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Anisotropic Motion of a Phase Interface

Well-Posedness of the Initial Value Problem.

and

Qualitative Properties of the Interface.

Sigurd B. Angtntnt & Morton E. Gurlin

Introduction.

In a previous paper [AG] we formulated a mathematical model
for the dynamics 01 a melting solid which places particular
emphasis on the effect of surface phenomena. The purpose of
this paper is to study the well posedness of the initial value
problem which this model defines, as well as the asymptotic
behaviour of its global solutions, whenever they exist.

1. The Model.

In the model we assumed that at time t the solid occupies a region fi(t) C
R2 whose boundary £ft(t) is a piecewise smooth (C00, say) curve, with a
finite number of corners Pi(t) , . . . , PN(<). We derived two equations for the
time evolution of J2(t) (i.e. of its boundary). The first of these two equations
is a relation between the normal velocity of any point Q on the boundary,
and the orientation and curvature of the front dSl(t) at this particular point
Q, and time t. The other equation arises from the requirement that the
capillary force be continuous at the corner points Pi( i) , . . . , PN(<)-

To formulate the first law of motion, let Q be any point on the smooth
part of d£l(t). The angle wliich the normal to dCl(t) at Q makes with the
y • axis will be called 0; the curvature of dSl(t) at Q will be denoted by K
orJb.

Assuming that the motion of the smooth part of the boundary is
smooth in time, the normal velocity V = V(Q,t) of dSl(t) at Q and at
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Sigurd B. Angenent & Morton £. Gurtin

time t is well defined, and the first equation of motion may be written as

g(6)K = fi{6)V + F. (1.1)

Here F is the relative free-energy density of the solid phase relative to the
liquid phase and fi and g are functions which come from the constitutive
description of the interface. It follows from thermodynamical considerations
that /?, the kinetic coefficient, is nonnegative, and that g(6) is given by

with f(6) the inttrfacial fret energy.
The other motive law requires that, at the corners

the capillary force
C(6) = f (6)1(6) + f'(6)m(6) (1.3)

be continuous, where

( ! ) ("

(We shall use this notation throughout the paper.)
The relation g{6)K = p(6)V+F is equivalent to a parabolic PDE when-

ever g(6) 7̂  0; but this PDE is backwards parabolic if g(6) < 0. To obtain a
well-posed initial-value problem we must therefore exclude domains £2(t)
whose boundaries contain points Q with g(6(Q)) < 0. If g(6) > 0 for all
0 € R, then this condition is vacuous, but if the interfacial free energy f(8)
is such that there are angles 6 for which g{6) < 0, then we can only discuss
domains ft(i) for which g{9(Q)) > 0 at every point Q €

2. The Frank diagram and stable angles.

Throughout this paper we shall consider a fixed free-energy function 0 <
/ € C°°(R/27rZ). Associated with this function we have the JVanJb diagram
T^ which is the locus of all points of the form

with 6 € R. The set of stablt angles is defined by

6 « {6 € R/2TTZ|(K0) > 0},

where g(6) = f"(6) + /(0)). It corresponds to the set of 0's for which the
FVank diagram is convex at 5"(0);'we refer to / as stablt if © = R/2TTZ, SO
that f(6) + f"(6)>0 for all*.

2 ~~~ 11 November, 1991



Anisotropic Motion of a Phase Interface

In section 8 of [AG] we also defined the set of globally stable angles,
Qg9 to be the set of 0's for which T{6) is an extreme point of the Prank
diagram (i.e. the set of points where T coincides with the boundary of its
convex hull).

The capillary force €(0) is given by

d 0 \
so that C(0) points in the same direction as the tangent to the FVank dia-
gram at ^(0). In fact, the length of €(0) is such that the tangent to the
FVank diagram is given by

(where i x y s xij/2 — X2V\ is the two-dimensional crosspToduct.)
For each k > 1 and a € (0,1) we define ©*•* to be the set of all

domains Q, C R2 whose boundary dCl is compact, piecewise hk'Q
} whose

outward unit normal n = (cos 0, sin 0) satisfies 0 € 0 on all of d£l, and for
which the capillary force C is continuous on dft.

Here hk*Q means that the boundary is locally the graph of a function
whose fc-th derivative is "little-Holder" continuous of exponent a.

Even though we require d£l to be compact, the domain SI itself may
be unbounded. This allows ft to be an "exterior domain."

We shall denote the set njk>2©*>o of domains with piecewise C°°
boundaries by. ©°°.

Since any fl € £)*'Q has a piecewise C1 boundary, the continuity
requirement of the capillary force is only relevant at the corners of dti.
Near such a corner dCl will have two tangents, with unit normals n;- =
(cos0j,sin0j) (; = 1,2); the continuity condition then says that <£(0i) =
C{&2). In view of our interpretation of C(0) as the tangent to the Frank
diagram, we see that the capillary force will be continuous if and only if
the tangents to F{6\) and ^{62) coincide at every corner (#i,02); thus the
allowable corners correspond to the bitangents of the Frank diagram.

Just as in [AG] we shall assume throughout this paper that the free
energy /(0) is regular (see [AG, section 8] for the precise definition of this
term.) This implies, in particular, that the FVank diagram has at most a
finite number of bitangents, and that for any corner (0i,02) corresponding
to such a bitangent one has g{9i)% g{B2) > 0. It also implies that there are at
most a finite number of corners {$1 y $2)\ indeed, each corner corresponds to
a bitangent, and the condition g(6i)ig{62) > 0 tells us that the curvature
of the Rank diagram at F{8j) (j = 1,2) is nonzero, so that the FVank
diagram intersects its bitangents in isolated points; in other words, the
FVank diagram cannot have an entire line segment in common with one of
its bitangents.
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3. The main existence theorem.

A great part of the present paper will be devoted to the proof of the fol-
lowing theorem, which we had already announced in [AG] (see p.350, and
p. 368).

Theorem 3.1. Assume that the free energy f(6) is regular, and ihai both
f(8) and 0(6) are positive smooth, i.e. C°° functions. Then, given any
fto € S)2>o there exists a unique maximal family of regions ft: [0,Tmwt) —*
S)2>° whose boundary satisfies (1.1), and for which £2(0) = lim^o ft(<) = fto-

For 0 < t < Tmwt this solution is actually piecewise smooth, i.e. it
satisfies ft(f) € £>°°.

If the solution only exists for a finite time, i.e. ifTmhX < oo, then one
of the following must hold:

Ei The maximal curvature of d£l(t) becomes infinite as i f Tm9jXf

E2 The maximal curvature of d£l(t) remains bounded, and the piecewise
smooth curve d£l(t) converges to some limit curve dft(TmMC), but this
limit curve has a self intersection,

E3 The length of one of the smooth arcs in dft(i) tends to zero ast4] Tmaa.

This theorem says that solutions exist for a short time, that they are smooth
for all positive times, and that they can only become singular if the cur-
vature blows up, the boundary develops a self intersection, or if an arc of
the boundary vanishes. The latter can only happen if the free energy is not
stable.

If the free energy is stable then a stronger version of this theorem was
proved in [Al, part I]. The stronger conclusion still holds for the evolution
equations we are considering, provided we add an extra hypothesis.

We say that a domain ft € S)2|Or has convex corners if each corner
P e d£l has a neighborhood B$(P) such that B&(P) D ft is convex,

In [Al, part I] we introduced a quantity a$(ft) which measures the
variation of the tangent or unit normal to 9ft. In our setting of domains in
the fiat, Euclidean plane we can define this quantity as follows:

sup { \6(P) - 6(Q)\ IP, Q € 5ft; dist*n(P, Q) < 6 } .

Here dist$n(P, Q) denotes the distance between P and Q as measured along
the curve. For any domain with C1 boundary a$(ft) J, 0 as 6 I 0 (this
is equivalent to the uniform continuity of the unit normal); if one has a
sequence of domains {ftn} with smooth boundaries, then a$(ftn) < a* for
some a» < 7r and 6 > 0 implies that the curves £ftn are uniformly locally
Lipschitz curves (see [Al, part I].)

The stronger version of theorem 3.1, analogous to the result in [Al,
part I] is the following.

Theorem 3.2. Let ft : [0,T,nax) - • £ 2 ' ° be a maximal solution of (1.1),
and assume that ft(t) is admissible and has convex corners for all 0 <t <
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Anisoiropic Motion of a Phase Interface

. Then either the conditions E 2 or E 8 of the main existence theorem
hold, or else

E4 For any 6 > 0, limsuptTTmNtO6(ft(t)) > TT.

Thus, if the curvature of #ft(t) blows up, the boundary must loose its local
graphlike character.

We refer to ft € £*>Of as admissible if the outward normal n = (cos 0, €
6) satisfies 6 € Bg$ on all of dft. The difference between admissible domains
with convex corners and arbitrary domains ft € £)2>Of will come up again in
the chapter on the geometry of dft(t), where we shall prove the following
theorem, which is known for stable free energies (cf. the work of Giga, Goto
and Chen [GGC], as well as Evans and Spruck [ES], and also [Al]).

Theorem 3.3. (Containment principle) Let fti,ft2 : [0,T) -> 2>2'°
be admissible solutions of (1.1) with convex corners, for which the closure
of fti(0) is contained in ^(O). Then the closure o/fti(t) is contained in
ft2(t) for allO<t<T.

In addition we shall also show by a simple counterexample that this theorem
does not hold if one of the two solutions Hi ,2(0 is not admissible, even
though the initial value problem remains well posed in this case (by theorem
3.1).

One would expect that the stronger existence theorem for admissible
evolutions also breaks down for inadmissible evolutions, or for evolutions
of domains without convex corners, i.e. one would expect that there exist
smooth solutions ft : [0,Tm*x) -• £2|Or of (1.1), with at least one concave
corner, for which the curvature blows up, but for which a$(ft(f)) remains
bounded from above by some a» < TT. Unfortunately we have not been able
to find an example that would prove this.

In general, a solution ft : [0,T) —• JD2>a which starts with convex
corners only can develop a concave corner. However, if the initial domain
ft(0) is admissible, i.e. if all its tangents are strictly stable, then ft(<) will
also be admissible, and all of its corners will remain convex (see section 10.)

In the last two sections we consider the case of a smooth, strictly stable
free energy, and we study the long time behaviour of a growing solution.

As we noted in [AG, section 6.1] there is a unique domain ft» (up to
translation) that is stationary under the flow determined by (1.1); ft» is a
dilation of the region

{ x € R2 I x . *(*) < /(*) V* € R } , (3.1)

the Wulff region for f{6). In section 15 we discuss the stability of ft*: we
show that it is an unstable steady state for (1.1), and we show that it has
a one dimensional unstable manifold. Section 15 is named after its final
result, the four node theorem. This theorem (15.4) asserts that for any
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solution fi : [0,oo) -> 2)2>a that converges to Qm the boundary dd(t) has
at least four nodes, i.e. for each t > 0 the velocity V vanishes at at least
four different points on 0ft(t).

Finally, we study the asymptotic behaviour of one of the two solutions
on the unstable manifold of Clm. The solution that we consider is given by a
smooth convex domain H+(t) that expands to fill the entire plane; it has an
asymptotic shape, which we identify as the Wulff region for (3(9)~l. Then,
using the containment principle (theorem 3.3), we show that any solution
fi(t) which eventually fills up the whole plane has the same asymptotic
shape as fl+(t). The precise result is

Theorem 3.4. Let Q : [0, oo) - • £>2'° be a solution of (1.1) with ft(0) D
ft». Then <"2ft(t) converges as f —• oo to a dilation of the Wulff region for

1

A result of this type was first established by H. M. Soner [So], who
shows, using a maximum principle, that for fi(0) of sufficiently large area,
ai{t)Slw C fl(t) C a2(t)Clw with Qw the Wulff .region for /J(^)"1; Soner
shows that the functions ai,2(<) have the same asymptotic growth rate,
in the sense that C2(t) — <*i(<) = ^(t"1) as t —• oo. Our result is slighty
stronger: we do not assume that the polar diagram of (3 be convex, as Soner
does, and we show convergence of the corresponding support functions (cf.
lemma 16.1).

