as minimizers of energy. Archive for
Rational Mechanics and Analysis, 100:13-52, 1987.

[3] K. Bhattacharya. Wedge-like microstructures in martensites. Ada Metall. Mater.,
39(10):2431-2444,1991.

[4] C. Collins and M. Luskin. The computation of the austenitic-martinsitic phase transition.
In M. Rascle, D. Serre, and M. Slemrod, editors, Partial Differential Equations and Con-
tinuum Models of Phase Transitions, Lecture Notes in Physics 344, pages 34-50. Springer
Verlag, 1989.

[5] B. Dacorogna. Direct Methods in the Calculus of Variations. Springer Verlag, 1989.

[6] J. L. Ericksen. Stable equilibrium configurations of elastic crystals. Archive for Rational
Mechanics and Analysis, 94:1-14,1986.

[7] J. L. Ericksen. Some constrained elastic crystals. In J. M. Ball, editor, Material Instabili-
ties in Continuum Mechanics and Related Mathematical Problems, pages 119-135. Oxford
University Press, May 1988.

[8] R. D. James and D. Kinderlehrer. Theory of diffusionless phase transitions. In M. Rascle,
D. Serre, and M. Slemrod, editors, Partial Differential Equations and Continuum Models
of Phase Transitions, Lecture Notes in Physics 344, pages 51-84. Springer Verlag, 1989.

[9] R. D. James and D. Kinderlehrer. Frustration in ferromagnetic materials. Continuum
Mechanics and Thermodynamics, 2:215-239,1990.



3TiftH 01351 bQk,3

[10] D. Kinderlehrer and P. Pedregal. Weak convergence of integrands and the young measure
representation. Technical Report 90-87-NAMS-3, Carnegie Mellon University, Aug. 1990.

[11] D. Kinderlehrer and P. Pedregal. Characterization of young measures generated by gradi-
ents. Archive for Rational Mechanics and Analysis, Preprint.

[12] C. B. Money. Multiple Integrals in the Calculus of Variations. Springer, 1966.

[13] L. C. Young. Lectures on the Calculus of Variations and Optimal Control. Chelsa, 1980.

10