Giga, Goto and Chen [GGC] and Soner [So] have formulated a theory
of weak "viscosity" solutions for equations like (1.1), a theory applicable
to our model if the free energy is strictly stable. A similar theory was
simultaneously created by Evans and Spruck [ES], for the mean curvature
flow, which arises when F = O,/(0) = 1,0(0) s 1. The theories of Giga,
Goto & Chen, Soner and Evans & Spruck are more general, in the sense
that they apply to to the motion of n dimensional hypersurfaces of Rn + 1 ,
but in their present state are applicable only to stable free energies.

Well-posedness.

In [Al] a short time existence and uniqueness theorem for initial value
problems like (1.1) was proved. If the free energy function f(6) is such
that g(6) > 0 for all 0, then the results in [Al] may be used to obtain the
short time existence of solutions to the initial value problem (1.1). See [AG,
section 7.1] for a precise formulation of the resulting theorem. The purpose
of this section is to show how one can adapt the arguments in [Al] to obtain
a similar existence result for the initial value problem for a free-energy that
is not stable. The precise result which we shall prove in sections 4, 5, 6,
and 7 is stated more precisely as follows:

6 ~~~ ~~ 11 November, 1991



Anisotropic Motion of a Phase Interface

Theorem(local existence). Let ft0 € £>2|° be a given domain. Then
there w c T = T(a,ft0) > 0 and an evolving family of regions £l(t), (0 <
t<T) with ft(0) « n0, that satisfies (1.1). For positive t} dtl{t) is actually
C°° smooth. The solution is unique within Vie class of solutions Q,(t),
(0 < t < T) with ft(i) € £>2'° for 0 < t < T.

In sections 8 and 9 we show how one **** improve this theorem to obtain
theorem 3.1.

4. An equivalent formulation of the initial value problem.

In appropriate coordinates equation (1.1) is equivalent to a scalar parabolic
PDE. In this section we recall the arguments from section three of [Al] to see
how this equation arises, and also to see what kind of boundary conditions
arise at the corner points.

Let H(t) € 2>*>a(0 < t < T) be an evolving family of regions, whose
boundary satisfies (1.1). If 5ft(i) has more than one component, then the
evolution of each of these components is independent of the evolution of
the others, at least as long as they do not touch each other. Therefore we
may assume from here on, without loss of generality, that d£l has only one
component, and that Cl{t) is either the region inside or outside of ££l(t).

If X : (a, 6) x [0, T) —* R2 is a paxametrization of a smooth part of the
boundary S£2, then the normal velocity V(£,<) is given by

and the reader can verify that V is indeed defined independently of the
paxametrization X(^t) (cf. the "invariance theorem" of [AG, appendix
B]). Thus the equation (1.1) may be rewritten as

with n(£,f) the unit normal to dSl(t) at X(£yt).
Since d£l(0) is a locally Lipschitz curve, there is an open neighbourhood

O D dft(0), and a diffeomorphism a : (R/Z) x (-1,1) -+ O for which
a- J (^(0) ) is the graph T%0 = {(£,u0(0) 11 € R/Z) of a locally Lipschitz
function tx0 : R/Z -• (-1,1) (see figure 4.1). In fact, since d£2(0) € S)*>Or,
the function uo will be piecewise hk'Q\ it will be continuous, and all its
derivatives up to order k will be little-Holder continuous, except at a finite
number of points £ I , . . . , £ N € R/Z, where they will have simple jump
discontinuities. The points Pj = ^Uj^o(ij)) are then of course the corner
points of ££2(0).

Assuming that the boundary and its tangent move continuously, there
will be a short time interval 0 < t < T\ during which d£l{t) can be sim-
ilarly represented as the graph of a function { —> u({,<). For each fixed

11 November, 1991 ~~ """" 7
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Figure 4.1

t the fimction u(-,t) will be piecewise /**'°, with singularities at N points
£ I ( * ) > - - - > £ N ( 0 - We shall now show that (1.1) is equivalent to a scalar,
quasilinear, parabolic PDE for the fimction tz(£,f). Even though one could
compute the precise form of this equation (it involves first and second order
derivatives of the diffeomorphism a) we shall not do so. The only relevant
fact which we shall need is that u satisfies such a parabolic PDE; this will
allow us to conclude a local existence and regularity theorem.

To obtain the PDE, we define 0j(£>*7) (j = 1,2) to be the partial
derivatives of a. Let the pull back under a of the Euclidean metric on R2

be
(ds)2 = 7 2

BO that £ s (ffi»ffi)» F — (^i>^2) and G = (cr2,<T2) are smooth functions
on S1 x [—1,1], which only depend on a. Then the unit tangent and normal
to dCl(t) at oltMtS)

}

n(£ t)
y/(EG - F2)(E

and we can define the angle 0((yt) by requiring
thermore, the normal velocity V will be given by

= n(^,t). Fur-

11 November, 1991
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with

The curvature K of dd{t) at <r(£,u(£,t)) can be written as

where A\((,ri,p) and A2(£,ri,p) are smooth functions of their arguments.
Since we're only considering (£,»?, p)'s for which the corresponding g(6)
is positive, .Ai(£,T7,p) is (strictly) positive. Thus the relation P(9)V =
g{6)K + F is equivalent to the PDE

where A3 = A1/A0 and A4 = A2/A0 are again smooth functions, whenever
they are defined, and where A3(£,T7,p) > 0.

The functions Aj(^rjyp) are not necessarily defined for all (£,»7,p).
To find their domain, we introduce for any (£,*7,p) € R/Z x (—1,1) x R
the vector t> = 0i((>ri) + p^idy)- FVom this vector one can determine
the unique angle tf(£,r7,p) € R/2?rZ for which 91(t?) = «/|o|. Then t9 :
R/Z x (-1,1) x R —> R is a smooth function, and the domain of the Aj is
given by

II, = tf-H©) = {(^^p) € R/Z x (-1,1) x R: i?(£,77,p) € 6} .

This is the open subset of R/Z x (—1,1) x R on which the functions Aj
are smooth.

The equation (4.1) will be satisfied at all (f,t), with the exception of
the corner points. At each corner point <r({j-(i),u({;-(i),<)) = Pj(t) our
model requires the capillary force € to be continuous, and we have seen
that this means that the two tangents at Pj(t) to 60,(t) have prescribed
directions Of € 6. Since t?(£,T7,p) is an increasing function of p, there exist
uniquely defined smooth functions pf : R/Z x (—1,1) —> R such that

holds. The capillary force will then only be continuous if one has

U{(0(*) ± 0,t) m | f (fc(i),tt(&(«)f i))

for j == 1 , . . . , 7 V .
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Thus we are led to consider the problem of finding a solution of the
following parabolic equation,

•g£ = f(*,u,tt«,u«), (4.2)

where 0 < t < T and £ € R/Z \ {6 (<),...,{«(<)}• The function u({,<)
is assumed to be a classical solution away from the free boundaries £ =
6(<)> • • • >£ = in(t)y and to satisfy the following jump conditions at these
boundaries:

u is continuous. 1
«<(&(«) ± o,<) - j f (fc(t),«(&(t),i)) J

At t as 0 we have the initial data

O,o. (4.4)

We shall assume that the variable £ lives in the circle Sl = R/Z, i.e. that
u is a periodic function of £, with period one:

u(£,i) = u(f + l,<). (4.5)

We also assume that any period interval contains a finite number of free
boundary points. If there are N free boundary points, then we can number
the £j(t) so that one has

1
J

To simplify our notation we shall write

and sometimes omit the <, or even both the t and £ variables. The symbol
j 2 u stands for the two-jet of the function u(-,t) at {, which is a name for
all its ^-derivatives up to second order, or, equivalently, its second order
Taylor polynomial.

The two jet j2u(£, t) belongs to the space R3, which we shall sometimes
also write as J2 , if we want to emphasize that its elements axe to be regarded
as two-jets.

We shall prove a local existence and regularity result under the follow-
ing hypotheses.

Hypotheses on f.
[fi] f is a smooth (i.e., C°°) function, defined on some open subset O C

S1 x J2.
[f2] The ?DE(4-£) ^ parabolic, i.e. f;t(t,u,p,q) > Ofor all(t,u%p,q) € O.

_ 11 November, 1991
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Hypotheses on p.
[pi] The pf are periodic in j and (, i.e. pf+N(tyV>) = pf(( +

fpf(M
[P2] The p* are smooth functions on Sl x J2 .

Hypotheses on the Initial Data
The £i|0 satisfy (4.6), and u0(0 satisfies (4.8).

[ID2] tiO|fo,o, O+i,o] w a fc2>o function, for some a € (0,1).
[ID3] Tfce prapfc of i - • (txo(0^o,e(0>uo f{e(0) " contained in tfce domain

O off.
The theorem we'll prove is the following:

Theorem 4.1. The initial value problem has a unique classical solution
on some short time interval [0,T).

We'll prove this result by reducing the problem to an abstract parabolic
initial value problem in the sense of DAPRATO AND GRISVARD, SO that
their results in [DPG] give local existence and uniqueness of the solution.
The remarks in [A3] show that this approach actually gives C°° smoothness
in time, and hence in space (by repeatedly using equation (4.2) to trade off
time derivatives for space derivatives).

5. Proof of theorem 4.1.
We shall regard the £k{t) -as dependent variables, so that we need an equa-
tion for £'k(t). By (4.3) we have

u(Wt) + 0,t) = u(a(0-0,t), (5.1)

and, differentiating this relation with respect to time, we get

Using the PDE (4.2) and the jump condition (4.3), we find that ^ ( t ) depends
on tk(t) and j2u(£*(f) ± 0,t). If we define

Xk : S
1 x J2 x J2 —• R

by

3t*(t,ji,j2) = —477 r 177 r, (5.3)

(where j \ = (uuu\,u'{) and j 2 = (^29^2*^2) ) i^ien w e c a n rewrite (4.2) as

*).i V&(0 + 0,<),i2u(a(<) - 0ft)). (5.4)

11 November, 1991 11
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The next step in the proof is to introduce a new coordinate, £, which we
define by

WC,<) - (i - OUt) + C6+i(<) (0 < C < !)• (5.5)

We also define a new set of functions Vj(C,<):

J - 0+

where

If the functions Vj and the free boundaries £j are known, as functions of
(( , t) and i, respectively, then one can reconstruct the original function
tx(£,<) as follows:

- 0+

This relation is easily obtained, if one realizes that

In particular, continuity of u at ^-(t) is equivalent to

yi.1(i,t) = v;(o,t) (5.7)

We have chosen the functions Vj(C,<) in such a way that u(f ,<) satisfies the
jump condition (4.3) if and only if

7^(0.0 « 7^(1.0-0 (5.8)

for all j . We can also reformulate the evolution law (4.4) for the {*(<) as
follows

*).*>* -^VtCO,t),©*-i i i»V*-1(l ,t)), (5.9)

where I>* is the 3 x 3-matrix

(1 0 0

0 Ajit)-1 0
0 0 Ai(«)-

12* "" — 11 November, 1991
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which relates j2u and j 2 V* via

(the substitution ( = £fc(Ci*) induces a linear map on the space of two jets
J2, whose matrix is given by I>*.)

The righthand side of (5.9) is therefore a function of

and
iaV(*,*)--0*WCi),..., j>vs(M) € J7 ®

evaluated at £ = 0 and { = 1. We denote this function by

fQk : R
N x (J2 ® RN) x (J2 ® RN) — R,

so that (4.9) may finally be rewritten as

?k{t) = ?)*(H(0,;2V((M), j2V(l,<)). (5.10)

Next, we shall derive an equation for dV/dt. Let

P*(S,V(0),V(l)) = [pf ( 6 , V*(0))(l - C)

•where Ajt = ^k+i — fa then (5.6) says that

Differentiate this with respect to time and use

to get

in which 71* is some function of E, V(0), V(l) and their time derivatives.
PVom (4.2) we know that

It therefore follows from !*(&(*),<) = Vk(Q,t) that the time derivatives
Vt(0,<) and V|(l , i) are functions of the two-jets of V at £ = 0 and C = 1,
and of E.
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If we combine this with (5.11), we discover that the time evolution of
V is given by

^jT =5*(H,j2V(0,t) , ;2V(l,t);j2V(C,t)) (5.12)

for k = 1,2, . . . ,N and for some smooth functions

One could, with some effort, compute the explicit form of these func-
tions ffjk (1 < fc < N), but all that we really need to know about them is
that they are smooth, and that their derivative with respect to their last
argument is strictly positive, i.e.

Lemma 5.1. For any k = 1 , . . . , N one has

Here we have used the notation j = (u,tt',u") for two-jets. The lemma
follows after a lengthy computation from our hypothesis

Qdq

6. Interlude on abstract parabolic equations.

In their paper [DPG] DAPRATO AND GRISVARD showed how, using the
theory of analytic semigroups and interpolation spaces, one can prove the
existence of short term solutions of a large class of initial value problems
of parabolic nature. Their results, which we shall use below, may be sum-
marised as follows.

Let X\ C Xo be pair of Banach spaces, where the inclusion is dense
and continuous, and let O C X\ be some open subset (in the topology of
X\). Then for any FVechet differentiate map * : O —> Xo DaPrato and
Grisvard consider the following initial value problem:

*'(t) = •(.(t)) (o < t < D t (Jvp)1

where xo € O is prescribed, and the solution z : [0,T] —• X\ should be
(at least) a strict solution, i.e. it should be continuous as an X\ valued
function and continuously differeritiable as an Xo valued function.

14 """ 11 November, 1991
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In general (IVP) need not have any solution at all, however small one
chooses the time interval T; indeed, without any further restrictions or
assumptions on $ the IVP is so general that it includes (say) the backwards
heat equation (take Xo = L2{K),Xl = H2(R) and (*z)(t) = -*"(t).)

To overcome this difficulty, DaPrato and Grisvard introduce the fol-
lowing condition on the JVechet derivative of $ at the initial value xo-

Condition MR. There exist Banach spaces Y\ C YQ for which
one has the following continuous and dense inclusions

and such that XQ is a continous interpolation space of the pair

The linear operator A = d$(zo) • -^l —> ̂ o generates an
analytic semigroup on Xo. Moreover> it extends to a bounded op-
erator

A':Yi-+ Yo

and this extension A1 generates an analytic semigroup on YQ.

They proved that this condition implies the existence of a strict solu-
tion x(t) to the initial value problem. At the heart of their proof, lies the
(nontrivial) observation that the condition MR implies the solvability of
the linearised version of (/VP), i.e. of

(0<t<T)

= £0 € Xl

for arbitrary / € C([0,T]\Xo).
Given the solvability of the linear problem one can use a very standard

contraction mapping argument to solve the nonlinear problem, on a short
enough time interval [0,T]. As was pointed out in. [A3] this allows one to
prove smooth dependence of the solution on initial data, as well as higher
regularity of the solution for f > 0 (i.e. the smoothing property of the
parabolic equation). All this may be summarized as follows.

Theorem 6.1. If 4 : O —> Xo is an infinitely differentiate map whose
derivative d$(xo) satisfies the condition MR for any xo € O, then (IVP)
generates a C°° smooth local semiflow on O.

7. A nonlinear semiflow on a Banach space.

The equations (5.10), (5.12), together with the boundary conditions (5.7)
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and (5.8)

are equivalent to the original problem (4.2). We'll show that the nonlinear
analytic semigroup approach works for this system. We begin by introduc-
ing a few Banach spaces.

Let 0 < a < 1 be given, and let

denote the "little Holder" space of exponent a, i.e. the closure of smooth
functions in the usual Holder space COr([0)l]). EQ is a proper subspace of
Ca([0,1]). As usual, we shall give it the same norm.

Define
N terms

and let E° C Fg be the closed subspace consisting of all those (Vi, • • •, VAT)
which satisfy

for all j , with VJ+N = Vj implidtely \inderstood.
We let

- / ' (I) = 0}

and define
Ef - {V € JEff | V i f - . f V N € H2,Q}.

Then the functions 2)i,• • •,2)JV ^^^ 5i>• • • > 5 N define a smooth map

and our initial value problem is eqiiivalent with the following "abstract
parabolic equation":

\

j
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By the results of DaPrato and Grisvaxd [DPG] one can immediately con-
clude the existence of a strict solution

x € Cx([o,to];RN e Bo) n C°([o,to];R
N e £1)

once one has verified that the JYechet derivative d*(x0) : R N © Ef -+
R N © EQ satisfies the following condition:

Condition MR. The linear operator <f$(x0) generates an ana-
lytic semigroup on R N © Eg. Moreover, it extends to a bounded
operator

AQ> : R N © E? -* R N © E?
for some af € (0,a), and this extension AQ' olso generates an
analytic semigroup on R N © E° .
To verify this condition one can use the methods which we used in

[A5]: we shall outline the procedure, and leave some of the details to the
reader.

First, one splits the linear operator d$(xo) into four matrix compo-
nents,

where M € £ (R N ,R N ) , A' € £(£?,R N ) , V € £(R*\£ff) and Q £
( )

The extension lemma in [A5] says that, since cf$(xo) is a finite dimen-
sional extension of G, the condition MR for cf$(xo) is equivalent to the the
condition MR for Q. In other words, it suffices to prove that Q extends to
an operator Q : Ef —• E°\ for some 0 < a' < a, and that this extension
generates an analytic semigroup on Eft'.

To analyze the operator Q we observe that it is the Rrechet derivative
of the map

This map is well defined for any a € (0,1), so that its derivative Q =
d^a(xo) at any xo extends to a bounded linear operator £f*°'(x0) from
Ef to EQ\ for any a1 € (0,a). Therefore it remains to show that Q and
its extension cf*°'(xo) generate an analytic semigroups on Eg and E$\
respectively. Below we prove that d*a(x0) does indeed generate an analytic
semigroup; the proof can be carried through verbatim for <f^al(xo), simply
by replacing a by a \ wherever it occurs.

FVom (5.12) it is dear that the map ^r° extends to a map from F°
to Fo°, simply by using the same formula, given in (5.12), to evaluate
CSu • • • >SN) (reca11 t h a t w e h a d defined Ff = H2%Q © • • • © H2,a.) The
operator Q therefore also extends to a linear map from F* to Fo°; we'll
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denote this map by Q1. Since Fg = E% @ L, where L is the N dimensional
linear subspace of Ff spanned by the functions

with 1 < k < N ( l is the constant function whose value is 1), we can again
apply the extension lemma from [A5]. The conclusion is that Q generates
an analytic semigroup on E$ if and only if Q' generates one on Fg.

On Ff the operator Q' can be represented by an N x N matrix of
operators,

where

Qjk : #2,* —> #2,0

is the JVechet derivative of S>(E, j2V(0), j 2 V(l ) ; j2Vj) with respect to Vk €
#2,0 •

If one keeps in mind that evaluation of j 2 V at either £ = 0 or ( = 1 is
a linear functional on Fa

a, and that any linear operator of the form

t=0

with /o>/i>/2 € H$ has finite rank and therefore is compact, then one
realizes that the off-diagonal elements Qjk (j^k) in the matrix of Q1 are
compact operators, so that Q is a compact perturbation of the diagonal
matrix

0 ••• 0 \

\ 0 ... LN /

where each diagonal element Lj : H%%Cl —• Ea is a standard Sturm-Liouville
operator.

Since each Lj generates an analytic semigroup, the operator Q" also
generates an analytic semigroup; since Q' is a compact perturbation of G",
so do Q\ and (by our earlier remarks involving the extension lemma) Q.

Thus we have verified that cf$(xo) satisfies condition M R and the
existence of a short term solution to the initial value problem follows.
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8. The topology and the Semiflow on 2)2>a.

In the last four sections we showed how one can parametrize a part of £)2>Qr

by an open subset of a Banach space. We recall how this parametrization
came about.

First one chooses a diffeomorphism a : S1 x [-1,1] *-> R2. Given
this difFeomorphism one can assign a domain ft* to any periodic piecewise
h2 '° function y « u(x) = u(x + 1) with sup|u(x)| < 1, by letting 0ft*
be the image under a of the graph of u, i.e. {a(x,u(x)) : x € Sl}; the
graph of u has a natural orientation ("from left to right"), which gives us
an orientation for 0ft*, and from which we can tell on which side of d£lu

we can find ft*.
Next, one denotes the singular points of u(x) by fr,.. -, £N, and one in-

troduces N functions Va , . . . , V# € fc2>Of([0,1]) by the transformation (5.6).
Conversely, there is a 6 = 6(a) > 0, which only depends on the dif-

feomorphism a such that any (E, V) € R N ® -Ef with \Vj(()\ < 6 for
1 < j < iV, C € [0,1] defines a periodic piecewise h2>° function u(x) with
sup \u\ < 1. In this way we get a transformation y>£ : Off *-• S 2 ' ° , where
Oa = { (H, V) G R N e E? : sup |V;| < '6}. We denotes its range by

We leave the straightforward proof of the following lemma to the reader.

Lemma 8.1. Let two diffeomorpkisms o\$, : S1 x [—1,1] «-> R2, for
which JD2>a(eri) H JD2'°(a2) is nonempty be given. Then the transition map
(tpZ1)*1 0(Pa2 *3 continuous.

We define a topology on 2D2>°, by requiring that all 2)2>Or(a)'s are open
subsets of 2)2>Qr, and that the tp^'s are homeomorphisms. Thus 2)^a =
{ J2 € S2 > a : ft has TV corners} is a topological Banach manifold, modelled
on R N © Ef; it turns out that the transition maps (^a1)""1 ° Pa2 ^t,
in general, not FVechet difFerentiable, so that 2)2>a is not a differentiable
Banach manifold.

The local existence theorem which was derived in the previous sections
implies that (1.1) defines a continuous local semiflow on JD2>Of.

Lemma 8.2. Let ft : [0,Tmwc) - • 2>2>Of be a maximal solution in 2)2>Of.
Then ft(t) € £>°° for dllO<t< T

Proof. Our local existence theorem provides us with a solution of (1.1)
starting at any 0 € S)3'°, which exists at least for a certain time, which
we shall denote by Ta(£l); Ta(Q) is a lower semicontinuous function on
S)2l°. The smoothness of the local solution implies that ft(t') € 2)°° for
all t < t' < t + Te (&(<))• But the lower semicontinuity of To ensures that
one has t' < t < t' + Ttt(ft(t')) for any 0 < t < TmhX and <\ provided one
chooses t' <t close enough to t. Thus ft(t) € 2)°° for 0 < < < Tmtx.

Q. E. D.

11 November, 1901 19



Sigurd B. Angenent & Morton E. Gurtin

Lemma 8.3. Let {fin}n«i,2,... C 2)^° be a sequence of domains, and let
7ni***>7?^ C d£ln be the smooth arcs in the boundary o/fin- Assume that
the following holds:

1. There is a 6 > 0 such that 6 < length^') < 6~l for all nj.
£. The curvatures of the 7^ are uniformly a-Solder continuous,
S. The dCln are contained in some fixed (large) neighborhood of the origin,
4. The sequence of curves dttn does not "develop a self intersection,"

i.t. there is a constant X > 0 such tha for any pair of points P,Q €
dCln one has d&(PiQ) > \daan(P*Q), where CJR* and dann are the
Euclidean distance and the distance along the boundary, respectively.

Then the sequence {fin}n>i is precompact in JD2>* for any 0 < fi < a.

We shall only sketch the proof of this theorem, and leave the details to the
reader.

One can extract a subsequence such that the sequences of sets {dCln}
and {fin} both converge in the Hausdorff metric on compact subsets of the
plane. Choose such a subsequence, and denote it by fln again Using the
uniform Holder continuity of the curvatures one can show that the arclength
parainetrizations of the 7n converge in C2»* for any 0 < & < a. The fourth
condition guarantees that the limit of the dCln's is again a C2|° curve, which
is the boundary of the limit of the Hn's. Since the d£ln's converge in C2»^,
their tangents certainly converge, and for large enough n all !7n's lie in
some common JD2|O(a). If V^, . . . , V$, £J1,...,£ft are the data representing
the fin, then one can deduce from the C2tfi convergence of the 7n that the

<*>nverge in the appropriate topology.

Given this lemma, we can easily prove the following weaker version of
the main existence theorem.

Lemma 8.4. Lei ft : [0,TmMt) -• S2 '° be a maximal solution of (1.1),
with Tmwc < 00. Then either

E j The curvatures of d£l(t) are not uniformly a-Holder continuous,

holds, or else one of the two conditions E2 or E$ of theorem S.I, must

occur.

Proof. Assume that none of the three conditions E'X,E2 or E3 hold. Then
our compactness lemma (8.3) implies that ft([0,TmiJC)) is precompact in
S)2>^ for any 0 < fi < a. Since (1.1) defines a continuous local semifiow on
2)2>* the maximal solution in ID2'* starting at ft(0) must exist longer than
Tm«; assume it is defined for 0 < t < Ty where T > rmMC. By lemma
(8.2) the extended solution fi(f) must be smooth for all t < ? ' , and hence
constitutes a solution in S)2>Or. Hence our original solution wasn't maximal
in 2>2>O after all.

Q.E.D.
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9. Lipschitz continuity of bounded curvature.

In this section we shall complete the proof of the main theorem. We shall
consider a maximal solution Cl: (0,TmMC) - • 2)*'° of (1.1) whose life span
Tm*x is finite, and for which none of the three conditions Ex,B2 or E 3

of the main theorem occur. As we shall see, the curvature of ££2(<) is
uniformly Holder continuous in this situation, which contradicts lemma 8.4
and therefore shows that theorem 3.1 must hold.

Instead of showing Holder continuity of K> we shall show that K9 re-
mains bounded, so that K is uniformly Lipschitz continuoxis, and therefore
certainly uniformly Holder continuous. We shall obtain our bound on Ks

by means of a "blow-up argument." To reach a contradiction we assume
that Ks is not bounded, and we choose a sequence tn t 2max> as well as a
sequence of points Pn € d£l(tn), for which

\K.{P,t)\ < |tf,(Pn,<n)| for all t < tn%P € «2(t), (9.1)

while \K9(Pn,tn)\ t oo. The boundary dSl(t) of the family of domains ft(t)
consists of a finite number of parametrized arcs t'(p,t) (j = 1,2,- • • ,N);
we may assume that all the points Pn lie on the same arc, and we shall
denote the parametrization of this arc by t(p,i), where P(t) <p< Q(t) for
0 < t < Tmax.

Define

and let fin(<) be the domain given by

t« + 40), ( 4 1 < < < o)

where the affine transformation 4>n is given by ^n(i) = (x — Pn)/cn, i.e. by
translating Pn to the origin, and magnifying by e"1. The part of d£ln{t)
which at < = 0 contains the origin is parametrized by tn(p,<) = e~1t(p,tn +
ĉ O- One easily computes that the curvature Kn and velocity Vn of the
rescaled boundaries dSln(i) satisfy the following estimates

(9.2)
e« at Pntt s 0, (9.3)

e F

At this point we must consider two different cases, depending on the dis-
tance dn along the boundary d£ln(Q) of the point Pn to the end of the arc

)]>0). Either dn remains bounded, or else we may assume
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that dn T oo after passing to a subsequence, if necessary; we shall refer to
these cases as blow up at a corner point, and interior blow up.

Case 1-Interior blow up. For each n we choose Euclidean coordi-
nates in which the normal to dfi(O) at the origin is vertical, i.e. in which
^fin(O) is tangent to the x-axis.

Let 7n be the section of d£ln(0) through the origin which extends a dis-
tance 2tZ1'2 in both directions. Then \Kn\ < Cen implies \0n(s)-0n(O)\ <
Cen\s\, where s denotes ardength along 7n, measured from the origin. We
have chosen our coordinates such that 0n(O) = -ir/2. If (xn(s),yn(s)) is
an ardength parametrization of %, we have

- | p = |sin*n(6)| « |cos(0n(s) -* n (0)) | > j ,

^ = |costfn(5)| = \sin(6n(s)-0n(O))\ < Cen\s\ < 2Cen\xn(s)\.

It follows that 7n is the graph of a function y = un(x), which is defined on
an interval containing {|x| < tnl/2}, and on which un satisfies

\un
x\<4Cen\x\ (:

|un |<Cenx 2 (<C)

for large enough n.
Let 7n be the subaxc of 7n on which |x| < Cn , and let 7n(t) be

the subarc of 9f2n(<) whose endpoints evolve normal to dSln(i), and which
at t=0 coincides with 7n. The normal time derivative of the tangent is
given by 6t = V, (see (10.1)). Using V = *(0)K - *(«) , with 9(6) =
9(6)10(6)^(6) = F/p(6), one finds that

for some constant c\ which only depends on the £<» norm of the derivatives
of $, * , i.e. of / and 0, with respect to 0 - in particular, C\ does not depend
on n.

It follows that if -c"1'-2 < f < 0, then 7n(t) is still a graph y = un(x,t).
We get the estimate

and hence 3 / 2

for large n.
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Since |Vn| < Cen the endpoints of fn(t) cannot move farther than
CtZ1'2 during the time interval -i?'2 < t < 0, so that all the txn(x,t)'s
are denned when |x| < «^1/2 - 1, and -eZ1/2 < < < 0.

Using

««« «(JT(1 + ul)S/2)t = (1 +14)2 tf. + 3uxux, (1 + u2)1 '2 K

(If, | < Cen one finds

from u< = (l + u2) V one obtains

|u?| < 2Cen.

At the origin we had \Kn,$\ = cn. R-om u^(0) = 0 it follows that at
the origin, and at t = 0 we have

Due to (9.4), each un satisfies a quasilinear PDE of the form

Ux) (9.6)

where the Qn and Bn are smooth functions, which converge as n —• oo.
(See [AG, section 9.4] for the derivation of this equation.)

As n —• oo the tzn's tend to zero; instead we must consider vn = un/en.
The vn>s satisfy vn(0,0) = v£(0,0) = 0; they also satisfy the estimate
bxxK br i ^ C M w e ^ M *^e equation

Vt = C?n(t4x>xr + Bn(ux). (9.7)

Since (9.7) is a quasilinear uniformly parabolic PDE, the bounds \v%z\ +
\vf\ < C imply that all derivatives of the vn's are uniformly boimded on
compact subsets of (—X + 1,L — 1) x (—L,0]. Therefore we can extract a
convergent subsequence, whose limit t>(x,t) will satisfy

|t>«| + M < 4 C , (9.8)
vt = Q*vsx + B., (9.9)

for some constants Qm and 2?*, and

(9.10)
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Figure 9.1

It follows from t>Jxx(O,O) = ±1 for all n, that vXxx(0,0) = ±1, so that
t>xx(s><) is not constant. On the other hand, if one differentiates (9.10)
twice with respect to x, then one finds that w = vx t is a bounded solution
of wt = QmWzx on {(z,t) : x € R, —oo < t < 0}. But such a solution
must be constant! The contradiction shows that KB cannot blow up in the
interior of 5ft(t), i.e. away from the corners.

Case 2-Blow up at a corner. Assume that the distances dn remain
bounded; let Qn(<) be the corner point of d£ln(t) which is the closest to the
origin. Since the limit curve doesn't develop self intersections, and since
the lengths of the arcs in cK2(f) are assumed to be bounded from below,
the point Qn(t) wiU be uniquely determined for large enough n, and for all
t in the time interval - € n 1 / 2 < < < 0. In fact, given any R > 0, Qn(t) will
be the only corner in a disk of radius JR centered at the origin.

For a general solution of (1.1) the velocity of any corner is bounded by
const x K, where K is the maximum of the two curvatures at the corner
in question. Thus we find that the velocity of our corner Qn(i) is bounded
byCe n .

At the corner Qn(t) two arcs meet. The unit normals to these two
arcs at the corner Qn(t) are prescribed by n = 9T(0i,2)> where {^1,^2} cor-
responds to a bitangent to the iVank diagram. By rotating our coordinate
system, if necessary, we can arrange that neither of the tangents to the two
arcs is vertical at the corner, and that one of them points to the right, and
one to the left (as in figure 9.1).

Let 7n(<) be the union of the two arc-segments of length —tnlf2 em-
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anating from Qn(t)- As in the previous case it follows from the curvature
and velocity bounds \Kn\ + |K| < Cen that for -tnl/2 < < < 0 7n(<) is
the graph of a function y = un(z,t)y which is defined for |x| < c^eZ1 , for
some cz > 0. Again, these un's are solutions of an equation like (9.6), and
they satisfy

K Un(t),»?n(<)) are the coordinates of the corner point Qn(i), then we also
have

where p± = — cot 8\p.
Since \Q'n(t)\ < Cen we also have |&(t)|, K(<)| < ^«n-
We now introduce the functions Un(x,t) = un(tn(t) + x,<) and

where p(x) = p+ if x > 0, and p_ if x < 0. The Un satisfy the following
estimates:

r2Ccn<3Cen ,

if n is large enough.
A short computation shows that the t?n satisfy the following PDE

while they also satisfy vn(0,t) = 0. The bounds (9.11) imply that v£
and VgX are uniformly bounded. Moreover, we have v%x(—£n(0),0) =

By interpolation the two estimates for \U?\ and \U^XX\ imply that Vxx

and Ux are Holder continuous in time, of exponents \ and | , respectively.
Therefore the quantities Q(U^\Q'(U^) and B'(U^) are uniformly Holder
continuous functions of x and t, except at x = 0; more precisely, they
are Holder continuous on [-c8e«1/2,0) x [-en1/2,0] and on (0,c3c^1/2] x
he;1/2,o).

Finally, the ^(<) are also uniformly Holder continuous of exponent | ,
since they are given by

in which [/]**o denotes the jump in / at x = 0, i.e. /(0+,<) - /(0-,<).
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Thus the t>n's are solutions of uniformly parabolic linear equations,
whose coeflBcients are uniformly Holder continuous. By the classical interior
Schauder estimates for such equations both vj1 and vj x are uniformly Holder
continuous, and we can extract a subsequence for which vn> t>£,t;£x and vj1

converge uniformly on bounded sets. Keeping in mind that |£J,(t)| + \U£Z \ <
Cen, we conclude that the limit of our subsequence is a bounded solution
of

After passing to a further subsequence we may assume that the £n(t) also
converge uniformly, say to some £,. Then we have t>xx(—£»,0) = ±1 .

Thus we have a bounded solution of v< = Q*vzz with v(0,f) = 0,
and t>«x(—£*,0) = ±1 . But this is impossible, since any bounded solution
with zero boundary data must be a constant, zero in fact. Thus we have a
contradiction in the second case as well.

Q. E. D.

Geometry of the Interface.

10. Inflection points.

In [AG, section 7.3] we gave a heuristic argument which showed that for
a smoothly evolving interface "the number of fingers cannot increase with
time." Here we'll prove this result for the case of stable free energy, and
also for the case of unstable free energy.

In addition we'll also prove the following result.

Theorem 10.1. Let Q : (0,T) - • £>*'* 6c a solution of (1.1). Then for
any given line £ the number of tangents to d£l(t) which are parallel to £ is
finite (not counting facets); this number drops whenever such a tangent has
third or higher order contact with d£l(t), i.e. whenever the corresponding
point of tangency is an inflection point.

Let r(p,t) (P(<) < p < Q(t),0 < t < T) be an evolving curve in the
sense of section [AG, section 2.2], so that tt is always perpendicular to
the curve. In this section we shall regard all quantities as functions of p
and i> so that the subscript (• • •)* denotes differentiation in the direction
p = const, i.e. the normal time-derivative (in [AG, section 2.2] we called

( ) )
If $(p,t) is the angle between the tangent tp(p,f) and some fixed di-

rection, then one of the transport identities ([AG, section 2.18]) says that
$t s — V#, where V(pyt) is the normal velocity of t, and V9 is its derivative
with respect to ardength. To eliminate the arclength from this relation,
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one introduces

and writes V, as Vp(p,t)/J(p,t).
Using our first law of motion (1.1), which says g{0)K = fi(0)V + F, as

well as the relation K = 0, = ^(p,<)/^(p,<), ^e « a eliminate both V and
J?, and we get

i a / 9(0) de F \
* - ToMJa? \J(pt)m dp + m) K }

which has the form
(10.2)

where

and 6(p,<) is some other expression involving 0(p,<) and possibly 6p(pyt).
Its precise form doesn't matter: what matters is that both a{p>t) and &(p,i)
are well defined smooth functions whenever one has a smoothly evolving
interface, and that differentiating (10.2) with respect to p shows that K = 6P

also satisfies a linear parabolic PDE:

Kt = a{p,t)npp + (6(p,<) + ap(p,t))Kp + bp(p,t)n (10.3)

Since K = 6t = K{p>t)/J(p,t)y the inflection points of the interface, i.e. the
zeroes of if, correspond to the zeroes of K = 0P.

The case in which the free energy is stable. If our evolving
interface is a simple closed curve then t(p,t) will be a periodic function of
p, whose period is independent of time - we may assume this period is 1.
All other quantities (0, V and K) will also be periodic with period 1. Since
our solution is smooth, i.e. C°°, it follows immediately from the results in
[A2] and the fact that 6P satisfies (10.3) that the number of zeroes of6p(-t)
is a finite and nonincreasing function oft € (0,T), and that, except at a
discrete set of times {0 < . . . < tn < <n+i < • • •} (which may accumulate
at t = 0), all zeroes of 8P(-t) are simple. In other words, the number of
inflection points is always finite, and does not increase with time.

Instead of applying the results from [A2] to 6P we could have applied
them directly to 6 itself; the conclusion would be that 0(«, t) only has a finite
number of zeroes, and that this number drops whenever one of those zeroes
is degenerate. Since zeroes of 0(», t) correspond to the vertical tangents to
cft2(<), this proves the theorem, in the case that the line £ is vertical. To
reach the same conclusion for any other line, we could rotate our coordinate
system so that this line becomes vertical; alternatively, we could observe
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that 9{p,t) - tf is a solution of (10.2) for any constant tJ, if 9{p,t) is a
solution, and apply the foregoing arguments to 9{pyt) — tf.

The case in which the free energy is unstable. Let t(p,t) be
an evolving arc both of whose endpoints are one leg of a corner, and for
which s(0(p,t)) > 0 holds for all P(t) < p < Q(i) and 0 < t < T. The
angles 9{P(t),t) and 9{Q(t),t) then belong to a finite set determined by the
FVank diagram, and hence they are constant, say 9p and 6Q, respectively.
The results from [A2] only apply to solutions of equations like (10.2) and
(10.3) if the solutions are defined on rectangles [P,Q] x (0,T) (with P
and Q independent of time). Fortunately this is no problem, since we can
introduce a new variable p' « (p - P(t))/(Q(t) - P(<))> running between
0 and 1, and verify that in the new (p\f) coordinates 9 still satisfies an
equation like (10.2) while $p* still satisfies one like (10.3).

Observe again that for any tf the function 9(p>t) — i? satisfies (10.2),
and either vanishes identically at p = P(t) or p = Q(t) (this happens when
t? and 6P or 9Q coincide), or else 9(P(t),t) - iJ ̂  0 and 9(Q(t),t) —19 ̂  0
for all t € (0, T). This implies that 0(p, t) -t? will only have a finite number
of zeroes for each 0 < t < T, and that, except at a discrete set of times,
these zeroes will be simple, i.e. 9P ^ 0. The statement in the theorem is
nothing but the geometrical interpretation of these statements.

If we specialize the foregoing argument to the case 9 = 6p or 6 = 0Q,
we reach the following conclusion.

Lemma 10.2. The curvature at a corner point can only vanish at a
discrete set of times {0 < •.. < tn < <n+i < •••}• This sequence may
accumulate at t = 0, but since the number of zeroes of either 9—9p or 9—9Q
must go down at each tn, the sequence cannot have any other accumulation
points.

If we assume that our initial interface is admissible, i.e. if we assume
that all angles 0(p, 0) are globally stable, then we must have 9p < fi(p, 0) <
9Q (or 9Q < 0(P)O) < 9p). FVom the maximum principle it follows that
9p < 6(p>t) < #Q for all i > 0, so that the interface is admissible for all
positive times: an initially admissible domain &(0) remains admissible.

Admissibility of the interface implies that 9(pyt) — 9p > 0, so that the
Hopf boundary point lemma for parabolic equations (see [PW]) tells us that
either 9p(p,t) ^ 0 for all 0 < t < T or 9(p,t) s 9p. Thus for an admissible
interface the curvatures at a corner point never vanish, except on facets.

A consequence of this is that if Cl(t) (0 < t < T) evolves according
to (1*1)> is admissible, and has convex corners, then it has strictly convex
corners.

If we assume that the curvatures at the endpoints of our evolving arc
are nonzero (as is the case for an admissibly evolving interface). Then
9p'(p\t) satisfies an equation like (10.3) on the rectangle [0,1] x (0,T), and
does not vanish on the sides [0,1] x (0,T) of this rectangle. Moreover the
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zeroes of 0pi correspond to those of 6P and K, and hence to inflection points.
By theorem D of [A2] this implies:

Lemma 10.3. The number of inflection points on the arc t(p,t) is fi-
nite and nonincreasing in time, while except at a discrete set of times all
inflection points of the arc are simple.

The tangent to an inflection point. Let Q(t) € 9fi(<) be a nondegener-
ate inflection point for t0 < t < <i, and let tf(t) be the angle of the normal
to dSl{t) at Q(t). If 0£2(i) is parametrized by t(p,t), then there is a smooth
function q(t) {to<t< tx) for which Q(t) « t(g(t),t), and

while

Using k = 0 at the inflection point one finds:

evolves according to (1.1), and the inflection point is nondegenerate,
as we have assumed, then we get

1 (
ds\ ,3(0)

Therefore we have the following observation.

Lemma 10.4. The normal angle of the tangent of a nondegenerate in-
flection point of a smooth arc which satisfies (LI) is a strictly monotone
function of time.

11. The evolution of convex pieces.

Let Q, : [0,T) —> S)2>Of be a classical solution of (1.1) with convex corners,
and consider a family of arcs T(t) C d£l(t). We shall assume that the arc
F(t) contains no inflection points or facets, and that the end points of F(t)
are either inflection points, or corners at which T(t) meets a facet. On each
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segment of T(t) between corners, the angle (or GauBmap) 0 : T(t) —> R
is one to one, its range being an interval. Our hypothesis that ft(t) has
convex corners implies that the intervals one gets this way are disjoint. We
shall denote them by:

\J j)« u (02,0a) u. . . u

where 0;- < 0,+ 1 and J] « (02ji02j+i)- The 0j with 1 < j < 2n do not
depend on time, and if either of the endpoints is a corner connected to a
facet, then the corresponding 0o(t) or 02n+i(<) is also independent of time;
otherwise, if the endpoint in question is an inflection point, then one has
6'0(t) > 0 or ^ n + 1 ( t ) < 0 respectively.

Define

{0o(t),02n+i(*)}x{t}.
o<t<r o<t<r

Since the angle 0 is a good coordinate on the arc, we have a parametrization
X{8) i) of the arc in 0, t coordinates. The support function of the arc is given
by p(0, t) s= (91(0, <), X(8, t)), and one can recover the parametrisation from
the support function via X{6,t) = p(0,t) • 01(0) - p^(0,<) • T(0). It is well
known that the curvature as a function of (0, t) is given by k = — (p
In [AG] we showed that fc(0,<) satisfies the following equation:

where v(0, <) = p<(0, t) = (X*, 91) is the normal velocity of the arc (see equa-
tion (2.23) of [AG]). Combined with the first equation of motion fi(6)V +
F = g(6)ky this equation gives a quasilineax parabolic PDE for the curvature
Jfc, or, equivalently, for the velocity v(0,<) = V(0, k). This equation is:

a t "

If we are dealing with a convex simple closed curve, then fc(0,<) is
defined and nonzero for all 0 € R/2TTZ; if, in addition, the free energy is
strictly stable for all angles, then g{9) > 0 for all 0, and the equation (11.2)
with periodic boundary conditions completely determines the evolution of
v(0,<), and hence of the domain ft(i).

The continuity of the parametrization X(0, t) across the gap [02 j - i , 02j]
in the angle domain J* implies a set of boundary conditions for v(0, t), one
for each gap. Recalling the relation between X and p, we find that the
condition X(82j-iit) = ^(02j-,<) is equivalent to

torn - P*S)(02;-I , t) = (?an - P9*)(o2j, t).
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If one differentiates this with respect to time, and uses t; = pt = (Xt,Vl),
then one finds:

One can rewrite this as follows:

I //) .\ I = T*'\P2j mmm v2j—1
\ ^^ v^2^—1» • / /

where
-y, xdef/cosa —8ina\

v 7 y s m a cos a y

If one of the ends of T(t) is a corner whose other leg is a facet, then
we get an additional boundary condition for v at this end.

Let 6o(t) = #o be such an end, and let 0_i be the other angle of
the corresponding corner. The normal velocity of the adjacent facet is a
constant, namely — F/fi(6-i). Since X(6Q , t) must lie on this facet, we have:

which implies

12. A maximum principle.

Define JX^QT and ST as in the previous section, and let a^b^c : QT —> R
be given bounded functions, with a > 6 > 0. Consider a classical solution

2

c{6,t)u, (12.1)

which also satisfies the following boundary conditions:

where Aj = (Pi 9i ) , and detC^) > 0, qj < 0.

The following theorem is a variation on the classical "strong" maximum
principle; the proof of our theorem uses many of the same ideas as the proof
of the classical theorem, which the reader can find in the book of M. Protter
and H. Weinberger [PW].
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Theorem 12.1. If u > 0 on ST, then u > 0 on QT- Moreover, either u
vanishes everywhere in QT, or u is strictly positive in QT \ ST>

Proof. We shall first prove the weaker conclusion uu > 0 on QT"
then show that it implies the second statement in the theorem.

By considering e~Atu(0, t) instead of u we may assume that c(0, t) < 0.
We may assume that the inequality in (12.1) is strict. Indeed, let

%l> € C2(R) be any function which satisfies the conditions (12.2); then for
sufficiently large \i > 0 the function w = eMV(0) will satisfy the strict form
of (12.1), and one can apply the arguments given below to u + ew, for any
€ > 0; these will show that u + ew > 0 for all positive c, and hence that
tx > 0 on QT. By the same arguments we may also assume that u > 0 on
ST, instead of merely u > 0 on S j \

To reach a contradiction suppose that u(0,<) < 0 for some (0,i) € QT*
Then there exists a smallest U > 0 such that u(0», U) < 0 for some 6+ € Ju.
Since u > 0 on Sr> we have U > 0, and by the classical maximum principle
for parabolic PDE's 6+ cannot be an interior point, so that it must be one
of the 0/s (with 1 < j < 2n).

First consider the case in which j = 2k is even. The Hopf boundary
point lemma implies that u$(02Jfc><*) > 0. If one combines this with the
boundary condition (12.2), one finds

(12.3)
< 0.

This is a contradiction, since u > 0 for t < t*.

Given the observation that AJ1 = ( / / I with

one can deal with the other case, in which j is odd, in the same way as the
case in which j is even.

The second statement in the theorem may be proved as follows. As-
sume that the solution is not identically zero. By the ordinary strong max-
imum principle we must have it > 0 everywhere in QT. Thus if u vanishes
somewhere in QT \ ST, then there is a U > 0 and a 6j (1 < j < 2n) for
which u(0j,U) = 0. But now the Hopf boundary point lemma and the cal-
culation (12.3) lead us to the same contradiction we had above. Therefore
u must be strictly positive if it doesn't vanish everywhere.

Q. E. D.
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Addendum 12.2. If $o(t) s 0O *nd 02n+i(t) s 02n+i *re constant, and
if one assumes that u{O,t) satisfies

t) < mo(t)u(eo>t), ui&n+ut) > mi(t)tt(«2n+i,«) (12.4)

for 0 < t < T end /or certain continuous functions rrij : IO,T) -4 R, then
the conclusion of theorem 12.1 still holds.

Proof. We shall show that the boundary condition (12-4) implies that
tx > 0 on QT\ strict positivity in the interior of QT then follows from
theorem 12.1.

By replacing u with tx + tw for arbitrary small c > 0, and for some
w = e**V(0)> W* nxay assume, as in the proof of the previous theorem, that
tz > 0 at t = 0.

If there were some (0,t) such that u(0,t) < 0, then one could choose
a minimal t» > 0, for which there exists a 0* with u(6m,U) = 0. The
proof of theorem 12.1 shows that 0* cannot be an interior point or one of
the 0i , . . . ,02 n, so that 6m must be either 0o or 02n+i5 we shall assume the
former.

Since u > 0 for t < t* it follows from the Hopf boundary point lemma
that u$(0o,t«) > 0. On the other hand the boundary condition (12.4)
implies that u$(0o,t») < mo(t*)u(0o,t») = 0. Thus we have a contradiction
which shows that u > 0 on QT-

Q. E. D.

13. Containment.

In this section we shall prove the inclusion theorem 3.3 of Section 3, and
also describe the counterexample that was mentioned there.

Let fti,2 : [0,T) -+ 2)2'° be two admissible classical solutions of (1.1)
which have convex comers, for which Ĵ i(O) C Int(ft2(0)), and assume that
there is some U > 0 for which the boundaries of Cl\(t) and ^(t) meet. We
may assume that t* is the smallest t > 0 for which this happens. Let P be
some point in the intersection #£2i(t*) H d£22(t*). By the strong maximum
principle P must be a common corner point of dSli(U) and d&2{U). Denote
the angles corresponding to this corner by a < /?, and let Pi,2(0,t) be the
support functions of 5Hi,2(t) near (P>U).

Since curvatures at convex corners of admissible solutions never vanish
(see section 10) the angle 0 will be a good coordinate on both curves dfti^t)
in a neighborhood of P and for t close to t». Thus, if we chose e > 0 small
enough, then the pi,2(0,t) are well defined on Q = J x [U - e,t»], where
J = (a -€ ,a )uO9,0 + 6).

The support functions satisfy pt = — (p$$ + p)""1* as well as the jump
condition , ,
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Figure 13.1

Moreover, it is geometrically evident that P2(*M) > Pi(0><) on Q, except
at (a,U) and (£,<•) (see figure 13.1).

The difference w(6,t) = P2(^>*)""Pi(^>*) *ken satisfies a linear parabo-
lic equation, wt = a(9,i)(w$$ + ty), for some smooth a(0,i) > 0. Since
fti(i») and Cl2(U) are tangent at the corner point P we have to(a,i*) = 0
and w(f3, t») = 0. On the other hand we have just observed that u>(0, t) > 0
at all other points in Q, so that the maximum principle of the previous
section tells us that both to(a,i*) > 0 and w(P,tm) > 0, which is a contra-
diction. Therefore the closed domain fti(f) must be contained in the open
domain ft2(<) for all times t at which both are defined.

The counterexample. Assume the Frank diagram is as in figure
13.2: it has two inflection points, and only one bitangent. This bitangent
meets the Frank diagram at the angles {0i, 62}^ and these angles correspond
to the only allowable corner which any ft € 2>2>Qr may have.

We let fti € S)2>or be a ponvex domain whose boundary has strictly
negative curvature; this domain must have exactly one corner, P.

For &2 € S)2>or we choose a domain which contains ft2, and whose
boundary also contains the point P. However, we assume that P is a
smooth point of £ft2> which we can do since we allow the tangent angle
6Q2(P) to be stable, but not strictly stable. The reader can easily verify
that we can choose ft2 so that the curvature of 5ft2 at P is any prescribed
value. These means that we can prescribe the normal velocity of d&2 at P,
and in particular that we can choose ft2 so that the corner P(t) of fti(<)
will pierce through dfait) as both domains evolve according to (1.1) (see
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Figure 13.2,13.3

figure 13.3.)

14. Proof of theorem 3.2.

Let ft : [0,T) —• 2)2'° be a maximal classical solution of (1.1) with T <
oo, and assume that neither of the two conditions E2 or Es of our main
existence theorem 3.1 occur. Assume in addition that ft(<) only has convex
corners. Then theorem 3.2 asserts that for any 6 > 0 there is a re > 0 such
that at t = re one has a$(dft(r$) > TT — 6.

In this section we shall prove this, arguing by contradiction; thus we
shall assume that there is some 6 > 0 such that ae(d£l(t) < * — 6, for any
0 < t < T. Using a blow up argument we shall show that this is impossible.

Choose sequences <„ | T and Pn € £ft(in) such that \K(P,t)\ <
\Hpn,in)\ for all 0 < t < <n and Pn € 0ft(in), and define the following
"blow ups" of!

where

Then ftn : [~W*n> (^ - tn)/e^) - • D2'* is a solution of

= g(6)K-enF, (1.1)'

while the capillary force £ is still continuous on dftn(0- Moreover, the
curvatures of dCln(t) for < < 0 are uniformly bounded by \I<dnn(t)\ < 1;
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the arguments of section nine then show that the -fiT$nn(t)'
s axe uniformly

Lipschitz, and in fact that all derivatives of the curvature (with respect
to axdength ) are uniformly bounded for t < 0. After passing to a sub-
sequence, if necessary, we may assume that the dCtn(t) converge to some
limit family ftoo(t) (-00 < t < 0) of domains (the "convergence" here is to
be understood as follows: for any to,R > 0 the curve d£ln(t) n BR(0) con-
verges in the Hausdorff metric on compact sets in the plane to cftio
uniformly on the bounded time interval - to < < < 0.)

The limit family is a classical solution of

fi($)V = g{6)K,

it satisfies
\K*i~{P*t)\ < 1 for all P € « M 0 , < < 0;

moreover the origin lies on d£2oo(0), and

Since 9£)(<) does not shrink to a point (by assumption-otherwise E3 would
occur), the blow up domain ftoo(t) can never be a bounded domain.

Lemma 14.1. ftoo(<) is convex.

Proof. We shall show that d£loo(t) contains no inflection points, and that
all its corners are convex; the lemma follows easily from these two facts.

Let Q(to) € dftoo(io) be an inflection point. Since inflection points are
always nondegenerate, except at a discrete set of times, by theorem 10.3
we may assume that Q(to) is nondegenerate; in particular, dSloo(t) has a
nondegenerate inflection point Q(t) near Q(to) for t close to <o, and the
motion of this point is smooth in time. Let a(t) be the normal angle of
the tangent to dftoo(i) at Q(t). By lemma 10.4 it is a strictly monotone
function of time.

Our original domain Cl(t) has a finite number of inflection points in
its boundary, and this number does not increase with time, so there must
b e a t i < T such that this number is constant when f 1 < t < T. Let
Qi(i)> • • • > Qm(t) be the inflection points of #&(<), and denote their normal
angles by c*i(t),. •. ,am(<). These angles are bounded monotone functions
of time (lemma 10.4 again), so they have limits limtfT <*s(t) = or(T).

After passing to a subsequence once more, if necessary, the inflec-
tion point Q(t) of the blown up domain can be written as the limit of
4>n(Qj(tn + *n<))'s> *or 8 o m e ^ ^ J € { 1 , . . M m } . Since the curves dCln(t)
have bounded curvatures, their tangents will also converge, and hence we
find that a(<) = otj(T) for all t near to- But we have just observed that
a(t) cannot be constant, so we have a contradiction; therefore there cannot
be any inflection points in cK2oo(*)-
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Next we consider the corner points of fto©(<); l e t Q(0 D e o n e

and denote the corner points of ft(i) by P\(t),... ,P*(t). After taking yet
another subsequence we may assume that Q(t) is the limit of Qn(i) =
4>n(Pj{tn + 4 0 ) for some fixed j .

Consider the tangent cone TB(t) to &„(<) at Qn(t):

{ 1,1^(1)11q € *«« W)n

Since any bounded part of any smooth component of dCln(t) converges in
C°° to the corresponding component of Sftoo(<)> the tangent cones rn(<)
will converge to the tangent cone Too(t) of &«>(<) at Q(t); since each Tn(i)
is convex, FooC*) is also convex.

If both components of cW2oo(<) which meet at Q(t) are facets, then near
Q(t) the domain £2o©(<) coincides with its tangent cone, and hence it must
be convex.

Assume therefore that at least one of the two arcs which meet at Q(to)>
say 7(<o)? is not a facet, and denote its curvature at Q(to) by fc(to). Clearly
we have K(*O) < 0, for if /c(to) > 0, then the curvature at Qn(*o) of the
corresponding arc in d£ln(to) would also be positive, and Qn(*o) would not
be a convex corner of ftn(to)-

Suppose that n(to) = 0. By lemma 10.2 the number of points on
d£loo(i) whose normal angle 6 equals 6Q must drop as t increases beyond
to (here 6Q is the normal angle of j(t) at Q(<).) In particular, for t < to
there must have been at least one other point on 7(<), besides Q(t)> at
which 6 = 0Q, and between this point and Q(t) there must have been an
inflection point. This cannot be, however, since we have just shown that
d£loo(t) doesn't have inflection points.

Thus K(<O) < 0 and Q(to) must be a convex corner point.
Q. E. D.

So we see that the blown up domain is convex, and its boundary con-
sists of a finite number of smooth arcs 7o(O> • • • > 7n(0- We may order these
arcs so that the end point of 7,-(t) is the begin point of 7t+i(<). If one of
these arcs, say 7y(t), is a facet, then it cannot contain more than one corner
point; should both of its end points be comer points of &oo(t)> then both
arcs adjacent to 7>(t) would have the same normal angles at the corner
points of 7j(<), and one of these two corner points would not be convex.

Thus if d£loo(t) contains a facet, this facet must be either 7o(<) or
7n(t).

Just as in section 10, the range of the normal angle 6 : dCt^t) —• R is
the disjoint union of intervals Jf = (0o(Oi*i)U(02)03)U. • .U(02n,02n+i(t)).
In the present situation we can also prove the following.

Lemma 14.2. $o(t) <*n<f 02n+i(<) <*re independent oft, while 92n+i — So <
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Proof. Our hypothesis at(d£l(t)) < it — 6 implies that the rescaled do-
mains satisfy o:$/€n(£ftn(*) ^ * — »̂ a n ( l after taking the limit this -be-
comes aR(d£loo(t) < TT — 6 f or any R > 0,t < 0. In particular we get

If 7o(<) is a facet, then 0O and 0i coincide, and 0o(t) is constant.
If 7o(t) is not a facet, then it is an unbounded convex curve whose

asymptotic direction has normal angle 0o(t). The curvature of dQ>oo{i) is
bounded by \K\ < 1, so the normal velocity of cK2oo(t) is also bounded:

< sup
e

} <oo.

This prevents the asymptotic direction 0o(<) to change, since such a change
would require 70 (t) to "rotate."

In either case 6o{i) does not depend on t, while the same arguments
can be used to show that #2n+i(t) doesn't change either.

Q. E. D.

As we observed in section 11, the normal velocity v(0,t) of
satisfies

») (14.1)

for 6 € J, and < < 0 (see (11.2).) Across the gaps in the domain J, the
velocity v satisfies the boundary conditions (11.4). If the arc 7o(*) is a
facet, then 8Q and #i coincide, so that the open interval (#o>0i) is empty,
and v$ is only defined on J = (02,#3) U . . . U (02n,02n+i); in this case the
first boundary condition of the form (11.4) must be replaced by (11.5), i.e.
by

t>#(«2,*) = cot(02 - $x) • v($2,t). (14.2)

If 7n(t) is a facet, then 02n and 02N+1 coincide, and we get the following
boundary condition for v at 6 = 02n-i'

- 62n-2) • v(fen-lt<). (14.3)

If one of the end arcs of #f2oo(<) *s n o t a ^ace^ then the following lemma
gives us the boundary behaviour of v at 6 = 0o or 6

Lemma 14.3. //7o(<) w n o t e /ccct, then lim*x*ot;(0,i) = 0, ttnt-
formly on bounded time intervals. Likewise, if 7n(<) is not a facet, then
l ^ + i v(0>*) ^ 0> titii/ormiy on ioundci time intervals.

Proof. Without loss of generality we may assume that 0O = — f, and that
7o(<) is not a facet; the other case is proved in the same way.

Given any to < 0, we can find a £ < 0 such that for to < t < 0 the
part of 7o(t) in the half plane {x < (} is given by the graph y = h(x,t) of
a smooth function h. Our assumptions imply that
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i hxx > 0 (&«>(<) is convex),
ii hx(x,t) -+ 0 as x | — oo, (since 0O — - f )> and hence hx(x,t) > 0.

Moreover, h is a classical solution of a parabolic PDE of the form

ht = a(hx)hxx.

By choosing £ larger negative, we can ensure that hx < 1 for x < £,t €
[to,O]; the boundedness of the curvature then implies that hxx ss K(l +
J*x) is also bounded uniformly. Together with classical parabolic esti-
mates this then implies that all derivatives of h axe uniformly bounded,
and hence, by interpolation, that hxx(x,t) —* 0 as x [ 0, uniformly in
t€[to ,O).

Now let € > 0 be given. We shall find a 6 > 0 such that \K\ < c
whenever 6 < 6, and t 6 [to,<], which is what is claimed in the lemma.

First choose (€ < ( such that hxx(x>t) < e if x < £€ and t0 < < < 0;
then choose 6 as follows:

If Q € 7o(*) is any point with 6(Q) < 6, then the x coordinate of Q must
satisfy x < £c> and hence the curvature of d£loo{t) at Q is bounded by

Q. E. D.

To complete the proof of theorem 3.2 we shall construct a supersolution
of (11*2), and use the maximum principle of section 12 to conclude that our
blown up solution v(0,<) must vanish. This furnishes us with a contradic-
tion, since we have, by construction, |v| = \g(6)/fi(6)k\ = g(8)//3(6) ^ 0,
at t = 0, at the origin. The contradiction shows that blow up cannot occur
under the hypotheses of theorem 3.2.

We must consider three (slightly) different cases, depending on whether
the ends of £floo(<) are curved or fiat.

First we deal with the case in which neither 7o(<) nor 7n(<) are facets.
Assume that J C [6/2, *-6/2), and let W{6) = W(A, 6) be the solution

on J of

(14.4)

(14.5)
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For A = 0 the solution is given by W{6) = sin 8, and by continuous depen-
dence on parameters W(A, 9) is defined and strictly positive on J for small
enough A > 0; we fix such a A.

If we choose /x > 0 large enough, then

is a super solution of (14.1). Indeed, if (i > sup* \Zp(0)/2A0(0) then we
have:

W 2, , x fx *W) l

Now compare tz>(0, t+r) and v(0, t) for some given r > 0 on the time interval
- T < t < 0. As 11 - r we certainly have u;(0,< + r) > v(0, t), and as 0 J, 60

or 0 t ^2n+i lemma 14.3 tells us that we also have w(8%t + r) > v{6;t)\
the difference w(6yt + r) — v(0,t) satisfies a linear parabolic inequality like
(12.1), as well as the boundary conditions (12.2), so that our maximum
principle of theorem 12.1 implies w{6^t + r) > t>(0,t) for all 6 € J and
t € ( - T , 0 ] . By fixing t and letting r j o o w e get v(8,t) = 0 for all 6,t.

Next we consider the case in which 7o(<) is a facet, but 7n(t) isn't. In
this case 0O = 0i> and we define W to be the solution of (14.4) and (14.6),
but now with the inital conditions

W(60) = sin(02 - 6i\ W'(6O) = cos(02 - 02). (14.7)

Just as before we define w = yWt"1/2^ and one verifies that for large
enough p. and small enough A w is a super solution of (14.1). Moreover,
w satisfies the same linear boundary condition (14.2) as v, so that we may
apply the maximum principle contained in the addendum 12.2, to conclude
that u>(0,< + r) > v(6,t) for 6 € J and t € ( -r ,0]; letting r j o o w e again
find that v must vanish for all 0,f.

The case in which 7n(<) is a facet, but 7o(<) isn't can be dealt with in
the same way.

The last case which we have to consider occurs when both 7o(O &ad
7n(<) are facets, so that 0o = 8\ and 02n = 02n+i« In this case we define
w(0,t) to be the same as above, in the case of one facet, and we observe
that at 6 = 02n-i we have for small enough A > 0:

W$(62n-Ut) > COt(02n - 02n-l)u>(02n-l,*);

indeed, recall that as A J, 0 we have

! £ £ _ 1^£_> cos(fl2n-i -8i)

= - COt(7T + 6i - 02n-l)
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since $2n — $1 s s

Therefore we may apply the maximum principle of addendum 12.2
again, and conclude that v vanishes.

Q. E. D.

15. The four node theorem.
In this section we consider the unique steady state which exists if F < 0,
and We study the linearised flow near this steady state. In particular we
prove that any initial value f2o which lies on the stable manifold of ft* has
at least four nodes.

From here on we shall assume that the free energy is strictly
stable, i.e. that f"(6) + f(6) > 0 for all angles 6 € R/2TTZ.

As in section 11, we can represent any C2 convex region up to a trans-
lation by its curvature k as a function of the angle 0, or by the equivalent
quantity t; = V(0, Jb) = (g(6)k - F)/fi{6). We recall from (11.2) that the
evolution of convex domains is then described by the following initial value
problem

+ Ff \d2v

( 1 5-1 }

Since the curvature of the boundary of a convex domain is negative (in
our conventions), we shall only consider solutions of (15.1) which satisfy
v(0,i) < —F//?(0) (this condition is equivalent to k < 0). Moreover, we
shall only consider those v's which correspond to closed curves; recall that
a function k(6) determines a closed curve if and only if the first Fourier
coeflBcient /0

2* ti$k{6)-ld6 of l/k(6) vanishes. This prompts us to define
the following spaces:

v(B) < j^r ior 6 € R/2TTZ \ ,Oa = I v € ha(R/2nZ)

I \Jo 0(O)v(6) +

for a € (0,1), and

02»° = O ° n Ji2'a(R/27rZ), X2>° s X

The reader can easily verify that X° is an analytic submanifold of OQ of
codimension two.

11 November, 1991 41



Sigurd B. Angenent & Morton E. Gurtin

Theorem 15.1. The initial value problem (15.1) generates an analytic
local semiflow on 0 ° , which leaves XQ invariant.

Proof. The initial value problem (15.1) is quasilineax, of the form u'(t) =
A(u(t))u(t)y where the operator A(u) : / I2^(R/2TTZ) -> /I*(R/2TTZ) (with
0 < P < a) is given by

(A(u) •

For any u € 0 ° this operator with domain dom(>t) = h2>fi(R/2nZ) gen-
erates an analytic semigroup on hfi(K/2nZ). This allows us to apply the-
orems 2.11 and 2.12 of [A3], and conclude that (15.1) generates a local
analytic semiflow on OQ.

To show that the submanifold X° is invariant under >̂*, one observes
that along any solution of (15.1) one has kt = k2(v$$ +t>), and hence

Q. E. D.

One can determine all the fixed points of the local semiflow 4>f\ they
are exactly the solutions v(6) of v"(6) + v(6) = 0, i.e. they are given by
v(6) = V cos(0-a) for some a € R/2TTZ and V > 0. Clearly these functions
can only belong to the space OQ if F < 0; conversely, if F < 0, then there
exist V±(a) > 0 for every a such that v{6) = V cos(0 — a) belongs to C?* if
and only if -VL(a) < V < V+(a).

Therefore we shall assume throughout this section that F < 0.

Lemma 15.2. If F < 0} then v = 0 is the only fixed point of the semiflow
which lies in XQ.

Proof, (cf. [AG, section 6.3]) First we note that t; = 0 satisfies the closing
condition, since

Thus v = 0 does indeed belong to XQ. To show that v = 0 is the only
candidate solution which corresponds to a closed curve, we consider

If t; = A cos(d — a) satisfies the closing condition, then D(\) must vanish.
By differentiating under the integral one easily verifies that D'(\) < 0,
which shows that D(X) can only vanish for one value of A; we have just
seen that this value is A = 0.

Q. E. D.
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This lemma tells us that there is exactly one domain Q. (up to trans-
lation) which does not change under the evolution prescribed by (1.1). We
can remove the ambiguity in the definition of Q, by requiring the origin to
be the center of mass of this domain; we shall denote the resulting domain
by ft..

Lemma 15.3. The fixed point v = 0 is a hyperbolic fixed point for the
restricted semiflow, $* |x« . Its unstable manifold is one dimensional

Proof. To begin with, v = 0 is a fixed point of the semiflow 4>f on 0 ° ,
so that the linearization of the semiflow at 0 is a one parameter semigroup
d<f>f(O) = eiA on the Banach space ha(K/2irZ)\ this semigroup is analytic,
and its generator is obtained by linearizing (15.1) at 0. The operator one
gets is of Sturm-Liouville type:

F2 ( — + 1

with dom(A) = /i2»a(R/27rZ). The spectrum of A consists of eigenvalues
which may be ordered as Ao > Ai > A2 > A3 > A4 > A5 •••, and the
eigenfunctions corresponding to the pair of eigenvalues {A2J-1, \2j} have
exactly 2j simple zeroes in R/27rZ; the eigenfunction corresponding to the
first eigenvalue, Ao is positive.

By inspection one finds that 0 is a double eigenvalue of A, with eigen-
functions sin0 and cosd. Since these eigenfunctions have two zeroes, their
eigenvalues must be Ai and A2. In other words, we have found that Ai =
A2 = 0, so that Ao > 0 > A3 > A4 > • • •.

To see whether 0 is a hyperbolic fixed point of <f>x |x« > we must consider
the linearization of the semifiow on Xa, i.e. the restriction of eiA = d<f>f(O)
to the tangent space TQ(X°) of X° at 0. Since XQ is invariant under ^f,
the tangent space To(XQ) is invariant under eM , so that the restriction of
etA does indeed define a one parameter semigroup on TQ(XQ).

By linearizing the defining equations of XQ one finds that the tangent
space ToOX"0) is given by

To{X°) ={ve h°{R/2«Z) / e ' < - ^ v ( 0 ) d6 = 0

This space does not contain any of the eigenfunctions of A which have
eigenvalue 0, i.e. it does not contain sin(0—or) for any a € R. Since To(Xa)
has codimension two in ha(K/2nZ)> we can write ha(K/2irZ) as the direct
sum h°(R/27rZ) « T0(X°) © Z, where Z is the subspace of fca(R/27rZ)
spanned by sinl and cos 6. This splitting is invariant under cM , and Z is
exactly kern(-A), so that the spectrum of A restricted to To(Xa) consists
of all eigenvalues of A, except 0. Hence v s 0 is indeed a hyperbolic fixed
point of 4>f, with a one-dimensional unstable manifold.

Q. E. D.
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Recall that we had defined a node on the boundary dCl of a domain
ft € S)2|Of to be a point P at which the normal velocity V vanishes, i.e. a
point where g(6)K - F = 0. In [Al, part 2] it was shown that the number
of nodes of a family of domains ft(f) which evolves according to (1.1) does
not increase with time.

Theorem 15.4. Consider a domain fto € S)2|° whose corresponding solu-
tion ft(i) to (1.1) exists for all positive times, and for which ft(f) converges
to ft* <w t - • oo. Then ft0 has at least four nodes.

Proof. We assume that ft(f) converges in C2 to ft*. The convexity of
ft* then implies that ft(i) is convex for sufficiently large t. We shall show
that if t is large enough, then ft(i) has four nodes, and since the number
of nodes is npndecreasing this will establish that fto also has at least four
nodes.

For large t the domain ft(<) is convex, and we may represent it by its
normal velocity function t>(0,i), which is a solution of the linear parabolic
PDE

vt =

where a(6,t) = (/?(*MM) + F
Since ft(t) —* ft*, the velocity t; decays to zero, and since v = 0

is a hyperbolic fixed point of our semiflow ^*, the velocity will decay at
an exponential rate. It follows from the results in [He2] that v(6,t) =
CtXiiw(6){\ + o(l)) as f —• oo, where tz;(0) is some eigenfunction of A, with
eigenvalue A;-, and C is some non-zero constant. Since v tends to zero, the
eigenvalue Xj must be negative, so that j > 3 and so that w(6) has at least
four simple zeroes. Thus, for large enough t, the velocity v(0,i) will have
at least four zeroes.

Q. Er D.

16. Large time asymptotics.

In this section we consider a solution ft(f) which encloses the steady state
ft*, and which will fill up the whole plane R2 as t —* oo. We show that
the domain ft(i), rescaled so that its diameter becomes 0(1), converges to
a fixed shape, namely, the Wulff region of l//?(0).

In the previous section we have seen that t; s 0 is a hyperbolic fixed
point of the semiflow 4>f of jfa, and that its unstable manifold is one di-
mensional. This unstable manifold consists of two trajectories; we shall
denote the corresponding solutions to the PDE (15.1) by v±(6^t). These
solutions are only well defined up to a time translation, i.e. for any i9 the
functions v±(6^t +19) would have been acceptable solutions representing
the trajectories on the unstable manifold. We shall assume that we have
chosen a particular pair of solutions from these time translates.
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The solutions v±(6,t) are in principle only defined for t sufficiently
small, i.e. for -oo <t<t±. As t -> — oo the v± will decay exponentially:

as t i —oo for certain positive constants C+ and C-; Ai and u>i(0) are
the principal eigenvalue and function of the linear operator A which we
encountered in the previous paragraph. In particular, we may assume that
ttfi (0) > 0 for all 6. This implies that both t>+(0,<) and vf(6yt) are positive
for all 0,<. Likewise v~ and v^ are negative for all 6 and t. In what follows
we shall study the behaviour of the positive solution.

We leave the precise behaviour of the negative solution as a (par-
tially) open problem. The negative solution corresponds to a solution
of (1.1) which is convex, which shrinks, and which does not exist for all
time. . Indeed, if m(t) = max$v(0,t), then it follows from (15.1) that
m'(t) < Cm(t)*, where C = min* p{s)/g{6)] by integrating this differ-
ential inequality one sees that m(t) j —oo in finite time if m(t) < 0 for
some t € R. Thus the solution to (1.1) corresponding to v_ becomes sin-
gular in finite time. It is not clear whether it will shrink to a point, and
what its asymptotic shape will be. However, under an extra condition on
the coefficient /?(0) M. Gage has shown that the solution is approximately
self similar ([Ga]).

Concerning the positive solution v+ we shall prove the following.

Lemma 16.1. u+(0,t) is defined for all positive times, and as t tends to
infinity, v+(0,i) converges monotonically to v°°(6), where v°° is defined by

sup U . m(6) | VO6Ri • %a) < h(a) } , fc(«) = - ^ - .

Moreover v°°(6) is the support function of \F\2T(0-1), where T()9"1) is the
Wulff region for 0"1 defined by (3.1) with f^P'1.

P r o o f . W e first show that t>°°(0) is the support function of {^^p)
Let A(0) = { $ € R 2 |* • 9t(0) < h(6) } . T h e n T(h) is the closure of the
intersection over all 9 of the halfspaces A(0) , and

thus, since T(h) is convex, v°°(0) represents the support function of T(h).
Next, for as long as v+(6,t) is defined it represents a solution of (1.1)

which is convex, and whose curvature is bounded by F/g(6) < k(6,t) < 0.
By our main existence theorem 3.1 this solution cannot become singular in
finite time, so that v+(0,<) is defined for all t € R.
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The velocity v(0,f) is an increasing function of time, and it is bounded
from above by 0 < v(0,*) < -F/0(0); therefore it must converge to some
limit function t>(0), which is also bounded by 0 < v(6) < -F/0{6).

It also follows from vt > 0 and (15.1) that ve$ > —M, where M =
^PfSR —«F/0(0). Thorn this we may conclude that |t>*| < 2TTM. Indeed,
for any given < € R there must exist a 0O € [0,27r] at which i>*(0o,t) s 0;
for any other 0 € (0o> 0o + 2n) we then have

< 2rrM.

So the v(0,<)'s are uniformly Lipschitz continuous, and they must converge
uniformly to C; this limit must also be Lipschitz continuous, with constant
2TTM. Moreover, in the sense of distributions we have

v" + v > 0.

To complete the proof we must show that v — v°°.
Clearly we have £5(0) < -F/P(6) for all 6 € R. Assume that for some

0o this inequality is strict. Then, by continuity, there is an c > 0 such that
v(0) < -F/P(6) - c for \0 - 0OI < «, and hence also r(0,t) < -F/P(0) - c
for |0 --0O\ < € and all t € R. On the strip S = (0O - €,0o + c) x R we
then have a bounded increasing solution of the uniformly parabolic PDE
Vt = (/?u + F)2//3g(v$$ + t>), and it follows from the Schauder estimates
for such solutions that all derivatives d£v(0,t) are bounded, and uniformly
convergent on any subinterval (0o — c',0o + ^f) with ef < c, as 11 oo. The
limit of v(0,f) must be a smooth equilibrium of the PDE, i.e. it must satisfy
v" + v = 0.

So fax we have found that the limit v satisfies 0 < £5(0) < -F/j8(0), is
Lipschitz continuous, and on the set of 0's where v(0) < —F/0(6) holds, C;
is a smooth solution of v" + v = 0; i.e. it is of the form A sin(0 — a). Since
t; is positive, v(0) < —F/p(0) cannot hold on any interval of length TT or
more; on such an interval v would coincide with Asin(0 — a), which has a
zero in any interval of length > TT.

The following two lemmas imply that v°° and t; coincide, and hence
they complete the proof of Lemma (16.1).

poLemma 16.2. v<v

Proof. Choose A,a such that Asin(0o — a) = v°°(0o) and sin(0 ~ a) <
—F/fi(0) for all 0 € (a, a + TT). We claim that there exist 0i, 02 € (a, a + 7r)
such that

(i) 0i < 0o < 02, and
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(u) Asin(^- - a) = jjf^ for j = 1,2.

To find 0X, we choose P and Q such that Asin(0 - a) = u>(0 - 0O), where
w(6) = Psin0+Qcos0. Suppose that u>(0-0o) < -F/0(O) for all a < 0 <
0O; then, for any P > P sufficiently close to P, we have u>(0-0o) < -F/P(6)
for all 0 € (a, a + TT), while u>(0o) « u>(0o) (here u>(0) = Psin0 + Qcos0.)
Thus for sufficiently small e > 0 we also have (1 + e)w{6) < -F/0(0). But
(1 + e)w(6) is of the form A sin(6 — a), so that

v°°(60) > (1 + e)w(60) > w(e0) = V°°(6Q).

The contradiction shows that 0i must exist after all; a similar argument
shows that 62 exists as well.

Define w(6) = Asin(0 - a). Comparing w with our solution v+(0,i) of
(15.1), we find that t>+(0o,*) < w(eQ),v+(e\t) < w(6') for all t € R, and,
since v+(6,t) | 0 uniformly as 11 —00, we also find that t>+(0,<) < w(6) for
all 0o < 0 < 0', if < is small enough. By the maximum principle we then get
t>+ (0,<) < w(6) for all 0O < 0 < 0' and all t € R. Taking the limit t | 00
this shows that C(0O) < tx>(0o) = t>°°(0o). Since 0O was arbitrary, we have
proved that t; < v°°.

Q. E. D.

Lemma 16.3. v°° < v.

Proof. Let Xsin(0-a) < -F/^(0) for a < 0 < C*+TT. We shall show that
A sin(0 — a) < v on the same interval; since v°° is defined as the supremum
of all such Asin(0 — a)'s the Lemma follows from this.

Let A < A bejthe largest A for which A sin(0 - a) < C(0) on (a, a + 7r),
and assume that A < A.

For some 0o € (a,a + 7r) one will have Asin(0o — a) = v(0o). At
this value of 0 one will also have v(0o) = -Asin(0o — a) = Asin(0o — a) <
—F/fi(6o). Let (0i,02) be the maximal interval containing 0O on which
v(0) < —F/£(0); then v is a smooth solution of v" + v a= 0 throughout this
interval which satisfies both v(0o) = Asin(0o — a), and A sin(0 — a) < v(0)
on (0i, 02), so that it must coincide with A sin(0—a) on [0i ,02]. In particular
it follows from the positivity of v that [0i, 02] C (a, a + TT).

All this leads us to the following contradiction: at the end points of
the interval (0i,02) we have

which is absurd. Thus A = A, i.e. Asin(0 — a) < C(0) on (a, a + 7r).
Q. E. D.
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Lemma 16.4. v°° is a C1 function.

Proof. In the sense of distributions we already know that vf$ > — v°° >
—Af, so that v|° is of bounded variation; in particular, v°° has left and
right hand limits, v°°(0 ± 0), at each $ € R/2TTZ.

Fix any 60 € (0,2TT). If v°°($0) < -F/0($Q)} then v°°(0) is of the
form Asin(0 — a) near 0o> and its derivative is clearly continuous at #o- So
assume that V°°(6Q) = —F/0(6Q).

Suppose that the left and right hand limits of vf° at 60 are different.
Since vf$ > —M, we must have vf>(60 - 0) < vf>(60 + 0). Choose p € R
and S > 0 such that

v?(60 -0)<p-6<p + 6< v|°(̂ 0 + 0).

Then there is an e > 0 for which v£°(0) < p - 6 holds when 6 € (0 - e, 0O),
while vf{6) >p + 6 when $ € (0o,0o + e). This implies that

v°°(e) > v°°(eo)+P{e - 0O) + s\e - eo\
on the interval (0O - e,0o + «). On the other hand v°°(6) < -F/0(O), with
equality at 6 = ô? which is impossible since —F/p(d) is a smooth function.

Q. E. D.

Lemma 16.5. vf(0,t) converges uniformly to vp>(6)) as t f oo.

Proof. Let S > 0 be given. We have just shown that v°° is C1 , so there
exists an e = €(£) > 0 for which

holds for any 6,6Q € R/27rZ with \0-0*\< e(6). We can choose e(6) in
such a way that it is a continuous function of 6, which vanishes when 6 = 0.

Now choose i* so that v+(0,<) > v°°(0) - c2 for all 6, and all * > t6.
Since v^ > —1>+ > —M, we have the following inequalities for t > t$:

On the other hand we also have .

v+($ ± e,t) < v°°(^ ±e)< v°°(e) ± v?($)e + St.

Subtracting these inequalities we find:

for all 0 and all large enough t.
Q. E. D.
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These lemmas allow us to prove the main result of this section. Recall
that we had denoted the domain corresponding to v+(0,t) by £2+(t), and
let p*(6it) be its support function. Then we have p* = v + , so that

By dividing the equation by t on both sides, and letting t tend to infinity

we find the following:

where the convergence
parametrized by

is in C1(R/27rZ). Since the boundary of ft+(t) is

we
also get convergence of the parametrization:

where X°°(d) = v°°(0)<tt(0) - vF[pyx[v)\ the convergence is uniform in 0.
Now consider any solution £2(t) of (1.1) which exists for all time, and

whose initial value £2(0) encloses the steady state £2*. Then if to is suffi-
ciently large, £2(0) must be contained in $"2+(to), while £2(0) must contain
£2+(—ti) for sufficiently large ti > 0. By the containment property we
get £2+(t - t i) C Q(t) C £2+(t +1 0 ) for all t > 0. The velocity of the
boundary of £2+(t) is given by t;+(0,t), so that it is uniformly bounded.
Therefore f2+(t+to) is contained in an R neighborhood of fl+(t —ti), where
R = ( t o+ti)supv+ (0 , t ) . Since £2+(t+t0) certainly contains £2+(t-ti), the
Hausdorff distance between £2(t) and £2+(t) is bounded by R. If we shrink
the domains by dilating them by a factor f"1, their Hausdorff distance
becomes at most R/t> and the convergence of £2+(t) implies the following
theorem.
Theorem 16.6. Let $2 : [0,oo) -^ £>2'° be a solution of (1.1) for which
ft* C £2(0). Then the domain Cl(t) obtained from £2(t) by shrinking it by a
factor t""1 converges to the domain J2°° whose support function is v°°{6).
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